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Abstract
Sequential recommendation in e-commerce uti-
lizes users’ anonymous browsing histories to
personalize product suggestions without relying
on private information. Existing item ID-based
methods and multimodal models often overlook
the temporal alignment of modalities like tex-
tual descriptions, visual content, and prices in
user browsing sequences. To address this limita-
tion, this paper proposes the Multimodal Time-
aligned Shared Token Recommender (MTSTRec),
a transformer-based framework with a single
time-aligned shared token per product for effi-
cient cross-modality fusion. MTSTRec preserves
the distinct contributions of each modality while
aligning them temporally to better capture user
preferences. Extensive experiments demonstrate
that MTSTRec achieves state-of-the-art perfor-
mance across multiple sequential recommenda-
tion benchmarks, significantly improving upon
existing multimodal fusion. Our code is avail-
able at https://github.com/idssplab/
MTSTRec.

1. Introduction
In e-commerce and online platforms, Sequential Recommen-
dation Systems (SRS) play a pivotal role in delivering per-
sonalized product suggestions by analyzing users’ browsing
histories. Throughout its gradual evolution, SRS has tran-
sitioned from traditional probabilistic models to advanced
neural networks, enabling more effective modeling of user
behavior sequences. Recent Transformer-based methods,
such as SASRec (Kang & McAuley, 2018) and BERT4Rec
(Sun et al., 2019), have further enhanced sequence model-
ing by capturing dependencies across the entire interaction
history. However, despite these advancements, existing SRS
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approaches largely focus on single-modal data, overlooking
the potential of rich multimodal information to reveal deeper
user preferences and improve recommendation quality.

Multimodal recommendation systems combine diverse data
types, such as images and texts. Image-based methods use
pre-trained convolutional neural networks (O’Shea, 2015)
like ResNet (He et al., 2016) to capture the visual features,
while text-based methods use models like BERT (Devlin
et al., 2019) for product descriptions and reviews. CLIP
aligns text and images through a multimodal approach, en-
abling zero-shot transfer for various vision-language tasks
(Radford et al., 2021). Recently, large language models
(LLMs) have excelled in extracting hidden textual informa-
tion, enriching item representations (Geng et al., 2022; Lyu
et al., 2024). Rather than full-scale LLM training, we focus
on leveraging LLMs to enrich item descriptions by extract-
ing hidden textual features. While many recommendation
models rely on image classification or recognition to predict
purchase intent, we argue that textual data alone is often
sufficient for identifying what a product is. Instead, images
should capture product aesthetics and style, which are espe-
cially important on platforms that sell the same product in
various patterns or designs (Ugurlu, 2023).

When it comes to multimodal fusion, designing a uni-
fied model that effectively integrates different modalities
presents significant challenges. Different modalities and
their specialized formats learn at different speeds and pat-
terns. This makes it challenging to combine them effectively
into a single system. In the context of recommendation
systems, the common modalities are typically images and
text, which have fundamentally different input represen-
tations. Early fusion techniques are often used to unify
these features, where modalities are combined before en-
tering the recommendation model (He & McAuley, 2016;
Liu et al., 2019). However, this approach fails to account
for the significant differences in input representations and
neural network architectures across modalities. In contrast,
late fusion processes each modality independently before
combining outputs later, enabling modality-specific extrac-
tion but ignoring their complementarity in representing the
same product at each time step (Liang et al., 2023). This
delays cross-modal interaction, forcing post hoc inference
and leading to suboptimal representations.

To address both the modality processing and fusion issues,
we propose Multimodal Time-aligned Shared Token Rec-
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ommender (MTSTRec), a novel framework for multimodal
feature integration and cross-modal interaction using time-
aligned shared tokens. MTSTRec consists of two main com-
ponents: the Feature Extractor and the Multimodal Trans-
former. The feature extractor takes the browsing history
sequence, where each item includes a product ID, image,
text, and price. We use different extractors for each modal-
ity. For text, we enrich the data through LLMs with task-
specific prompts to extract implicit consumer preferences.
For images, we focus on style rather than classification,
using Gram metrics to capture visual patterns that influ-
ence purchasing behavior. These inputs are then projected
into separate feature embeddings for each modality. In the
proposed multimodal transformer, a self-attention encoder
is first applied to model the information for each feature.
During fusion, we adopt a mid-fusion strategy, where modal-
ities are processed independently and then combined in the
intermediate stage. Our proposed Time-aligned Shared To-
ken fusion module (TST) learns cross-modal interactions
by aligning features from different modalities at each time
step of the product interaction sequence. This ensures effi-
cient feature sharing across modalities while maintaining the
chronological order and consistency of product interactions.

Our contributions can be summarized as follows:

• We propose a unified multimodal recommendation
framework for multimodal recommendations that
seamlessly integrates diverse information, such as ID,
text, image, and other modalities, enhancing the sys-
tem’s adaptability across different tasks.

• We introduce a novel TST module that leverages
shared tokens to learn cross-modal interactions at each
time step of the sequence, ensuring time-consistent
alignment and fusion of modality information. By
maintaining the chronological structure of the sequen-
tial data, the TST module effectively captures the evolv-
ing relationships between user interactions and product
features.

• MTSTRec outperforms state-of-the-art methods on
three real-world e-commerce datasets, setting a new
benchmark in multimodal recommendation systems.
Our ablation studies highlight the contribution of in-
dividual features and reveal deeper insights into the
distinct roles of various modalities across diverse e-
commerce environments, offering a valuable under-
standing of future advancements in the field.

2. Related Work
2.1. Sequential Recommendation Systems

SRS aims to predict the next item a user will interact with
based on their browsing history, providing personalized

recommendations. The traditional Markov Chain model
(Shani et al., 2005) employed simple probabilistic methods
but struggled to capture complex user behavior patterns.
GRU4Rec (Hidasi, 2015) introduced RNNs to improve
sequence modeling by capturing temporal dependencies.
Transformer-based models like SASRec (Kang & McAuley,
2018) enhance this approach by using self-attention mech-
anisms (Vaswani, 2017) and causal masking, preserving
temporal order and efficiently capturing short and long-term
dependencies. BERT4Rec (Sun et al., 2019) extends this
further by adopting a bidirectional Transformer model and
using a CLOZE task for training. Unlike SASRec’s causal
masking, BERT4Rec allows the model to attend to both past
and future items in the sequence, capturing richer contextual
information. Transformers4Rec (Moreira et al., 2021) and
GFormer (Li et al., 2023a) have been proposed to extend
Transformer-based recommendations. Transformers4Rec
adapts NLP Transformers to sequential recommendation
tasks, whereas GFormer enhances user-item modeling by
integrating generative self-supervised learning with graph
transformer architecture. However, these models remain
focused primarily on single-modal data, overlooking the
potential benefits of multimodal information.

2.2. Multimodal Recommendation Systems

Multimodal recommendation systems are essential for in-
tegrating information from multiple modalities to create
more accurate and comprehensive predictions. These sys-
tems generally operate through two main stages: raw feature
extraction and feature fusion (Liu et al., 2024).

Different modalities require tailored methods to capture
their unique attributes in the raw feature extraction stage.
For instance, image-based features are often extracted using
CNNs (O’Shea, 2015) or, more recently, Vision Transform-
ers (ViT) (Dosovitskiy et al., 2021), which excel at process-
ing visual data. Textual features often rely on pre-trained
language models (Devlin et al., 2019), capturing semantic
meanings from product textual information. In addition,
advances in LLMs (Achiam et al., 2023; Dubey et al., 2024)
have significantly enhanced text-based feature extraction.
LLM-Rec (Lyu et al., 2024) utilizes LLM and prompts to
generate richer contextual representations, enhancing rec-
ommendation quality. Other LLM-based approaches have
also emerged, further refining text comprehension to opti-
mize the use of textual features in recommendation systems
(Zhao et al., 2023; Li et al., 2023b; Wu et al., 2024).

After raw feature extraction, the system proceeds to the
feature fusion stage, where the multimodal data are com-
bined and processed. It can be categorized into three main
approaches (Zhou et al., 2023): (i) Early fusion involves
merging the features from different modalities at the initial
stages of the model. For example, VBPR (He & McAuley,
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2016) integrates visual features into a matrix factorization
approach. However, early fusion may miss important tempo-
ral relationships and modality-specific behaviors by merging
features too early. (ii) Mid-fusion delays modality combina-
tion for more refined processing, as seen in MM-Rec (Wu
et al., 2021), which uses a cross-modal attention mechanism
to combine textual and visual information effectively. How-
ever, these methods often fail to capture temporal relation-
ships, which are crucial in sequential recommendations. (iii)
Late fusion keeps modalities separate until the final stage,
as in MMMLP (Liang et al., 2023), the final outputs from
three different modalities are concatenated before making
the prediction. While preserving modality-specific features,
it fails to capture early interactions between modalities and
sequences, leading to suboptimal performance with complex
sequential patterns. Similarly, FREEDOM (Zhou & Shen,
2023) freezes item-item structures and denoises user-item
interactions before fusion, while Mirror Gradient (Zhong
et al., 2024) improves robustness via flat local minima ex-
ploration, both maintaining separate modality processing
until the final stage.

