
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Fast and Memory-Efficient Multi-Sequence Generation via Structured Masking

Anonymous Authors
1

Abstract

Many applications of large language models
(LLM) require drawing multiple samples from
a single prompt, also known as multi-sequence
generation. Current open-source approaches (e.g.,
HuggingFace) achieve this by replicating the
prompt multiple times and treating each repli-
cation as an independent prompt within a batch.
This approach is highly memory-inefficient, be-
cause the key-value (KV) cache will keep multi-
ple copies for the repeated prompts. In this work,
we present MultiGen, an alternative exact and
memory-efficient strategy for multi-sequence gen-
eration that only requires storing each prompt
once. To achieve exactness, we design a struc-
tured masking strategy that ensures newly sam-
pled tokens for each generation only attend to
their predecessor tokens in the same sequence.
Further, we propose a novel attention computa-
tion algorithm based on intermixing matrix multi-
plications and diagonalized matrices that has the
same theoretical runtime as the baseline approach
and is generally faster in practice. Empirically,
we demonstrate that MultiGen achieves consis-
tent improvements in both generation time and
memory consumption on a range of generation
scenarios carefully controlled for prompt lengths,
generation lengths, and number of sequence gen-
erations. Our core technique will be open-sourced
and can be implemented in less than 50 lines of
PyTorch.

1. Introduction

Large language models (LLMs) learn probabilistic gener-
ative models of text and are growing in popularity across
a wide range of applications (Radford et al., 2019; Tou-
vron et al., 2023). In many usecases, from complex rea-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

soning to uncertainty quantification, there is an inherent
need to sample multiple sequences for a given prompt. For
example, Malinin and Gales (2020) and Lin et al. (2023)
sample repeatedly from LLMs for the same prompts to es-
timate various notions of uncertainty. Similarly, Manakul
et al. (2023) use multi-sampling to detect hallucinations in
LLMs. Notably, repeated sampling is also a key step for
self-consistency (Wang et al., 2022), a popular decoding
strategy that improves the reasoning abilities of LLMs on
complex tasks spanning arithmetic, commonsense, and sym-
bolic reasoning. Across all these applications, it is important
to efficiently sample multiple sequences for a given prompt,
termed as the multi-sequence generation problem.

The standard technique for multi-sequence generation from
an LLM, say k times for every prompt, is to simply repeat
the prompt a desired number of times and create a pseudo-
batch of (repeated) prompts. Once created, we can pass
this batch to any LLM inference API, such as HuggingFace
Transformers (Wolf et al., 2019). For autoregressive LLMs
parameterized via decoder-only transformers (Vaswani et al.,
2017; Radford et al., 2019), LLM APIs critically exploit
the use of a key-value (KV) cache for accelerate inference.
The key idea here is to exploit the triangular masked struc-
ture of attention matrices to avoid repeated computation of
the attention between the augmented prompt tokens (ini-
tial prompt and generated tokens until current timestep) by
caching their attention values in their previous time steps.
While this general technique significantly accelerates infer-
ence, it comes at the cost of high memory usage to store the
key and value embeddings. This seems especially wasteful
where the KV cache size grows linearly with k, while incur-
ring redundance in storing repeated copies of the key and
value embeddings.

Motivated by the above limitations, we present MultiGen,
an inference technique for exact, memory-efficient multi-
sequence generation for large language models. The core
idea is to use a single prompt and generate blocks of k
tokens at every sampling step. We first introduce a struc-
tured mask wherein for any query for a specific generated
sequence, we only attend to tokens from the same sequence
at previous sampling steps, along with the initial prompt
tokens. Additionally, we modify the positional encodings
for the generated tokens to increment in blocks of k, sim-
ilar to what they would have been in the original scheme

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Fast and Memory-Efficient Multi-Sequence Generation via Structured Masking

