
Under review as submission to TMLR

LLM-Powered GUI Agents in Phone Automation: Surveying
Progress and Prospects

Anonymous authors
Paper under double-blind review

Abstract

With the rapid rise of large language models (LLMs), phone automation has undergone
transformative changes. This paper systematically reviews LLM-driven phone GUI agents,
highlighting their evolution from script-based automation to intelligent, adaptive systems.
We first contextualize key challenges, (i) limited generality, (ii) high maintenance overhead,
and (iii) weak intent comprehension, and show how LLMs address these issues through
advanced language understanding, multimodal perception, and robust decision-making. We
then propose a taxonomy covering fundamental agent frameworks (single-agent, multi-agent,
plan-then-act), modeling approaches (prompt engineering, training-based), and essential
datasets and benchmarks. Furthermore, we detail task-specific architectures, supervised fine-
tuning, and reinforcement learning strategies that bridge user intent and GUI operations.
Finally, we discuss open challenges such as dataset diversity, on-device deployment efficiency,
user-centric adaptation, and security concerns, offering forward-looking insights into this
rapidly evolving field. By providing a structured overview and identifying pressing research
gaps, this paper serves as a definitive reference for researchers and practitioners seeking to
harness LLMs in designing scalable, user-friendly phone GUI agents.

1 Introduction

The core of phone GUI automation involves programmatically simulating human interactions with mobile
interfaces to accomplish complex tasks. This technology has wide applications in testing and shortcut cre-
ation, enhancing efficiency and reducing manual effort Azim & Neamtiu (2013); Pan et al. (2020); Koroglu
et al. (2018); Li et al. (2019); Degott et al. (2019). Traditional approaches rely on predefined scripts and
templates which, while functional, lack flexibility when confronting variable interfaces and dynamic environ-
ments Arnatovich & Wang (2018); Deshmukh et al. (2023); Nass (2024); Nass et al. (2021); Tramontana
et al. (2019).

In computer science, an agent perceives its environment through sensors and acts via actuators to achieve
goals Li et al. (2024e); Guo et al. (2024); Wang et al. (2024d); Jin et al. (2024); Bubeck et al. (2023). These
range from simple scripts to complex systems capable of learning and adaptation Wang et al. (2024d); Jin
et al. (2024); Huang et al. (2024b). Traditional phone automation agents are constrained by static scripts
and limited adaptability, making them ill-suited for modern mobile interfaces’ dynamic nature.

Building intelligent autonomous agents with planning, decision-making, and execution capabilities remains
a long-term AI goal Albrecht & Stone (2018). As technologies advanced, agents evolved from traditional
forms Anscombe (2000); Dennett (1988); Shoham (1993) to AI agents Poole & Mackworth (2010); Inkster
et al. (2018); Gao et al. (2018) incorporating machine learning and probabilistic decision-making. However,
these still struggle with complex instructions Luger & Sellen (2016); Amershi et al. (2014) and dynamic
environments Christiano et al. (2017); Köhl et al. (2019).

With the rapid development of Large Language Models (LLMs) like the GPT series Radford (2018); Radford
et al. (2019); Brown (2020); Achiam et al. (2023) and specialized models such as Fuyu-8B Bavishi et al.
(2023), LLM-based agents have demonstrated powerful capabilities across numerous domains Wang et al.
(2023c); Hong et al. (2023); Li et al. (2023a); Park et al. (2023); Boiko et al. (2023); Qian et al. (2023); Xia

1



Under review as submission to TMLR

et al. (2023); Dasgupta et al. (2023); Qian et al. (2024a); Dong et al. (2024); Goertzel (2014). As Figure 1
illustrates, conversational LLMs primarily focus on language understanding and generation, while LLM-
based agents extend these capabilities by integrating perception and action components. This integration
enables interaction with external environments through multimodal inputs and operational outputs Wang
et al. (2023c); Hong et al. (2023); Qian et al. (2024a), bridging language understanding and real-world
interactions Xi et al. (2023); Li et al. (2024e); Guo et al. (2024); Furuta et al. (2024).

Figure 1: Comparison between conversational LLMs
and phone GUI agents. While a conversational LLM
can understand queries and provide informative re-
sponses (e.g., recommending coffee beans), a Phone
GUI agent can go beyond text generation to perceive
the device’s interface, decide on an appropriate action
(like tapping an app icon), and execute it in the real
environment, thus enabling tasks like ordering a latte
directly on the user’s phone.

Applying LLM-based agents to phone automation
has created a new paradigm, making mobile inter-
face operations more intelligent Hong et al. (2024);
Zheng et al. (2024a); Zhang et al. (2023a); Song
et al. (2023b). LLM-powered phone GUI agents
are intelligent systems that leverage large lan-
guage models to understand, plan, and ex-
ecute tasks on mobile devices by integrat-
ing natural language processing, multimodal
perception, and action execution capabilities.
These agents can recognize interfaces, understand
instructions, perceive changes in real time, and re-
spond dynamically. Unlike script-based automation,
they can autonomously plan complex sequences
through multimodal processing of instructions and
interface information. Their adaptability and flex-
ibility improve user experience through intent un-
derstanding, planning, and automated task execu-
tion, enhancing efficiency across scenarios from app
testing to complex operations like configuring set-
tings Wen et al. (2024a), navigating maps Wang
et al. (2024c;b), and shopping Zhang et al. (2023a).

Clarifying the development trajectory of phone GUI agents is crucial. On one hand, with the support of
large language models Radford (2018); Radford et al. (2019); Brown (2020); Achiam et al. (2023), phone
GUI agents can significantly enhance the efficiency of phone automation scenarios, making operations more
intelligent and no longer limited to coding fixed operation paths. This enhancement not only optimizes phone
automation processes but also expands the application scope of automation. On the other hand, phone GUI
agents can understand and execute complex natural language instructions, transforming human intentions
into specific operations such as automatically scheduling appointments, booking restaurants, summoning
transportation, and even achieving functionalities similar to autonomous driving in advanced automation.
These capabilities demonstrate the potential of phone GUI agents in executing complex tasks, providing
convenience to users and laying practical foundations for AI development.

With the increasing research on large language models in phone automation Wen et al. (2023; 2024a); Wang
et al. (2024c;b); Liu et al. (2024d); Zhang et al. (2024b); Lu et al. (2024b), the research community’s attention
to this field has grown rapidly. However, there is still a lack of dedicated systematic surveys in this area,
especially comprehensive explorations of phone automation from the perspective of large language models.
Given the importance of phone GUI agents, the purpose of this paper is to fill this gap by systematically
summarizing current research achievements, reviewing relevant literature, analyzing the application status
of large language models in phone automation, and pointing out directions for future research.

To provide a comprehensive overview of the current state and future prospects of LLM-Powered GUI Agents
in Phone Automation, we present a taxonomy that categorizes the field into three main areas: Frameworks
of LLM-powered phone GUI agents, Large Language Models for Phone Automation, and Datasets and
Evaluation Methods Figure 2. This taxonomy highlights the diversity and complexity of the field, as well as
the interdisciplinary nature of the research involved.

2



Under review as submission to TMLR

L
L

M
-P

ow
er

ed
G

U
I

A
ge

nt
s

in
P

ho
ne

A
ut

om
at

io
n

Frameworks
(§3)

Single-Agent
(§3.1 - §3.3)

e.g. DroidBot-GPT Wen et al. (2023), Enabling Wang et al. (2023b), AutoDroid Wen et al. (2024a),
LLMPA Guan et al. (2023), TOL Agent Fan et al. (2024), MM-Navigator Yan et al. (2023),
MobileGPT Lee et al. (2023), CogAgent Hong et al. (2024), OmniParser Lu et al. (2024b),
GUI Narrator Wu et al. (2024c), MobileVLM Wu et al. (2024d), AppAgent Zhang et al. (2023a),
AppAgent v2 Li et al. (2024d), AppAgentX Jiang et al. (2025), Auto-GUI Zhang & Zhang (2023),
ScreenAI Baechler et al. (2024), Mobile-Agent-v Wang et al. (2025a), OS-Kairos Cheng et al. (2025),
GUI-Xplore Sun et al. (2025b), CoCo-agent Ma et al. (2024)

Multi-Agent
(§3.4)

Role-Coordinated
(§3.4.1)

e.g. MMAC-Copilot Song et al. (2024c), Mobile-Agent-v2 Wang et al. (2024b),
Mobile-Agent-E Wang et al. (2025d), Cradle Tan et al.,
PromptRPA Huang et al. (2024a), CHOP Zhou et al. (2025),
Agent S2 Agashe et al. (2025), Ask-before-Plan Zhang et al. (2024g)

Scenario-Based
(§3.4.2) e.g. MobileExpertsZhang et al. (2024b), SteP Sodhi et al. (2024)

Plan-Then-Act
(§3.5)

e.g. SeeAct Zheng et al. (2024a), UGround Gou et al. (2024), LiMAC Christianos et al. (2024),
ClickAgent Hoscilowicz et al. (2024), Ponder & Press Wang et al. (2024j)

Models
(§4)

Prompt
Engineering
(§4.1)

Text-Based Prompt
(§4.1.1)

e.g. MobileGPT Lee et al. (2023), AutoDroid Wen et al. (2024a),
DroidBot-GPT Wen et al. (2023), Enabling conversational Wang et al. (2023b),
PromptRPA Huang et al. (2024a), AXNav Taeb et al. (2024)

Multimodal Prompt
(§4.1.2)

e.g. Mobile-Agent Wang et al. (2024c), Mobile-Agent-v2 Wang et al. (2024b),
OmniParser Lu et al. (2024b), VisionDroid Liu et al. (2024d),
AppAgent Zhang et al. (2023a), MM-Navigator Yan et al. (2023),
MobileExperts Zhang et al. (2024b), VisionTasker Song et al. (2024b),
AppAgent v2 Li et al. (2024d), GUI Narrator Wu et al. (2024c),
ReuseDroid Li et al. (2025), VLM-Fuzzer Demissie et al. (2025),
Mobile-Agent-E Wang et al. (2025d)

Training-based
Methods (§4.2)

Task-Specific Model
Architectures (§4.2.1)