Recent works also emphasize robustness and information ef-
ficiency during fusion. CGI (Wei et al., 2022) enhances rec-
ommendation systems through contrastive graph learning,
combining adaptive structure pruning with the information
bottleneck to suppress irrelevant signals. DVIB (Zhao et al.,
2025) improves multimodal recommendation by applying
hidden-layer perturbations and self-distillation, inducing an
information bottleneck effect. These approaches concep-
tually align with our mid-fusion strategy, which aims to
preserve relevant information during fusion.

2.3. Temporal Dynamics in Recommendation Systems

Recent research highlights the significance of temporal dy-
namics in recommender systems. For instance, time-aware
recommendation systems (TARS) have been emphasized
(Campos et al., 2014). Temporal and feature dynamics
were integrated to address data sparsity (Zhang et al., 2021),
while multi-scale temporal effects were leveraged for micro-
video recommendations (Jiang et al., 2020). CDTR (Wang
et al., 2024) introduced a causality-based framework that
addresses item- and time-level biases in user behavior to
enhance the accuracy of time-aware recommender models.

While these approaches explicitly model timestamps or tem-
poral dependencies, our work focuses on a different as-
pect of time representation. Instead of relying on absolute
timestamps, we consider the relative positional structure
of different modalities within a sequence. This allows for
a structured alignment of multimodal data without requir-
ing explicit time information. Our method does not predict
future interactions based on timestamp trends but ensures
that multimodal features at each step are temporally aligned,

preserving the chronological order of product interactions.

3. Proposed Method: MTSTRec
This section presents the MTSTRec framework, designed to
enhance multimodal sequential recommendation by effec-
tively fusing diverse product modalities from a consumer-
centric perspective. The framework comprises two primary
modules: the feature extractor module, which processes
browsing history to extract modality-specific embeddings,
and the multimodal transformer with time-aligned shared
token (TST) fusion, which synchronizes and integrates fea-
tures across modalities and layers. An overview of the
MTSTRec is illustrated in Figure 1.

3.1. Preliminaries

Let the set of items be defined as I = {i1, i2, . . . , ik, . . . ,
i|I|}, where each item ik ∈ I consists of four essential
elements: product ID bk, image vk, text tk, and price
ck. Therefore, each item ik can be expressed as a tuple
ik = (bk,vk, tk, ck), capturing the multiple modalities that
describe it. For each user, their browsing history is denoted
as S = [s1, s2, . . . , sn], where each si ∈ I represents an
item the user has engaged with, and n indicates the session
length. The goal of SRS is to predict the next item sn+1 that
a user will engage with based on their interaction history S.

3.2. Feature Extractors

3.2.1. ID EXTRACTOR

The ID extractor converts raw ID data into meaningful
embeddings. We construct an item ID embedding matrix
M id ∈ Rd×|I|, where d denotes the dimension of the ID
embedding. The input ID embedding matrix for each ses-
sion Eid ∈ Rd×n is then retrieved such that Eid

i = M id
si

,
corresponding to the item si in the user’s interaction se-
quence, the i-th row in the matrix. For any padding items in
the sequence, a constant zero vector 0 is used as their em-
bedding, typically added when sequences are shorter than
the maximum length. This mechanism allows the model
to capture item relationships and improve recommendation
accuracy by understanding item identities within sequences.
The processing method for the price extractor is similar;
refer to Appendix A for more details.

3.2.2. STYLE EXTRACTOR

We are inspired by the Neural Style Transfer algorithm
(Gatys, 2015; Gatys et al., 2016) to extract style features.
Instead of transferring style, we focus solely on extracting it.
Using the VGG-19 (Simonyan & Zisserman, 2015) model,
we pass the image through the network to obtain feature
maps, from which we compute Gram matrices G. These
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Figure 1. MTSTRec consists of feature extractors and multimodal transformers. The feature extractors take inputs as a browsing history
sequence S, where each item consists of a product ID, image, text, and price, transforming them into the corresponding feature embeddings,
along with a CLOZE embedding zcz for each modality. The multimodal transformers begin by applying a self-attention encoder to
independently process the information for each feature. When fusion begins, we utilize the TST module across different modalities at
each time step and across multiple layers, ensuring both modality-specific and cross-modal information are captured effectively.

matrices capture image texture and color patterns and are in-
variant to spatial transformations, ensuring similar matrices
for images with similar styles. We then generate the input
style embedding matrix for each session, Estyle ∈ Rd×n.
Further details are in the Appendix B.

3.2.3. TEXT EXTRACTOR

The text extractor focuses on extracting features from prod-
uct titles and descriptions. We use Llama 3.1 (Dubey et al.,
2024) as our backbone for generating text embeddings that
capture the key attributes of the product (see Appendix C
for details). Each product is assigned a text embedding,
forming the item text embedding matrix M text ∈ Rd×|I|,
which is generated by feeding the textual information of
the product into an LLM text encoder to obtain the initial
text embeddings, followed by a one-layer projection to ad-
just the dimensionality. The input text embedding matrix
for each session Etext ∈ Rd×n is then retrieved, such that
Etext

i = M text
si

corresponding to the item si in the user’s
interaction sequence.

3.2.4. PROMPT-TEXT EXTRACTOR

In the second part of text processing, we explore how LLMs
can be prompted to generate additional textual information

to improve recommendation performance. Inspired by LLM-
Rec (Lyu et al., 2024), we employ two prompt strategies:
basic prompt and recommendation prompt. Additionally,
we utilize five variations tailored to the task, including three
for basic tasks, along with two designed for recommenda-
tion tasks (see Appendix D for more details). The LLM
input is divided into a system prompt and a user prompt.
The system prompt provides a brief description of the e-
commerce context Pinfo to ensure that the LLM understands
the task’s background, and a task-specific prompt P j , se-
lected from the five predefined prompt variations described
earlier. For each product i, its textual information, such as
the title and description, is fed into the user prompt. The
LLM then generates a response P j

i for each product i, using
each prompt variant j. These responses are converted into
prompt embeddings for further processing (see Appendix D
for more details). The process is formalized as follows:

P̂ j
i = EncoderLLM (P j

i ). (1)

To further enhance the model’s capacity to integrate and
utilize the generated prompt embeddings, we introduce a
gating mechanism. Inspired by (Yu et al., 2024), the gating
network G is designed to manage the varying importance
of each prompt variant P̂ j . This network controls the infor-
mation flow to the final prediction layer. The weights of the
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prompt-text embeddings w are calculated as follows:

w = G(∥jP̂ j) := softmax(W [∥jP̂ j ] + b),

∀j ∈ {1, 2, . . . , 5}.
(2)

The item prompt embedding matrix M pt ∈ Rd×|I| is then
computed by:

M pt = Lp

 5∑
j=1

wj · P̂ j

 , (3)

where Lp is a linear projection layer applied to the gated
prompt embeddings. Further details are provided in the
Appendix E. The input prompt embedding matrix for each
session Ept ∈ Rd×n is then retrieved, such that Ept

i = M pt
si

matching item si within the user’s interaction sequence.

3.3. Multimodal Transformer with Time-aligned Shared
Token Fusion

The multimodal transformer is built based on the Trans-
former encoder architecture (Vaswani, 2017), where each
feature has its own encoder, to begin with. The user se-
quence is processed through each feature extractor, produc-
ing five distinct embeddings: Eid,Estyle,Etext,Ept,Eprice,
all in Rd×n. Positional embeddings are added to each em-
bedding, and a CLOZE embedding zcz is added to the se-
quence to signify the item to be predicted. The recommenda-
tion is made based on the final representation of zcz. Using
the ID embedding matrix Eid as an example, the final input
to the ID encoder is:

Z id = [Eid
1 ,E

id
2 , ...,E

id
N , zid

cz]⊕ p, (4)

where p ∈ Rd×(n+1) is the learnable positional em-
bedding, and ⊕ denotes element-wise addition. Thus,
we obtain the inputs to the multimodal transformer:
Z id,Zstyle,Z text,Zpt,Zprice, which are passed through sep-
arate encoders.

3.3.1. SELF-ATTENTION ENCODER

In the next step, input embeddings from each modality Z are
processed independently through a self-attention encoder
(Vaswani, 2017). This approach enables each modality to
learn its unique features, and the resulting representations
are then prepared for cross-modal fusion using the TST
module. Further details are provided in Appendix F.

3.3.2. TIME-ALIGNED SHARED TOKEN FUSION WITH
SEQUENTIAL MULTIMODAL INTEGRATION

Our TST fusion module, as illustrated in Figure 2, facilitates
multimodal information sharing by aligning item tokens
across different modalities. Inspired by the attention bottle-
neck mechanism (Nagrani et al., 2021), which focuses on

Figure 2. The TST module is shared across different modalities in
a manner that aligns each item in the sequence. For example, in the
fusion of style and text embeddings, each TST embedding zsh is
updated element-wise by averaging the corresponding tokens from
the style and text modalities at the same time step in the sequence,
ensuring cross-modal information exchange that aligns in time.

efficiently transferring information between modalities, we
re-design the mid-fusion module such that the embeddings
for each item are aligned in time. This design introduces
a strong prior that the embeddings from each modality be-
long to the same item in the sequence, ensuring that repre-
sentations of the same item from different modalities are
effectively fused.

