
Published in Transactions on Machine Learning Research (October/2025)

Scalable Generative Modeling of Weighted Graphs

Richard Williams rlwilliams34@ucla.edu
Department of Biostatistics
University of California, Los Angeles

Eric Nalisnick nalisnick@jhu.edu
Department of Computer Science
Johns Hopkins University

Andrew Holbrook aholbroo@ucla.edu
Department of Biostatistics
University of California, Los Angeles

Reviewed on OpenReview: https: // openreview. net/ forum? id= yWKkBOcD18& noteId= AQrmkZ9eWM

Abstract

Weighted graphs are ubiquitous throughout biology, chemistry, and the social sciences, mo-
tivating the development of generative models for abstract weighted graph data using deep
neural networks. However, most current deep generative models are designed for unweighted
graphs and cannot be easily extended to weighted topologies. Among those that do incor-
porate edge weights, few consider a joint distribution with the topology of the graph. Fur-
thermore, learning a distribution over weighted graphs must account for complex nonlocal
dependencies between both the edges of the graph and corresponding weights of each edge.
We develop an autoregressive model BiGG-E, a nontrivial extension of the BiGG model,
that learns a joint distribution over weighted graphs while exploiting sparsity to generate a
weighted graph with n nodes and m edges in O((n + m) log n) time. Simulation studies and
experiments on a variety of benchmark datasets demonstrate that BiGG-E best captures
distributions over weighted graphs while remaining scalable and computationally efficient.

1 Introduction

Graphs are useful mathematical structures for representing data in many domains, with applications rang-
ing from modeling protein–protein interactions (Keretsu & Sarmah, 2016) to predicting time spent in traffic
(Stanojevic et al., 2018). A graph consists of a set of objects, called nodes, and their corresponding connec-
tions, called edges, which represent the graph’s topology. Edges may contain additional information in the
form of edge features, which can be categorical – such as bond types in molecular graphs (Jo et al., 2022) – or
continuous – such as branch lengths in phylogenetic trees (Semple et al., 2003). Edge weights, in particular,
are continuous single-dimensional edge features, and a graph with edge weights comprises a weighted graph.
Weighted graphs hold many applications, such as in neuroscience (Barjuan et al., 2025), economics (Fagiolo
et al., 2010), social networks (Bellingeri et al., 2023), and phylogenetics (Baele et al., 2025).

Generative modeling of graphs is a vibrant research area, where weighted graphs require models that capture
both topology and edge-weight distributions. Early approaches such as Erdős–Rényi (Erdős & Rényi, 1959)
and Barabási–Albert models (Albert & Barabasi, 2002) offer simple graph-generating mechanisms but fail to
capture subtle dependencies observed between edges in real-world data. These limitations motivate the de-
velopment of expressive deep generative models capable of learning complex, nonlinear relationships. Despite
such advances, modeling graph distributions remains an ongoing challenge due to the combinatorial nature
of graphs and complex dependencies among edges. Furthermore, although incorporating edge weights seems
straightforward, jointly modeling discrete topology and continuous weights introduces additional complexity,
requiring the model to account for dependencies both within and between these two components.

1

https://openreview.net/forum?id=yWKkBOcD18¬eId=AQrmkZ9eWM

Published in Transactions on Machine Learning Research (October/2025)

Modern graph generative models – including variational autoencoders (VAEs) (Kipf & Welling, 2016; Grover
et al., 2019), graph neural networks (Grover et al., 2019), autoregressive models (You et al., 2018; Liao et al.,
2019; Li et al., 2018; Dai et al., 2020), and score-based diffusion models (Niu et al., 2020; Jo et al., 2022;
Vignac et al., 2023) – primarily focus on unweighted graphs. Most limit their scope to modeling distributions
over graph topology while offering limited insight into the joint modeling of topology and edge weights, and
few provide scalable solutions for learning joint distributions over sparse weighted graphs. Furthermore, a
significant computational bottleneck in graph generative modeling arises when jointly modeling all possible
edge connections, which scales quadratically with the number of nodes. Hence, models that attempt to
jointly model all possible edge connections are computationally slow and infeasible for even moderately sized
graphs. Autoregressive models factorize graph generation node-by-node using a sequential decision process.
BiGG, “Big Graph Generation” (Dai et al., 2020), augments this approach by directly generating the edge
set of sparse graphs, scaling to graphs with tens of thousands of nodes. However, existing autoregressive
methods, including BiGG, remain limited to unweighted graphs.

To address the need for efficient generative modeling over large weighted graphs, we introduce BiGG-E
(“BiGG-Extension”), an autoregressive model that jointly generates both graph topologies and edge weights
while preserving the scalability of its unweighted predecessor, BiGG. We benchmark BiGG-E against three
alternatives: (1) Adjacency-LSTM (Adj-LSTM), a fully expressive but computationally inefficient model
parameterized with a Long Short-Term Memory (LSTM; Hochreiter & Schmidhuber (1997)) cell; (2) BiGG-
MLP, a naive extension that appends encodings of weights to BiGG using a multilayer perceptron (MLP,
Rumelhart et al. (1986)); and (3) BiGG+GCN, a two-stage model that decouples topology and weight
generation.

Our contributions are as follows:

• We propose BiGG-E, an application-agnostic generative model that learns joint distributions over
sparse weighted graphs.

• We empirically demonstrate that BiGG-E maintains the efficient scaling of BiGG while outperform-
ing BiGG-MLP, Adj-LSTM, and BiGG+GCN.

• All BiGG extensions are orders of magnitude faster than Adj-LSTM and SparseDiff, a diffusion-
model competitor.

• We directly evaluate the joint and marginal generative performance of all models on an array of
weighted graph distributions.

2 Background

2.1 Data

Let G = {G1, . . . , G|G|} be an independent sample of weighted graphs from an unknown data-generating
distribution p(Gi), for i = 1, . . . , |G|. Each weighted graph is defined as Gi = (Vi, Ei, Wi), where Vi =
{v1, . . . , vni} is the set of |Vi| = ni nodes, Ei ⊆ Vi × Vi is the set of |Ei| = mi edges, and Wi : Vi × Vi → R+

maps edges to positive edge weights. For notational simplicity, we drop the subscript i, under the assumption
that the graphs Gi ∈ G are independent and identically distributed.

For any edge (vi, vj) ∈ E, the edge weight is W (vi, vj) = wij ; otherwise, it is zero. The weighted adjacency
matrix W ∈ Rn×n has entries W (vi, vj). In the unweighted case, edge weights are 1 when (vi, vj) ∈ E and 0
otherwise. We denote the unweighted adjacency matrix by A, which encodes the graph’s topology, and use
W to specifically refer to the weighted adjacency matrix.

A weighted graph G under node ordering π is represented by its permuted weighted adjacency matrix Wπ,
from which the probability of observing G is given by p(G) = p(|V | = n)

∑
π p(Wπ(G)) (Dai et al., 2020).

Because summing over all n! node permutations quickly becomes intractable, we follow Liao et al. (2019)
and assume a single canonical ordering π, yielding the lower bound estimate p(G) ≃ p(|V | = n)p(Wπ(G)).
Following Dai et al. (2020), we estimate p(|V | = n) using a multinomial distribution over node counts in the
training set, and model p(Wπ(G)) with deep autoregressive neural networks parameterized by θ. We assume
all graphs are under the canonical ordering π(G) and omit this notation moving forward.

2

Published in Transactions on Machine Learning Research (October/2025)

2.2 Related Work

Weighted Graph Generative Models Although various models incorporate edge and node features in
the graph generative process, these features are typically categorical (Kipf & Welling, 2016; Li et al., 2018;
Kawai et al., 2019) or are tailored to a specific class of graphs, such as protein graphs (Ingraham et al., 2019).
Furthermore, previous work on autoregressive models (You et al., 2018; Liao et al., 2019; Dai et al., 2020)
focuses exclusively on unweighted graphs. Most implementations on weighted graphs provide limited insight
into the incorporation of edge weights. Graphite (Grover et al., 2019) proposes modeling weighted graphs by
parameterizing a Gaussian random variable, which introduces the possibility of infeasible negative weights.
Although score-based models incorporate edge features into the graph generative process, these features are
typically categorical (Vignac et al., 2023) or rely on thresholding to produce a weighted adjacency matrix
W and only evaluate performance on the binarized adjacency matrix (Niu et al., 2020).

Scalability Scaling generative models to graphs with thousands of nodes is an ongoing challenge, as the
adjacency matrix A has O(n2) entries. In addition, many VAE (Grover et al., 2019) and diffusion (Niu et al.,
2020; Vignac et al., 2023) models utilize graph neural networks, which perform convolutions over the entire
adjacency matrix of the graph. SparseDiff (Qin et al., 2024) is a scalable diffusion model on sparse graphs,
but only scales to graphs with hundreds of nodes, while we are interested in scaling to thousands of nodes.

Autoregressive models currently scale best with large graphs. While GraphRNN (You et al., 2018) trains in
O(n2) time despite using a breadth-first search ordering scheme to reduce computational overhead, GRAN
(Liao et al., 2019) trains in O(n) time by generating blocks of nodes of the graph at a time, but trades this
gain in scalability for worsened sample quality as the model estimates edge densities per block of nodes.
BiGG (Dai et al., 2020) leverages the sparsity of many real-world graphs and directly generates the edge set
{ek} of A:

pθ(A) =
m∏

k=1
pθ(ek|{el:l<k}). (1)

BiGG trains on the order O(log n) time, generates an unweighted graph in O((n + m) log n) time, and
scales to graphs with up to 50K nodes. Currently, BiGG and other autoregressive models remain limited
to unweighted graphs, precluding the sampling of edge weights. These limitations motivate the need for a
scalable autoregressive model capable of modeling joint distributions over weighted graphs.

3 Methods and Contributions

3.1 Joint Modeling of Topology and Edge Weights

Previous autoregressive models produce unweighted graphs either by directly generating A (You et al., 2018),
or by directly generating the edge set (Dai et al., 2020). However, our models learn over weighted adjacency
matrices W. As such, we first define a joint distribution over the existence of an edge e and its corresponding
edge weight w. To do so, note that as w is only sampled when e exists, we can naturally factor the joint
probability pθ(e, w) of observing a weighted edge (e, w) as

pθ(e, w) = pθ(e)pθ(w|e), (2)

where pθ(e) is the parameterized Bernoulli probability that an edge exists between two nodes, and pθ(w|e) is
the probability of drawing a corresponding weight given that e exists. Since w is assumed to be continuous,
let pθ(w|e) represent the distribution of the random variable w with parameterized density fθ(w). In the
case where no edge exists and e = 0, set w = 0 with probability 1; otherwise, if an edge exists and e = 1,
draw a corresponding weight from a conditional distribution pθ(w|e).

We parameterize the conditional distribution pθ(w|e) as a normal random variable ϵ|e ∼ N(µ, σ) transformed
with the softplus function Softplus(ϵ) = log(1 + exp(ϵ)). In our experience, such a transformation of a

3

Published in Transactions on Machine Learning Research (October/2025)

normal random variable performs best with gradient-based optimization by providing enough flexibility in
modeling distributions, where work such as Rodríguez & Dunson (2011) empirically demonstrates that a
probit transformation of a random normal variable provides a prior capable of generating a rich class of
distributions. To ensure positivity of the weights, the softplus function maps each value from the normal
distribution to a positive real number. Other candidate distributions, such as the gamma and log-normal
distributions, are more challenging to implement because of the complexity of the likelihood in the former
and the heavy right-tailedness in the latter. Thus, with the softplus-normal conditional density placed on
the weights, the term pθ(w|e) in Equation 2 is equal to

pθ(w|e) ∝ 1
2σ2 exp

[
− 1

2σ2

(
log(ew − 1) − µ

)2
]

(3)

up to a constant factor, where µ and σ2 are functions of neural network parameters θ.