General
Purpose

e.g. Auto-GUI Zhang & Zhang (2023), ViMo Luo et al. (2025),
CogAgent Hong et al. (2024), ScreenAI Baechler et al. (2024),
CoCo-Agent Ma et al. (2024), MobileFlow Nong et al. (2024),
ShowUI Lin et al. (2024b), Aguvis Xu et al. (2024c),
UI-TARS Qin et al. (2025)

Phone
UI-Specific

Grounding
e.g. Smoothing Grounding Wu et al. (2025c),
MUG Li et al. (2022), LVG Qian et al. (2024b),
OS-Atlas Wu et al. (2024e)

Referring

e.g. Textual Foresight Burns et al. (2024),
UI-Hawk Zhang et al. (2024d),
Ferret-UI You et al. (2024),
Ferret-UI 2 Li et al. (2024f)

SQA

e.g. ScreenAI Baechler et al. (2024),
WebVLN Chen et al. (2024b),
MP-GUI Wang et al. (2025e),
UI-Hawk Zhang et al. (2024d)

Supervised
Fine-Tuning (§4.2.2)

e.g. SeeClick Cheng et al. (2024), InfiGUIAgent Liu et al. (2025b),
GUICourse Chen et al. (2024c), Agent-R Yuan et al. (2025),
GUI Odyssey Lu et al. (2024a), TinyClick Pawlowski et al. (2024),
MobileAgent Ding (2024), ReALM Moniz et al. (2024),
AppVLM Papoudakis et al. (2025), V-Droid Dai et al. (2025),
IconDesc Haque & Csallner (2024)

Reinforcement
Learning (§4.2.3)

Phone
Agents

e.g. DigiRL Bai et al. (2024), DistRL Wang et al. (2024h),
AutoGLM Liu et al. (2024b), Digi-q Bai et al. (2025),
ReachAgent Wu et al. (2025b), VSC-RL Wu et al. (2025a),
Ui-r1 Lu et al. (2025), GUI-R1 Xia & Luo (2025)

Web
Agents

e.g. ETO Song et al. (2024a), Agent Q Putta et al. (2024),
AutoWebGLM Lai et al. (2024)

PC
Agents e.g. ScreenAgent Niu et al. (2024), AssistGUI Gao et al. (2023)

Datasets and
Benchmarks
(§5)

Datasets
(§5.1)

e.g. Rico Deka et al. (2017), RICO Semantics Sunkara et al. (2022), PixelHelp Li et al. (2020),
MoTIF Burns et al. (2021), UIBert Bai et al. (2021), Meta-GUI Sun et al. (2022),
UGIF Venkatesh et al. (2022), AITW Rawles et al. (2024b), AITZ Zhang et al. (2024c),
GUI Odyssey Lu et al. (2024a), GUI-WORLD Chen et al. (2024a) AndroidControl Li et al. (2024a),
AMEX Chai et al. (2024), MobileViews Gao et al. (2024)

Benchmarks
(§5.2)

e.g. AutoDroid Wen et al. (2024a), MobileEnv Zhang et al. (2023b), AndroidArena Xing et al. (2024),
LlamaTouch Zhang et al. (2024e), B-MoCA Lee et al. (2024), AndroidWorld Rawles et al. (2024a),
AUITestAgent Hu et al. (2024), AgentStudio Zheng et al. (2024b), AndroidLab Xu et al. (2024b),
A3 Chai et al. (2025) MobileAgentBench Wang et al. (2024e), VisualAgentBench Liu et al. (2024c),
FedMABench Wang et al. (2025c), AutoEval Sun et al. (2025a), LearnAct Liu et al. (2025a)

Figure 2: A comprehensive taxonomy of LLM-powered phone GUI agents in phone automation. Note that
only a selection of representative works is included in this categorization.

Unlike previous literature reviews, which primarily focus on traditional phone automated testing methods,
most existing surveys emphasize manual scripting or rule-based automation approaches without leveraging

3



Under review as submission to TMLR

LLMs Arnatovich & Wang (2018); Deshmukh et al. (2023); Nass (2024); Nass et al. (2021); Tramontana
et al. (2019). These traditional methods face significant challenges in coping with dynamic changes, complex
user interfaces, and the scalability required for modern applications. Although recent surveys have explored
broader areas of multimodal agents and foundation models for GUI automation, such as Foundations and
Recent Trends in Multimodal Mobile Agents: A Survey Wu et al. (2024a), GUI Agents with Foundation
Models: A Comprehensive Survey Wang et al. (2024g), and Large Language Model-Brained GUI Agents: A
Survey Zhang et al. (2024a), these works primarily cover general GUI-based automation and multimodal
applications.

However, a dedicated and focused survey on the role of large language models in phone GUI automation
remains absent in the existing literature. This paper addresses the above-mentioned gap by systematically
reviewing the latest developments, challenges, and opportunities in LLM-powered phone GUI agents, thereby
offering a more targeted exploration of this emerging domain. Our main contributions can be summarized
as follows:

• A Comprehensive and Systematic Survey of LLM-Powered Phone GUI Agents. We
provide an in-depth and structured overview of recent literature on LLM-powered phone automa-
tion, examining its developmental trajectory, core technologies, and real-world application scenarios.
By comparing LLM-driven methods to traditional phone automation approaches, this survey clari-
fies how large models transform GUI-based tasks and enable more intelligent, adaptive interaction
paradigms.

• Methodological Framework from Multiple Perspectives. Leveraging insights from existing
studies, we propose a unified methodology for designing LLM-driven phone GUI agents. This en-
compasses framework design (e.g., single-agent vs. multi-agent vs. plan-then-act frameworks), LLM
model selection and training (prompt engineering vs. training-based methods), data collection and
preparation strategies (GUI-specific datasets and annotations), and evaluation protocols (bench-
marks and metrics). Our systematic taxonomy and method-oriented discussion serve as practical
guidelines for both academic and industrial practitioners.

• In-Depth Analysis of Why LLMs Empower Phone Automation. We delve into the funda-
mental reasons behind LLMs’ capacity to enhance phone automation. By detailing their advance-
ments in natural language comprehension, multimodal grounding, reasoning, and decision-making,
we illustrate how LLMs bridge the gap between user intent and GUI actions. This analysis eluci-
dates the critical role of large models in tackling issues of scalability, adaptability, and human-like
interaction in real-world mobile environment.

• Insights into Latest Developments, Datasets, and Benchmarks. We introduce and evaluate
the most recent progress in the field, highlighting innovative datasets that capture the complexity
of modern GUIs and benchmarks that allow reliable performance assessment. These resources form
the backbone of LLM-based phone automation, enabling systematic training, fair evaluation, and
transparent comparisons across different agent designs.

• Identification of Key Challenges and Novel Perspectives for Future Research. Beyond
discussing mainstream hurdles (e.g., dataset coverage, on-device constraints, reliability), we pro-
pose forward-looking viewpoints on user-centric adaptations, security and privacy considerations,
long-horizon planning, and multi-agent coordination. These novel perspectives shed light on how
researchers and developers might advance the current state of the art toward more robust, secure,
and personalized phone GUI agents.

By addressing these aspects, our survey not only provides an up-to-date map of LLM-powered phone GUI
automation but also offers a clear roadmap for future exploration. We hope this work will guide researchers
in identifying pressing open problems and inform practitioners about promising directions to harness LLMs
in designing efficient, adaptive, and user-friendly phone GUI agents.

4



Under review as submission to TMLR

2 Development of Phone Automation

The evolution of phone automation has been marked by significant technological advancements Kong et al.
(2018), particularly with the emergence of LLMs Radford (2018); Radford et al. (2019); Brown (2020);
Achiam et al. (2023). This section explores the historical development of phone automation, the challenges
faced by traditional methods, and how LLMs have revolutionized the field.

2.1 Phone Automation Before the LLM Era

Before the advent of LLMs, phone automation was predominantly achieved through traditional technical
methods Kirubakaran & Karthikeyani (2013); Azim & Neamtiu (2013); Amalfitano et al. (2014); Linares-
Vásquez et al. (2017); Kong et al. (2018); Zhao et al. (2024). This subsection delves into the primary areas
of research and application during that period, including automation testing, shortcuts, and Robotic Process
Automation (RPA), highlighting their methodologies and limitations.

2.1.1 Automation Testing

Phone applications (apps) have become extremely popular, with approximately 1.68 million apps in the
Google Play Store1. The increasing complexity of apps Hecht et al. (2015) has raised significant concerns
about app quality. Moreover, due to rapid release cycles and limited human resources, developers find it
challenging to manually construct test cases. Therefore, various automated phone app testing techniques have
been developed and applied, making phone automation testing the main application of phone automation
before the era of large models Kirubakaran & Karthikeyani (2013); Kong et al. (2018); Linares-Vásquez
et al. (2017); Zein et al. (2016). Test cases for phone apps are typically represented by a sequence of GUI
events Jensen et al. (2013) to simulate user interactions with the app. The goal of automated test generators
is to produce such event sequences to achieve high code coverage or detect bugs Zhao et al. (2024).

In the development history of phone automation testing, we have witnessed several key breakthroughs and
advancements. Initially, random testing (e.g., Monkey Testing Machiry et al. (2013)) was used as a simple
and fundamental testing method, detecting application stability and robustness by randomly generating user
actions. Although this method could cover a wide range of operational scenarios, its testing process lacked
focus and was difficult to reproduce and pinpoint specific issues Kong et al. (2018).

Subsequently, model-based testing Amalfitano et al. (2012; 2014); Azim & Neamtiu (2013) became a more
systematic testing approach. It establishes a user interface model of the application, using predefined states
and transition rules to generate test cases. This method improved testing coverage and efficiency, but the
construction and maintenance of the model required substantial manual involvement, and updating the
model became a challenge for highly dynamic applications.

With the development of machine learning techniques, learning-based testing methods began to emerge Ko-
roglu et al. (2018); Pan et al. (2020); Li et al. (2019); Degott et al. (2019). These methods generate test
cases by analyzing historical data to learn user behavior patterns. For example, Humanoid Li et al. (2019)
uses deep learning to mimic human tester interaction behavior and uses the learned model to guide test
generation like a human tester. However, this method relies on human-generated datasets to train the model
and needs to combine the model with a set of predefined rules to guide testing.