Each sequence contains n + 1 tokens, including the
CLOZE embedding zcz (Sun et al., 2019). The num-
ber of time-aligned shared tokens (zsh) matches the se-
quence length, with each shared token zsh

t at time step
t corresponding to modality-specific tokens zmod

t , where
mod ∈ {id, style, text, pt, price}. These shared tokens en-
able cross-modal interaction for the same item at each
time step. For each modality, modality-specific tokens
Zmod = [zmod

1 , . . . ,zmod
n , zmod

cz ] and the time-aligned shared
tokens Zsh = [zsh

1 , . . . ,zsh
n , zsh

n+1] are concatenated and
fed into the self-attention encoder Att (Vaswani, 2017). It
processes input tokens from each modality independently
through L transformer layers, where the transformation at
layer l is defined as:

Zmod,l = Att(Zmod,l−1∥Zsh,l−1). (5)

At each layer, modality-specific tokens are updated into
Zmod,l for the next layer l. These tokens capture the
modality-specific features, which will be further enhanced
by interaction with the TST module. Similarly, for time-
aligned shared tokens, the tokens from all modalities are
averaged at the end of each layer to form the next layer’s
shared tokens Zsh,l, facilitating further fusion across subse-
quent layers. This process is defined as:

Zsh,l =
1

#mod

∑
mod

Att(Zmod,l−1∥Zsh,l−1),

∀mod ∈ {id, style, text, pt, price}.
(6)

In the first layer of the fusion encoder, the modality-specific
sequences do not take inputs from the time-aligned shared
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tokens yet, as these tokens are initially unlearned. However,
each shared token zsh can take inputs from its corresponding
modality tokens, learning multimodal information. From
the second layer onward, modality-specific tokens and their
corresponding shared tokens attend to each other, enabling
cross-modal learning and information exchange.

After fusion, the learned representations are passed to the
prediction layer. The sequence token zcz plays a critical role
in capturing the information needed for predicting the next
item in the user’s interaction sequence. By integrating infor-
mation from the modality-specific and time-aligned shared
tokens, the model achieves a cohesive multimodal represen-
tation, improving the accuracy of the recommendation task.
The final modality representations are normalized to ensure
stability, then combined and used for prediction and loss
computation. The zcz tokens are concatenated to form the
final recommendation representation for each sequence:

zoutput = zid
cz∥zstyle

cz ∥ztext
cz ∥zpt

cz∥zprice
cz . (7)

This final representation zoutput encapsulates the key infor-
mation from each modality, allowing the model to make
accurate predictions for the next item in the user interaction
sequence.

3.4. Loss Function

For each sequence, the model computes the cosine sim-
ilarity between the final recommendation representation
zoutput and both the ground truth and negative samples.
The embeddings for both the ground truth and negative
samples y are generated by concatenating features E ex-
tracted for each item through the same feature extractors.
Let cos(zoutput,y

k) represent the cosine similarity between
zoutput and the k-th sample, where k ∈ Kgt for positive sam-
ples (ground truth) and k ∈ Kn for negative samples. These
cosine similarities are then employed to compute the binary
cross-entropy (BCE) loss for the sequence as follows:

LBCE = − 1

|Kgt ∪Kn|

( ∑
k∈Kgt

log
(
cos(zoutput,y

k)
)
+

∑
k∈Kn

log
(
1− cos(zoutput,y

k)
))

.

(8)
This formula drives the model to maximize cosine similarity
with ground truth and minimize it with negative samples,
improving recommendation performance.

4. Experiments
4.1. Experimental Settings

Dataset. Our experiments utilize three datasets: two propri-
etary datasets from AviviD Innovative Multimedia—Fresh-

Food E-commerce and House-Hold E-commerce, which
have already been made publicly available1, and one pub-
lic dataset from H&M. The proprietary datasets capture
user interactions, including page views and purchases,
while the public dataset focuses on purchase records in
the trousers category from H&M. Detailed information, in-
cluding dataset splitting, is provided in Appendix G.

Evaluation Metrics. We evaluate all models using three
popular top-k ranking metrics: Normalized Discounted
Cumulative Gain (NDCG@k), Hit Rate (HR@k), and
Mean Reciprocal Rank (MRR@k), with k set to 5 and 10.
NDCG@k remains unchanged as it inherently supports mul-
tiple selections. For HR@k and MRR@k, we adjust the
calculations to account for the multiple-answer format, en-
suring a fair evaluation. For more detail, please refer to
Appendix H.

Benchmark Models. We compare our MTSTRec model
with two categories of baselines: general models using
only item IDs (e.g., SASRec (Kang & McAuley, 2018)
and BERT4Rec (Sun et al., 2019)) and multimodal models
(e.g., MMMLP (Liang et al., 2023)). The latter also in-
cludes the enhanced versions of SASRec+ and BERT4Rec+,
which concatenate image and text features, similar to our
model. These modifications allow them to act as early fu-
sion models, combining all features upfront to ensure a fair
comparison of multimodal inputs. For more details on the
benchmark models, refer to Appendix I.

4.2. Performance Comparison

To assess the generalizability of MTSTRec, we conducted
experiments on three datasets and compared the results with
baseline models. More implementation details can be found
in Appendix J. The results, summarized in Table 1, reveal
critical insights into the effectiveness of different models.

MTSTRec surpasses all baselines, leveraging its TST mod-
ule to outperform both early and late fusion approaches. In
the Fresh-Food E-commerce dataset, MTSTRec achieves
the highest NDCG@5 score of 0.8800, and in the House-
Hold E-commerce dataset, it achieves 0.8942, outperforming
SASRec+ by approximately 3.4% and 9.7%, respectively.
Notably, in the H&M (Trousers) dataset, MTSTRec achieves
an NDCG@5 of 0.2307, further solidifying its dominance
across all metrics.

Besides, SASRec+ and BERT4Rec+, which integrate text
and image features, further boost performance. In the Fresh-
Food E-commerce dataset, SASRec+ achieves an NDCG@5
of 0.8512, and in the House-Hold E-commerce dataset, it
reaches 0.8150, which demonstrates the importance of incor-

1The datasets are available at https://github.com/
idssplab/MTSTRec. For more details regarding the dataset
release, please refer to Appendix O.
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Table 1. Performance comparison of benchmark models and MTSTRec on three datasets.
DATASET MODEL NDCG@5 NDCG@10 HR@5 HR@10 MRR@5 MRR@10

Fresh-Food
E-commerce

SASREC 0.8015 0.7999 0.7505 0.7836 0.7099 0.7143
BERT4REC 0.8076 0.8094 0.7658 0.8010 0.7146 0.7193
SASREC+ 0.8512 0.8446 0.8013 0.8250 0.7729 0.7760
BERT4REC+ 0.8441 0.8394 0.7962 0.8218 0.7641 0.7675
MMMLP 0.8276 0.8239 0.7845 0.8129 0.7450 0.7487
MMMLP+ 0.8164 0.8130 0.7742 0.8048 0.7338 0.7379
MTSTREC 0.8800 0.8765 0.8407 0.8651 0.8086 0.8118

House-Hold
E-commerce

SASREC 0.7563 0.7736 0.7578 0.7960 0.7024 0.7076
BERT4REC 0.7596 0.7761 0.7603 0.7968 0.7068 0.7116
SASREC+ 0.8150 0.8258 0.8144 0.8410 0.7688 0.7723
BERT4REC+ 0.7969 0.8110 0.7959 0.8287 0.7477 0.7521
MMMLP 0.8335 0.8425 0.8303 0.8525 0.7930 0.7959
MMMLP+ 0.8401 0.8480 0.8368 0.8569 0.7993 0.8019
MTSTREC 0.8942 0.9086 0.9067 0.9358 0.8568 0.8607

H&M
(Trousers)

SASREC 0.1520 0.1759 0.1809 0.2489 0.1258 0.1348
BERT4REC 0.1468 0.1692 0.1738 0.2378 0.1223 0.1306
SASREC+ 0.1605 0.1811 0.1828 0.2415 0.1371 0.1448
BERT4REC+ 0.1633 0.1848 0.1878 0.2492 0.1387 0.1466
MMMLP 0.1754 0.1923 0.1971 0.2451 0.1502 0.1565
MMMLP+ 0.1710 0.1889 0.1927 0.2436 0.1461 0.1528
MTSTREC 0.2307 0.2797 0.3139 0.4481 0.1871 0.2049

porating multimodal data to better capture user preferences
and provide more accurate recommendations. However,
these models still fell short of MTSTRec’s performance.