3.2 Likelihood of a Weighted Adjacency Matrix

There are two ways to parameterize the distribution pθ(W) over weighted graphs: first, we may consider
the probability over all entries of W in a row-wise manner as

pθ(W) =
n∏

i=1

i−1∏
j=1

pθ(Wij |{Wkl}) =
n∏

i=1

i−1∏
j=1

(1 − pij)1−eij
[
pijpθ(wij |eij)

]eij
, (4)

where Wij is the (i, j)-th entry of W, pij ≡ pij(θ) is the estimated probability of an edge existing between
nodes vi and vj , eij = 1 when (vi, vj) ∈ E and is otherwise 0, and wij = W (vi, vj) is the weight of edge eij

whenever (vi, vj) ∈ E. Note each entry Wij is conditioned on all prior entries, denoted as {Wkl}.

Next, similarly to how BiGG factors pθ(A) in Equation 1, we factor the weighted edge set of W as

pθ(W) =
m∏

k=1
pθ(ek|{(el, wl):l<k}) · pθ(wk|ek, {(el, wl):l<k}), (5)

noting all edges up to and including ek condition the generation of weight wk. We substitute Equation 3
into the terms pθ(wij |eij) and pθ(wk|ek, {(el, wl):l<k}) of Equations 4 and 5, respectively, and maximize the
log-likelihood L(θ; W) to train our models on weighted graphs. More details of the derivation of Equations 4
and 5 and the objective function are given in Appendix A.1.

3.3 Models

Our main contributions use autoregressive models, which are well-suited for graph generation as they ex-
plicitly capture dependencies among edges and, in our case, their weights. BiGG-E extends the original
BiGG model by maintaining two states during generation: a topological state inherited from BiGG and a
weight state that encodes all previously generated edge weights. By leveraging both states, BiGG-E jointly
and autoregressively predicts the weighted edge set of W. We begin by reviewing the BiGG architecture
before detailing our extensions in BiGG-E. Additional architectural details and an expanded BiGG review
are provided in Appendices A.2 and A.2.1.

3.3.1 Review of BiGG (Dai et al., 2020)

BiGG generates an unweighted graph with an algorithm consisting of two main components, both of which
train in O(log n) time: (1) row generation, where BiGG generates each row of the lower half of A using a
binary decision tree; and (2) row conditioning, where BiGG deploys a hierarchical data maintenance structure
called a Fenwick tree (Fenwick, 1994) to condition the subsequent row generation on all previous rows.

4

Published in Transactions on Machine Learning Research (October/2025)

[v1, v8]

[v1, v4]

[v1, v2] [v3, v4]

v4v1

htop
u

ĥtop
u

hbot
u

Tree-LSTM Cell
Left Subtree Summary

Figure 1: Example of constructing Tu in the original BiGG model. The interval [v1, v8] is recursively
partitioned via left-right decisions until reaching individual nodes (e.g., v1 and v4). Dashed lines indicate
no edge. Purple arrows show the top-down context vector htop

u used for left-child edge predictions; orange
arrows show the conditioned top-down context ĥtop

u used for right-child predictions. At node [v1, v4], a
TreeLSTM merges the left sub-tree summary (blue) with htop

u to produce ĥtop
u for left subtree conditioning.

Row Generation To sample edge connections for each node vu ∈ G, BiGG adapts a procedure from R-
MAT (Chakrabarti et al., 2004) to construct a binary decision tree Tu, which identifies all edge connections
with vu by recursively partitioning the candidate edge interval [v1, vu−1] into halves. Each node t ∈ Tu

corresponds to a subinterval [vi, vk] of length lt = k − i + 1, which is split into left and right halves:
lch(t) = [vi, vi+⌊lt/2⌋] and rch(t) = [vi+⌊lt/2⌋+1, vk].

If an edge exists in lch(t), the model recurses into that interval until reaching a singleton interval [vj , vj],
which represents an edge connection with vj . After completing the left subtree, the model recurses into rch(t),
conditioned on all edge connections – if any – formed in lch(t). BiGG conditions subsequent predictions on
all prior interval splits using two context vectors: (1) predictions for lch(t) use a top-down hidden state
htop

u (t), which sequentially encodes all left and right edge existence decisions made in Tu thus far; and (2)
predictions for rch(t) use a conditioned top-down hidden state ĥtop

u (t) computed by merging htop
u (t) with

a bottom-up summary state of the generated left subtree, hbot
u (lch(t)). This merge is performed using a

Tree-LSTM Cell (Tai et al., 2015), which encodes relevant information from the top-down and bottom-up
hidden states: ĥtop

u (t) = TreeCellθ(htop
u (t), hbot

u (lch(t))).

Hence, constructing Tu is fully autoregressive with probability

pθ(Tu) =
∏

t∈Tu

pθ(lch(t)|htop
u (t)) · pθ(rch(t)|ĥtop

u (t)). (6)

Figure 1 illustrates an example of constructing Tu and visualizes use of the top-down and bottom-up states
in predicting lch(t) and rch(t). Finally, note that as hbot

u (t) is the bottom-up summary state summarizing
the subtree rooted at node t, the bottom-up summary state at the root node t0 summarizes the entire tree
Tu.

Fenwick Tree To condition each decision tree Tu on all prior trees T1 to Tu−1, BiGG adopts the Fenwick
tree (Fenwick, 1994) to efficiently summarize all previously generated rows in A. The Fenwick tree at row
u has ⌊log(u − 1)⌋ + 1 levels, where the base level (leaves) of the tree are states hbot

u (t0) summarizing the
edge connections formed in each Tj , j = 1, . . . , u − 1. Higher levels of the Fenwick tree merge these states

5

Published in Transactions on Machine Learning Research (October/2025)

Algorithm 1 BiGG-E Weight Sampling and Embedding
function embed_weight(wk, hwt

k−1)
1: w0

k = LSTMθ(wk)
2: Add w0

k to Fenwick weight tree and update tree using Equation 7.

3: hwt
k = TreeCellsummary

θ

([
wi

⌊ k

2i ⌋ where k & 2i = 2i

])
4: Return hwt

k

end function

function sample_weight(u, t, htop
u (t), hwt

k)
5: hsum

u,k (t) = TreeCellmerge
θ (htop

u (t), hwt
k)

6: Set µk+1 = fµ(hsum
u,k (t)) and log σ2

k+1 = fσ2(hsum
u,k (t))

7: Sample wk+1 from Section 3.1 using µk+1, σ2
k+1.

8: hwt
k+1 = embed_weight(wk+1, hwt

k)
9: Return 1⃗, {edge index t represents}, wk+1, hwt

k+1
end function

to produce aggregated summaries across multiple rows. Letting gi
j denote the state at the j-th node on the

i-th level, each non-leaf node of the Fenwick tree merges its two children using a Tree-LSTM cell as

gi
j = TreeCellrow

θ (gi−1
2j−1, gi−1

2j), (7)

where 1 ≤ i ≤ ⌊log(u − 1)⌋ + 1, 1 ≤ j ≤ ⌊ u
2i ⌋, and g0

j is the bottom-up summary state of Tj . Finally, to
summarize all rows 1 to u − 1, the model iteratively applies a Tree-LSTM cell to produce a row summary
hidden state hrow

u :

hrow
u = TreeCellsummary

θ

([
gi

⌊ u

2i ⌋ where u & 2i = 2i

])
, (8)

where & is the bit-level ‘and’ operator, each gi
⌊ u

2i ⌋ encodes summaries of different groups of rows of A, and
hrow

u initializes htop
u (t0) to condition construction of Tu so that pθ(Tu) ≡ pθ(Tu|T1, . . . , Tu−1).

BiGG Training and Sampling Times The training procedure for BiGG consists of four steps, each
running in O(log n) time by parallelizing computations across rows. First, since trees Tu are summarized
independently, their root-level summaries are computed in parallel by traversing each tree level by level
from the leaves to the root. Second, the Fenwick tree is constructed from these root summaries in the same
level-wise manner. Third, the model computes all row summaries hrow

u using the Fenwick tree. Finally, for
each Tu, the model computes all left and right edge interval existence probabilities level-by-level.

For graph generation, the Fenwick tree requires O(n log n) time to construct, since updates now occur
sequentially across row. Provided the graph is sparse, i.e., m = O(n), the construction of all trees Tu

requires O(m log n) time. Thus, the total sampling time of a sparse unweighted graph is O((n + m) log n).

3.4 BiGG-E

BiGG-E incorporates a weight state used in tandem with the original topology state of the BiGG model to
jointly predict weighted edges. We first describe the weight state, followed by the joint prediction framework.

3.4.1 Edge Weight Prediction

Constructing the Weight State To preserve BiGG’s training and sampling speed-ups, BiGG-E intro-
duces a second Fenwick data structure – referred to as the Fenwick weight tree – that summarizes edge

6

Published in Transactions on Machine Learning Research (October/2025)

w1

w2

w3

w4

w5

w6

w7

w0
1

w0
2

w0
3

w0
4

w0
5

w0
6

w0
7

w1
1

w1
2

w1
3

w2
1

hwt
6 Previously Sampled Weights

Weight Embeddings

LSTM Cell

Tree-LSTM Cell

Embeddings in hwt
6 ’s

Computation Path

hwt
6 Computation Path

New Weight
Prediction Path

Newly Sampled Weight

Newly Added
Weight Embedding

Figure 2: Illustration of Fenwick weight tree state construction. Sampled weights wj are passed through an
LSTM to obtain initial embeddings w0

j , which are recursively merged using Tree-LSTM cells (yellow nodes)
to form higher-level summaries. To compute the current weight hidden state hwt

6 , summaries for w1 to w4
(w2

1) and w5 to w6 (w2
1) are merged. This state is used to predict w7, which is added to the Fenwick weight

tree and updated accordingly.

weights during generation. This new tree mirrors the structure of the original Fenwick topology tree used
in BiGG, but is maintained separately to construct edge weight embeddings autoregressively. The Fenwick
weight tree is similarly organized into ⌊log(k − 1)⌋ + 1 levels, where k is the current number of weights in
the graph and the 0-th level corresponds to initialized weight embeddings, computed using a single forward
pass of an LSTM: w0

k = LSTMθ(wk). Higher-level embeddings wi
j in the Fenwick weight tree are computed

using Equation 7, where w0
j is now the initial embedding of the j-th weight in the graph.

To obtain a summary state of all prior edge weights, we use Equation 8 to compute the summary weight
state hwt

k for weights w1 to wk in O(log k) steps. Algorithm 1 outlines the edge weight embedding procedure
in the Fenwick weight tree. Figure 2 illustrates an example of the Fenwick weight tree embedding process,
which updates the weight state recursively based on the weights generated so far.