Recently, reinforcement learning Ladosz et al. (2022) has shown great potential in the field of automated
testing. DinoDroid Zhao et al. (2024) is an example that uses Deep Q-Network (DQN) Fan et al. (2020) to
automate testing of Android applications. By learning behavior models of existing applications, it automat-
ically explores and generates test cases, not only improving code coverage but also enhancing bug detection
capabilities. Deep reinforcement learning methods can handle more complex state spaces and make more
intelligent decisions but also face challenges such as high training costs and poor model generalization capa-
bilities Luo et al. (2024).

1https://www.statista.com.

5

https://www.statista.com


Under review as submission to TMLR

2.1.2 Shortcuts

Shortcuts on mobile devices refer to predefined rules or trigger conditions that enable users to execute a
series of actions automatically Bridle & McCreath (2006); Guerreiro et al. (2008); Kennedy & Everett (2011).
These shortcuts are designed to streamline interaction by reducing repetitive manual input. For instance, the
Tasker app on the Android platform2 and the Shortcuts feature on iOS3 allow users to automate tasks like
turning on Wi-Fi, sending text messages, or launching apps under specific conditions such as time, location,
or events. These implementations leverage simple IF-THEN and manually-designed logic but are inherently
limited in scope and flexibility.

2.1.3 Robotic Process Automation

Robotic Process Automation(RPA) applications on phone devices aim to simulate human users performing
repetitive tasks across applications Agostinelli et al. (2019). Phone RPA tools generate repeatable automation
processes by recording user action sequences. These tools are used in enterprise environment to automate
tasks such as data entry and information gathering, reducing human errors and improving efficiency, but
they struggle with dynamic interfaces and require frequent script updates Pramod (2022); Syed
et al. (2020).

2.2 Challenges of Traditional Methods

Despite the advancements made, traditional phone automation methods faced significant challenges that
hindered further development. This subsection analyzes these challenges, including lack of generality and
flexibility, high maintenance costs, difficulty in understanding complex user intentions, and insufficient intel-
ligent perception, highlighting the need for new approaches.

2.2.1 Limited Generality

Traditional automation methods are often tailored to specific applications and interfaces, lacking adaptability
to different apps and dynamic user environment Clarke et al. (2016); Li et al. (2017); Patel & Pasha (2015);
Asadullah & Raza (2016). For example, automation scripts designed for a specific app may not function
correctly if the app updates its interface or if the user switches to a different app with similar functionality.
This inflexibility makes it difficult to extend automation across various usage scenarios without significant
manual reconfiguration.

These methods typically follow predefined sequences of actions and cannot adjust their operations based on
changing contexts or user preferences. For instance, if a user wants an automation to send a customized
message to contacts who have birthdays on a particular day, traditional methods struggle because they cannot
dynamically access and interpret data from the contacts app, calendar, and messaging app simultaneously.
Similarly, automating tasks that require conditional logicsuch as playing different music genres based on the
time of day or weather conditionsposes a challenge for traditional automation tools, as they lack the ability
to integrate real-time data and make intelligent decisions accordingly Majeed et al. (2020); Liu et al. (2023).

2.2.2 High Maintenance Costs

Writing and maintaining automation scripts require professional knowledge and are time-consuming and
labor-intensive Kodali et al. (2019); Kodali & Mahesh (2017); Moreira et al. (2023); Lamberton et al. (2017);
Meironke & Kuehnel (2022). Taking RPA as an example, as applications continually update and iterate,
scripts need frequent modifications. When an application’s interface layout changes or functions are up-
dated, RPA scripts originally written for the old version may not work properly, requiring professionals to
spend considerable time and effort readjusting and optimizing the scripts Tripathi (2018); Ling et al. (2020);
Agostinelli et al. (2022).

2https://play.google.com.
3https://support.apple.com.

6

https://play.google.com
https://support.apple.com


Under review as submission to TMLR

The high entry barrier also limits the popularity of some automation features Le et al. (2020); Roffarello et al.
(2024). For example, Apple’s Shortcuts 4 can combine complex operations, such as starting an Apple Watch
fitness workout, recording training data, and sending statistical data to the user’s email after the workout.
However, setting up such a complex shortcut often requires the user to perform a series of complicated
operations on the phone following fixed rules. This is challenging for ordinary users, leading many to
abandon usage due to the complexity of manual script writing.

2.2.3 Poor Intent Comprehension

Rule-based and script-based systems can only execute predefined tasks or engage in simple natural language
interactions Kepuska & Bohouta (2018); Cowan et al. (2017). Simple instructions like "open the browser" can
be handled using traditional natural language processing algorithms, but complex instructions like "open the
browser, go to Amazon, and purchase a product" cannot be completed. These traditional systems are based
on fixed rules and lack in-depth understanding and parsing capabilities for complex natural language Anicic
et al. (2010); Kang et al. (2013); Karanikolas et al. (2023).

They require users to manually write scripts to interact with the phone, greatly limiting the application
of intelligent assistants that can understand complex human instructions. For example, when a user wants
to check flight information for a specific time and book a ticket, traditional systems cannot accurately
understand the user’s intent and automatically complete the series of related operations, necessitating manual
script writing with multiple steps, which is cumbersome and requires high technical skills.

2.2.4 Weak Screen GUI Perception

Different applications present a wide variety of GUI elements, making it challenging for traditional methods
like RPA to accurately recognize and interact with diverse controls Fu et al. (2024); Banerjee et al. (2013);
Chen et al. (2018); Brich et al. (2017). Traditional automation often relies on fixed sequences of actions
targeting specific controls or input fields, exhibiting Weak Screen GUI Perception that limits their ability
to adapt to variations in interface layouts and component types. For example, in an e-commerce app,
the product details page may include dynamic content like carousels, embedded videos, or interactive size
selection menus, which differ significantly from the simpler layout of a search results page. Traditional
methods may fail to accurately identify and interact with the "Add to Cart" button or select product options,
leading to unsuccessful automation of purchasing tasks.

Moreover, traditional automation struggles with understanding complex screen information such as dynamic
content updates, pop-up notifications, or context-sensitive menus that require adaptive interaction strategies.
Without the ability to interpret visual cues like icons, images, or contextual hints, these methods cannot
handle tasks that involve navigating through multi-layered interfaces or responding to real-time changes.
For instance, automating the process of booking a flight may involve selecting dates from a calendar widget,
choosing seats from an interactive seat map, or handling security promptsall of which require sophisticated
perception and interpretation of the interface Zhang et al. (2024e).

In phone automation, many apps do not provide open API interfaces, forcing solutions to rely directly on the
GUI for triggering actions and retrieving information. Even when tools are used to parse the Android UI Wu
et al. (2021), non-standard controls often prevent accurate JSON parsing, further complicating automated
testing and interaction. Additionally, because the GUI is a universal and consistent interface across apps
regardless of their internal design, it naturally becomes the central focus of phone automation methods.

These limitations significantly impede the widespread application and deep development of traditional phone
automation technologies. Without intelligent perception capabilities, automation cannot adapt to the com-
plexities of modern app interfaces, which are increasingly dynamic and rich in interactive elements. This
underscores the urgent need for new methods and technologies that can overcome these bottlenecks and
achieve more intelligent, flexible, and efficient phone automation.

4https://support.apple.com.

7

https://support.apple.com


Under review as submission to TMLR

Figure 3: Milestones in the development of LLM-powered phone GUI agents. This figure divides advance-
ments into four primary parts: Prompt Engineering, Training-Based Methods, Datasets and Bench-
marks. Prompt Engineering leverages pre-trained LLMs by strategically crafting input prompts, as detailed
in §4.1, to perform specific tasks without modifying model parameters. In contrast, Training-Based Methods,
discussed in §4.2, involve adapting LLMs via supervised fine-tuning or reinforcement learning on GUI-specific
data, thereby enhancing their ability to understand and interact with mobile UIs.

2.3 LLMs Boost Phone Automation

The advent of LLMs has marked a significant shift in the landscape of phone automation, enabling more
dynamic, context-aware, and sophisticated interactions with mobile devices. As illustrated in Figure 3,

8



Under review as submission to TMLR

the research on LLM-powered phone GUI agents has progressed through pivotal milestones, where models
become increasingly adept at interpreting multimodal data, reasoning about user intents, and autonomously
executing complex tasks. This section clarifies how LLMs address traditional limitations and examines
why scaling laws can further propel large models in phone automation. As will be detailed in § 4 and §
5, LLM-based solutions for phone automation generally follow two routes: (1) Prompt Engineering, where
pre-trained models are guided by carefully devised prompts, and (2) Training-Based Methods, where LLMs
undergo additional optimization on GUI-focused datasets. The following subsections illustrate how LLMs
mitigate the core challenges of traditional phone automationranging from contextual semantic understanding
and GUI perception to reasoning and decision makingand briefly highlight the role of scaling laws in enhancing
these capabilities.

Scaling Laws in LLM-Based Phone Automation. Scaling lawsoriginally observed in general-purpose
LLMs, where increasing model capacity and training data yields emergent capabilities Brown et al. (2020);
Kaplan et al. (2020); Hagendorff (2023)have similarly begun to manifest in phone GUI automation. As
datasets enlarge and encompass more diverse apps, usage scenarios, and user behaviors, recent findings Cheng
et al. (2024); Chen et al. (2024c); Lu et al. (2024a); Pawlowski et al. (2024) show consistent gains in step-
by-step automation tasks such as clicking buttons or entering text. This data scaling not only captures
broader interface layouts and device contexts but also reveals latent emergent competencies, allowing LLMs
to handle more abstract, multi-step instructions. Empirical evidence from in-domain scenarios Li et al.
(2024a) further underscores how expanded coverage of phone apps and user patterns systematically refines
automation accuracy. In essence, as model sizes and data complexity grow, phone GUI agents exploit these
scaling laws to bridge the gap between user intent and real-world GUI interactions with increasing efficiency
and sophistication.

Contextual Semantic Understanding. LLMs have transformed natural language processing for phone
automation by learning from extensive textual corpora Vaswani (2017); Brown et al. (2020); Radford (2018);
Devlin (2018); Wen et al. (2024a); Zhang et al. (2023a). This training captures intricate linguistic structures
and domain knowledge Karanikolas et al. (2023), allowing agents to parse multi-step commands and generate
context-informed responses. MobileAgent Wang et al. (2024c), for example, interprets user directives like
scheduling appointments or performing transactions with high precision, harnessing the Transformer archi-
tecture Vaswani (2017) for efficient encoding of complex prompts. Consequently, phone GUI agents benefit
from stronger natural language grounding, bridging user-intent gaps once prevalent in script-based systems.

