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Abstract

Exams play a crucial role in the learning process, and academic institutions invest
significant resources to ensure their integrity by preventing cheating by students or
facilitators. Unfortunately, cheating has become rampant in exam environments,
compromising their integrity. The traditional method of relying on invigilators
to monitor every student is impractical and ineffective. It is necessary to record
exam sessions to monitor students for suspicious activities to address this chal-
lenge. However, these recordings are often too lengthy for invigilators to analyse
effectively, and fatigue may cause them to miss significant details. To expand the
coverage, invigilators can use fixed overhead or wearable cameras. This paper
introduces a model that automates the analysis videos to effectively detect the
use of mobile phones as during exams. We used Convolutional Neural Networks
(CNN) object detection techniques to identify mobile phones. The experimental
results show that model achieved a 98.9% accuracy, a recall of 0.795, an F-measure
of 0.697, and an average precision of 0.783. This detection system is essential
in preventing cheating and promoting academic integrity, fairness, and quality
education for institutions.

1 Introduction

The use of advanced Information and Communication Technology (ICT) in education has significantly
impacted the field’s growth. ICT is utilized in teaching, learning, and exam administration [1], among
other areas. Exams are a crucial part of a student’s learning, and academic institutions put in a lot of
effort and resources to ensure the integrity of the exam. Despite the presence of a proctor, students
may still cheat cautiously to avoid harsh consequences[2]-[4]. Using security cameras and object
detection techniques, we can record videos and analyse suspicious use of prohibited materials in
exam sessions [5]. These videos can contain information that even invigilators may miss it. However,
going through each video manually is time-consuming and arduous. Automating the analysis and
evaluation of the videos and highlighting any suspicious activities would be helpful. Most modern
lecture halls have cameras installed in strategic locations for security purposes. Similarly, these
cameras can record and analyse any unusual or suspicious activity during exams, along with wearable
cameras if necessary. This paper discusses a framework that automatically analyses pre-recorded
exam videos and detects prohibited materials like the use of phones during an examination. The
use of mobile phones is not allowed in the examination rooms; hence, it is considered a prohibited
material.
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Cheating in exams has become widespread, with many students sneaking on mobile phones to look
up answers on the Internet. Although screening students when entering an exam hall is standard
practice, invigilators sometimes fail to detect these devices [3]. It is essential to detect them during the
exam to prevent cheating effectively. This is why an object detection model using Object Detection
techniques is necessary [15],[19].

In computer vision, image classification involves assigning a single label to an image, placing it into
classes or categories. It seeks to answer the question, "What is in this image?" Object detection, on
the other hand, is concerned with identifying and locating multiple objects within an image. It is an
extension of image classification by answering, "What objects are in this image?" and "Where are
they located?" [13]. The decision to use one method over the other depends on the specific application
and whether the goal is to identify specific objects and their placement in an image or categorize the
entire image into predetermined classes. Detecting objects is one of the most difficult challenges
in Computer Vision (CV). It requires identifying and localizing objects within a particular scene
whilst labelling different objects and drawing bounding boxes around them [10],[22]. Deep Neural
Networks (DNNs), especially Convolutional Neural Networks (CNNs), have greatly improved the
training of models for OD [9],[22], [27]. The Fast/Faster R-CNN frameworks have played a crucial
role in OD by providing flexibility, robustness, training, and inference time [24],[25]. To identify
the location of an object in an image and draw a bounding box around its extent, we utilise object
localization techniques. Instance Segmentation requires precise detection of objects in an image.
Each Region of Interest (RoI) is predicted, and a segmentation mask is drawn. Faster R-CNN has
two stages; the first is a Region Proposal Network (RPN) that suggests potential object bounding
boxes. The second stage involves feature extraction using the RoI Pool for each candidate box.
Then bounding box regression and classification are performed. Mask R-CNN is a two-stage object
detector that follows the same procedure as Faster R-CNN, with an identical RPN stage first, and then
it outputs a binary mask for each RoI along with class prediction and bounding box offset [28], [20].

The MMDetection library, presented by Chen et al. [21], is a Python-based open-source library that
offers top-notch object detection techniques with a high performance, memory efficient, a fast training
speed and high accuracy. The MaskRCNN benchmark includes Mask R-CNN [20], RetinaNet, Faster
R-CNN [25], RPN, Fast R-CNN [24], and a specially designed Python code. This combination of
state-of-the-art algorithms into a single framework significantly increases performance and accuracy,
as MMDetection Model Zoo and Baselines demonstrated. MMDetection supports VOC-style and
COCO datasets and is particularly noteworthy for its fast-training capability. To train an object
detector using MMDetection, the main units, such as a data pipeline, an iterative pipeline, and a
model, must be defined [33]. This research follows a similar approach to train a custom object
detector.