Edge Weight Conditioning Because the summary weight state hwt
k encodes information about all pre-

viously generated weights w1 to wk, using this state to predict the next edge weight wk+1 allows BiGG-E to
condition each new weight on the history of prior weights. As established in Section 3.1, each edge weight
is sampled from a softplus normal distribution with mean µk and variance σ2

k parameterized by functions of
θ. Computing these parameters from hwt

k in the sampling of the next weight wk+1 allows for conditioning
µk+1 and σ2

k+1 on all preceding weights:

µk+1 = fµ(hwt
k) log σ2

k+1 = fσ2(hwt
k) (9)

where fµ and fσ2 are MLPs that output the estimated mean and log-scale variance, respectively. While this
allows BiGG-E to model dependencies among weights, a full generative model must also capture how edge
structure and weights influence one another – a task requiring both the topology and weight states.

7

Published in Transactions on Machine Learning Research (October/2025)

(B) Construction of Tv5(A) Graph Summary + Initial States

(C) Adding edge connections to v5

Current Graph

v1

v2 v3

v4

w1

w4

w3

w2

[v1, v4]

[v1, v2] [v3, v4]

v1 v4

w5

LSTM

w6

LSTM

hwt
5 hwt

6

hwt
4

hrow
4

Fenwick Trees

Topology

Weight

v1

v2 v3

v4

v5

Tv5Updated Graph

[v1, v4]

[v1, v2] [v3, v4]

(v1, w1) (v4, w4)

w1

w4

w3

w2

w5 w6

Incoming
Topological State

Incoming
Weight State

Tree-LSTM
Cell

Merged
Prediction

Weight
Tree Update

Figure 3: Illustration of the autoregressive construction of Tv5 with weighted edges. Blue dashed arrows
indicate the topological state; green dashed arrows indicate the weight state. These are merged with Tree-
LSTM cells (yellow) to output hidden states for predicting new weighted edges. New weights are embedded
using an LSTM and then added to the Fenwick weight tree. Panels (A–C) depict the process from graph
summarization to final integration of v5 into the graph.

3.4.2 Joint Modeling

Currently, the topology state is responsible for conditioning edge formation, while the weight state conditions
edge weights. Used independently, each state informs only its respective component. However, by leveraging
both states during prediction, BiGG-E models the joint interaction between topology and weights. Let
htop

u (t) be the current top-down context at node t ∈ Tu and hwt
k be the current weight state of the most

recent weight wk. BiGG-E computes the weighted graph summary state hsum
u,k (t) using a Tree-LSTM cell:

hsum
u,k (t) = TreeCellmerge

θ (htop
u (t), hwt

k). (10)

First, when constructing Tu, BiGG-E merges hwt
k with the top-down context vectors htop

u (t) and ĥtop
u (t)

before making predictions for lch(t) and rch(t), respectively, using Equation 10. This modifies Equation 6 to

pθ(Tu) =
∏

t∈Tu

pθ(lch(t)|hsum
u,k (t)) · pθ(rch(t)|ĥsum

u,k (t)),

which enables further conditioning the graph’s topology on the corresponding edge weights.

8

Published in Transactions on Machine Learning Research (October/2025)

Next, when BiGG-E forms an edge connection at a singleton interval t = [vj , vj] in Tu, the model merges
htop

u (t) with hwt
k using Equation 10 prior to outputting the mean and variance parameters µk+1 and σ2

k+1.
This modifies Equation 9 to

µk+1 = fµ(hsum
u,k (t)) log σ2

k+1 = fσ2(hsum
u,k (t))

which conditions sampling edge weights on the topology of the graph, fully allowing BiGG-E to jointly model
weighted graphs. Algorithm 1 outlines sampling a weight when an edge exists, and Figure 3 visualizes the
joint modeling of weighted edges when constructing Tu.

3.4.3 BiGG-E Training and Sampling Time

The novel architectural design outlined in Section 3.4 allows BiGG-E to extend the efficient training and
sampling observed from BiGG to sparse weighted graphs. Constructing the weight state with the Fenwick
weight tree adds only O(log m) training time and O(m log m) sampling time, which preserves the overall
asymptotic complexity of the model so long as m = O(n). Furthermore, since BiGG-E constructs each
tree Tu using BiGG’s original procedure, training remains parallelizable across rows. Finally, the use of
Tree-LSTM cells to merge topological and weight states does not disrupt this structure, allowing BiGG-E to
maintain a training time of O(log n) and sampling time of O((n + m) log n) for sparse weighted graphs.

3.5 Comparison Models

Our code for BiGG-E and all comparison models is available at https://github.com/rlwilliams34/BiGG-E.

Adj-LSTM Adj-LSTM builds on the work of Li et al. (2018) by using an LSTM cell to parameterize the
lower half of W in a row-wise fashion. To adapt to the grid-like structure of W, Adj-LSTM maintains and
updates row and column states autoregressively. When an edge exists between nodes vi and vj , a corre-
sponding weight is sampled as described in Section 3.1. Adj-LSTM is fully expressive but slow: generating
all of W requires O(n2) computations. Additional details are provided in Appendix A.3.

BiGG-MLP BiGG-MLP is a simple extension of BiGG that replaces the topology leaf state (Algorithm
1, line 9) that indicates edge existences in Tu with an MLP that encodes the newly sampled weight into a
state embedding. The rest of the algorithm remains unchanged, maintaining a single state that summarizes
topology and edge weights. However, using the same state to simultaneously make left-right binary decisions
and generate continuous weights severely limits BiGG-MLP’s capacity to learn each task. This comparison
highlights the importance of maintaining separate topology and weight states, as done in BiGG-E.

BiGG+GCN BiGG+GCN is a two-stage model that decouples topology generation from edge weight
sampling. First, the original BiGG model generates an unweighted graph. Then, a graph convolutional net-
work (GCN) conditioned on the graph’s topology populates each edge with edge weights. Thus, BiGG+GCN
forgoes jointly modeling weighted edges and instead generates edges independently of weights. BiGG+GCN
serves as a comparison for evaluating the benefits of BiGG-E’s joint modeling approach.

Baseline An Erdős–Rényi (ER) model independently samples edges with an estimated global edge exis-
tence probability. Weights are sampled independently with replacement from the training set edge weights.

4 Experiment

We assess all models on the following: (1) do the models capture diverse distributions over weighted graphs;
(2) does jointly modeling topology and edge weights improve performance; and (3) do the models scale well
to large graphs? Following the evaluation protocol of Liao et al. (2019), we compare an equal number of
graphs generated by each model against a held-out test set.

To assess generative quality, we use metrics that evaluate the marginal distributions of graph topology and
edge weights, and metrics that evaluate their joint distribution. For topology, we compute Maximum Mean

9

https://github.com/rlwilliams34/BiGG-E

Published in Transactions on Machine Learning Research (October/2025)

Discrepancy (MMD) (Gretton et al., 2012) using test functions based on degree distributions, clustering
coefficients distributions, and the spectrum of the normalized unweighted Laplacian, which are conventional
measures of topological performance used in Liao et al. (2019), Dai et al. (2020), and You et al. (2018). The
lower the MMD metric, the higher in quality that graph set is relative to the test set. For all tree and lobster
datasets, we also report the error rate as the percent of generated graphs that do not follow the correct
structure. For edge weights, we summarize the marginal distribution using the pooled mean and standard
deviation, denoted w̄ and sw. We additionally compute the MMD on the marginal weight distribution within
each graph. To assess joint structure, we apply MMD with test functions based on the weighted Laplacian
spectrum and weighted degree distribution. Finally, we compute the average rank of each model within and
across all datasets. Further details on the MMD test functions are provided in Appendix A.6.

To evaluate scalability on larger graphs, we train on sets of 80 weighted HW-trees with sizes from {100, 200,
0.5K, 1K, 2K, 5K, 10K, 15K}. Each model is trained on a GV100 GPU with 3.2 GB of memory an single
precision performance, and we report the MMD on the normalized Laplacian of the resulting weighted graphs
against 20 test graphs. For each trained model, we record the time to sample one graph, the time to complete
a forward pass, backward pass, and optimizer step on one training graph, and the memory consumption used
per graph during training. We also compare scalability with that of the diffusion model SparseDiff (Qin et al.,
2024), hypothesizing that BiGG-E scales more efficiently. Finally, we expect the extended BiGG models to
scale better than both Adj-LSTM and SparseDiff, while BiGG-E will retain superior generative quality on
large graphs.

Data We use the following datasets to evaluate the generative quality of our models.

• Erdős–Rényi: 100 graphs that represent a null case to test whether the models capture the distri-
bution of weighted graphs under an Erdős–Rényi model (Erdős & Rényi, 1959). We sample weights
independently from the standard normal distribution and transform them with the softplus function.

• Hierarchical-Weight (HW-) Tree: 1,000 bifurcating trees with hierarchically sampled edge
weights: for each tree Ti, sample µi ∼ U(7, 13) from the uniform distribution, then wik ∼ Γ(µ2

i , µ−1
i)

from the gamma distribution. This yields a global weight distribution with mean 10 and standard
deviation 2, and within-tree standard deviation of 1.

• 3D Point Cloud: 41 graphs of household objects (Neumann et al., 2013). Weights from the 3D
Point Cloud graphs represent the Euclidean distance between the two nodes in each edge.

• Lobster: 1,000 graphs that are path graphs with edges appended at most two edges away from the
backbone. We sample weights independently from the Beta distribution as wk ∼ Beta(5, 15).

• Path-Threshold (PT-) Tree: 100 trees where weights and topology are coupled. We sample
weights wk ∼ U(0.5, 1.5) independently. Starting at the root node, we add edges until the sum of
outgoing edge weights exceeds a threshold of 4. For each new child, add edges recursively using the
same rule: add children until the total weight of all new edges - plus the path length from the root
to the current node - exceeds 4. This process continues until all root-to-leaf path sums exceed 4.

• Yeast: 100 phylogenetic trees representing the evolutionary history of 154 Saccharomyces Cerevisiae
strains inferred from DNA sequence alignments. Edge weights denote evolutionary time along each
branch from ancestor to descendant (Hassler et al., 2022).

4.1 Results

Weighted Graph Distributions BiGG-E consistently outperforms competing models on topological
metrics (Table 1). With the HW-tree and lobster graphs, it consistently achieves the best or most competitive
MMDs. For the Erdős–Rényi graphs, all BiGG extensions are competitive with the baseline, where the models
successfully capture a known probability distribution. All models perform equally well, which is expected
given the graphs are fully independent. On the complex 3D point clouds, BiGG+GCN performs best on
topology, with BiGG-E remaining competitive with respect to the clustering (0.188 vs 0.179) and spectral
(8.19 × 10−3 vs 7.33 × 10−3) MMDs. BiGG-E also achieves the lowest error rates for HW-tree and lobster
graphs (2.5% and 0.5%, respectively). Finally, BiGG-MLP exhibits substantial degradation in topological
quality across graph datasets, performing orders of magnitude worse on HW-tree and 3D point cloud graphs,
and showing moderate degradation on lobster graphs.

10

Published in Transactions on Machine Learning Research (October/2025)

Table 1: Topological Accuracy Measures. The MMD metrics use the test functions from the set {Degree,
Cluster, Orbit, Unweighted Laplacian (Spec)}. For the MMD metrics, smaller values are better. OOM
indicates out of memory. Error is reported as the proportion of non-tree or -lobster graphs. Similar or better
topological accuracy compared to the original BiGG (BiGG+GCN) shows that modeling of weights does not
worsen BiGG-E’s topological performance. Results are given as Mean ± SD over five runs. Boldfaced entries
represent the best mean value. < 0.01 indicates near-zero values and statistical ties on given scale. Em-dash
indicates no run was performed. Rank is best model compared with {Mean-SD, Mean, Mean+SD}}.