3 40

3 4

Copied  
Prompt Tokens

Original Prompt 
Tokens Mask

0

1

1

2

2
3 40 3 41 2

Samples Samples

Figure 1: Illustration of MultiGen for k = 2 generations given a prompt of length n = 3 tokens (green). For visualization,
we assume that the generation length is m = 2 tokens (blue, yellow). The number inside each box denotes the positional
encodings. Left: Current approaches to multi-sample generation repeat the same prompts k times and treat the problem
as one of batched generation. Right: MultiGen uses a structured mask and blocked positional encodings to isolate the k
generations without replicating the prompts and thus avoids redundancy in the KV cache.

of repeating prompts. The above modifications guarantee
correctness, and we illustrate this scheme in Figure 1. Next,
for improving computational efficiency, we make the obser-
vation that the increase in attention computation over the
baseline approach is entirely due to attention between tokens
of different sequences. We decompose the attention compu-
tation into two stages: a dense attention between the new
query tokens in a block and the initial prompt keys, along
with sparse attention between only between the queries and
keys belonging to the same sequence.

Empirically, we implement our MultiGen framework in Py-
Torch and benchmark against the most widely-used, open-
source implmentation in HuggingFace Transformers. Since
time to generation and memory usage can depend on a va-
riety of inter-related factors and workloads, we conduct
careful controlled experiments varying the initial prompt
length, the generation length, and the number of sequences
individually. In all scenarios, we find our approach to out-
perform the HuggingFace method, as well as other ablation
baselines. Notably, our implementation can be easily im-
plemented in less than 50 lines of PyTorch code and we are
committed to open-sourcing our code and benchmarks.

2. Background

In this section, we review the basic architecture of a trans-
former, as well as key concepts related to latency and
throughput in performing inference with large language
models (LLM) parameterized via decoder-only transform-
ers.

2.1. Transformer Architecture

Current autoregressive LLMs use the decoder-only Trans-
former (Vaswani et al., 2017; Radford et al., 2019) archi-

tecture. The core component of the Transformer is self-
attention. Consider a sequence input of length n. Self-
attention operates on input sequences X 2 Rn⇥d and is
parameterized with matrices WQ,WK ,WV

2 Rd⇥h. We
can write self-attention as follows

SA(X) = softmax(A)XWV .

where A = (XWQ)(XWK)>p
d

is an n⇥ n attention matrix.

Thus, a Transformer forward pass will have an O(n2) run-
time. To preserve autoregressive dependencies, an n ⇥ n
triangular mask M is applied to A such that “past” tokens
cannot attend to “future” tokens. Such transformers are
also referred to as causal, decoder-only, or autoregressive
transformers. Finally, while attention itself is permutation-
equivariant, the inputs X typically incorporate positional
information through the use of positional embeddings.

2.2. LLM Inference via Prefilling and Decoding

Formally, LLM inference can be separated into two distinct
phases: prefilling and decoding. Prefilling is a forward pass
on the entire input sequence, in which the Key-Value (KV)
cache can be processed in a concurrent manner. Prefilling
is an operation on requires computing the outer product
between n⇥ d matrix Q and n⇥ d matrix K>, resulting in
an n⇥ n self attention matrix. Once prefilling is complete,
autoregressive generation begins, and it can be instantiated
with a number of ”decoding” strategies. Because decoding is
autoregressive, it operates sequentially on a token-by-token
basis. Thus, at iteration t+ 1 of decoding, a 1⇥ d vector Q
is multiplied with an d⇥ (n+ t) matrix K>. The product
is attention scores of dimension in an 1⇥ (n+ t). Crucially,
the keys and values at every layer of the transformer is
cached, so a significant amount of computation is saved.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Fast and Memory-Efficient Multi-Sequence Generation via Structured Masking

Because prefilling can be parallelized, it is a compute-bound
operation; meanwhile, decoding is memory bound because
each iteration is not compute intensive, but the process
requires storing a cache.

3. Method

Multi-sequence generation, as the name suggests, is the pro-
cess of generating multiple sequences from a single source
prompt. To motivate our approach, we first present the chal-
lenges with existing solutions. For simplicity, we assume
that we have a single prompt and we desire multiple gener-
ations for this prompt. If we have more than one prompt,
we can trivially apply MultiGen to each prompt and run it
through any batched inference algorithm. For the remainder
of this paper, we also use n to denote the number of prompt
tokens, k to denote the number of multi-generations, and t
to denote the expected length of each prompt.