Screen GUI with Multi-Modal Perception. Screen GUI perception in earlier phone automation systems
typically depended on static accessibility trees or rigid GUI element detection, which struggled to adapt to
changing app interfaces. Advances in LLMs, supported by large-scale multimodal datasets Zhao et al.
(2023); Chang et al. (2024); Minaee et al. (2024), allow models to unify textual and visual signals in a single
representation. Systems like UGround Gou et al. (2024), Ferret-UI You et al. (2024), and UI-Hawk Zhang
et al. (2024d) excel at grounding natural language descriptions to on-screen elements, dynamically adjusting
as interfaces evolve. Moreover, SeeClick Cheng et al. (2024) and ScreenAI Baechler et al. (2024) demonstrate
that learning directly from screenshotsrather than purely textual metadatacan further enhance adaptability.
By integrating visual cues with user language, LLM-based agents can respond more flexibly to a wide range
of UI designs and interaction scenarios.

Reasoning and Decision Making. LLMs also enable advanced reasoning and decision-making by com-
bining language, visual context, and historical user interactions. Pre-training on broad corpora equips these
models with the capacity for complex reasoning Wang et al. (2023a); Yuan et al. (2024), multi-step plan-
ning Song et al. (2023a); Valmeekam et al. (2023), and context-aware adaptation Talukdar & Biswas (2024);
Koike et al. (2024). MobileAgent-V2 Wang et al. (2024b), for instance, introduces a specialized planning
agent to track task progress while a decision agent optimizes actions. Auto-GUI Zhang & Zhang (2023)
applies a multimodal chain-of-action approach that accounts for both previous and forthcoming steps, and
SteP Sodhi et al. (2024) uses stacked LLM modules to solve diverse web tasks. Similarly, MobileGPT Lee
et al. (2023) leverages an app memory system to minimize repeated mistakes and bolster adaptability. Such
architectures demonstrate higher success rates in complex phone operations, reflecting a new level of auton-
omy in orchestrating tasks that previously demanded handcrafted scripts.

9



Under review as submission to TMLR

Overall, LLMs are transforming phone automation by reinforcing semantic understanding, expanding mul-
timodal perception, and enabling sophisticated decision-making strategies. The scaling laws observed in
datasets like AndroidControl Li et al. (2024a) reinforce the notion that a larger volume and diversity of
demonstrations consistently elevate model accuracy. As these techniques mature, LLM-driven phone GUI
agents continue to redefine how users interact with mobile devices, ultimately paving the way for a more
seamless and user-centric automation experience.

2.4 Emerging Commercial Applications

The integration of LLMs has enabled novel commercial applications that leverage phone automation, offering
innovative solutions to real-world challenges. This subsection highlights several prominent cases, presented in
chronological order based on their release dates, where LLM-based GUI agents are reshaping user experiences,
improving efficiency, and providing personalized services.

Apple Intelligence. On June 11, 2024, Apple introduced its personal intelligent system, Apple Intelligence5,
seamlessly integrating AI capabilities into iOS, iPadOS, and macOS. It enhances communication, productiv-
ity, and focus features through intelligent summarization, priority notifications, and context-aware replies.
For instance, Apple Intelligence can summarize long emails, transcribe and interpret call recordings, and
generate personalized images or Genmoji. A key aspect is on-device processing, which ensures user privacy
and security. By enabling the system to operate directly on the users device, Apple Intelligence safeguards
personal information while providing an advanced, privacy-preserving phone automation experience.

vivo PhoneGPT. On October 10, 2024, vivo unveiled OriginOS 56, its newest mobile operating system,
featuring an AI agent ability named PhoneGPT. By harnessing large language models, PhoneGPT can
understand user instructions, preferences, and on-screen information, autonomously engaging in dialogues
and detecting GUI states to operate the smartphone. Notably, it allows users to order coffee or takeout
with ease and can even carry out a full phone reservation process at a local restaurant through extended
conversations. By integrating the capabilities of large language models with native system states and APIs,
PhoneGPT illustrates the great potential of phone GUI agents.

Honor YOYO Agent. Released on October 24, 2024, the Honor YOYO Agent7 exemplifies an phone
automation assistant that adapts to user habits and complex instructions. With just one voice or text
command, YOYO can automate multi-step processessuch as comparing prices to secure discounts when
shopping, automatically filling out forms, ordering beverages aligned with user preferences, or silencing
notifications during online meetings. By learning from user behaviors, YOYO reduces the complexity of
human-device interaction, offering a more effortless and intelligent phone experience.

Anthropic Claude Computer Use. On October 22, 2024, Anthropic unveiled the Computer Use feature
for its Claude 3.5 Sonnet model8. This feature allows an AI agent to interact with a computer as if a
human were operating it, observing screenshots, moving the virtual cursor, clicking buttons, and typing text.
Instead of requiring specialized environment adaptations, the AI can see the screen and perform actions
that humans would, bridging the gap between language-based instructions and direct computer operations.
Although initial performance is still far below human proficiency, this represents a paradigm shift in human-
computer interaction. By teaching AI to mimic human tool usage, Anthropic reframes the challenge from
tool adaptation for models to model adaptation to existing tools. Achieving balanced performance, security,
and cost-effectiveness remains an ongoing endeavor.

Zhipu.AI AutoGLM. On October 25, 2024, Zhipu.AI introduced AutoGLM Liu et al. (2024b), an in-
telligent agent that simulates human operations on smartphones. With simple text or voice commands,
AutoGLM can like and comment on social media posts, purchase products, book train tickets, or order
takeout. Its capabilities extend beyond mere API callsAutoGLM can navigate interfaces, interpret visual
cues, and execute tasks that mirror human interaction steps. This approach streamlines daily tasks and
demonstrates the versatility and practicality of LLM-driven phone automation in commercial applications.

5https://www.apple.com/apple-intelligence/.
6https://www.vivo.com.cn/originos
7https://www.honor.com/cn/magic-os/.
8https://www.anthropic.com/news/3-5-models-and-computer-use

10

https://www.apple.com/apple-intelligence/
https://www.vivo.com.cn/originos
https://www.honor.com/cn/magic-os/
https://www.anthropic.com/news/3-5-models-and-computer-use


Under review as submission to TMLR

These emerging commercial applicationsfrom Apples privacy-focused on-device intelligence to vivos
PhoneGPT, Honors YOYO agent, Anthropics Computer Use, and Zhipu.AIs AutoGLMshowcase how LLM-
based agents are transcending traditional user interfaces. They enable more natural, efficient, and person-
alized human-device interactions. As models and methods continue to evolve, we can anticipate even more
groundbreaking applications, further integrating AI into the fabric of daily life and professional workflows.

Figure 4: POMDP model for ordering a latte. Each circle represents a state (e.g., Home Screen, App
Homepage, Latte Details Page, Customize Order, Order Confirmation, Order Complete). The agent starts
at the initial state S0 (Home Screen) and makes decisions at each step (e.g., tapping the Starbucks app
icon, selecting the "Latte" button, viewing latte details). Due to partial observability, the agent receives
limited information at each decision point (e.g., O0: Starbucks app icon visible, O1: "Latte" button visible,
O2: Latte product details visible). Some actions correctly advance towards the goal, while others may cause
errors requiring corrections. The final goal is to confirm the order.

3 Frameworks and Components of Phone GUI Agents

MLLM-powered phone GUI agents can be designed using different architectural paradigms and components,
ranging from straightforward, single-agent systems Wang et al. (2023b); Wen et al. (2023; 2024a); Zhang
et al. (2023a); Wang et al. (2024c) to more elaborate multi-agent Wang et al. (2024b); Zhang et al. (2024b;f)
or multi-stage Zheng et al. (2024a); Gou et al. (2024); Hoscilowicz et al. (2024) approaches. A fundamental
scenario involves a single agent that operates incrementally, without precomputing an entire action sequence
from the outset. Instead, the agent continuously observes the dynamically changing mobile environ-
mentwhere available UI elements, device states, and relevant contextual factors may shift in unpredictable
waysand cannot be exhaustively enumerated in advance. As a result, the agent must adapt its strategy
step-by-step, making decisions based on the current situation rather than following a fixed plan. This
iterative decision-making process can be effectively modeled using a Partially Observable Markov De-
cision Process (POMDP), a well-established framework for handling sequential decision-making under
uncertainty Monahan (1982); Spaan (2012). By modeling the task as a POMDP, we capture its dynamic
nature, the impossibility of pre-planning all actions, and the necessity of adjusting the agents approach at
each decision point.

As illustrated in Figure 4, consider a simple example: the agents goal is to order a latte through the Starbucks
app. The apps interface may vary depending on network latency, promotions displayed, or the users last
visited screen. The agent cannot simply plan all steps in advance; it must observe the current screen, identify
which UI elements are present, and then choose an action (like tapping the Starbucks icon, swiping to a menu,

11



Under review as submission to TMLR

or selecting the latte). After each action, the state changes, and the agent re-evaluates its options. This
dynamic, incremental decision-making is precisely why POMDPs are a suitable framework. In the POMDP
formulation for phone automation:

States (S). At each decision point, the agents perspective is described as a state, a comprehensive snapshot
of all relevant information that could potentially influence the decision-making process. This state encom-
passes the current UI information (e.g., screenshots, UI trees, OCR-extracted text, icons), the phones
own status (network conditions, battery level, location), and the task context (the users goalorder a
latteand the agents progress toward it). The state St represents the complete, underlying situation of the
environment at time t, which may not be directly observable in its entirety.

Actions (A). Given the state St at time t, the agent selects from available actions (taps, swipes, typing text,
launching apps) that influence the subsequent state. The details of how phone GUI agents make decisions
are introduced in § 3.2, and the design of the action space is discussed in § 3.3.

Transition Dynamics (P (s′|s, a)). When the agent executes an action at at time t, it leads to a new state
St+1. Some transitions may be deterministic (e.g., tapping a known button reliably opens a menu), while
others are uncertain (e.g., network delays, unexpected pop-ups). Mathematically, we have the transition
probability P (s′|s, a) which describes the likelihood of transitioning from state St to state St+1 given action
at.