Datasets
Methods

BiGG-E Adj-LSTM BiGG-MLP BiGG+GCN Erdős–Rényi

Erdős–Rényi Deg. (×10−3) 2.52 ± 0.90 30.3 ± 8.6 9.56 ± 2.06 4.76 ± 1.38 2.96 ± 0.65
Clus. (×10−2) 1.68 ± 1.02 3.64 ± 1.18 1.66 ± 0.94 1.58 ± 0.91 1.35 ± 0.38

|V |max = 749 (499) Orbit (×10−2) 6.40 ± 0.94 10.2 ± 2.5 7.98 ± 0.88 8.55 ± 2.54 6.73 ± 0.39
|E|max = 2846 (1349) Spec. (×10−3) 2.21 ± 0.05 24.4 ± 5.9 7.38 ± 1.98 3.15 ± 0.39 2.75 ± 0.51

Rank 1.67 ± 1.15 5.00 ± 0.00 3.58 ± 0.51 2.83 ± 0.72 1.92 ± 0.90

HW-Tree Deg. (×10−4) 0.02 ± 0.01 14.1 ± 3.7 2.88 ± 0.38 0.08 ± 0.05 2698.1 ± 29.6
Spec. (×10−4) 5.75 ± 0.98 18.7 ± 1.6 20.0 ± 4.1 5.71 ± 0.63 812.2 ± 13.5

|V |max = 199 (199) Orbit (×10−4) < 0.01 0.72 ± 0.05 0.12 ± 0.03 < 0.01 381.6 ± 15.0
|E|max = 198 (198) Error (%) 2.30 ± 0.30 30.20 ± 3.33 82.80 ± 3.77 5.80 ± 0.97 100.00 ± 0.00

Rank 1.29 ± 0.40 3.58 ± 0.51 3.42 ± 0.51 1.71 ± 0.40 5.00 ± 0.00

3D Point Cloud Deg. (×10−3) 1.50 ± 1.25 OOM 26.1 ± 0.1 0.11 ± 0.09 534.2 ± 2.81
Clus. (×10−1) 1.88 ± 0.16 OOM 5.77 ± 0.80 1.74 ± 0.01 11.5 ± 0.04

|V |max = 5022 (1375) Orbit (×10−2) 1.75 ± 1.31 OOM 17.9 ± 5.0 0.51 ± 0.57 102.6 ± 1.53
|E|max = 10794 (3061) Spec. (×10−3) 8.19 ± 0.83 OOM 27.5 ± 2.0 7.33 ± 0.20 254.6 ± 9.02

Rank 1.92 ± 0.29 5.00 ± 0.00 3.00 ± 0.00 1.08 ± 0.29 4.00 ± 0.00

Lobster Deg. (×10−3) 0.32 ± 0.17 0.54 ± 0.35 2.36 ± 0.45 1.17 ± 0.70 249.1 ± 0.7
Clus. (×10−3) 0.00 ± 0.00 0.11 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 85.8 ± 10.6

|V |max = 100 (55) Spec. (×10−3) 2.80 ± 0.24 3.09 ± 0.47 4.19 ± 0.69 3.27 ± 0.48 202.1 ± 3.12
|E|max = 99 (54) Orbit (×10−3) 3.33 ± 0.57 3.75 ± 0.85 29.8 ± 3.1 12.33 ± 4.36 156.2 ± 2.18

Error (%) 0.90 ± 0.50 21.70 ± 4.19 31.70 ± 1.96 17.00 ± 1.12 100.00 ± 0.00
Rank 1.23 ± 0.50 2.50 ± 0.73 3.63 ± 0.77 2.63 ± 0.48 5.00 ± 0.00

PT-Tree Deg. (×10−4) 0.22 ± 0.05 152.6 ± 10.3 62.2 ± 15.0 4.05 ± 2.80 602.8 ± 48.3
Spec. (×10−3) 4.92 ± 0.84 261.1 ± 7.4 65.7 ± 7.4 9.74 ± 2.87 229.7 ± 5.5

|V |max = 452 (193) Orbit (×10−4) 0.36 ± 0.13 349.6 ± 15.1 44.7 ± 6.0 4.64 ± 2.60 102.2 ± 15.0
|E|max = 451 (192) Error (%) 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 100.00 ± 0.00

Rank 1.25 ± 0.45 4.38 ± 0.43 2.75 ± 0.45 2.00 ± 0.00 4.64 ± 0.54

Yeast Deg. (×10−4) 0.33 ± 0.75 1165.1 ± 62.6 231.8 ± 6.8 0.34 ± 0.77 2712.4 ± 38.4
Spec. (×10−3) 0.46 ± 0.44 59.2 ± 1.3 27.6 ± 5.3 0.37 ± 0.34 133.4 ± 3.08

|V |max = 307 (307) Orbit (×10−5) 0.24 ± 0.54 743.6 ± 210.0 219.8 ± 95.6 0.47 ± 1.06 4183.0 ± 262.8
|E|max = 306 (306) Error (%) 1.00 ± 2.24 100.00 ± 0.00 87.00 ± 4.47 1.00 ± 2.24 100.00 ± 0.00

Rank 1.38 ± 0.38 4.13 ± 0.23 3.00 ± 0.00 1.63 ± 0.38 4.88 ± 0.23

Global Rank 1.45 ± 0.63 4.03 ± 1.00 3.25 ± 0.58 2.01 ± 0.74 4.27 ± 1.16

11

Published in Transactions on Machine Learning Research (October/2025)

Table 2: Edge-weight Accuracy Measures. The MMD metrics use the test functions from the set {Weighted
Laplacian (Spec) and Weights}. For the MMD metrics, smaller values are better. OOM indicates out of
memory. Marginal means and standard deviations of edge weights are given as µw and σw for underlying
edge weight distributions, and w̄ and sw when computed from sampled graphs. For ER Graphs, edge-
weights are on the underlying normal distribution scale. For HW-tree graphs, sT represents the average
standard deviation of edge weights sampled per HW-tree. Results are given as Mean ± SD over five runs.
Boldfaced entries represent the best mean value. Em-dash indicates no run was performed. Rank is best
model compared with {Mean-SD, Mean, Mean+SD}

Datasets
Methods

BiGG-E Adj-LSTM BiGG-MLP BiGG+GCN Erdős–Rényi

Erdős–Rényi w̄ (×10−3) 5.12 ± 3.13 19.4 ± 4.0 3.31 ± 4.12 −3.84 ± 7.07 2.96 ± 0.65
sw 1.01 ± 0.01 0.98 ± 0.00 1.01 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

µw = 0.0 Spec. (×10−3) 3.79 ± 0.43 27.1 ± 7.3 7.38 ± 1.98 4.12 ± 0.70 2.80 ± 0.38
σw = 1.0 MMDWT (×10−3) 1.27 ± 0.66 38.6 ± 12.2 1.97 ± 1.18 1.85 ± 0.51 1.76 ± 1.12

Rank 2.42 ± 1.18 4.92 ± 0.29 3.25 ± 0.99 2.63 ± 0.96 1.79 ± 0.75

HW-Tree w̄ 10.13 ± 0.12 9.97 ± 0.07 10.13 ± 0.14 10.03 ± 0.10 10.04 ± 0.01
sw 1.86 ± 0.02 1.98 ± 0.04 1.93 ± 0.02 1.96 ± 0.03 1.96 ± 0.00

µw = 10, σw = 2 sT 1.01 ± 0.01 1.32 ± 0.04 0.98 ± 0.00 1.96 ± 0.03 1.96 ± 0.00
σT = 1 Spec. (×10−3) 0.63 ± 0.07 2.83 ± 0.54 1.33 ± 0.14 2.09 ± 0.12 109.3 ± 1.8

MMDWT (×10−2) 0.85 ± 0.33 0.33 ± 0.09 0.71 ± 0.50 21.6 ± 0.1 21.5 ± 0.1
Rank 2.67 ± 1.49 2.50 ± 1.32 2.67 ± 1.30 3.50 ± 1.28 3.67 ± 1.22

3D Point Cloud w̄ (×10−1) 4.18 ± 0.06 OOM 4.28 ± 0.02 4.56 ± 0.06 4.20 ± 0.01
sw (×10−1) 0.96 ± 0.01 OOM 1.04 ± 0.01 7.37 ± 1.14 0.98 ± 0.00

µw ≈ 0.411 Spec. (×10−3) 7.77 ± 0.90 OOM 23.1 ± 0.64 8.52 ± 0.92 287.6 ± 5.4
σw ≈ 0.096 MMDWT (×10−2) 0.27 ± 0.19 OOM 5.15 ± 0.71 18.3 ± 2.2 2.00 ± 0.78

Wtd. Deg. (×10−3) 7.31 ± 5.83 OOM 87.6 ± 2.14 9.67 ± 1.29 455.8 ± 2.4
Rank 1.13 ± 0.35 5.00 ± 0.00 3.00 ± 0.00 3.13 ± 1.12 2.73 ± 1.10

Lobster w̄ (×10−1) 2.49 ± 0.01 2.50 ± 0.00 2.49 ± 0.01 2.50 ± 0.01 2.49 ± 0.00
sw (×10−1) 0.94 ± 0.01 1.03 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01

µw = 0.25 Spec. (×10−3) 2.44 ± 0.16 3.09 ± 0.47 4.19 ± 0.39 3.27 ± 0.48 271.7 ± 2.4
σw ≈ 0.095 MMDWT (×10−3) 1.33 ± 0.45 6.36 ± 1.54 1.21 ± 0.36 1.60 ± 0.30 9.15 ± 1.71

Rank 1.92 ± 0.67 3.79 ± 1.23 2.42 ± 1.16 3.21 ± 0.78 3.67 ± 1.50

PT-Tree w̄ 1.00 ± 0.00 1.03 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
sw 0.29 ± 0.00 0.30 ± 0.00 0.28 ± 0.00 0.29 ± 0.00 0.29 ± 0.00

µw = 1.00 Spec. (×10−2) 1.35 ± 0.23 18.3 ± 0.5 2.76 ± 0.28 1.94 ± 0.33 21.2 ± 0.8
σw ≈ 0.29 MMDWT (×10−3) 4.03 ± 0.20 18.9 ± 2.2 7.57 ± 1.62 22.6 ± 2.8 0.54 ± 0.38

Wtd Deg. (×10−3) 0.38 ± 0.08 8.92 ± 0.78 2.38 ± 0.36 4.12 ± 0.11 74.0 ± 8.1
Rank 1.63 ± 0.55 4.37 ± 0.48 3.13 ± 0.81 2.83 ± 1.19 3.03 ± 1.72

Yeast w̄ (×10−4) 3.65 ± 0.01 6.22 ± 0.08 3.65 ± 0.02 3.47 ± 0.02 3.66 ± 0.05
sw (×10−4) 3.71 ± 0.03 9.50 ± 0.26 3.87 ± 0.22 3.67 ± 0.06 3.79 ± 0.06

µw ≈ 3.63 × 10−4 Spec. (×10−3) 3.28 ± 0.85 98.6 ± 4.2 18.6 ± 2.9 23.7 ± 1.6 133.4 ± 3.1
σw ≈ 3.68 × 10−4 MMDWT (×10−3) 0.56 ± 0.10 31.8 ± 9.3 1.36 ± 0.63 34.6 ± 3.7 5.59 ± 1.93

Wtd Deg. (×10−4) 0.22 ± 0.06 358.0 ± 19.1 14.4 ± 4.0 15.3 ± 1.5 211.6 ± 14.3
Rank 1.23 ± 0.42 4.67 ± 0.49 2.23 ± 0.82 3.27 ± 1.22 3.60 ± 0.83

Global Rank 1.81 ± 1.07 4.20 ± 1.17 2.78 ± 0.98 3.11 ± 1.12 3.11 ± 1.36

12

Published in Transactions on Machine Learning Research (October/2025)

Figure 4: Distribution of weights globally (left) and of standard deviations per HW-tree (right).