3.1. Method 1: Copy Approach

The pervasive Huggingface (HF) library handles multi-
sequence generation in a straightforward manner. To gener-
ate k sequences, simply copy the prompt k times and batch
decode in a conventional fashion. The downside of this
approach is that it is very memory efficient. Storing the
same prompt repeatedly k times in the cache is wasteful,
and because decoding is a memory-bound operation, it is
undesirable. The number of FLOPS of this approach is
on the order of O(k(n + t)2), and the memory usage is
O(k(n+ t)).

3.2. Method 2: Single Prompt, Dense Attention

Rather than duplicate prompts and grow the batch dimen-
sion, a natural approach is to instead keep a single copy of
the prompt and store new samples in the sequence dimen-
sion. Specifically, at every iteration, compute a forward pass
on k queries and use a custom attention mask to prevent
newly sampled tokens from attending to each other. This ap-
proach is more memory efficient, requiring only O(n+m)
memory, where m = tk. However, the downside is that
growing the input sequence length severely penalizes the
runtime. Because the sequence length grows by k tokens
every iteration, the quadratic Transformer runtime leads to
an O((n+ tk)2) = O(k2(n+ t)2) runtime, which is larger
than the Huggingface approach by a factor of k.

3.3. Method 3: Single Prompt, Hybrid Attention

Our goal is to maintain the low memory of Method 2 with
the runtime of Method 1. Consider Method 2 at the second
iteration. The cache is of length n + k, where the first n
tokens are the prompt and the next k are sampled tokens
that do not attend to each other. At this iteration we have

sampled k new tokens and must compute the outer product
between their queries Q and n+k cached keys. We make the
following observation: we do not need to fully compute the
k ⇥ k product between the queries and the final k columns
of the cache.

This motivates the following procedure. Divide the cache
keys into two portions: an n long prompt cache Kp and
tk long cache Kd corresponding to the decoded tokens.
First, compute the attention scores in a standard fashion
with the product Ap = QK>

p . Next, we can exploit the
sparse structure of Kd and obtain entries that will have
non-zero attention after the sparse mask is applied. We
can collect these entries into K 0

d, which we can multiply
element-wise Q�K 0

d. We can then reshape the result and
obtain attention scores Ad, and then we concatenate Ap

with Ad to obtain an attention matrix A. These operations
result in an equivalent operation to masked self-attention.
This decomposed attention operation will be referred to as
Hybrid Attention, and the full code is given in the Appendix.

4. Experiments

In this section, we aim to show that the theoretical savings
demonstrated above manifest as empirical gains in through-
put and memory efficiency. With constraints on an academic
budget, all experiments are conducted on a single NVIDIA
24GB A5000 GPU connected to a Colfax CX41060s-EK9
4U Rackmount Server with AMD EPYC (Genoa) 9124 pro-
cessors. We use a lightweight sharded 1.3 Billion parameter
version of Llama2 with a context length of 4096, loaded
through Huggingface. In principle, larger models loaded
onto larger GPUs will yield analogous results.

4.1. Speed

For fair evaluation, we benchmark our method on a range of
different inputs. We consider three parameters as part of the
input: number of generated sequences, maximum number of
new tokens, and prompt length. In terms of our previous run-
time analysis, these correspond to k, m, and n respectively.
In order to thoroughly understand how these variables affect
performance, we must conduct experiments exploring how
different combinations of the variables affect generation
time. Because the parameter space is exponentially large
and LLM computation is prohibitively GPU intensive, we
opt to test a subset in which we hold two constant and vary
one. We fix and vary k,m, n in the following manner

1. Fix: k = 50,m = 50, Vary: n = (1, 20, 40, ..., 200)

2. Fix: k = 50, n = 50, Vary: m = (1, 10, ..., 80)

3. Fix: k = 50, n = 50, Vary: k = (1, 10, ..., 80)

Note that to avoid cherry-picked constants, we fix them

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Fast and Memory-Efficient Multi-Sequence Generation via Structured Masking