MMMLP+ uses the same features as MTSTRec, incorpo-
rating additional features compared to MMMLP. While
MMMLP+ shows slight improvements over MMMLP in the
House-Hold E-commerce dataset, it performs slightly worse
in the other two datasets. This suggests that MMMLP is bet-
ter suited for simpler inputs. When comparing MMMLP+

with MTSTRec, MTSTRec demonstrates a superior abil-
ity to process and leverage the complex relationships be-
tween multiple features. As a result, MTSTRec achieves
significantly better results across all three datasets, further
highlighting its effectiveness in capturing multimodal inter-
actions.

In summary, MTSTRec consistently outperforms both early
fusion models (SASRec+ and BERT4Rec+) and the late
fusion model (MMMLP) across all evaluated datasets. The
model’s effective integration of multimodal information
via the TST module ensures that feature interactions are
fully captured, leading to state-of-the-art performance, par-
ticularly in complex datasets like H&M (Trousers), with
performance gains of approximately 31.5%–43.7% over
competing models in terms of NDCG@5.

4.3. Ablation Study of Modalities

In this section, we conduct an ablation study on Fresh-
Food E-commerce and House-Hold E-commerce datasets to
evaluate the contribution of different modalities, including
item ID, text, prompt text, images, and price. As shown
in Table 2, removing the item ID modality has the most
significant impact on both datasets, with NDCG@5 drop-

ping sharply from 0.8800 to 0.7582 on the Fresh-Food E-
commerce dataset. This highlights the critical role of prod-
uct identity in differentiating items. The absence of item
IDs also increased training time as the model struggled to
manage without clear product identifiers. See Appendix K
for a detailed analysis of the impact of removing ID mod-
ules across different datasets. Text information proves to be
another important modality. In the House-Hold E-commerce
dataset, removing both text and prompt text leads to a no-
ticeable performance drop, with NDCG@5 decreasing from
0.8942 to 0.8191. This highlights the significance of detailed
product descriptions in capturing user preferences. Even
when standard text is removed, the prompt text still pro-
vides valuable contextual information, enabling the model
to maintain reasonable accuracy, as indicated by a smaller
drop to 0.8488 NDCG@5 compared to removing both text
and prompt text.

In summary, while item ID is crucial for accurate recom-
mendations, our approach surpasses the ID-only baselines
(SASRec and BERT4Rec) by demonstrating the added value
of integrating multiple modalities. Our multimodal design
provides complementary strengths beyond the limitations
of ID-based methods. Interestingly, despite its relevance
in consumer decisions, price contributes little to recom-
mendation accuracy, suggesting that user preferences are
better captured through semantically rich and behaviorally
informative features. Our approach demonstrates the power
of leveraging multimodal inputs to enhance accuracy and
robustness in predicting user preferences.

To better understand how MTSTRec allocates attention
across modalities, we visualize self-attention produced just
before the final output layer of the TST module on the
House-Hold E-commerce dataset (Figure 3). The attention
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Table 2. The impact of removing different modality modules across e-commerce platforms.

ABLATION STUDY
Fresh-Food E-commerce House-Hold E-commerce

NDCG@5 HR@5 MRR@5 NDCG@5 HR@5 MRR@5

MTSTREC 0.8800(±0.0023) 0.8407(±0.0031) 0.8086(±0.0023) 0.8942(±0.0035) 0.9067(±0.0024) 0.8568(±0.0041)
W/O ID 0.7582(±0.0049) 0.7506(±0.0049) 0.6459(±0.0062) 0.7913(±0.0244) 0.8337(±0.0191) 0.7184(±0.0288)
W/O TEXT & PROMPT 0.8574(±0.0013) 0.8102(±0.0011) 0.7813(±0.0015) 0.8191(±0.0047) 0.8142(±0.0041) 0.7761(±0.0062)
W/O TEXT 0.8729(±0.0016) 0.8308(±0.0024) 0.7998(±0.0022) 0.8488(±0.0095) 0.8553(±0.0139) 0.8051(±0.0087)
W/O PROMPT TEXT 0.8749(±0.0046) 0.8331(±0.0056) 0.8030(±0.0054) 0.8770(±0.0035) 0.8895(±0.0079) 0.8366(±0.0031)
W/O STYLE 0.8784(±0.0020) 0.8391(±0.0030) 0.8068(±0.0026) 0.8932(±0.0093) 0.9061(±0.0082) 0.8524(±0.0111)
W/O PRICE 0.8791(±0.0025) 0.8404(±0.0031) 0.8077(±0.0030) 0.8941(±0.0048) 0.9066(±0.0040) 0.8553(±0.0063)

(a) ID (b) Style (c) Text (d) Prompt Text (e) Price

Figure 3. Self-attention heatmaps from the last TST layer of MTSTRec model on House-Hold E-commerce dataset, visualized across
five modalities. Each 20× 20 heatmap shows attention weights from queries (y-axis) to keys (x-axis). Brighter regions indicate higher
attention. The specific light and dark patterns highlight how the model allocates focus based on content.

maps reveal distinct modality-specific patterns. Product
ID and price tokens exhibit scattered, weakly structured
attention, while style (image) features show broader focus
with noticeable vertical stripes. Text and prompt text dis-
play strong vertical attention on some key tokens and share
a consistent pattern—higher attention in the first half of
the sequence (e.g., indices 1–10) and reduced focus in the
latter half. These patterns indicate that text and prompt
text convey semantically aligned and informative content.
Complementary attention is also observed across modalities;
for instance, at indices 5 and 6, style receives strong atten-
tion while text and prompt text are relatively weak. This
highlights MTSTRec’s ability to adapt its attention across
modalities, reinforcing the importance of a multimodal de-
sign for recommendation.

4.4. Impact of Fusion Strategies

In this ablation study, we evaluated the impact of differ-
ent fusion strategies on the Fresh-Food E-commerce and
House-Hold E-commerce datasets, comparing TST (used in
MTSTRec) with two alternative setups: one resembling late
fusion by removing the TST and fusion encoder; another
resembling early fusion by removing the entire multimodal
transformer. In the late fusion alternative, features are pro-
cessed independently and concatenated only at the final
step, and in the early fusion alternative, all features are con-
catenated immediately after feature extraction and passed
through a single encoder.

TST consistently outperforms both alternatives as shown

in Table 3. On the Fresh-Food E-commerce dataset, TST
achieves an NDCG@5 of 0.8800, compared to 0.8621 for
early fusion and 0.8211 for late fusion. Similarly, on the
House-Hold E-commerce dataset, TST obtains an even
higher NDCG@5 of 0.8942, outperforming early fusion
(0.8366) and late fusion (0.8773). These trends reflect two
limitations of the baseline approaches. First, in early fusion,
all features are processed together from the start, which can
dilute unique information from each modality, as the model
cannot treat them distinctly. Consequently, the model can-
not fully leverage the strengths of each feature, leading to
reduced performance. The performance gap is particularly
noticeable in the House-Hold E-commerce dataset, where
early fusion reduces the NDCG@5 by 0.0576 compared
to TST. Second, late fusion limits the interaction between
different features until the end of the sequence. This re-
striction hinders the model’s ability to capture cross-modal
dependencies throughout the sequence, leading to decreased
performance. This limitation is especially evident in the
Fresh-Food E-commerce dataset, where the NDCG@5 score
drops from 0.8800 to 0.8211, decreasing to 0.0589.

In conclusion, TST’s ability to facilitate cross-modal in-
teraction at each time step leads to better results, whereas
early and late fusion approaches fall short due to inefficient
handling of feature interactions.

4.5. Impact of Time-aligned Shared Tokens

We evaluate the different shared token configurations on
the Fresh-Food E-commerce dataset, focusing on three key
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Table 3. The impact of removing different modules across e-commerce platforms.
DATASET FUSION METHOD NDCG@5 NDCG@10 HR@5 HR@10 MRR@5 MRR@10

Fresh-Food
E-commerce

MTSTREC 0.8800 0.8765 0.8407 0.8651 0.8086 0.8118
W/O TST & FUSION ENCODER (LATE FUSION) 0.8211 0.8301 0.7912 0.8378 0.7271 0.7333
W/O MULTIMODAL ENCODER (EARLY FUSION) 0.8621 0.8590 0.8206 0.8483 0.7862 0.7899

House-Hold
E-commerce

MTSTREC 0.8942 0.9086 0.9067 0.9358 0.8568 0.8607
W/O TST & FUSION ENCODER (LATE FUSION) 0.8773 0.8896 0.8839 0.9116 0.8392 0.8429
W/O MULTIMODAL ENCODER (EARLY FUSION) 0.8366 0.8516 0.8404 0.8738 0.7929 0.7974

Table 4. The impact of time-aligned shared tokens on Fresh-Food E-commerce dataset results.
SETTING NDCG@5 NDCG@10 HR@5 HR@10 MRR@5 MRR@10

TST (1:1) (OURS) 0.8800(±0.0023) 0.8765(±0.0021) 0.8407(±0.0031) 0.8651(±0.0029) 0.8086(±0.0023) 0.8118(±0.0023)
TST (1:2) 0.8795(±0.0022) 0.8758(±0.0020) 0.8406(±0.0025) 0.8641(±0.0023) 0.8079(±0.0026) 0.8110(±0.0026)
TST (1:4) 0.8769(±0.0041) 0.8737(±0.0038) 0.8384(±0.0039) 0.8631(±0.0036) 0.8044(±0.0051) 0.8077(±0.0050)
BOTTLENECKS (ALL:5) 0.8737(±0.0028) 0.8695(±0.0024) 0.8323(±0.0030) 0.8560(±0.0027) 0.8012(±0.0029) 0.8044(±0.0028)
BOTTLENECKS (ALL:21) 0.8754(±0.0036) 0.8716(±0.0035) 0.8346(±0.0043) 0.8587(±0.0040) 0.8037(±0.0039) 0.8069(±0.0038)

setups: the proposed TST (1:1), TST with multiple shared
tokens per time step (TST (1:2) and TST (1:4)), and fu-
sion bottlenecks. Each configuration represents a unique
mid-fusion approach to feature sharing during the sequence
learning process. Further details are in the Appendix L.