Joint Modeling BiGG-E outperforms all comparisons in jointly modeling weighted graphs, particularly on
the 3D point cloud, PT-tree, and yeast graphs (Table 2) . Although BiGG+GCN achieves a lower unweighted
degree distribution MMD for 3D point clouds, BiGG-E attains a lower weighted degree distribution MMD
(7.31×10−3 vs 9.67×10−3). It also matches with BiGG+GCN on the weighted Laplacian MMD (2.44×10−3

vs 3.27 × 10−3), where BiGG-E’s more realistic edge weights improve joint modeling.

In the PT-tree dataset, where topology and edge weights are sampled jointly, BiGG-E achieves the best
performance across all metrics by significant margins. Although the Erdős–Rényi baseline performs well
on the marginal distribution of weights, which are independently and uniformly distributed, BiGG-E still
closely matches this distribution despite using a softplus-parameterized distribution, while also capturing the
structural dependencies exhibited in the PT-trees that the baseline cannot model. On yeast graphs, BiGG-E
is comparable to BiGG+GCN on topology-only metrics but consistently leads once edge weights are included.
More broadly, BiGG+GCN leverages its BiGG component on unweighted topologies that depend little on
the edge weights, while BiGG-E outperforms when topology is edge weight-dependent, suggesting its joint
modeling captures weighted graph structures more effectively.

In contrast to BiGG-E’s stable edge weight learning, the two-stage BiGG+GCN pipeline is highly sensitive
to errors in the generated topology of the graph, highlighted by the heavily inflated variance of edge weights
produced in the 3D point clouds. Uncertainty in the graph topology propagates to the GCN, leading to
instability in the sampled set of edge weights. BiGG-E’s joint modeling scheme leads to more stable and
realistic weighted graph generation by allowing uncertainty to flow in both directions: uncertainty in topology
of the underlying graphs propagates to uncertainty in the edge weight distribution, and vice versa.

Scalability Table 3 shows that all BiGG extensions scale well to larger graphs, with BiGG-E performing
best. Adj-LSTM’s performance deteriorates rapidly even on the moderately sized Erdős–Rényi graphs and
becomes computationally infeasible for the 3D point clouds, as observed in Table 1. Furthermore, Table 3
shows Adj-LSTM fails in scaling to graphs beyond even 500 nodes, where runtime becomes prohibitively
slow. On the other hand, all BiGG extensions scale to graphs with thousands of nodes. In Figure 3, we
empirically demonstrate that all BiGG extensions remain efficient for large graph generation, with training
time scaling as O(log n) and sampling time as O((n + m) log n), while the training times for Adj-LSTM and
SparseDiff increase rapidly with respect to graph size and quickly become impractical. Although BiGG-
E’s incorporation of a separate weight state slightly increases training and sampling time, the overhead is
minimal and justifiable with the superior generative quality.

Notably, separating the topology and weight states allows BiGG-E to improve memory efficiency. The
original BiGG model applies bits compression to summarize the node intervals in Tu with binary vectors,
significantly reducing neural network computation and memory usage (Dai et al., 2020). While this is not
feasible in BiGG-MLP from entangling edge weights with the topology state, incorporating bits compression
into BiGG-E’s topology state is trivial. Moreover, BiGG-E offers flexibility in the dimensionality of each
state: we use embedding dimensions of 256 and 32 for the topology and weight states, respectively. This re-

13

Published in Transactions on Machine Learning Research (October/2025)

Table 3: Model Scaling on HW-Trees of Varying Size. Weighted Laplacian MMD is reported. Graphs are
weighted HW-trees of increasing size. Lower is better. OOM indicates Out of Memory.

Model 100 0.5K 1K 2K 5K 10K 15K
Erdős–Rényi 0.073 0.103 0.114 0.122 0.128 0.131 0.134

BiGG-E 2.77×10−3 2.65×10−3 1.31×10−3 5.60×10−4 3.13×10−4 6.00×10−4 5.12×10−4

BiGG-MLP 1.36×10−3 4.82×10−3 3.18×10−3 2.04×10−3 1.44×10−3 6.32×10−4 5.47×10−4

Adj-LSTM 6.11×10−3 9.27×10−3 OOM OOM OOM OOM OOM
BiGG+GCN 3.67×10−3 6.01×10−3 2.78×10−3 1.81×10−3 2.96×10−3 4.31×10−3 1.74×10−3

Figure 5: Model Scalability. Sampling time per weighted graph (left); training time per weighted graph
(middle); and memory consumption per graph during training (right).

duces computational overhead and helps prevent overfitting on weights, where we empirically observe a 20%
reduction in BiGG-E’s memory consumption. BiGG-MLP, however, uses dense MLPs to output edge embed-
dings that must match the topology state’s embedding dimension of 256, contributing to unstable training
and increased memory use. As a result, BiGG-E matches BiGG-MLP’s training time while consuming less
memory and producing higher-quality weighted graphs.

5 Conclusion and Future Work

We introduce an autoregressive model that learns complex joint distributions over graphs with edge weights.
While Adj-LSTM and both BiGG extensions learn from distributions over smaller graphs, BiGG-E scales
best to graphs with thousands of nodes while maintaining strong performance learning joint distributions
over graph topologies and edge weights. Future work consists of further improving BiGG-E, especially with
respect to memory consumption. In addition, we can further explore the benefits of joint modeling edge
weights and topologies by learning joint distributions over topologies and vectors of edge and node attributes,
learning conditional distributions over these given node- or edge- related data. Finally and thanks to its
scalability, BiGG-E may also be useful within larger regression models featuring network outcomes.

6 Acknowledgments

We would like to extend our thanks to Dr. Hanjun Dai for his help in extending the code base of BiGG to
use BiGG-MLP.

Richard Williams is supported by NSF grant DMS 2236854. Andrew Holbrook is supported by the NSF
(DMS 2236854, DMS 2152774) and the NIH (K25 AI153816). This work was made possible by the support
of the Cure Alzheimer’s Fund and the Kavli Foundation.

14

Published in Transactions on Machine Learning Research (October/2025)

References
Reka Albert and Albert-Laszlo Barabasi. Statistical mechanics of complex networks. Reviews of Modern

Physics, 74(1):47, 2002. URL http://link.aps.org/abstract/RMP/v74/p47.

Guy Baele, Xiang Ji, Gabriel W. Hassler, John T. McCrone, Yucai Shao, Zhenyu Zhang, Andrew J.
Holbrook, Philippe Lemey, Alexei J. Drummond, Andrew Rambaut, and Marc A. Suchard. Beast x
for bayesian phylogenetic, phylogeographic and phylodynamic inference. Nature Methods, 2025. doi:
10.1038/s41592-025-02751-x. URL https://doi.org/10.1038/s41592-025-02751-x.

Laia Barjuan, Muhua Zheng, and M Ángeles Serrano. The multiscale self-similarity of the weighted human
brain connectome. PLOS Computational Biology, 21(4):1–20, 04 2025. doi: 10.1371/journal.pcbi.1012848.
URL https://doi.org/10.1371/journal.pcbi.1012848.

M. Bellingeri, D. Bevacqua, F. Sartori, M. Turchetto, F. Scotognella, R. Alfieri, N. K. K. Nguyen, T. T.
Le, Q. Nguyen, and D. Cassi. Considering weights in real social networks: A review. Frontiers in
Physics, Volume 11 - 2023, 2023. ISSN 2296-424X. doi: 10.3389/fphy.2023.1152243. URL https://www.
frontiersin.org/journals/physics/articles/10.3389/fphy.2023.1152243.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A Recursive Model for Graph Mining,
pp. 442–446. SIAM International Conference on Data Mining, 2004. doi: 10.1137/1.9781611972740.43.
URL https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative modeling
for sparse graphs. In Proceedings of the 37th International Conference on Machine Learning (ICML),
volume 119 of Proceedings of Machine Learning Research, pp. 2302–2312. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/dai20b.html.

Paul Erdős and A. Rényi. On random graphs. Publicationes Mathematicae (Debrecen), 6:290, 1959. URL
/brokenurl#snap.stanford.edu/class/cs224w-readings/erdos60random.pdf.

Giorgio Fagiolo, Javier Reyes, and Stefano Schiavo. The evolution of the world trade web: a weighted-network
analysis. Journal of Evolutionary Economics, 20(4):479–514, 2010. doi: 10.1007/s00191-009-0160-x. URL
https://doi.org/10.1007/s00191-009-0160-x.

Peter M. Fenwick. A new data structure for cumulative frequency tables. Softw. Pract. Exper., 24(3):
327–336, March 1994. ISSN 0038-0644. doi: 10.1002/spe.4380240306. URL https://doi.org/10.1002/
spe.4380240306.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. J. Mach. Learn. Res., 13(1):723–773, March 2012. ISSN 1532-4435. URL http:
//dl.acm.org/citation.cfm?id=2503308.2188410.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2434–2444. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/grover19a.html.

Gabriel W. Hassler, Brigida Gallone, Leandro Aristide, William L. Allen, Max R. Tolkoff, Andrew J.
Holbrook, Guy Baele, Philippe Lemey, and Marc A. Suchard. Principled, practical, flexible, fast: A
new approach to phylogenetic factor analysis. Methods in Ecology and Evolution, 13(10):2181–2197,
2022. doi: https://doi.org/10.1111/2041-210X.13920. URL https://besjournals.onlinelibrary.
wiley.com/doi/abs/10.1111/2041-210X.13920.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997. doi: 10.1162/neco.1997.9.8.1735.

15

http://link.aps.org/abstract/RMP/v74/p47
https://doi.org/10.1038/s41592-025-02751-x
https://doi.org/10.1371/journal.pcbi.1012848
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2023.1152243
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2023.1152243
https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43
http://proceedings.mlr.press/v119/dai20b.html
http://proceedings.mlr.press/v119/dai20b.html
/brokenurl#snap.stanford.edu/class/cs224w-readings/erdos60random.pdf
https://doi.org/10.1007/s00191-009-0160-x
https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1002/spe.4380240306
http://dl.acm.org/citation.cfm?id=2503308.2188410
http://dl.acm.org/citation.cfm?id=2503308.2188410
https://proceedings.mlr.press/v97/grover19a.html
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13920
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13920

Published in Transactions on Machine Learning Research (October/2025)

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
based protein design. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system of
stochastic differential equations, 2022. URL https://arxiv.org/abs/2202.02514.

Wataru Kawai, Yusuke Mukuta, and Tatsuya Harada. GRAM: scalable generative models for graphs with
graph attention mechanism. CoRR, abs/1906.01861, 2019. URL http://arxiv.org/abs/1906.01861.