Observations (O). The agent receives observations Ot at time t which are partial and imperfect reflections
of the true state St. In the phone automation context, these observations could be, for example, a glimpse of
the visible UI elements (not the entire UI tree), a brief indication of the network status (such as a signal icon
without detailed connection parameters), or a partial view of the battery level indicator. These observations
Ot provide the agent with some, but not all, of the information relevant to the state St. The agent must infer
and make decisions based on these limited observations, attempting to reach the desired goal state despite
the partial observability. The details of phone GUI agent perception are discussed in § 3.1.

Under this POMDP-based paradigm, the agent aims to make decisions that lead to the goal state by observing
the current state and choosing appropriate actions. It continuously re-evaluates its strategy as conditions
evolve, promoting real-time responsiveness and dynamic adaptation. The agent observes the state St at
time t, chooses an action at, and then based on the resulting observation Ot+1 and new state
St+1, refines its strategy.

As illustrated in Figure 5, frameworks of phone GUI agents aim to integrate perception, reasoning, and
action capabilities into cohesive agents that can interpret user intentions, understand complex UI states,
and execute appropriate operations within mobile environment. By examining these frameworks, we can
identify best practices, guide future advancements, and choose the right approach for various applications
and contexts.

To address limitations in adaptability and scalability, §3.4 introduces multi-agent frameworks, where special-
ized agents collaborate, enhance efficiency, and handle more diverse tasks in parallel. Finally, §3.5 presents
the Plan-Then-Act Framework, which explicitly separates the planning phase from the execution phase. This
approach allows agents to refine their conceptual plans before acting, potentially improving both accuracy
and robustness.

3.1 Perception in Phone GUI Agents

Perception is a fundamental component of the basic framework for MLLM-powered phone GUI agents. It
is responsible for capturing and interpreting the state of the mobile environment, enabling the agent to
understand the current context and make informed decisions. In the overall pipeline, perception serves as
the initial step in the POMDP, providing the necessary input for the reasoning and action modules to operate
effectively.

12



Under review as submission to TMLR

Figure 5: Overview of MLLM-powered phone GUI agent framework. The user’s intent, expressed through
natural language, is mapped to UI operations. By perceiving UI information and phone state(§3.1) , the
agent leverages stored knowledge and memory to plan, reason, and reflect (§3.2) . Finally, it executes actions
to fulfill the user’s goals(§3.3).

3.1.1 UI Information Perception

UI information is crucial for agents to interact seamlessly with the mobile interface. It can be further
categorized into UI tree-based and screenshot-based approaches, supplemented by techniques like Set-of-
Marks (SoM) and Icon & OCR enhancements.

UI tree is a structured, hierarchical representation of the UI elements on a mobile screen Medhi et al.
(2013); Räsänen & Saarinen (2015). Each node in the UI tree corresponds to a UI component, containing
attributes such as class type, visibility, and resource identifiers.9 Early datasets like PixelHelp Li et al.
(2020), MoTIF Burns et al. (2021), and UIBert Bai et al. (2021) utilized UI tree data to enable tasks
such as mapping natural language instructions to UI actions and performing interactive visual environment
interactions. DroidBot-GPT Wen et al. (2023) was the first work to investigate how pre-trained language
models can be applied to app automation without modifying the app or the model. DroidBot-GPT uses
the UI tree as its primary perception information. The challenge lies in converting the structured UI tree
into a format that LLMs can process effectively. DroidBot-GPT addresses this by transforming the UI tree
into natural language sentences. Specifically, it extracts all user-visible elements, generates prompts like “A
view <name>that can...” for each element, and combines them into a cohesive description of the current
UI state. This approach mitigates the issue of excessively long and complex UI trees by presenting the
information in a more natural and concise format suitable for LLMs. Subsequent developments, such as
Enabling Conversational Interaction Wang et al. (2023b) and AutoDroid Wen et al. (2024a), further refined

9https://developer.android.com/reference/android/view/View.

13

https://developer.android.com/reference/android/view/View


Under review as submission to TMLR

this approach by representing the view hierarchy as HTML. Enabling Conversational Interaction introduces
a method to convert the view hierarchy into HTML syntax, mapping Android UI classes to corresponding
HTML tags and preserving essential attributes such as class type, text, and resource identifiers. This
representation aligns closely with the training data distribution of LLMs, enhancing their ability to perform
few-shot learning and improving overall UI understanding. AutoDroid extends this work by developing a
GUI parsing module that converts the GUI into a simplified HTML representation using specific HTML
tags like <button>, <checkbox>, <scroller>, <input>, and <p>. Additionally, AutoDroid implements
automatic scrolling of scrollable components to ensure that comprehensive UI information is available to
the LLM, thereby enhancing decision-making accuracy and reducing computational overhead. Furthermore,
LLMPA Guan et al. (2023) employs object detection models to comprehend page layouts and optimizes the
grouping of UI elements for potential actions. This approach reduces redundant information in the UI tree,
thereby enhancing the accuracy and speed of decision making. Similar to this approach, the TOL Agent Fan
et al. (2024) introduces a variant of the UI tree, known as the Hierarchical Layout Tree, to represent the
hierarchical layout of screen captures. In this tree, nodes represent different levels of regions. This structure,
combined with a trained DINO model, aids in generating more accurate screen descriptions for MLLM.

Screenshots provide a visual snapshot of the current UI, capturing the appearance and layout of UI el-
ements. Unlike UI trees, which require API access and can become unwieldy with complex hierarchies,
screenshots offer a more flexible and often more comprehensive representation of the UI. Additionally, UI
trees present challenges such as missing or overlapping controls and the inability to directly reference UI
elements programmatically, making screenshots a more practical and user-friendly alternative for quickly as-
sessing and sharing the state of a user interface. Auto-GUI Zhang & Zhang (2023) introduced a multimodal
agent that relies on screenshots for GUI control, eliminating the dependency on UI trees. This approach
allows the agent to interact with the UI directly through visual perception, enabling more natural and
human-like interactions. Auto-GUI employs a chain-of-action technique that uses both previously executed
actions and planned future actions to guide decision-making, achieving high action type prediction accu-
racy and efficient task execution. Following Auto-GUI, a series of multimodal solutions emerged, including
MM-Navigator Yan et al. (2023), CogAgent Hong et al. (2024), AppAgent Zhang et al. (2023a), Vision-
Tasker Song et al. (2024b), MobileGPT Lee et al. (2023), GUI Narrator Wu et al. (2024c), MobileVLM Wu
et al. (2024d), AdaptAgent Verma et al. (2024), WebVoyager He et al. (2024) and Steward Tang & Shin
(2024). These frameworks leverage screenshots in combination with supplementary information to enhance
UI understanding and interaction capabilities.

Set-of-Mark (SoM) is a prompting technique used to annotate screenshots with OCR, icon, and UI tree
information, thereby enriching the visual data with textual descriptorsYang et al. (2023). For example,
MM-Navigator Yan et al. (2023) uses SoM to label UI elements with unique identifiers, allowing the LLM to
reference and interact with specific components more effectively. This method has been widely adopted in
subsequent works such as AppAgent Zhang et al. (2023a), VisionDroid Liu et al. (2024d), OmniParser Lu
et al. (2024b) and VisualWebArena Koh et al. (2024a), which utilize SoM to enhance the agent’s ability to
interpret and act upon UI elements based on visual, textual, and structural cues.

Icon & OCR enhancements provide additional layers of information that complement the visual data,
enabling more precise action decisions. For instance, Mobile-Agent-v2 Wang et al. (2024b) integrates OCR
and icon data with screenshots to provide a richer context for the LLM, allowing it to interpret and execute
more complex instructions that require understanding both text and visual icons. Icon & OCR enhancements
are employed in various works, including VisionTasker Song et al. (2024b), MobileGPT Lee et al. (2023),
OmniParser Lu et al. (2024b), and WindowsAgentArena Bonatti et al. (2024), to improve the accuracy and
reliability of phone GUI agents.

3.1.2 Phone State Perception

Phone state information, such as keyboard status and location data, further contextualizes the agent’s in-
teractions. For example, Mobile-Agent-v2 Wang et al. (2024b) uses keyboard status to determine when text
input is required. Location data, while not currently utilized, represents a potential form of phone state
information that could be used to recommend nearby services or navigate to specific addresses. This addi-

14



Under review as submission to TMLR

tional state information enhances the agent’s ability to perform context-aware actions, making interactions
more intuitive and efficient.

The perception information gathered through UI trees, screenshots, SoM, OCR, and phone state is converted
into prompt tokens that the LLM can process. This conversion is crucial for enabling seamless interaction be-
tween the perception module and the reasoning and action modules. Detailed methodologies for transforming
perception data into prompt formats are discussed in § 4.1.

3.2 Brain in Phone GUI Agents

The brain of an LLM-based phone automation agent is its cognitive core, primarily constituted by a LLM. The
LLM serves as the agent’s reasoning and decision-making center, enabling it to interpret inputs, generate
appropriate responses, and execute actions within the mobile environment Ge et al. (2023); Mei et al.
(2024). Leveraging the extensive knowledge embedded within LLMs, agents benefit from advanced language
understanding, contextual awareness, and the ability to generalize across diverse tasks and scenarios.

3.2.1 Storage

Storage encompasses both memory and knowledge, which are critical for maintaining context and informing
the agent’s decision-making processes.

Memory refers to the agent’s ability to retain information from past interactions with users and the envi-
ronment Xi et al. (2023). This is particularly useful for cross-application operations, where continuity and
coherence are essential for completing multi-step tasks. For example, Mobile-Agent-v2 Wang et al. (2024b)
integrates a memory unit that records task-related focus content from historical screens. This memory is
accessed by the decision-making module when generating operations, ensuring that the agent can reference
and update relevant information dynamically. The Self-MAP framework Deng et al. (2024) establishes a
memory repository based on the history of conversational interactions. It utilizes a multifaceted matching
approach to retrieve the top-K memory snippets that are semantically relevant to the current dialogue state
and have similar trajectories. This assists the agent in effectively utilizing limited context space during
multi-turn interactions, thereby enhancing its ability to comprehend and execute user instructions.

Knowledge pertains to the agent’s understanding of phone automation tasks and the functionalities of
various apps. This knowledge can originate from multiple sources:

• Pre-trained Knowledge. LLMs are inherently equipped with a vast amount of general knowledge,
including common-sense reasoning and familiarity with programming and markup languages such as
HTML. This pre-existing knowledge allows the agent to interpret and generate meaningful actions
based on the UI representations.