Our research aims to address the limitations of current fraud detection systems by exploring the
effectiveness of advanced CNN models such as the MMDetection Toolbox, Mask R-CNN, and
Openpose library in detecting suspicious activities without requiring a physical proctor. After careful
consideration, we used the MMDetection library for phone detection due to its range of models,
including Mask R-CNN, Faster R-CNN, and RetinaNet.

1.1 Objectives

This study intended to analyse pre-recorded videos of an exam session to detect the presence of
prohibited objects like mobile phones in an exam to assist a physical invigilator in continuously
monitoring the students.

2 Methodology

2.1 Dataset creation

Since no existing dataset depicted people using phones in an exam room, we had to create one. To
do this, we recorded videos of a simulated exam room setting. Sixteen students were randomly
chosen to participate in a video recording experiment. We arranged the students in four rows and
columns to create a realistic exam environment. The experiment consisted of ten trials, with the first
six allowing phone usage during each trial. Two trials were used as a control, where all students
followed strict exam rules. In the final four trials, participants engaged in random activities. A custom
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Parameter Settings
The number of Epochs 50
Number of Classes 2
Pre-trained Backbone Resnet50
Configuration Model faster-rcnn-r50-fpn _1x
Learning Rate 0.01
Model Type Faster RCNN
Number of filters 18

Table 1: Summary of parameter settings used during the fine-tuning of the custom network

dataset was created by sampling frames from the recorded videos. To obtain a dataset large enough
to train a neural network, We collected additional images from the web and successfully labelled
and annotated them. The frames were resized to 224 x 224, and we created a dataset of 10,000
images. Approximately 6,600 images had a phone on it. The dataset comprised smartphones and
second generation phones. Generating a custom dataset is a time-consuming process requiring much
effort. Nonetheless, we found that utilizing pre-trained models trained on datasets with comparable
classes to ours was advantageous. We utilized an adaptable open-source image and video labeller
tool, OpenLabeling [21], to aid us with fast and flexible image labelling and dataset annotation. The
resultant dataset includes 7,000 images for training, 1,500 for testing, and 1,500 for validation. The
validation dataset helps evaluate the model’s quality, prevents over- and under-fitting, and assists in
selecting the best model for unseen data.

2.2 Design and Evaluation

To detect the presence of cell phones in the exam room, we employed an existing MMDetection
library with Faster R-CNN. This CNN framework was pre-trained on the state-of-the-art COCO and
Pascal VOC-Style dataset. However, the pre-trained network performed poorly on the videos because
of the angle of capture for the phone and the small size of the phone object. It proved challenging
to recognise a phone in the student’s hands. Secondly, the benchmark datasets did not consist of
adequate classes of mobile phones. Hence, fine-tuning the CNN network and creating our custom
data set was vital. Much as the students may hide their mobile phones, the model should be able to
detect it at the slightest chance that the camera captures the phone. First, images used for training,
testing, and validation were re-sized to 224 * 244 pixels to fine-tune the network. We use this custom
data set to train our fine-tuned network. The last three network layers with the FC, Softmax, and
classification output layers were replaced. The FC layer was set to have one (1) class as in the training
data set. The learning rate factor of the FC layer was increased to train the network faster. Then,
We set the training options, including a learning rate of 0.01, 50 epochs, and validation data on a
single GPU system. During the training of the network, we used the Adam optimizer because it uses
fewer memory requirements and is efficient as compared to stochastic gradient descent [19], [23], [8].
Lastly, we classified the testing and the validation images using the fine-tuned network and calculated
the classification accuracy.

To train the network on a custom data set, we created a pipeline with eight operations, including
LoadImageFromFile, LoadAnnotations, Resize, RandomFlip, Normalize, Pad, DefaultFormatBundle,
and Collect. These operations handle data loading, pre-processing, formatting, and test-time aug-
mentation, as described in [33]. We modified the Neck of the network by adding a Feature Pyramid
Network (FPN) layer in the CONV layer. Next, we adjusted the RPN Head by removing some
classification layers to produce bounding boxes for the cell phone class only. For bounding box RoI
extraction, we used the singleRoIExtractor type. Finally, we fine-tuned the model on a single GPU
machine based on the parameters listed in Table 1.

3 Results and Discussion

During the experiment, the goal was to identify any mobile phones present in the exam room. While
the model could detect visible phones, it did not catch all phones in a single frame. The accuracy rate
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(a) Training results for accuracy and total loss (b) Training results for classification loss,
bounding box loss

Figure 1: Training results for classification loss, bounding box loss, accuracy and total loss for the
fine-tuned model

Class Ground Truths Detections Recall Avg Precision
Cellphone 19 800 0.368 0.057
Mean Avg Precision 0.057

Table 2: Results of Mean Average Precision (mAP) of the generic MMDetection when run on the
custom dataset

of the detection model was 98.9%. However, the model faced obstacles when trying to detect phones
firmly held by the students, leading to decreased accuracy.