Figure 2: Top: We show the time usage in three different parameter regimes. In each, MultiGen outperforms the HF
multi-sequence sampling approach. Bottom: For the same settings, we also show peak memory usage. In these plots, we
see that MultiGen obtains the memory savings of Method 2 (no Hybrid Attention). Thus, it achieves significant memory
improvement with no sacrifice in time.

all to the same value of 50. We then vary the free input
parameter so as to maximize GPU utilization such that we
can empirical the asymptotic behavior of our method. We
run each method on random input tokens and average over
5 runs, clearing the cache to avoid cross contamination.

Plotting generation time over these values, we can make
the following observations in Figure 2. First, we observe a
superior runtime for MultiGen compared to Huggingface
baseline. This is an encouraging result because in terms of
FLOPs, our method theoretically only purports to be equal
in speed to the baseline. In practice, because our method op-
erates with a much smaller batch size, it is able to run faster
because larger batches on GPUs often cause issues relating
to synchronization overhead and memory bandwidth (Yuan
et al., 2024). As predicted by our analysis, the naive ap-
proach to multi-sequence generation is penalized in runtime
by growing the sequence length faster than the other two
approached. While it is inefficient in time, it is dramatically
more efficient in memory.

4.2. Memory

Another explanation for the improvement in runtime for
our method compared to Huggingface is due to the nature
of decoding. Decoding is known to be a memory-bound
operation, so improvements in memory will affect the over-
all runtime than compute efficiency. As we can see from
Figures 2, MultiGen dramatically improves the memory ef-
ficiency of decoding. We make these measurements in the

same manner as before, varying a parameter and holding
two constants. Again, we average over 5 runs over random
input and cleared memory cache for each run. We con-
firm our analysis of memory that that the naive approach to
multi-sequence generation by a factor k. This is confirmed
by the plot that shows as we vary the number of sequences
sampled, i.e. k, the maximum memory usage of methods di-
verges. Thus, we confirm that in our experiments, MultiGen
enjoys a dramatic reduction in memory usage without any
increase in time, a decrease in fact. In these experiments,
we show that a free lunch is possible, in which we show
better memory efficiency and compute time.

5. Conclusion

In conclusion, MultiGen presents a significant advancement
in the field of multi-sequence generation with large language
models. By addressing the memory inefficiencies of existing
approaches, MultiGen offers a more efficient and scalable
solution. Through a combination of structured masking and
a novel attention computation algorithm, MultiGen main-
tains exactness while reducing both generation time and
memory consumption. The empirical results across vari-
ous generation scenarios further validate the effectiveness
of MultiGen. With its open-source implementation and
minimal code requirements, MultiGen is a straightforward-
to-implement solution for applications that rely on multi-
sequence generation.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Fast and Memory-Efficient Multi-Sequence Generation via Structured Masking

References

Z. Lin, S. Trivedi, and J. Sun. Generating with confidence:
Uncertainty quantification for black-box large language
models. arXiv preprint arXiv:2305.19187, 2023.

A. Malinin and M. Gales. Uncertainty estimation in
autoregressive structured prediction. arXiv preprint

arXiv:2002.07650, 2020.

P. Manakul, A. Liusie, and M. J. Gales. Selfcheckgpt: Zero-
resource black-box hallucination detection for generative
large language models. arXiv preprint arXiv:2303.08896,
2023.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is
all you need. Advances in neural information processing

systems, 30, 2017.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang,
A. Chowdhery, and D. Zhou. Self-consistency improves
chain of thought reasoning in language models. arXiv

preprint arXiv:2203.11171, 2022.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Z. Yuan, Y. Shang, Y. Zhou, Z. Dong, Z. Zhou, C. Xue,
B. Wu, Z. Li, Q. Gu, Y. J. Lee, Y. Yan, B. Chen, G. Sun,
and K. Keutzer. Llm inference unveiled: Survey and
roofline model insights, 2024.

5