As shown in Table 4, the proposed TST (1:1) configura-
tion delivers the best performance, with an NDCG@5 of
0.8800. This setup ensures that only one shared token per
time step facilitates information transfer, which helps the
model focus on product-specific features without introduc-
ing unnecessary noise. TST (1:2) and TST (1:4) show a
slight drop in performance, with NDCG@5 ranging from
0.8769 to 0.8795. The increase in shared tokens per time
step introduces more information exchange but also adds
redundancy and potential noise, slightly affecting model effi-
ciency. Bottlenecks configurations perform worse than TST,
with BOTTLENECKS (ALL:5) (Nagrani et al., 2021) achiev-
ing an NDCG@5 of 0.8737 and BOTTLENECKS (ALL:21)
achieving an NDCG@5 of 0.8754, which is 0.5% lower than
TST (1:1). Despite allowing broader information sharing,
these setups lack the precise, time-aligned interaction that
enhances TST’s performance.

The TST (1:1) configuration outperforms other setups, in-
cluding multi-token and fusion bottleneck approaches, likely
due to its ability to maintain precise, time-aligned interac-
tions between product features. This configuration effec-
tively balances information sharing and efficiency, making
it the most optimal choice for multimodal sequential recom-
mendation in our scenario.

4.6. Complexity and Runtime Analysis

The time complexity of MTSTRec is primarily dominated
by its Transformer layers, each with a standard complexity
of O(n · 2d), where n is the sequence length and d is the
embedding dimension. Naively fusing m modalities would

result in a worst-case complexity of O(m ·n2 ·d). However,
our Time-aligned Shared Token (TST) module introduces
only one extra token per time step (plus a prediction token),
incurring minimal overhead in practice. With optimized
implementations, MTSTRec typically involves only a minor
constant overhead compared to standard Transformer-based
sequential recommendation models. For completeness, we
report parameter sizes, training durations, and inference
times for all models in the Appendix M. We further ana-
lyze the impact of output token configurations on model
performance, presented in Appendix N.

5. Conclusion
We introduce MTSTRec, a novel Multimodal Time-aligned
Shared Token Recommender that fuses and transmits essen-
tial information across different modalities. Our approach
allows for precise integration of multimodal features such
as product IDs, images, text, and prices while maintaining
the unique contributions of each modality. Extensive experi-
mentation shows that MTSTRec significantly outperforms
state-of-the-art baselines across various evaluation metrics
on real-world e-commerce datasets. Our ablation studies re-
vealed the critical role of each feature type in improving rec-
ommendation accuracy, particularly the importance of item
identity and textual descriptions in different e-commerce
scenarios. Moreover, we showed that the proposed TST
fusion method consistently surpasses both early and late
fusion strategies by enabling cross-modal interaction that
aligns in time throughout the sequence. In summary, MT-
STRec represents a significant advancement in multimodal
sequential recommendation, offering a flexible and efficient
framework that can be adapted to various e-commerce appli-
cations. Future work will focus on extending the model to
other domains and exploring additional multimodal features
for even more personalized recommendations.
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A. Price Extractor
We represent all product prices in the list using a unified normalization approach for consistency. Following the Scalable
Numerical Embedding (SCANE) method (Huang et al., 2024), an item price embedding matrix M price ∈ Rd×|I| is
constructed, and an input price embedding matrix Eprice ∈ Rd×n, captures the product prices within a user’s interaction
history. These embeddings are then scaled by their corresponding price value Psi

, such that Eprice
i = M price

si ×Psi
for each

item si in the sequence, enhancing the model’s ability to understand pricing patterns in recommendations.

Furthermore, we experimented with a variant of the SCANE method, where the entire price embedding matrix M price was
replaced such that each element of M price was set to 1, effectively disabling embedding learning. In this case, the price
embeddings were simply the expanded price values Psi

themselves. In our scenario, this variant yielded better performance,
as the embedding effectively represented the expanded price without the complexity of learning additional embedding
weights.

B. Implementation Details of the Style Extractor
In our experiments, we extract style features from the first two layers of VGG-19 (Simonyan & Zisserman, 2015) to capture
the relevant style information. Each of these layers produces 64 feature maps, resulting in Gram matrices of size 64× 64
(Gatys, 2015; Gatys et al., 2016).

The Gram matrix for each layer is calculated as follows:

Let F l ∈ RQl×Rl represent the feature map from layer l, where Ql represents the number of feature maps (or channels) in
the layer, and Rl is the total number of spatial positions, calculated as the height multiplied by the width of the feature map.
The Gram matrix Gl ∈ RQl×Ql for layer l is calculated as the inner product of the vectorized feature maps F l

ik and F l
jk at

spatial positions k, across all feature maps i and j. Mathematically, this can be expressed as:

Gl
ij =

Rl∑
k=1

F l
ikF

l
jk, (9)

where Gl
ij represents the element of the Gram matrix that captures the correlation between feature map i and feature map j

in layer l, and the summation over k accounts for all Rl spatial positions in the feature map. After calculating the Gram
matrices, we apply max-pooling to compress these matrices, which reduces the computational complexity while retaining
the essential style information. This step compresses the Gram matrices to 2× 16× 16 style embeddings.

Once each image undergoes the process of Gram matrix computation and subsequent max-pooling, the compressed
and flattened Gram matrices for all images are concatenated across layers to form the item style embedding matrix
M style ∈ Rd×|I|. This matrix encapsulates the style features of all items in the dataset. The input style embedding matrix
for each session Estyle ∈ Rd×n is then retrieved, such that Estyle

i = M style
si , matching item si within the user’s interaction

history.

C. Comparison of Language Models for Text Embedding
We evaluated the pre-trained language model, BERT (Devlin et al., 2019), and large language models, text-embedding-
3-large (OpenAI, 2024a), Llama 3 (Dubey et al., 2024), and Llama 3.1 (Dubey et al., 2024). These comparisons were
conducted with the MTSTRec model, focusing solely on product ID and text. The handling of product IDs is discussed
in Section 3.2.1. For the text portion, we used product titles and descriptions, converting them into embeddings via the
respective Language Models, followed by a linear reduction layer that reduces the embedding dimension to d.

The results are presented in Table 5. Llama 3.1 achieves the best performance across all evaluation metrics (NDCG, HR,
and MRR). Thus, we choose Llama 3.1 as the backbone for generating text embeddings in our main experiments.

D. Implementation Details and Results of Prompt-Text Feature
As outlined in Section 3.2.4, we employed various prompting strategies to generate rich textual information, with detailed
examples of these prompts provided in Table 6. For Basic Prompt, we utilize three variations: Ppara, Ptags, and Pguess.
Ppara prompts the LLM to rephrase the original product description while retaining the same information. Ptags aims for a
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Table 5. Comparison of language models for text embedding in MTSTRec.
FEATURE NDCG@5 HR@5 MRR@5

ID 0.8554 0.8074 0.7792
ID + TEXTBERT 0.8585 0.8108 0.7829
ID + TEXTOPENAI 0.8594 0.8119 0.7838
ID + TEXTLLAMA3 0.8732 0.8329 0.8000
ID + TEXTLLAMA3.1 0.8754 0.8340 0.8037

Table 6. All prompts in the prompt-text feature extraction module.
PROMPT TYPE SYSTEM AND USER PROMPT

Ppara

SYSTEM: ”FFE is an e-commerce website that sells fresh, healthy, high-quality food products without unnecessary additives. You will
be provided with the product title and description sold on this e-commerce website. Your task is to paraphrase them.”
USER: ”Title: product title, Description: product description.”

Ptags

SYSTEM: ”FFE is an e-commerce website that sells fresh, healthy, high-quality food products without unnecessary additives. You will
be provided with the product title and description sold on this e-commerce website. Your task is to summarize this product using tags.”
USER: ”Title: product title, Description: product description.”