Seketoulie Keretsu and Rosy Sarmah. Weighted edge based clustering to identify protein complexes in
protein–protein interaction networks incorporating gene expression profile. Computational Biology and
Chemistry, 65:69–79, 2016. ISSN 1476-9271. doi: https://doi.org/10.1016/j.compbiolchem.2016.10.001.
URL https://www.sciencedirect.com/science/article/pii/S1476927115301857.

Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. In NIPS Workshop on Bayesian Deep
Learning, BDL 2016, 2016. URL http://bayesiandeeplearning.org/2016/papers/BDL_16.pdf.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W. Battaglia. Learning deep generative
models of graphs. CoRR, abs/1803.03324, 2018. URL http://arxiv.org/abs/1803.03324.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud, Raquel Urtasun,
and Richard S. Zemel. Efficient graph generation with graph recurrent attention networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché Buc, Emily B. Fox, and Roman Gar-
nett (eds.), NeurIPS, pp. 4257–4267, 2019. URL http://dblp.uni-trier.de/db/conf/nips/nips2019.
html#LiaoLSWHDUZ19.

M. Neumann, P. Moreno, L. Antanas, R. Garnett, and K. Kersting. Graph Kernels for Object Category
Prediction in Task-Dependent Robot Grasping. In Proceedings of the Eleventh Workshop on Mining and
Learning with Graphs (MLG–2013), Chicago, US, 2013.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permutation
invariant graph generation via score-based generative modeling, 2020. URL https://arxiv.org/abs/
2003.00638.

Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse training of discrete diffusion models for graph
generation, 2024. URL https://arxiv.org/abs/2311.02142.

A. Rodríguez and DB. Dunson. Nonparametric bayesian models through probit stick-breaking processes.
Bayesian Anal., 2011. [Accessed 11-09-2024].

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.

Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based recurrent neural network
architectures for large vocabulary speech recognition, 2014. URL https://arxiv.org/abs/1402.1128.

C. Semple, M. Steel, and B.D.M.S.M. Steel. Phylogenetics. Oxford lecture series in mathematics and its
applications. Oxford University Press, 2003. ISBN 9780198509424. URL https://books.google.com/
books?id=uR8i2qetjSAC.

Rade Stanojevic, Sofiane Abbar, and Mohamed Mokbel. W-edge: weighing the edges of the road net-
work. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems, SIGSPATIAL ’18, pp. 424–427, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. ISBN 9781450358897. doi: 10.1145/3274895.3274916. URL https:
//doi.org/10.1145/3274895.3274916.

16

https://proceedings.neurips.cc/paper_files/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf
https://arxiv.org/abs/2202.02514
http://arxiv.org/abs/1906.01861
https://www.sciencedirect.com/science/article/pii/S1476927115301857
http://bayesiandeeplearning.org/2016/papers/BDL_16.pdf
http://arxiv.org/abs/1803.03324
http://dblp.uni-trier.de/db/conf/nips/nips2019.html#LiaoLSWHDUZ19
http://dblp.uni-trier.de/db/conf/nips/nips2019.html#LiaoLSWHDUZ19
https://arxiv.org/abs/2003.00638
https://arxiv.org/abs/2003.00638
https://arxiv.org/abs/2311.02142
https://arxiv.org/abs/1402.1128
https://books.google.com/books?id=uR8i2qetjSAC
https://books.google.com/books?id=uR8i2qetjSAC
https://doi.org/10.1145/3274895.3274916
https://doi.org/10.1145/3274895.3274916

Published in Transactions on Machine Learning Research (October/2025)

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations from tree-
structured long short-term memory networks. CoRR, abs/1503.00075, 2015. URL http://arxiv.org/
abs/1503.00075.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation, 2023. URL https://arxiv.org/abs/2209.
14734.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: A deep generative
model for graphs. CoRR, abs/1802.08773, 2018. URL http://dblp.uni-trier.de/db/journals/corr/
corr1802.html#abs-1802-08773.

17

http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1503.00075
https://arxiv.org/abs/2209.14734
https://arxiv.org/abs/2209.14734
http://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08773
http://dblp.uni-trier.de/db/journals/corr/corr1802.html#abs-1802-08773

Published in Transactions on Machine Learning Research (October/2025)

A Appendix

A.1 Probability Calculation of a Weighted Adjacency Matrix

Here, we derive the probability of observing W through (1) all entries in a row-wise manner and (2) its
weighted edge set. First, we define pθ(A) over unweighted graphs and then extend these probabilities to
probabilities pθ(W) over weighted graphs. One method in estimating pθ(A) is to directly generate all of the
lower half of A in a row-wise fashion. Letting Aij represent the (i, j)-th element of A, we have that

pθ(A) =
n∏

i=1

i−1∏
j=1

pθ(Aij |{Akl}). (11)

where {Akl} is the set of all entries of A that come before Aij in the row generation process.

Models such as Li et al. (2018) and You et al. (2018) use this direct factorization of the probability of all
entries of A, leading to the computational bottleneck of O(n2) for a graph with n nodes. BiGG (Dai et al.,
2020), on the other hand, leverages the sparsity of many real-world graphs and directly generates the edge-set
of A, leading to the probability

pθ(A) =
m∏

i=1
pθ(ek|{el;l<k}). (12)

where ek is the ith ordered edge in G.

Given the choice of parameterization outlined in Section 3.1, we modify equation 11 and equation 12 as
follows: given an edge exists between nodes vi and vj , sample a corresponding weight w from a conditional
distribution parameterized by pθ(w|e).

For readability, assume entries Wij are conditioned on all prior entries; that is, pθ(Wij) ≡ pθ(Wij |{Wkl}),
where {Wkl} is the set of entries of W that come prior to entry Wij when traversing the lower half of A in
a row-by-row manner.

For each entry Wij , we must decide if an edge connects nodes vi and vj by sampling eij ∼ Bernoulli(pij),
where pij is a function of θ, and if so, sample a non-negative weight wij with probability pθ(wij |eij = 1).
Thus, we note that the probabilities of a particular entry Wij being 0 or weight wij are given by

pθ(Wij = 0) = pθ(eij = 0) = 1 − pij

and
pθ(Wij = wij) = pθ(eij = 1)pθ(wij |eij = 1) = pijpθ(wij |eij = 1).

We may succinctly represent the probability of a Wij as

pθ(Wij = wij) = (1 − pij)1−eij
[
pijpθ(wij |eij)

]eij
.

Finally, we define the probability of W as

pθ(W) =
n∏

i=1

i−1∏
j=1

(1 − pij)1−eij
[
pijpθ(wij |eij)

]eij
.

Next, we modify equation 11 to obtain the probability of observing W over all entries as

pθ(W) =
n∏

i=1

i−1∏
j=1

pθ(W (vi, vj)|{W (vk, vl)}).

18

Published in Transactions on Machine Learning Research (October/2025)

On the other hand, because no weight is sampled for non-edge connections, the probability of observing the
edge set of W becomes

pθ(W) =
m∏

i=1
pθ(ek, wk|{(wi, ei)}i<k),

where we factorize pθ(ek, wk|·) = pθ(ek|·)pθ(wk|ek, ·) using equation 2.

Finally, we compute our likelihood objective functions. First, we compute L(θ; W) from equation 4, which
is used to train Adj-LSTM. The training objective is the log-likelihood over all entries W, summed over the
terms

ℓij

(
θ; (eij , wij)

)
= (1 − eij) log(1 − pij) + eij log pij + eij log pθ(wij),

where eij log pθ(wij |eij) = 0 if eij = 0, and we substitute Equation 3 into the expression pθ(wij |eij) when
eij = 1. This yields the training objective for Adj-LSTM as

L(θ; W) = log
n∏

i=1

i−1∏
j=1

pθ(Wij) =
n∑

i=1

i−1∑
j=1

ℓij(θ; (eij , wij)). (13)

Last, from Equation 5, the objective function for all BiGG extensions is the log likelihood over the weighted
edge set,

L(θ; W) =
m∑

k=1
log pθ(ek|{(el, wl):l<k}) + log pθ(wk|ek, {(el, wl):l<k}), (14)

where we substitute Equation 3 into the expression pθ(wk|ek, {(el, wl):l<k}).

A.2 Model Architecture

Autoregressive models are popular sequential models designed to capture dependencies with prior obser-
vations. A classical example in statistics is the AR(ρ) model, where each observation Xt is expressed as
a linear combination of the previous ρ values in the series: Xt =

∑ρ
i=1 φiXt−i + ϵt. Deep autoregressive

models extend this idea by introducing nonlinear function approximators, such as neural networks, to better
model dependencies in sequential data. In this section, we describe in detail the primary neural network
architectures used in building each autoregressive model.

LSTM Architecture The neural network architecture across all models utilizes LSTM cells, which are
recurrent neural networks well-suited for modeling nonlinearities in sequential data in an autoregressive
manner (Hochreiter & Schmidhuber, 1997). An LSTM maintains a state, represented as a tuple (ht, ct)
where ht, ct ∈ Rd are the hidden and cell states, respectively, at every time step t. Here, ht captures the
recent memory of the sequence, while ct encodes longer-term memory. Given an input xt at time step t and
the previous state (ht−1, ct−1), the LSTM updates the state by computing (ht, ct) as follows (Sak et al.,
2014):

• it = σ(W(i)
x xt + W(i)

h ht−1 + b(i))
• ft = σ(W(f)

x xt + W(f)
h ht−1 + b(f))

• gt = tanh(W(g)
x xt + W(g)

h ht−1 + b(g))
• ot = σ(W(o)

x xt + W(o)
h ht−1 + b(o))

• ct = ft ⊙ ct−1 + it ⊙ gt

• ht = ot ⊙ tanh(ct)

19

Published in Transactions on Machine Learning Research (October/2025)

where σ is the sigmoid function, ⊙ is the Hadamard product, and all weight matrices and bias terms are
trainable parameters. it, ft, gt, and ot represent the input, forget, cell, and output gates, respectively. We
will also use the notation (ht+1, ct+1) = LSTM(xt, (ht, ct)) to represent these computations. For ease of
readability, we suppress subscript t moving forward.

MLP In the graph generative modeling context, an LSTM cell serves to maintain a history of the graph
generated by the model at each time step. At each time step, the model must make a prediction—either
regarding topology (i.e., the probability of whether an edge exists) or regarding edge weight parameters
(e.g., producing the mean and variance of a softplus-transformed normal distribution). To compute these
predictions, the hidden state h is passed through an MLP. An MLP is a feedforward neural network composed
of an input layer, one or more hidden layers, and an output layer, where it captures nonlinear patterns in
the data through activation functions applied between layers (Rumelhart et al., 1986). In our architecture,
we use the exponential linear unit (ELU) as the activation function:

ELU(x) =
{

x x ≥ 0
α(ex − 1) x < 0

where α is a tuned parameter. In our case, the inputs consist of the LSTM hidden state of the model, and
the outputs are probabilities of edge connections, as well as the mean and variance components µk and σ2

k

introduced in equation 3. For notational simplicity, let hG denote the current hidden state h summarizing
the graph generated thus far. To compute edge existence probabilities, we set p = σ(fp(hG)), where fp is
the MLP that outputs a scalar that is mapped to a probability by the sigmoid function σ. Similarly, the
softplus-transformed normal parameters µk and σ2

k are parameterized with MLPs fµ and fσ2 , respectively:
µk = fµ(hG) and σ2

k = exp(fσ2(hG)).