• Domain-Specific Training. Some agents enhance their knowledge by training on phone
automation-specific datasets. Works such as Auto-GUI Zhang & Zhang (2023), CogAgent Hong
et al. (2024), ScreenAI Baechler et al. (2024), CoCo-agent Ma et al. (2024), and Ferret-UI You et al.
(2024) have trained LLMs on datasets tailored for mobile UI interactions, thereby improving their
capability to understand and manipulate mobile interfaces effectively. For a more detailed discussion
of knowledge acquisition through model training, see § 4.2.

• Knowledge Injection. Agents can enhance their decision-making by incorporating knowledge
derived from exploratory interactions and stored contextual information. This involves utilizing
data collected during offline exploration phases or from observed human demonstrations to inform
the LLM’s reasoning process. For instance, AutoDroid Wen et al. (2024a) explores app functionalities
and records UI transitions in a UI Transition Graph (UTG) memory, which are then used to generate
task-specific prompts for the LLM. Similarly, AppAgent Zhang et al. (2023a) compiles knowledge
from autonomous interactions and human demonstrations into structured documents, enabling the
LLM to make informed decisions based on comprehensive UI state information and task requirements.
AppAgent v2 Li et al. (2024d) introduces a more efficient mechanism for knowledge base construction
and updating. It leverages Retrieval-Augmented Generation (RAG) technology to achieve real-time

15



Under review as submission to TMLR

dynamic updates of knowledge base information. This significantly enhances the agent’s adaptability
in new environments.AppAgentX Jiang et al. (2025) introduces an evolutionary mechanism that
enables dynamic learning from past interactions and replaces inefficient low-level operations with
high-level actions. Other similar works include AdaptAgent Verma et al. (2024), Mobile-Agent-
V Wang et al. (2025a), LearnAct Liu et al. (2025a) and others.

3.2.2 Decision Making

Decision Making is the process by which the agent determines the appropriate actions to perform based
on the current perception and stored information Xi et al. (2023). The LLM processes the input prompts,
which include the current UI state, historical interactions from memory, and relevant knowledge, to generate
action sequences that accomplish the assigned tasks.

Planning involves devising a sequence of actions to achieve a specific task goal Song et al. (2023a); Xi et al.
(2023). Effective planning is essential for decomposing complex tasks into manageable steps and adapting
to changes in the environment. For instance, Mobile-Agent-v2 Wang et al. (2024b) incorporates a planning
agent that generates task progress based on historical operations, ensuring effective operation generation
by the decision agent. Additionally, approaches like Dynamic Planning of Thoughts (D-PoT) have been
proposed to dynamically adjust plans based on environmental feedback and action history, significantly
improving accuracy and adaptability in task execution Zhang et al. (2024f). Simultaneously, by reducing
the number of calls to LLMs and employing a phased planning strategy, the agent can plan all actions in a
given state at once, thereby enhancing planning efficiency Li et al. (2023d).

Reasoning enables the agent to interpret and analyze information to make informed decisions Gandhi et al.
(2024); Chen et al. (2024f); Plaat et al. (2024). It involves understanding the context, evaluating possible
actions, and selecting the most appropriate ones to achieve the desired outcome. By leveraging chain-of-
thought(COT) Wei et al. (2022), LLMs enhance their reasoning capabilities, allowing them to think step-
by-step and handle intricate decision-making processes. This structured approach facilitates the generation
of coherent and logical action sequences, ensuring that the agent can navigate complex UI interactions
effectively. The best-first tree search algorithm is utilized in real-world environments to iteratively construct,
explore, and prune trajectory graphs, thereby enhancing the reasoning and decision-making capabilities of
agents. A value function serves as a reward signal to guide agents in conducting efficient searches Koh et al.
(2024b). Additionally, research indicates that LLMs to estimate the latent states of agents, in combination
with reasoning methods, can further improve the agents’ reasoning performance Bishop et al. (2024).

Reflection allows the agent to assess the outcomes of its actions and make necessary adjustments to improve
performance Shinn et al. (2024). It involves evaluating whether the executed actions meet the expected
results and identifying any discrepancies or errors. For example, Mobile-Agent-v2 Wang et al. (2024b)
includes a reflection agent that evaluates whether the decision agents operations align with the task goals. If
discrepancies are detected, the reflection agent generates appropriate remedial measures to correct the course
of action. This continuous feedback loop enhances the agent’s reliability and ensures that it can recover from
unexpected states or errors during task execution. Furthermore, structured self-reflection identifies initial
erroneous actions, which prevents agents from repeating the same mistakes. It also draws on reflective
memory to avoid known unsuccessful actions Li et al. (2023d). Additionally, regular reflection through
automated evaluation methods significantly enhances the performance of agents Pan et al. (2024); Duan
et al. (2024).

By integrating robust planning, advanced reasoning, and reflective capabilities, the Decision Making com-
ponent of the Brain ensures that MLLM-powered phone GUI agents can perform tasks intelligently and
adaptively. These mechanisms enable the agents to handle a wide range of scenarios, maintain task continu-
ity, and improve their performance over time through iterative learning and adjustment.

3.3 Action in Phone GUI Agents

The Action component is a critical part of MLLM-powered phone GUI agents, responsible for executing
decisions made by the Brain within the mobile environment. By bridging high-level commands generated

16



Under review as submission to TMLR

Table 1: Types of actions in phone GUI agents

Action Type Description

Touch Interactions Tap: Select a specific UI element.
Double Tap: Quickly tap twice to trigger an action.
Long Press: Hold a touch for extended interaction, triggering con-
textual options or menus.

Gesture-Based Actions Swipe: Move a finger in a direction (left, right, up, down).
Pinch: Zoom in/out by bringing fingers together/apart.
Drag: Move UI elements to a new location.

Typing and Input Type Text: Enter text into input fields.
Select Text: Highlight text for editing or copying.

System Operations Launch Application: Open a specific app.
Change Settings: Modify system settings (e.g., Wi-Fi, brightness).
Navigate Menus: Access app sections or system menus.

Media Control Play/Pause: Control media playback.
Adjust Volume: Increase or decrease device volume.

by the LLM with low-level device operations, the agent can effectively interact with the phones UI and
system functionalities. Actions encompass a wide variety of operations, ranging from simple interactions like
tapping a button to complex tasks such as launching applications or modifying device settings. Execution
mechanisms leverage tools like Android’s UI Automator Patil et al. (2016), iOS’s XCTest Lodi (2021), or
popular automation frameworks such as Appium Singh et al. (2014) and Selenium Gundecha (2015); Sinclair
to send precise commands to the phone. Through these mechanisms, the agent ensures that decisions are
translated into tangible, reliable operations on the device.

The types of actions in phone GUI agents are diverse and can be broadly categorized based on their function-
alities. Table 1 summarizes these actions, providing a clear overview of the operations agents can perform.

The above categories reflect the key interactions required for phone automation. Touch interactions form
the foundation of UI navigation, while gesture-based actions add flexibility for dynamic control. Typing
and input enable text-based operations, whereas system operations and media controls extend the agent’s
capabilities to broader device functionalities. By combining these actions, phone GUI agents can achieve
high accuracy and adaptability in executing user tasks, ensuring a seamless experience even in complex and
dynamic environment.

3.4 Multi-Agent Framework

While single-agent frameworks based on LLMs have achieved significant progress in screen understanding
and reasoning, they operate as isolated entitiesTorreno et al. (2017); Dorri et al. (2018); Gong et al. (2023).
This isolation limits their flexibility and scalability in complex tasks that may require diverse, coordinated
skills and adaptive capabilities. Single-agent systems may struggle with tasks that demand continuous
adjustments based on real-time feedback, multi-stage decision-making, or specialized knowledge in different
domains. Furthermore, they lack the ability to leverage shared knowledge or collaborate with other agents,
reducing their effectiveness in dynamic environment Xi et al. (2023); Wang et al. (2024b); Tan et al.; Song
et al. (2024c).

Multi-agent frameworks address these limitations by facilitating collaboration among multiple agents, each
with specialized functions or expertise Chen et al. (2019); Talebirad & Nadiri (2023); Wu et al. (2023); Chen
et al. (2023); Li et al. (2023b); Liu et al. (2024e); Li et al. (2024c); Tran et al. (2025). This collaborative
approach enhances task efficiency, adaptability, and scalability, as agents can perform tasks in parallel or

17



Under review as submission to TMLR

Figure 6: Comparison of the role-coordinated and scenario-based multi-agent frameworks. The Role-
Coordinated framework organizes agents based on general functional roles with a fixed workflow, while
the Scenario-Based framework dynamically assigns tasks to specialized agents tailored for specific scenarios,
allowing for increased flexibility and adaptability in handling diverse tasks.

coordinate their actions based on their specific capabilities. As illustrated in Figure 6, multi-agent frameworks
in phone automation can be categorized into two primary types: the Role-Coordinated Multi-Agent
Framework and the Scenario-Based Task Execution Framework. These frameworks enable more
flexible, efficient, and robust solutions in phone automation by either organizing agents based on general
functional roles or dynamically assembling specialized agents according to specific task scenarios.

3.4.1 Role-Coordinated Multi-Agent

In the Role-Coordinated Multi-Agent Framework, agents are assigned general functional roles such as plan-
ning, decision-making, memory management, reflection, or tool invocation. These agents collaborate through
a predefined workflow, with each agent focusing on its specific function to collectively achieve the overall
task. This approach is particularly beneficial for tasks that require a combination of these general capabilities,
allowing each agent to specialize and optimize its role within the workflow.

For example, in MMAC-Copilot Song et al. (2024c), multiple agents with distinct general functions collabo-
rate as an OS copilot. The Planner strategically manages and allocates tasks to other agents, optimizing
workflow efficiency. Meanwhile, the Librarian handles information retrieval and provides foundational
knowledge, and the Programmer is responsible for coding and executing scripts, directly interacting with
the software environment. The Viewer interprets complex visual information and translates it into action-
able commands, while the Video Analyst processes and analyzes video content. Additionally, the Mentor
offers strategic oversight and troubleshooting support. Each agent contributes its specialized function to
the collaborative workflow, thereby enhancing the system’s overall capability to handle complex interactions
with the operating system.