Pguess

SYSTEM: ”FFE is an e-commerce website that sells fresh, healthy, high-quality food products without unnecessary additives. You will
be provided with the product title and description sold on this e-commerce website. Your task is to infer what other products on the site
a consumer might be interested in if they purchase this product.”
USER: ”Title: product title, Description: product description.”

P rec
para

SYSTEM: ”FFE is an e-commerce website that sells fresh, healthy, high-quality food products without unnecessary additives. Your
task is to tell me what else I should say if I want to recommend this product to someone.”
USER: ”Title: product title, Description: product description.”

P rec
tags

SYSTEM: ”FFE is an e-commerce website that sells fresh, healthy, high-quality food products without unnecessary additives. Your
task is to tell me which tags should be used if I want to recommend this product to someone.”
USER: ”Title: product title, Description: product description.”

concise summary using tags, guiding the LLM to extract key details. Lastly, Pguess prompts the LLM to predict what other
items the user might purchase based on the product’s title and description. The Recommendation Prompt extends the Basic
Prompt by introducing a recommendation-oriented task. We define two variations: P rec

para and P rec
tags.

In our experiments, we explored text generation with Llama 3.1 (Dubey et al., 2024) and GPT-4o-mini (Achiam et al., 2023;
OpenAI, 2024b) and compared their effectiveness in creating useful text embeddings. Each prompt was carefully designed
with specific settings to match its intended function.

For instance:

• Ppara: This prompt was used to paraphrase the product title and description, configured with a temperature of 0.7, a
maximum token limit of 256, and top p = 1.

• Ptags: For this prompt, which focuses on summarizing product information using tags, we set the temperature to 0.5, a
maximum token limit of 128, and top p = 1.

• Pguess: This prompt aims to infer potential additional products the user might purchase based on the current product.
It was configured with a temperature of 1, a maximum token limit of 512, and top p = 1.

• P rec
para: This recommendation-focused paraphrase prompt had a temperature of 1, a maximum token limit of 384, and

top p = 1.

• P rec
tags: Designed to summarize product information for recommendations, this prompt used a temperature of 1, a

maximum token limit of 128, and top p = 1.

The text generated by Llama 3.1 (Dubey et al., 2024) or GPT-4o-mini (Achiam et al., 2023; OpenAI, 2024b) was uniformly
converted into embeddings using Llama 3.1 (shown in Appendix C) to maintain consistency across experiments. This
approach allowed for reliable comparisons, focusing on how different prompts and their corresponding embeddings affected
recommendation accuracy in MTSTRec. Each experiment incorporated prompt embeddings alongside the product ID to
measure performance.

We also assessed the influence of different LLMs (Llama 3.1 and GPT-4o-mini) on overall model performance by comparing
how each model’s generated text, once converted into embeddings, impacted recommendation results. The detailed outcomes
are summarized in the following Table 7.
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Table 7. Comparison of prompt strategies and LLMs (Llama 3.1 vs. GPT-4o-mini) in MTSTRec.
FEATURE PROMPT STRATEGY LLAMA 3.1 GPT-4O-MINI

ID + PROMPT

Ppara 0.8727 0.8747
Ptags 0.8727 0.8723
Pguess 0.8718 0.8702
P rec

para 0.8697 0.8703
P rec

tags 0.8725 0.8716
AVERAGE 0.8719 0.8718

Based on the results, we observe that incorporating prompt embeddings into the model helps improve performance
compared to using only the product ID. While the results for prompt embeddings are not as high as directly using text
embeddings, this might suggest that the original product titles and descriptions, when processed by the LLM, sufficiently
capture the characteristics of the items. However, our findings demonstrate that prompt embeddings positively influence
recommendation outcomes. Additionally, the prompt embeddings generated by both Llama 3.1 and GPT-4o-mini show
comparable performance across the five strategies. Llama 3.1 has a slight edge on average, which is why we chose to
primarily use Llama 3.1 to generate our prompt-text features in subsequent experiments.

E. Gating Weights and Performance of Prompt-Text Feature
As explained in Section 3.2.4, a gating network is applied to the five prompt strategies to learn their relative importance.
The gating weights (Table 8) are derived from the validation results of the ID + Text + Prompt features. In addition, we
compare the performance of ID + Text versus ID + Text + Prompt, demonstrating improved recommendation accuracy with
the inclusion of prompt embeddings, regardless of the LLM used, as shown in Table 9.

Table 8. Gating weights for different prompt strategies.
PROMPT STRATEGY LLAMA 3.1 GPT-4O-MINI

Ppara 0.1391 0.2766
Ptags 0.4485 0.1846
Pguess 0.1367 0.1403
P rec

para 0.1328 0.1325
P rec

tags 0.1428 0.2659

Table 9. Performance comparison of ID + text and ID + text + prompt-text in MTSTRec.
FEATURE NDCG@5

ID + TEXT 0.8754
ID + TEXT + PROMPT (GPT-4O-MINI) 0.8790
ID + TEXT + PROMPT (LLAMA 3.1) 0.8795

In conclusion, adding prompt embeddings significantly enhances recommendation performance, as shown by the improved
NDCG@5 scores. Furthermore, based on the Llama 3.1 gating weights, Ptags emerges as a critical factor in improving
recommendation accuracy. Similarly, the gating weights from GPT-4o-mini align with the results from individual prompt
embeddings, reinforcing the importance of specific prompts, such as Ppara, Ptags, and P rec

tags, in optimizing model
performance shown in Table 7.

F. Detailed Architecture and Process of the Self-Attention Encoder
Self-Attention Encoder architecture follows the transformer encoder architecture proposed by Vaswani (2017). The input
embedding from each modality Z is processed independently through an independent transformer encoder with multiple
layers. Each layer consists of three key components: Multi-Head Self-Attention (MSA), Layer Normalization (LN), and
Multilayer Perceptron (MLP), all connected via residual connections. The transformation at layer l is defined as follows:

Y l−1 = MSA(LN(Zl−1)) + LN(Zl−1), (10)

Zl = MLP(LN(Y l−1)). (11)
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In the MSA block, self-attention computes the attention scores between tokens, allowing each token to dynamically attend
to other tokens in the sequence. The attention mechanism is defined as:

MSA(X) = Attention(WQX,WKX,WV X), (12)

where WQ, WK , and WV are the weight matrices used to transform the input tensor X into queries, keys, and values,
respectively. The attention scores are calculated as the dot product between queries and keys, enabling the model to prioritize
the most important parts of the input.

G. Dataset
Our experiments utilize three datasets: Fresh-Food E-commerce, House-Hold E-commerce, H&M (Trousers). The Fresh-
Food E-commerce dataset includes a total of 1,507,388 interactions, with an average session length of 4.693 and a total of
216,576 sessions. The House-Hold E-commerce dataset consists of 94,984 interactions, an average session length of 5.914,
and a total of 12,345 sessions. The H&M (Trousers) dataset contains user 3,576,972 purchase records and a total of 416,794
sessions, with further details provided in Table 10.

Table 10. Statistics of datasets.
DATASET Fresh-Food House-Hold H&M (Trousers)

# SESSIONS 216,576 12,345 416,794
# PRODUCTS 770 2,464 11,150
AVG. SESSION 4.693 5.914 7.029
AVG. PURCHASE 2.267 1.780 1.553
# ACTIONS 1,507,388 94,984 3,576,972

We apply preprocessing steps to filter out sessions with fewer than three interactions to ensure sufficient data for model
training. Session lengths are limited to 20 items. For shorter sessions, we pad them with zeros, while for longer sessions, we
retain only the last 20 products, removing any repeat items at the end of the sequence. This adjustment allows the model to
better focus on complex patterns, enhancing its applicability to real-world scenarios.

For the first two datasets, each session’s purchase order involves multiple items, so we treat the answer set as a multiple-
choice task. The same preprocessing steps are applied to the H&M (Trousers) dataset. Although it consists solely of purchase
actions, we sort the items by purchase time and treat the products bought on the last day as the answer set. Since users may
purchase multiple items on the last day, this is also treated as a multiple-choice task. To facilitate model computation, we
pad all answers to a fixed length of 50 items.

Dataset Splitting. Each session in the proprietary datasets consists of historical clicks and a final purchase order. The data is
split chronologically into 75% for training, 12.5% for validation, and 12.5% for testing based on the purchase orders. For the
H&M (Trousers) dataset, which contains only purchase actions, items are sorted by purchase time, and those bought on the
last day are used as the answer set, ensuring consistency across all datasets (Meng et al., 2020). The model predicts items in
purchase orders as a multi-label recommendation task, where each sequence may have multiple correct answers (purchases).

H. Evaluation Metrics
For each session, we randomly sampled 100 items that the user did not interact with under the target behavior as negative
samples. Finally, we report the results on the test set while selecting the best hyperparameters using the validation set. We
detail the three evaluation metrics used in our experiments: NDCG@k, HR@k, and MRR@k, where k is set to 5 and 10.
Since our problem involves multiple correct answers (multi-label), we have adjusted the definitions of HR@k and MRR@k
accordingly. HR is calculated by treating each correct answer as a separate single-choice task. The model ranks each correct
item among negative samples, and we calculate the hit rate for each task. The final HR@k is the average of these hit rates
across all correct answers in the sequence. MRR@k follows a similar approach, where we compute the reciprocal rank
for each correct answer, and the final MRR@k is the average across all correct answers. Below are the definitions of each
metric, along with an example calculation.