Tree-LSTM Cells Finally, we note that BiGG offers a scalable approach to the typically slow process of
training on graph data by leveraging an algorithm with O(log n) runtime. This efficiency is achieved with
the usage of a Tree-LSTM cell (Tai et al., 2015), a variant of the standard LSTM cell that is designed for
tree-structured inputs. Specifically, BiGG and its extensions employ a binary Tree-LSTM cell, where each
internal node has exactly two children. Throughout this work, we refer to these simply as Tree-LSTM cells,
with the understanding that they are all binary in structure.

Each node in the tree is associated with a hidden state (hj , cj), where j denotes the index of the corresponding
node. Leaf nodes consist of states computed directly from the model, of which no computations are made
within the Tree-LSTM cell. For internal nodes, which have two children designated as the left child (L) and
right child (R), the summary state at node j is computed using the states of its children, jL and jR, as
follows (Tai et al., 2015):

• ij = σ(W(i)
L hjL + W(i)

R hjR + b(i))
• fjL = σ(W(fL)

L hjL + W(fL)
R hjR + b(f))

• fjR = σ(W(fR)
L hjL + W(fR)

R hjR + b(f))
• gj = tanh(W(g)

L hjL + W(g)
R hjR + b(g))

• oj = σ(W(o)
L hjL + W(o)

R hjR + b(o))
• cj = ij ⊙ gj + fjL ⊙ cjL + fjR ⊙ cjR

• hj = oj ⊙ tanh(cj)

A few key differences are worth noting. Unlike the standard sequential LSTM, each node in the tree maintains
its own hidden state but does not receive an input vector x. Additionally, the Tree-LSTM cell computes
distinct forget gates for the left and right children — denoted fjL and fjR, respectively — which allows
the model to attend to different information from each child node (Tai et al., 2015). We use the notation
hj = TreeLSTM(hjL, hjR) to represent the computation at internal node j based on its two children, where
the use of the corresponding cell states is implied. In this way, the Tree-LSTM cell represents a mechanism
for merging two input states into a single summary state that captures pertinent information from both
children.

20

Published in Transactions on Machine Learning Research (October/2025)

Finally, we note that all LSTM cells, MLPs, and Tree-LSTM cells are parameterized by neural network
parameters θ, which are optimized using the objective functions given in equation 13 (Adj-LSTM) and
equation 14 (BiGG models) via gradient descent when training each model on a collection of training graphs.

A.2.1 Further Details on BiGG (Dai et al., 2020)

BiGG generates an unweighted graph with an algorithm decomposed into two main components, both of
which train in O(log n) time: (1) row generation, where BiGG generates each row of the lower half of A
using a binary decision tree; and (2) row conditioning, where BiGG deploys a hierarchical data maintenance
structure called a Fenwick Tree generate each row conditioned on all prior rows.

A.2.2 Row Generation

For each node vu ∈ G, BiGG constructs a binary decision tree Tu, adapted from R-MAT (Chakrabarti et al.,
2004), to determine vu’s edge connections with the previously sequenced nodes v1, . . . , vu−1. Rather than
evaluating each potential connection sequentially, which incurs a cost of O(n) per row of A, BiGG first checks
whether any edge exists within the interval [v1, vu−1]. If so, it applies the R-MAT procedure to recursively
divide this interval in half and identify the specific nodes connected to vu. By partitioning the interval in
halves rather than scanning all possible connections, BiGG reduces the row generation time to O(log n).

Let t ∈ Tu correspond to the node interval [vj , vk] of length lt = k − j + 1, and denote the left-half and
right-half of this interval as lch(t) = [vj , vj+⌊lt/2⌋] and rch(t) = [vj+⌊lt/2⌋+1, vk], respectively. To recursively
generate Tu, BiGG uses the following procedure for each t ∈ Tu. If t is a leaf in the tree — that is, t
corresponds to a trivial interval of a single node vj — an edge forms between vj and vu. Otherwise, BiGG
considers whether an edge exists in lch(t). If so, the model recurses into lch(t) until reaching a leaf. After
constructing the entire left subtree, the model considers whether an edge exists in rch(t), conditioned on this
left subtree. If so, the model recurses into rch(t) until reaching a leaf. All leaves in the fully constructed tree
thus represent nodes which connect with vu in the graph.

Each decision about the presence of an edge in the interval corresponding to node t is modeled as a Bernoulli
random variable with probability as a function of θ. To make these predictions autoregressive, BiGG
maintains two context vectors. The top-down context htop

u (t) encodes the history of all previous left-right
decisions along the path from the root to the node t and is used to estimate the probability of an edge in
the left child, lch(t). The bottom-up context hbot

u (t) captures information from the already generated left
subtree rooted at node t, and is used to condition the probability of an edge in the right child, rch(t), based
on the structure of lch(t). Since rch(t) is constructed only after lch(t) and its dependencies, BiGG employs
a Tree-LSTM cell (Tai et al., 2015) at node t to merge the top-down context with the bottom-up summary
of the left subtree prior to generating rch(t). Hence, the probability of constructing each tree Tu is

pθ(Tu) =
∏

t∈Tu

pθ(lch(t)|htop
u (t)) · pθ(rch(t)|ĥtop

u (t)), (15)

where ĥtop
u (t) = TreeCellθ(htop

u (t), hbot
u (lch(t))), and conditioning lch(t) and rch(t) on the top-down and

bottom-up context vectors allows BiGG to generate all of Tu autoregressively. Equation 15 also implies
that the probabilities of edges pθ(ek) in Equation 1 are modeled as a sequence of left-right edge existence
Bernoulli decisions, which are then included in the objective function for all BiGG models. Figure 1 provides
an example of constructing Tu and visualizes the top-down and bottom-up states used to predict left and
right edge existence decisions.

A.2.3 Fenwick Tree

The construction of Tu in Section A.2.2 enables modeling the dependencies among edge connections within
a single row of A. To make BiGG fully autoregressive, however, it must also capture dependencies between
rows. For this purpose, BiGG incorporates the Fenwick tree (Fenwick, 1994) — a data structure designed
to efficiently maintain prefix sums by performing sum operations over an array of length n in O(log n) time.

21

Published in Transactions on Machine Learning Research (October/2025)

To maintain a history of all previously generated rows in the graph, BiGG modifies the Fenwick tree to store
summary representations of each row generated so far. This structure enables BiGG to compute a summary
state of the first u rows in O(log u) time.

The Fenwick topology tree is structured into ⌊log(u−1)⌋+1 levels. At the base—level 0—the leaves of the tree
represent independent row embeddings for each Tu. These embeddings are constructed using a bottom-up
traversal: information starting from the leaf nodes of Tu propagates upward through the tree, culminating in
a root-level summary that captures the overall structure of Tu and therefore summarizes all node connections
with vu. Entries along higher levels of the Fenwick topology tree represent merged state summaries — each
combining information from multiple lower-level embeddings to produce a collective summary state across
several rows.

Let gi
j = (h, c) denote the hidden and cell states represented by j-th node on the i-th level gi

j of the Fenwick
topology tree. Any given non-leaf node gi

j consists of merging two children nodes one level below as

gi
j = TreeCellrow

θ (gi−1
2j−1, gi−1

2j). (16)

Here, 0 ≤ i ≤ ⌊log(u − 1)⌋ + 1 and 1 ≤ j ≤ ⌊ u
2i ⌋, where g0

j denotes the bottom-up summary state of Tj .
To compute a representation of all previously generated rows at each iteration, the model iteratively applies
another Tree-LSTM cell over the relevant summaries to produce the row-level summary state hrow

u :

hrow
u = TreeCellsummary

θ

([
gi

⌊ k

2i ⌋ where k & 2i = 2i

])
(17)

where & is the bit-level ‘and’ operator. Thus, the Fenwick topology tree enables BiGG to generate rows
in an autoregressive manner: the hidden state hrow

u , defined in equation equation 17, contains a history of
all rows generated in A so far and is used as the initial state for constructing the next decision tree, Tu+1.
Similarly, during training, the binary structure of the Fenwick row tree allows the initialization of row states
for each row of A to be computed in O(log n) time.

A.2.4 BiGG Training Procedure

BiGG divides the training procedure into four main components, which all run on O(log n) time:

1. First, because all decision trees Tu are known a priori during training, bottom-up summaries are
computed from the leaves to the root of each tree. Importantly, the summary state for each row is
independent of those for other rows, allowing these computations to be performed in parallel.

2. Next, using the root-level summaries from each Tu, the model computes internal nodes gi
j of the

Fenwick topology tree in a level-wise manner using equation 16.

3. Once the Fenwick topology tree is constructed, BiGG concurrently computes the row summary states
hrow

u in parallel using equation 17.

4. Finally, given each row-level summary hrow
u , the model computes all left and right edge existence

probabilities in parallel, traversing from the root to the leaves of each tree, as defined in equation 15.

Finally, we note that for graph generation, the trees Tu must be constructed sequentially. However, each Tu

can still be built in O(log n) time, reducing the overall runtime from O(n2) to O((n + m) log n).

A.3 Adjacency-LSTM Motivation

The primary issue with using an LSTM to build the adjacency matrix of a graph is that most recurrent
neural networks are best suited for linear data. Flattening an adjacency matrix and using an LSTM is one
potential avenue for building a model, but suffers from significant drawbacks – the flattened vector varies
based upon the node ordering π, and the model sacrifices the underlying structure of A. (You et al., 2018)

22

Published in Transactions on Machine Learning Research (October/2025)

Algorithm 2 Adjacency-LSTM Sampling Algorithm
Input: Number of nodes n

1: Initialization Initial row node state sR
0,0 = (h0,0, c0,0)

2: for i = 1, ..., n do
3: si0 = si−1,i−1 + Pos(n + 1 − i) {initialize new row node state}
4: for j < i do
5: sij = Cat(sR

i,j−1, sC
i−1,j) {concatenate previous node states of row i and column j}

6: pij = σ(fp(hij))
7: Sample edge eij ∼ Bernoulli(pij)
8: if edge exists then
9: µij = fµ(hij)

10: log σ2
ij = fσ2(hij)

11: ϵij ∼ Normal(µij , σij)
12: wij = log(1 + exp(ϵij))
13: else
14: wij = 0
15: end if
16: embed(eij , wij) = Cat(Eij , fw(wij), Pos(n + 1 − i), Pos(n − 1 + j))
17: s∗

ij = LSTM(embed(eij , wij); sij) {update adjacency state with edge embedding}
18: sR

ij , sC
ij = Split(s∗

ij)
19: end for
20: sR

i,i = sR
i,i−1 {set final row node state for subsequent row generation}

21: end for
Output: G with V = {1, 2, ..., n} and E = {eij , wij}n

i=1;j>i

Generative models such as GraphRNN and GRAN, which use recurrent neural networks to build generative
models of graphs, circumvent this issue by using node-level and graph-level recurrent networks that maintain
edge generation and the global structure of the graph, respectively. Adj-LSTM was inspired by such methods
and instead uses a partitioning of the hidden state to take advantage of the grid structure of the adjacency
matrix directly. We will also show that partitioning the hidden state of a single LSTM provides greater
generative quality, as this facilitates information passing between the states of the row and column nodes.

To adapt the LSTM architecture to a two-dimensional adjacency matrix, we partition the hidden state of

the LSTM into hij =
[
hR

i,j−1
hC

i−1,j

]
, where hR

i,j−1 and hC
i−1,j are the prior hidden states of the row and column

nodes corresponding to entry Aij . As all state updates are the same regardless of which entry Aij is being
generated, we drop the subscripts i and j moving forward.