Similarly, in Mobile-Agent-v2 Wang et al. (2024b), three agents with general roles are utilized: a planning
agent, a decision agent, and a reflection agent. The planning agent compresses historical actions and state
information to provide a concise representation of task progress. The decision agent uses this information
to navigate the task effectively, while the reflection agent monitors the outcomes of actions and corrects any
errors, ensuring accurate task completion. This role-based collaboration reduces context length, improves
task progression, and enhances focus content retention through a memory unit managed by the decision
agent.

In contrast, Mobile-Agent-E Wang et al. (2025d) decomposes tasks into high-level planning and low-level
action execution, creating a system with a Manager Agent responsible for high-level planning and four
subordinate agents: the Perceptor Agent, Operator Agent, Action Reflector Agent, and Notetaker Agent.
The Perceptor Agent is responsible for fine-grained visual perception. The Operator Agent determines

18



Under review as submission to TMLR

the next specific actions based on task and perception information. The Action Reflector Agent checks
the screenshots before and after operations to verify if the expected outcomes are achieved and provides
feedback to the Manager and Operator Agents. The Notetaker Agent extracts task-related information
for use in subsequent steps. Additionally, Mobile-Agent-E incorporates a Self-Evolution Module, using two
specialized agents, AES and AET, to update long-term memory after each task completion. AES summarizes
lessons learned, while AET records reusable operational sequences, helping the agent in efficiently completing
common subtasks and making better decisions in similar future tasks.

CHOP Zhou et al. (2025) introduces a mobile operating assistant with Constrained High-frequency Optimized
subtask Planning. This approach addresses challenges in the subtask level, which links high-level goals with
low-level executable actions. CHOP overcomes VLM’s deficiency in GUI scenario planning by using human-
planned subtasks as basis vectors, significantly improving both effectiveness and efficiency across multiple
applications in both English and Chinese contexts. The framework specifically targets two common issues:
ineffective subtasks that lower-level agents cannot execute and inefficient subtasks that fail to contribute to
higher-level task completion.

In general computer automation, Cradle Tan et al. leverages foundational agents with general roles to
achieve versatile computer control. Agents specialize in functions like command generation or state moni-
toring, enabling Cradle to tackle general-purpose tasks across multiple software environment. Additionally,
studies such as Ask-before-Plan Zhang et al. (2024g), PromptRPA Huang et al. (2024a), LUMOS Yin et al.
(2024), and WebPilot Zhang et al. (2024h) also utilize general-purpose role agents to execute tasks and excel
in complex tasks like planning. Among these, LUMOS provides high-quality training data and methods for
future intelligent agent research. Agent S2 Agashe et al. (2025) presents a compositional generalist-specialist
framework for computer use agents that delegates cognitive responsibilities across various models. It intro-
duces a Mixture-of-Grounding technique for precise GUI localization and Proactive Hierarchical Planning
that dynamically refines action plans at multiple temporal scales based on evolving observations.

3.4.2 Scenario-Based Task Execution

In the Scenario-Based Task Execution Framework, tasks are dynamically assigned to specialized agents
based on specific task scenarios or application domains. Each agent is endowed with capabilities tailored to
a particular scenario, such as shopping, code editing, or navigation. By assigning tasks to agents specialized
in the relevant domain, the system improves task success rates and efficiency.

For instance, MobileExperts Zhang et al. (2024b) forms different expert agents through an Expert Explo-
ration phase. In the exploration phase, each agent receives tailored tasks broken down into sub-tasks to
streamline the exploration process. Upon completion of a sub-task, the agent extracts three types of mem-
ories from its trajectory: interface memories, procedural memories (tools), and insight memories for use in
subsequent execution phases. When a new task arrives, the system dynamically forms an expert team by
selecting agents whose expertise matches the task requirements, enabling them to collaboratively
execute the task more effectively. Similarly, in the SteP Sodhi et al. (2024) framework, agents are specialized
based on specific web scenarios such as shopping, GitLab, maps, Reddit, or CMS platforms. Each sce-
nario agent possesses specific capabilities and knowledge relevant to its domain. When a task is received, it
is dynamically assigned to the appropriate scenario agent, which executes the task leveraging its specialized
expertise. This approach enhances flexibility and adaptability, allowing the system to handle a wide range
of tasks across different domains more efficiently.

Through dynamic task assignment and specialization, the Scenario-Based Task Execution Framework op-
timizes multi-agent systems to adapt to diverse and evolving contexts, significantly enhancing both the
efficiency and effectiveness of task execution. As illustrated in Figure 6, the Role-Coordinated Framework
relies on agents with general functional roles collaborating through a fixed workflow, suitable for tasks requir-
ing a combination of general capabilities. In contrast, the Scenario-Based Framework dynamically assigns
tasks to specialized agents tailored to specific scenarios, providing a flexible structure that adapts to the
varying complexity and requirements of real-world tasks.

Despite the potential of multi-agent frameworks in phone automation, several challenges remain. In the
Role-Coordinated Framework, coordinating agents with general functions requires efficient workflow design

19



Under review as submission to TMLR

and may introduce overhead in communication and synchronization. In the Scenario-Based Framework,
maintaining and updating a diverse set of specialized agents can be resource-intensive, and dynamically
assigning tasks requires effective task recognition and agent selection mechanisms. Future research could
explore hybrid frameworks that combine the strengths of both approaches, leveraging general functional
agents while also incorporating specialized scenario agents as needed. Additionally, developing advanced
algorithms for agent collaboration, learning, and adaptation can further enhance the intelligence and robust-
ness of multi-agent systems. Integrating external knowledge bases, real-time data sources, and user feedback
can also improve agents’ decision-making capabilities and adaptability in dynamic environment.

Figure 7: Differences between training-based methods and prompt engineering in phone automation.
Training-based methods adapt the model’s parameters through additional training, enhancing its ability
to perform specific tasks, whereas prompt engineering leverages the existing capabilities of pre-trained mod-
els by guiding them with well-designed prompts.

3.5 Plan-Then-Act Framework

While single-agent and multi-agent frameworks enhance adaptability and scalability, some tasks benefit
from explicitly separating high-level planning from low-level execution. This leads to what we term the
Plan-Then-Act Framework. In this paradigm, the agent first formulates a conceptual planoften expressed as
human-readable instructionsbefore grounding and executing these instructions on the devices UI.

The Plan-Then-Act approach addresses a fundamental challenge: although LLMs and multimodal LLMs
(MLLMs) excel at interpreting instructions and reasoning about complex tasks, they frequently struggle to
precisely map their textual plans to concrete UI actions. By decoupling these stages, the agent can focus on
what should be done (planning) and then handle how to do it on the UI (acting). Recent works
highlight the effectiveness of this approach:

• SeeAct Zheng et al. (2024a) demonstrates that GPT-4V(ision)Achiam et al. (2023) can generate coherent
plans for navigating websites. However, bridging the gap between textual plans and underlying UI elements
remains challenging. By clearly delineating planning from execution, the system can better refine its plan
before finalizing actions.

• UGround Gou et al. (2024) and related efforts You et al. (2024); Zhang et al. (2024d) emphasize advanced
visual grounding. Under a Plan-Then-Act framework, the agent first crafts a task solution plan, then relies
on robust visual grounding models to locate and manipulate UI components. This modular design enhances
performance across diverse GUIs and platforms, as the grounding model can evolve independently of the
planning mechanism.

20



Under review as submission to TMLR

• LiMAC (Lightweight Multi-modal App Control) Christianos et al. (2024) also embodies a Plan-Then-Act
spirit. LiMACs Action Transformer (AcT) determines the required action type (the plan), and a specialized
VLM is invoked only for natural language needs. By structuring decision-making and text generation into
distinct stages, LiMAC improves responsiveness and reduces compute overhead, ensuring that reasoning and
UI interaction are cleanly separated.

• ClickAgent Hoscilowicz et al. (2024) similarly employs a two-phase approach. The MLLM handles reasoning
and action planning, while a separate UI location model pinpoints the relevant coordinates on the screen.
Here, the MLLMs plan of which element to interact with is formed first, and only afterward is the element’s
exact location identified and the action executed.

• Ponder & Press Wang et al. (2024j) employs a general MLLM to decompose user instructions into executable
actions. It then uses a GUI-specific MLLM to map the target elements in the action descriptions to pixel
coordinates, thereby constructing a Plan-Then-Act Framework based solely on visual input. This framework
is adaptable across various software environments without relying on supplementary information such as
HTML or UI Trees.

The Plan-Then-Act Framework offers several advantages. Modularity allows improvements in planning
without requiring changes to the UI grounding and execution modules, and vice versa. Error Mitigation
enables the agent to revise its plan before committing to actions; if textual instructions are ambiguous or
infeasible, they can be corrected, reducing wasted actions and improving reliability. Additionally, improved
visual grounding models, OCR enhancements, and scenario-specific knowledge can further refine the Plan-
Then-Act approach, making agents more adept at handling intricate, real-world tasks. In summary, the
Plan-Then-Act Framework represents a natural evolution in designing MLLM-powered phone GUI agents.
By separating planning from execution, agents can achieve clearer reasoning, improved grounding, and
ultimately more effective and reliable task completion.

4 LLMs for Phone Automation

LLMs Radford (2018); Radford et al. (2019); Brown (2020); Achiam et al. (2023) have emerged as a trans-
formative technology in phone automation, bridging natural language inputs with executable actions. By
leveraging their advanced language understanding, reasoning, and generalization capabilities, LLMs enable
agents to interpret complex user intents, dynamically interact with diverse mobile applications, and effec-
tively manipulate GUIs.

In this section, we explore two primary approaches to leveraging LLMs for phone automation: Training-
Based Methods and Prompt Engineering. Figure 7 illustrates the differences between these two ap-
proaches in the context of phone automation. Training-Based Methods involve adapting LLMs specifically
for phone automation tasks through techniques like supervised fine-tuning Cheng et al. (2024); Chen et al.
(2024c); Lu et al. (2024a); Pawlowski et al. (2024) and reinforcement learning Song et al. (2024a); Bai et al.
(2024); Wang et al. (2024h). These methods aim to enhance the models’ capabilities by training them on GUI-
specific data, enabling them to understand and interact with GUIs more effectively. Prompt Engineering,
on the other hand, focuses on designing input prompts to guide pre-trained LLMs to perform desired tasks
without additional training Wei et al. (2022); Yao et al. (2024); Chen et al. (2022). By carefully crafting
prompts that include relevant information such as task descriptions, interface states, and action histories,
users can influence the model’s behavior to achieve specific automation goals Wen et al. (2023); Zhang et al.
(2023a); Song et al. (2023b).