NDCG@k (Normalized Discounted Cumulative Gain). NDCG@K considers both the relevance and the position of the
correct items in the ranked list, with higher-ranked relevant items contributing more to the score.
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The Discounted Cumulative Gain (DCG@k) is calculated by summing the relevance scores of the correct items, where the
relevance score decreases logarithmically based on the item’s rank position. The formula for DCG@k is:

DCG@k =

k∑
r=1

rel(r)

log2(r + 1)
, (13)

where rel(r) represents the relevance score of the item at rank r, where all items in the purchase order are assigned a
relevance score of 1. Higher-ranked relevant items contribute more to the final score, as their positions are weighted more
heavily in the DCG calculation.

The Ideal DCG (IDCG@k) represents the best possible ranking scenario, where all relevant items are ranked at the top.
Since we are normalizing the DCG score, the ideal ranking is computed by assuming the best-case relevance distribution.
The formula for IDCG@k is:

IDCG@k =

min(k,n)∑
r=1

1

log2(r + 1)
, (14)

where min(k, n) ensures that we only consider the smaller of k (the cutoff) and n (the number of correct answers).

Finally, the NDCG@k is calculated by normalizing DCG by the ideal DCG. The formula for NDCG@k is:

NDCG@k =
DCG@k
IDCG@k

. (15)

This normalization makes NDCG range between 0 and 1, allowing consistent comparison across different queries. A higher
NDCG score indicates that the correct items are ranked closer to the top.

HR@k (Hit Rate). HR@k is calculated by checking whether any of the ground truth items appear within the top k-ranked
items. For the multi-label task, we calculate HR for each correct item and then average the results. The formula for HR@k
is:

HR@k =
1

|n|

|n|∑
i=1

1[ranki ≤ k], (16)

where 1[ranki ≤ k] is 1 if the correct item i is ranked within the top k, and 0 otherwise.

MRR@k (Mean Reciprocal Rank). MRR@k measures the ranking of the first correct item within the top k positions. For
the multi-label task, MRR@k is calculated by averaging the reciprocal ranks of the correct items:

MRR@k =
1

|n|

|n|∑
i=1

1

ranki
, (17)

where ranki is the rank position of the correct item i.

I. Benchmark Models
• SASRec (Kang & McAuley, 2018): A self-attention-based sequential model with causal masking that captures

long-term user preferences by attending only to previous tokens.

• BERT4Rec (Sun et al., 2019): A bidirectional sequential recommendation model that uses self-attention to predict
masked items in user behavior sequences, capturing both left and right context.

• SASRec+: An enhanced version of SASRec (Kang & McAuley, 2018), which integrates item ID, text, image features.
The text and image features are processed using the techniques from our MTSTRec model. To ensure stable training,
we reduce the dimensionality to 256, as the model would otherwise fail to converge properly.

• BERT4Rec+: An enhanced version of BERT4Rec (Sun et al., 2019), which integrates item ID, text, image features.
The text and image features are processed using the techniques from our MTSTRec model. To ensure stable training,
we reduce the dimensionality to 256, as the model would otherwise fail to converge properly.

17



MTSTRec: Multimodal Time-Aligned Shared Token Recommender

• MMMLP (Liang et al., 2023): A multimodal MLP-based model that processes text, image, and price features (with
price added for fair comparison) through a Feature Mixer Layer, Fusion Mixer Layer, and Prediction Layer, achieving
state-of-the-art performance with linear complexity.

• MMMLP+: An enhanced version of MMMLP (Liang et al., 2023), which integrates item ID, image, text, prompt-text,
and price features. The features are processed using the same techniques from our MTSTRec model, ensuring that all
five feature embeddings extracted from the feature extractor are identical. This ensures a fair comparison that focuses
solely on the differences in the predictive model architectures.

J. Implementation details
In our experiments, we tuned the hyperparameters based on validation data to ensure optimal performance. The batch size
was uniformly set to 64 for all models, and the input dimension d was fixed at 512. We employed the AdamW optimizer
while the maximum sequence length N was set to 20. The fusion layers were standardized across models, with Lfusion = 3
and a dropout rate of 0.1.

For the ID feature encoder, we used two transformer blocks (Lid = 2) with four attention heads, applying a hidden layer
dropout of 0.1 to maintain fairness with other benchmark models.

For other feature encoders, such as text, image, and price, we experimented with different settings. The number of each
encoder layer (Lmod) was tested across values of {2, 4, 8}, and the number of attention heads across {1, 2, 4, 8, 16}. We
also experimented with dropout rates of {0.1, 0.2, 0.3} in the hidden layers. The learning rate was tested across a range of
{0.001, 0.0005, 0.0001, 0.00005, 0.00001}, while the L2 regularization penalty was tuned from {0.0001, 0.00005, 0.00001,
0.000005, 0.000001}. A gamma value of {0.9, 0.75, 0.5}was set for learning rate decay.

For the baseline models (e.g., SASRec (Kang & McAuley, 2018), BERT4Rec (Sun et al., 2019)), we ensured that key settings
such as batch size, the number of encoder blocks, and attention heads were aligned with our model for fair comparison.
However, for other settings, we followed the recommended configurations in the original papers.

K. The Impact of ID Modules Across Different Datasets
This section examines the performance impact of removing ID modules in the MTSTRec model across three datasets: Fresh-
Food E-commerce, House-Hold E-commerce, and H&M (Trousers). Table 11 highlights notable performance differences
between the full model and the version without ID modules. The results show that ID modules play a crucial role in Fresh-
Food E-commerce and House-Hold E-commerce datasets, significantly boosting recommendation accuracy. In contrast, their
removal in the H&M (Trousers) dataset unexpectedly improves performance.

Table 11. The impact of removing ID modules across e-commerce platforms.

ABLATION STUDY
Fresh-Food E-commerce House-Hold E-commerce H&M (Trousers)

NDCG@5 HR@5 MRR@5 NDCG@5 HR@5 MRR@5 NDCG@5 HR@5 MRR@5

MTSTREC 0.8800 0.8407 0.8086 0.8942 0.9067 0.8568 0.2307 0.3139 0.1871
W/O ID 0.7582 0.7506 0.6459 0.7913 0.8337 0.7184 0.2724 0.3676 0.2232

In the Fresh-Food E-commerce and House-Hold E-commerce datasets, the removal of ID modules results in a noticeable
decline in all metrics. For example, in the Fresh-Food E-commerce dataset, NDCG@5 drops from 0.8800 to 0.7582, while
HR@5 decreases from 0.8407 to 0.7506. Similarly, in the House-Hold E-commerce dataset, NDCG@5 decreases from
0.8942 to 0.7913, with HR@5 following a similar trend. One primary reason for this decline is the smaller number of
unique products in these datasets, as shown in Table 10. With only 770 and 2,464 products, respectively, these datasets
allow product IDs to serve as highly discriminative features, enabling the model to learn precise user-item interactions. The
supervised learning framework further reinforces this dependency, as the model optimizes embeddings for individual IDs,
which are particularly effective in smaller product spaces.

Conversely, in the H&M (Trousers) dataset, the removal of ID modules results in a performance improvement, with
NDCG@5 increasing from 0.2307 to 0.2724 and similar gains observed in HR@5 and MRR@5. This improvement can
be attributed to the larger and more diverse product space, which includes 11,150 unique items. The increased number of
products introduces sparsity in user-product interactions, making ID embeddings less effective at representing individual
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items. Moreover, the H&M (Trousers) dataset defines items with identical styles but different colors as separate products,
which complicates the embedding space and reduces the distinctiveness of product IDs.

These findings underscore the dataset-dependent role of ID modules. Product IDs are critical for achieving high recom-
mendation accuracy in domains with fewer products and consistent user behavior. However, in datasets with larger product
spaces and greater complexity, the reliance on IDs diminishes, requiring models to leverage other features. This highlights
the importance of multimodality, as incorporating information from other modalities (e.g., images or text) provides richer
insights, enabling models to adapt better to diverse datasets.

L. Configuration Details of the Shared Token
• Time-aligned Shared Tokens (TST) (1:1), used in our MTSTRec model, pairs each time step in the sequence with a

corresponding shared token in a 1:1 relationship. This means that each product in the sequence is aligned with a single
shared token, allowing features from different modalities of the same product to interact and share information at that
specific time step. This design ensures that information sharing is precise and time-aligned, leading to more accurate
feature fusion.

• TST (1:2) & TST (1:4) include configurations where each time step is associated with multiple shared tokens rather
than just one. For example, in TST (1:2), each product in the sequence is paired with two shared tokens, and in TST
(1:4), each product is paired with four shared tokens. These variants allow for more extensive information sharing at
each time step.