We re-compute the linear recurrence (4) using this partitioning of the hidden state. First, we note the
dimensions of each weight and bias vector. Suppose that the hidden dimension is hdim and the embedding
dimension is idim. Then we have the following:

1. hR, hC ∈ Rhdim =⇒ h ∈ R2hdim and Wh ∈ R2hdim×2hdim .

2. xij ∈ Ridim =⇒ Wi ∈ R2hdim×idim .

3. b ∈ R2hdim .

Hence, we can partition the weight matrices and bias vector from the LSTM equations by defining the
following partitions for each weight matrix:

Wx =
[
UR

UC

]
(18)

23

Published in Transactions on Machine Learning Research (October/2025)

Table 4: Performance on updating the states simultaneously (“Joint“) vs separately (“Independent“)

Update Mode Deg. Clus. Top Spec. Wt. Spec. MMDWt Error
Joint 2.46e−4 0.0 9.98e−4 8.51e−4 4.93e−3 0.065

Independent 3.27e−4 6.20e−5 2.98e−3 2.46e−3 6.40e−3 0.275

Wh =
[
VRR VRC

VCR VCC

]
(19)

where each U∗ ∈ Rhdim×idim and each V∗∗ ∈ Rhdim×hdim .

Using the partitioning from 18 and 19 and partitioning the bias vector as b =
[
bR

bC

]
, we can partition the

LSTM update equations as

[
ĥR

ĥC

]
=

[
URx + VRRhR + VRChC + bR

UCx + VCRhR + VCChC + bC

]
.

Jointly updating the row and column states allows for the transfer of information between the row and
column nodes via the weight matrices VRC and VCR, which we hypothesized would mitigate the issue of
long-term memory – as the model is predicting entries row-wise, information early in the row-generation
process becomes lossy without the joint update property of the LSTM with a partitioned hidden state.

To test this hypothesis, we trained the lobster graphs on two models: one which uses the single LSTM-
update on the concatenated row and column states, and the other which uses two LSTMs that update the
row and the column states independently, which corresponds to setting VCR = VRC = 0 in Equation 19.
As observed in Table 4, the LSTM joint update provides superior results on all observed metrics.

A.4 HW-Tree Weight Generation

The hierarchical sampling scheme of the HW-tree weights provided a means of testing for autoregressiveness
in the models with respect to the edge weights. There are two main quantities of interest: the global
variance of weights pooled across all HW-trees, Var(wij), and the variance of weights found in a single
HW-tree, Var(wij |µk)). Note a few preliminaries that are easily derived from their respective distributions

1. µk ∼ U(7, 13) =⇒ E(µk) = 10 and Var(µk) = 3

2. wij ∼ Γ(µ2
k, µ−1

k) =⇒ E(wij |µk) = µk and Var(wij |µk) = 1

Importantly, the variance of the weights found in each tree is free of the parameter µk. Next, an application
of iterative expectation and variance yield the mean and variance of weights pooled from all trees as

1. E(wij) = Eµ[Ew(wij |µk)] = Eµ(µk) = 10.

2. Var(wij) = Eµ[Varw(wij |µk)] + Varµ[Ew(wij |µk)] = Eµ(1) + Varµ(µk) = 1 + 3 = 4

Thus, to test for autoregressiveness in the models, we observe that weights pooled from all HW-trees have
variance Var(wij) = 4, whereas weights from a single HW-tree have variance Var(wij |µk) = 1.

24

Published in Transactions on Machine Learning Research (October/2025)

A.5 Further Training Details

Hyperparameters For Adj-LSTM, node states were parameterized with a hidden dimension of 128 and
use a 2-layer LSTM. An embedding dimension of 32 was used to embed edge existence, and an embedding
dimension of 16 was used to embed the weights. Positional encoding was used on the initialized row states.

For all models using BiGG, we use a hidden dimension of 256 with position encoding on the row states, as
used in the original BiGG model. The weight state we use for BiGG-E has a hidden dimension of 16 for
model runs and 32 for scalability runs. For BiGG-E and BiGG+GCN, bits compression of 256 was used on
the topology state.

Training Procedure Both models were trained using the Adam Optimizer with weight decay and an
initial learning rate of 1e−3. The learning rate is decreased to 1e−5 when training loss plateus. Separate
plateus are used for the weight parameters and the topology parameters.

• For the lobster data set, we train BiGG-E and BiGG-MLP for 250 epochs and validate at the 100
and 200th epochs. We plateau weight at epoch 50 and topology at epoch 100. We train Adj-LSTM
for 300 epochs and validate every 100 epochs. We decay the learning rate at the 25 and 100th
epochs.

• For the HW-tree data set, we train BiGG-E and BiGG-MLP for 550 epochs and validate every 100
epoch. We plateu weight at epoch 150 and topology at epoch 200. We train Adj-LSTM for 100
epochs and validate every 25 epochs, where the learning rate is plateaued at epochs 25 and 50.

• For the Erdős–Rényi data set, BiGG-E was trained for 500 epochs and validated every 250 epochs.
We plateu weight at epoch 100 and topology at epoch 500. Due to slow training and poor conver-
gence, the Adjacency-LSTM was only trained for 27 epochs.

• For the 3D Point Cloud data set, BiGG-E was trained for 3000 epochs and validated every 1000
epochs. We plateu weight at epoch 500 and topology at epoch 1500.Adj-LSTM was reported out of
memory for this dataset.

• For the PT-tree graphs, BiGG-E was trained for 1000 epochs. We plateu weight and topology at
500 epochs.

BiGG-MLP and BiGG+GCN follow the training protocol for BiGG-E. For the convolutional network, two
convolutions were used and each component was trained jointly on the same objective function used on
BiGG-E.

Baseline Models The Erdős–Rényi model baseline estimates were generated by first estimating the
global probability of an edge existing between two nodes based on the training data, and then constructing
Erdős–Rényi graphs with that probability of edge existence, as done in (You et al., 2018). Weights were
sampled with replacement from all possible training weights in order to produce weighted graphs.

Regularization We use the following to regularize our models, noting there is a propensity for the models
to overtrain on the edge weights and decrease generative quality of the graphs. We believe this is directly
related to the issue of balancing two losses - the topological and weight losses - which is further compounded
by the fact learning the topology of a graph is much more challenging than the edge weights due to super-
exponentially growing configuration space of graphs with respect to the number of nodes n. We note while
BiGG-E had a tendency to overtrain on edge weights when plateauing the loss, the effect was much more
prominent with BiGG-MLP, and regularization attempts were less successful with BiGG-MLP than on
BiGG-E. As such, we use the following regularization on all models:

• We use weight decay on the Adam optimizer with decay 1e−4 on topology parameters and 1e−3 on
weight parameters.

• Prior to inputting the sampled weight through the embedding LSTM, we standardize the weight
as ŵ = s−1

w (w − w̄), where w̄ and sw and the mean and standard deviation of all training weights,
respectively. We note this is because the model is general purpose and must handle weights of varying
magnitudes, where larger weights can potentially saturate the output of the embedding LSTM.

25

Published in Transactions on Machine Learning Research (October/2025)

• The loss for weight is scaled down by a factor of 10 to balance the topology and weight losses. Upon
plateauing both sets of parameters, the scale was increased to a factor of 100 for all graphs except
the PT-tree graphs.

• When both losses were plateaued, the weight loss was updated every other epoch instead of every
epoch to allow more fine-tuning of the graph topology without encouraging overtraining on the edge
weights.

A.6 Further Experimental Setup Details

Here, we provide additional details on our experimental setup. First, we describe the metrics used in detail,
followed by controls used to ensure fair comparison across models.

Evaluation Metrics We divide our metrics into three main groups: topology-only metrics, weight-only
metrics, and joint metrics. We describe each metric in more detail here. First, we consider our topology-only
metrics, noting these metrics are identical to the ones used in Liao et al. (2019), You et al. (2018), and Dai
et al. (2020):

• MMD on Degree (Deg.): distributions of unweighted degrees are computed for each graph. We
use the Gaussian Total Variation kernel when computing the MMD (Liao et al., 2019).

• MMD on Cluster (Clus.): distributions of unweighted clustering coefficients are computed for
each graph. We use the Gaussian Total Variation kernel when computing the MMD.

• MMD On Orbit: distributions of the number of occurrences of orbits with 4 nodes (Liao et al.,
2019).

• MMD on Spectrum (Spec.): distributions of the spectral (set of eigenvalues) of each graph’s
normalized unweighted Laplacian matrix are computed. We use the Gaussian Total Variation kernel
when computing the MMD.

• Error: this represents the percentage of graphs that do not hold a global graph property. For
example, in the tree and yeast dataset, this is the percentage of graphs that are not true bifurcating
trees with the correct number of leaves.

Next, we consider our weight-only metrics:

• Global mean (w̄): We pool all edge weights from all graphs to compute the global mean weight
generated by each model.

• Global standard deviation (sw): We pool all edge weights from all graphs to compute the global
standard deviation generated by each model.

• Within tree standard deviation (sT): For the tree dataset, we compute the standard deviation
of weights found within each tree and then compute the mean of those standard deviations.

• MMD on Marginal Weights (MMDWT): We consider the marginal distribution of weights per
graph. We use the Gaussian earth mover distance (EMD) (Liao et al., 2019) when computing the
MMD, as we found the EMD was a distance metric capable of considering outliers in the edge data
sets. We found that the wildly different scales edge weights were on led to sensitivies to the MMDs,
so the bandwidth σ was tuned to an appropriate value using random partitions of the training graphs
for each graph dataset, as needed.

Finally, we consider our joint metrics:

• MMD on Weighted Spectrum (Spec.): distributions of the spectral (set of eigenvalues) of each
graph’s normalized weighted Laplacian matrix are computed. We use the Gaussian Total Variation
kernel when computing the MMD.

• MMD on Weighted Degree (Wtd. Deg.): distributions of unweighted degrees are computed
for each graph. We use the Gaussian Total Variation kernel when computing the MMD.

Finally, we report the rank of each model within and across all datasets. The rank is computed by comparing
the various metrics from the set {Mean - SD, Mean, Mean + SD}. For the global rank, ranks across datasets
are pooled. Results are reported as Mean Rank ± SD Rank.

26

Published in Transactions on Machine Learning Research (October/2025)

Model Comparison To ensure fair comparison between all models when running experience, we imple-
mented the following controls:

• We ran each model using the same 5 seeds and reported the mean statistic and standard deviation
ans mean ± standard deviation.

• Each model was trained on and compared with the same set of training and test graphs, respectively.
• All MMD computations used the same hyperparameters and kernels.

27

	Introduction
	Background
	Data
	Related Work

	Methods and Contributions
	Joint Modeling of Topology and Edge Weights
	Likelihood of a Weighted Adjacency Matrix
	Models
	Review of BiGG

	BiGG-E
	Edge Weight Prediction
	Joint Modeling
	BiGG-E Training and Sampling Time

	Comparison Models

	Experiment
	Results

	Conclusion and Future Work
	Acknowledgments
	Appendix
	Probability Calculation of a Weighted Adjacency Matrix
	Model Architecture
	Further Details on BiGG
	Row Generation
	Fenwick Tree
	BiGG Training Procedure

	Adjacency-LSTM Motivation
	HW-Tree Weight Generation
	Further Training Details
	Further Experimental Setup Details