Scenario 1: Use of MMDetection model: To detect phones in pre-recorded videos, we utilized an
unmodified Faster R-CNN Network from the MMDetection toolbox. In figures (a) and (b) of Figure
1, we showcase some of the results obtained using the generic MMDetection models on the data.
However, detecting a phone proved challenging for the generic MMDetection model when the phone
was partially concealed or held in hand. The model was trained to recognize phones in full view, but
it struggled to detect phones from different angles. As a result, we encountered difficulties when
attempting to detect and classify phones that were partially visible or hidden under other objects.

Additionally, there were some difficulties with misclassifying objects, such as pens being identified
as cell phones, and all objects in the 21 classes of the VOC dataset being classified. Furthermore, un-
wanted objects like people, chairs, and books were also categorized. The bounding box classification
loss on the object was high, with a low mAP of 0.057, and a recall of only 0.368 from 19 ground
truths, with 800 misclassified detections. This experiment was not intended to assess the performance
of MMDetection, but rather to determine if it could be utilized for our cell phone detection problem.

Scenario 2: Use of Fine-tuned CNN Network: To overcome the challenges with generic MMDe-
tection models, we fine-tuned a custom CNN network to achieve our objective. Our model was
trained based on a custom dataset, and we obtained excellent results when running it on pre-recorded
videos, as shown in Figures 2 (a) and 2 (b). The fine-tuned network performed exceptionally well,
detecting numerous occurrences of cell phones even based on ground truth observation. The model
classified smaller phone objects with higher accuracy and a better classification loss. Additionally,
the bounding box loss was minimal, as shown in the graph in Figure 3 (b).

Despite issues with the created custom model, it effectively detected cell phones and scientific
calculators. However, there were instances where the model struggled to differentiate between objects
that looked like cell phones and actual cell phones, while scientific calculators were sometimes
identified as cell phones. Additionally, the model wasn’t extensively tested on various datasets and
videos due to time constraints, and it was only trained using a small sample size of 10,000 images
due to the meticulous and time-consuming task of annotating frames.
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(a) Front view (b) Rear view

Figure 2: A front (a) and top-rear (b) view of a classified phone by the fine-tuned model

Class Ground Truths Detections Recall Avg Precision
Cellphone 19 18 0.795 0.783
Mean Avg Precision 0.783

Table 3: Results of the mAP of the fine-tuned model when run on the custom data set and videos

To evaluate the model’s performance, a random video was selected and tested, and it performed better
than the generic model, achieving a mean average precision (mAP) of 0.783 and a recall of 0.795.
The model detected 18 out of 19 ground truths, as shown in Table 3, indicating an improvement in
object classification. The fine-tuned model also achieved an F-measure of 0.697, which indicates
better performance. Although the precision rate wasn’t as high and the difference between precision
and recall wasn’t significant, the F-score suggests that the model’s classifier was precise and robust
enough to be effective.

In Figure 2 (a), the fine-tuned model shows an accuracy of 98.9%. We also rely on the F-score to
determine the detector’s precision and robustness. The total loss decay indicates that the fine-tuned
model had better training performance and behaved normally. The model successfully identified
the region proposals, classified the phone object from the background, and accurately classified the
bounding box RPN of the phone object.

(a) Training results for accuracy and total loss

(b) Training results for classification loss, bounding box loss

Figure 3: Training results for classification loss, bounding box loss, accuracy and total loss for the
fine-tuned model
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3.1 Ethical Consideration

In this study, ethical issues cannot be disregarded. One of the issues is privacy. The privacy of
the participants in the experiment was significantly considered by restricting the scope for more
domain-specific actions. All experiment subjects were provided with a consent form as stipulated
by [11],[18],[26]. Furthermore, data was securely stored and only used for the intended purpose.
Throughout the research process, transparency in the models and algorithms was critical to make the
decision-making processes clear and understandable.

4 Conclusion

We fine-tuned an existing CNN network to detect cell phones in the exam room. In an event where
the camera captures a cell phone, the model detects it as a prohibited material. Based on the custom
data set created, the model was trained to detect small-sized cell phones from different sides and
angles of the cell phone to maximize the chances for detection. Eventually, our model performed
well in our data on study and achieved an accuracy of 98.9%. Much as not all occurrences of phones
in a video could be detected; the model achieves its objective. The model achieved a 98.9% accuracy,
a recall of 0.795, an F-measure of 0.697, and an average precision of 0.783. This detection system is
essential in preventing cheating and promoting academic integrity, fairness, and quality education for
institutions. A significant obstacle in identifying cheating during exams is students’ resourcefulness
in concealing their phones as they are adaptive adversarial agents. They are resourceful and adept at
disguising or stashing phones under their desks, and they become aware of camera placements. To
overcome this issue, we propose utilizing adversarial training models, which incentivise students with
rewards to produce training data sets that assist the model in detecting cheating, even as they attempt
to circumvent detection. Additionally, combining a self-supervised model with an adversarial-trained
model would enhance the feasibility and efficacy of detecting cheating during exams.
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