• Fusion Bottlenecks (all:4+1) is based on a configuration from Google (Nagrani et al., 2021) originally designed for
sequence fusion classification tasks involving image and speech data. In this setting, shared tokens are not tied to a
specific time step but attend to the entire sequence, enabling broader information exchange across the sequence. For a
fair comparison in our multimodal sequential recommendation task, we adapted this method to a Fusion Bottlenecks
(all:20+1) configuration, matching the number of tokens used in our TST approach.

M. Parameter Size and Runtime Analysis
We report detailed statistics on the number of parameters, training time, and inference time for all models evaluated on the
House-Hold E-commerce dataset. As shown in Table 12, MTSTRec incurs a longer training time due to its multimodal
architecture and the inclusion of the Time-aligned Shared Token (TST) module. Nevertheless, its inference time remains
competitive, only marginally higher than that of other multimodal baselines. Despite incorporating additional modality-
specific encoders and fusion layers, MTSTRec is significantly more compact than multimodal baselines such as SASRec+,
BERT4Rec+, MMMLP, and MMMLP+. These results indicate that MTSTRec achieves a favorable balance between model
size and effectiveness without compromising expressiveness or accuracy.

Table 12. Parameter size, training time, and inference time on the House-Hold E-commerce dataset.
MODEL PARAMETER SIZE (MILLION) TRAINING TIME (MINUTE) INFERENCE TIME (SECOND)

SASREC 4.69 4.5 1.86
BERT4REC 7.84 4.1 1.88

SASREC+ 203.67 66 7.48
BERT4REC+ 400.33 59 7.89
MMMLP 97.38 33 6.56
MMMLP+ 174.54 39 7.27

MTSTREC 59.24 83 12.43

N. Output Token Design Choices
N.1. Use of Modality-Specific CLOZE Tokens (zcz)

During model development, we compared two strategies for summarizing each modality’s sequence: (i) using the output
of the last token, and (ii) appending a dedicated CLOZE token (zcz) at the end of each modality sequence. As shown in
Table 13, the latter consistently outperformed the former on the House-Hold E-commerce dataset. Introducing a zcz token
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per modality provides a dedicated placeholder for the next-item prediction, enabling the model to aggregate relevant signals
from each modality’s perspective. This led to clearer and more informative multimodal representations for downstream
prediction.

Table 13. Performance impact of modality-specific CLOZE token (zcz) on the House-Hold E-commerce dataset.
MODEL NDCG@5 HR@5 MRR@5

MTSTREC 0.8942 (±0.0035) 0.9067 (±0.0024) 0.8568 (±0.0041)
W/O CLOZE 0.8115 (±0.0023) 0.8275 (±0.0027) 0.7553 (±0.0043)

N.2. Excluding the Shared Token (zsh) from Final Output

During model development, we also investigated whether including the shared fusion token zsh in the final prediction output
would improve model performance. While zsh plays a crucial role in aligning cross-modal features during the fusion, our
experiments showed that naively incorporating it into the output layer degraded prediction accuracy. The comparative results
are summarized in Table 14.

Table 14. Performance impact of the shared token (zsh) in the final output on the House-Hold E-commerce dataset.
MODEL NDCG@5 HR@5 MRR@5

MTSTREC 0.8942 (±0.0035) 0.9067 (±0.0024) 0.8568 (±0.0041)
CONCATENATE zsh 0.8106 (±0.0089) 0.8692 (±0.0067) 0.7142 (±0.0108)

O. Dataset Release Document
O.1. Introduction

We have released two datasets, Fresh-Food E-commerce and House-Hold E-commerce, both collected with full user consent
from e-commerce platforms. These datasets contain user interaction data from October 2023 to June 2024, including page
views and purchases.

O.2. Dataset Overview

The Fresh-Food E-commerce and House-Hold E-commerce offer a rich source of user interaction data. Since each order
can contain multiple purchased products, each sequence may have multiple correct answers (purchases). We provide a
statistical summary of the raw data in Table 10. The statistics include key metrics such as #Sessions, representing the
number of user sessions in the dataset; #Products, indicating the total number of unique products; Avg. Session,
which is the average length of user sessions; Avg. Purchase, the average number of products purchased per order; and
#Actions, capturing the total count of product browsing records and purchase actions.

O.3. Feature Preprocessing

Image Style Embedding: The style features of product images are extracted using the first two layers of the VGG-19
(Simonyan & Zisserman, 2015) network. We calculate Gram matrices (Gatys, 2015; Gatys et al., 2016) from these layers to
capture the relationships between feature maps and then apply max-pooling to compress the style information. Each image
is ultimately represented as a 512-dimensional embedding that summarizes its style characteristics.

Text Embedding: For textual features, we process product titles and descriptions using Llama 3.1 (Dubey et al., 2024).
This generates a 4096-dimensional embedding for each product. Additionally, we create five prompt-based text embeddings
to highlight different aspects of the product information. These embeddings provide a comprehensive representation of the
textual data. (see more details in Section 3.2.4)

O.4. File Location

The files containing the datasets and related resources are organized in a structured directory format for easy access and
navigation. Below is an overview of the file locations, using the Fresh-Food E-commerce dataset as an example. The
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House-Hold E-commerce dataset follows the same directory structure.

• Fresh-Food/browse seq train, browse seq val, browse seq test: These files contain the training, validation, and
testing sequences of user interactions, including browsing records and purchase actions within Fresh-Food E-commerce.

• Fresh-Food/sessiondate train, sessiondate val, sessiondate test: These files contain the purchase date of training,
validation, and testing data within Fresh-Food E-commerce. The corresponding purchase date for each session is
provided to determine which recommended products can be offered.

• Fresh-Food/Product Feature/PriceFeature: This file contains the sale price feature of each product within Fresh-Food
E-commerce.

• Fresh-Food/Product Feature/Image Style Embedding: This file contains the style embeddings of each product
within Fresh-Food E-commerce .

• Fresh-Food/Product Feature/Text Embedding TitleDescription, Text Embedding Basic Paraphrase,
Text Embedding Basic Tags, Text Embedding Basic Guess, Text Embedding Rec Paraphrase,
Text Embedding Rec Tags: These files contain the different text embeddings of each product within Fresh-Food
E-commerce including Title and Description, Basic Paraphrase Prompt, Basic Tags Prompt, Basic Guess Prompt,
Recommendation Paraphrase Prompt, and Recommendation Tags Prompt.

• Fresh-Food/Month Product/2401 productlist: This file contains the product index for the Fresh-Food E-commerce
platform in January 2024. It provides a snapshot of the products available at the beginning of the month, serving as a
reference for predicting which items should be recommended based on their corresponding purchase dates. The folder
Month Product contains eight files, namely: 2310 productlist, 2311 productlist, 2312 productlist, 2401 productlist,
2402 productlist, 2403 productlist, 2404 productlist, and 2406 productlist.

O.5. Dataset Example

The following examples illustrate the structure and content of the datasets used in this research. Each entry in the dataset
consists of various encoded features that represent different aspects of user interactions, item properties, and contextual
information. The examples below showcase typical data points, including encoded identifiers, interaction sequences, and
embeddings extracted from pre-trained language models. These examples are representative of the format and type of data
that researchers will work with when utilizing Fresh-Food E-commerce and House-Hold E-commerce datasets for their
studies.

browse seq
Content format (each line): [[browse product idx],[purchase product idx]] (The product IDs start from
1.)
Example: [[1, 57, 35, 102, 435], [720, 102, 35]]

sessiondate
Content format (each line): purchase datetime
Example: datetime.datetime(2024, 3, 16, 0, 0, 0, 0)

PriceFeature
Content format: every product sale price (normalization) (From the price of the product with ID 1 to
the product with ID n+ 1.)
Example: [0.5035971223021583, 0.5392953929539296, ..., 0.6254901960784314,
0.6235294117647059]

Image Style Embedding
Content format (each line): gram matrixes of a product (dim=512) (The lines are sorted based on the product
index. Since our index starts from 1, the first line is filled with an all-zero embedding.)
Example: tensor([0.0323, 0.0204, ..., 0.0097, 0.0167])

Text Embedding
Content format (each line): Llama 3.1 embedding of a product (dim=4096) (The lines are sorted based on
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the product index. Since our index starts from 1, the first line is filled with an all-zero embedding.)
Example: tensor([1.7661, -0.1427, ..., -0.3347, -0.9397])

2403 productlist
Content format: product idx list
Example: [587, 588, ..., 183, 184]

O.6. Conclusion

This technical appendix provides a comprehensive overview of the datasets released as part of our research. The Fresh-Food
E-commerce and House-Hold E-commerce datasets serve as valuable resources for advancing the study of multimodal
recommendation systems. With their diverse interaction data and carefully curated features, these datasets offer a unique
opportunity for researchers to develop and evaluate cutting-edge models. The provided file locations and preprocessing
steps ensure that users can easily access and utilize these datasets for further research and development efforts.
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