4.1 Prompt Engineering

LLMs like the GPT series Radford (2018); Radford et al. (2019); Brown (2020) have demonstrated remark-
able capabilities in understanding and generating human-like text. These models have revolutionized natural
language processing by leveraging massive amounts of data to learn complex language patterns and repre-
sentations.

21



Under review as submission to TMLR

Figure 8: Schematic of prompt engineering for phone automation. The necessary prompt is mandatory,
initiating the task, e.g., searching for a Korean restaurant. The optional prompt are supplementary,
enhancing tasks without being mandatory. The flexible prompt must include one or more elements from
the UI Info, like a screenshot or OCR info, to adapt to task needs.

Prompt engineering is the practice of designing input prompts to effectively guide LLMs to produce desired
outputs for specific tasks Wei et al. (2022); Yao et al. (2024); Chen et al. (2022). By carefully crafting the
prompts, users can influence the model’s behavior without the need for additional training or fine-tuning.
This approach allows for leveraging the general capabilities of pre-trained models to perform a wide range
of tasks by simply providing appropriate instructions or examples in the prompt.

In the context of phone automation, prompt engineering enables the utilization of general-purpose LLMs to
perform automation tasks on mobile devices. Recently, a plethora of works have emerged that apply prompt
engineering to achieve phone automation Wen et al. (2023); Yan et al. (2023); Zhang et al. (2023a); Wang
et al. (2024c;b); Zhang et al. (2024b); Lu et al. (2024b); Song et al. (2023b); Taeb et al. (2024); Yang et al.
(2024c); Liu et al. (2024d); Huang et al. (2024a). These works leverage the strengths of LLMs in natural
language understanding and reasoning to interpret user instructions and generate corresponding actions on
mobile devices.

The fundamental approach to achieving phone automation through prompt engineering entails the creation
of prompts that encapsulate a comprehensive set of information. These prompts should include a detailed
task description, such as searching for the best Korean restaurant on Yelp. They also integrate the current
UI information of the phone, which may encompass screenshots, SoM, UI tree structures, icon details, and
OCR data. Additionally, the prompts should account for the phone’s real-time state, including its location,
battery level, and keyboard status, as well as any pertinent action history and the range of possible actions
(action space). The COT prompt Wei et al. (2022); Zhang et al. (2023c) is also a crucial component, guiding
the thought process for the next operation. The LLM then analyzes this rich prompt and determines the
subsequent action to execute. This methodical process is vividly depicted in Figure 8.

This section explores the application of prompt engineering in phone automation, categorizing related works
based on the type of prompts used: Text-Based Prompt and Multimodal Prompt. As illustrated
in Figure 9, the approach to automation significantly diverges between these two prompt types. Table 2

22



Under review as submission to TMLR

Figure 9: Comparison between text-based prompt and multimodal prompt. In Text-Based Prompt, the LLM
processes textual UI information, such as UI tree structures and OCR data, to determine the action type
(index). In contrast, Multimodal Prompt integrates screenshot data with supplementary UI information
to facilitate decision-making by the agent. The MLLM can then pinpoint the action location using either
coordinates or indices.

summarizes notable methods, highlighting their main UI information, the type of model used, and other
relevant details such as task types and grounding strategies.

4.1.1 Text-Based Prompting

In the domain of text-based prompt automation, the primary architecture involves a single text-modal LLM
serving as the agent for mobile device automation. This agent operates by interpreting UI information
presented in the form of a UI tree. It is important to note that, to date, the approaches discussed have
primarily utilized UI tree data and have not extensively incorporated OCR text and icon information. We
believe that solely relying on OCR and icon information is insufficient for fully representing screen UI
information; instead, as demonstrated in Mobile-agent-v2 Wang et al. (2024b), they are best used as auxiliary
information alongside screenshots. These text-based prompt agents make decisions by selecting elements from
a list of candidates based on the textual description of the UI elements. For instance, to initiate a search,
the LLM would identify and select the search button by its index within the UI tree rather than its screen
coordinates, as depicted in Figure 9.

The study by Enabling Conversational Wang et al. (2023b) marked a significant step in this field. It ex-
plored the use of task descriptions, action spaces, and UI trees to map instructions to UI actions. However,
it focused solely on the execution of individual instructions without delving into sequential decision-making
processes. DroidBot-GPT Wen et al. (2023) is a landmark in applying pre-trained language models to app
automation. It is the first to explore the use of LLMs for app automation without requiring modifications
to the app or the model. DroidBot-GPT perceives UI trees, which are structural representations of the
app’s UI, and integrates user-provided tasks along with action spaces and output requirements. This allows
the model to engage in sequential decision-making and automate tasks effectively. AutoDroid Wen et al.
(2024a) takes this concept further. It employs a UI Transition Graph (UTG) generated through random
exploration to create an App Memory. This memory, combined with the commonsense knowledge of LLMs,
enhances decision-making and significantly advances the capabilities of phone GUI agents. MobileGPT Lee
et al. (2023) introduces a hierarchical decision-making process. It simulates human cognitive processesex-
ploration, selection, derivation, and recallto augment the efficiency and reliability of LLMs in mobile task

23



Under review as submission to TMLR

Table 2: Summary of prompt engineering methods for phone GUI agents

Method Date Task Type Model Screenshot SoM UI tree Icon
& OCR Grounding

DroidBot-GPT Wen et al. (2023) 2023.04 General ChatGPT 7 7 4 7 Index

Enabling conversa-
tional Wang et al. (2023b) 2023.04 Screen Under-

standing, QA PaLM 7 7 4 7 Index

AutoDroid Wen et al. (2024a) 2023.09 General GPT-4, GPT-3.5 7 7 4 7 Index

MM-Navigator Yan et al. (2023) 2023.11 General GPT-4V 4 7 7 4 Index

VisionTasker Song et al. (2024b) 2023.12 Manual Teaching GPT-4 7 4 4 4 Index

AppAgent Zhang et al. (2023a) 2023.12 General GPT-4 4 4 4 4 Index

MobileGPT Lee et al. (2023) 2023.12 General GPT-3.5, GPT-4 7 7 4 7 Index

Mobile-Agent Wang et al. (2024c) 2024.01 General GPT-4V 4 7 7 4 Coordinate

AXNav Taeb et al. (2024) 2024.05 Bug Testing GPT-4 7 7 4 4 Index

Mobile-Agent-v2 Wang et al. (2024b) 2024.06 General GPT-4V 4 7 7 4 Coordinate

GUI Narrator Wu et al. (2024c) 2024.06 GUI Video
Captioning

GPT-4o,
QwenVL-7B 4 4 7 7 Index

MobileExpert Zhang et al. (2024b) 2024.07 General GPT-4V 4 7 7 7 Coordinate

VisionDroid Liu et al. (2024d) 2024.07 Non-Crash Func-
tional Bug Detection GPT-4 4 4 4 7 Index

AppAgent v2 Li et al. (2024d) 2024.08 General GPT-4 4 4 4 4
Coordinate,

Index

OmniParser Lu et al. (2024b) 2024.08 General GPT-4V 4 4 7 4 Index

Mobile-Agent-E Wang et al. (2025d) 2025.01 General GPT-4o, Claude
-3.5, Gemini-1.5 4 7 7 4 Coordinate

Mobile-Agent-V Wang et al. (2025a) 2025.02 General GPT-4o 4 7 7 4 Coordinate

LearnAct Liu et al. (2025a) 2025.02 General Gimini-1.5 4 7 7 7 Coordinate

automation. Lastly, AXNav Taeb et al. (2024) showcases an innovative application of Prompt Engineering
in accessibility testing. AXNav interprets natural language instructions and executes them through an LLM,
streamlining the testing process and improving the detection of accessibility issues, thus aiding the manual
testing workflows of QA professionals.

Each of these contributions, while unique in their approach, is united by the common thread of Prompt
Engineering. They demonstrate the versatility and potential of text-based prompt automation in enhancing
the interaction between LLMs and mobile applications.

4.1.2 Multimodal Prompting

With the advancement of large pre-trained models, Multimodal Large Language Models (MLLMs) have
demonstrated exceptional performance across various domains Achiam et al. (2023); Li et al. (2023c); Ye
et al. (2023); Wang et al. (2023d); Bai et al. (2023); Liu et al. (2024a); Wang et al. (2024f); Chen et al.
(2024e;d); Koh et al. (2024a); Zheng et al. (2023), significantly contributing to the evolution of phone au-
tomation. Unlike text-only models, multimodal models integrate visual and textual information, addressing
limitations such as the inability to access UI trees, missing control information, and inadequate global screen
representation. By leveraging screenshots for decision-making, multimodal models facilitate a more natural
simulation of human interactions with mobile devices, enhancing both accuracy and robustness in automated
operations.

The fundamental framework for multimodal phone automation is illustrated in Figure 9. Multimodal prompts
integrate visual perception (e.g., screenshots) and textual information (e.g., UI tree, OCR, and icon data) to
guide MLLMs in generating actions. The action outputs can be categorized into two methods: SoM-Based
Indexing Methods and Direct Coordinate Output Methods. These methods define how the agent
identifies and interacts with UI elements, either by referencing annotated indices or by pinpointing precise
coordinates.

24

https://github.com/MobileLLM/AutoDroid
https://github.com/MobileLLM/AutoDroid
https://github.com/MobileLLM/AutoDroid
https://github.com/MobileLLM/AutoDroid
https://github.com/zzxslp/MM-Navigator
https://github.com/zzxslp/MM-Navigator
https://github.com/AkimotoAyako/VisionTasker
https://github.com/AkimotoAyako/VisionTasker
https://github.com/TencentQQGYLab/AppAgent
https://github.com/TencentQQGYLab/AppAgent
https://github.com/mobilegptsys/MobileGPT
https://github.com/mobilegptsys/MobileGPT
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://showlab.github.io/GUI-Narrator/
https://showlab.github.io/GUI-Narrator/
https://github.com/testtestA6/VisionDroid
https://github.com/testtestA6/VisionDroid
https://x-plug.github.io/MobileAgent/
https://x-plug.github.io/MobileAgent/
https://x-plug.github.io/MobileAgent/
https://x-plug.github.io/MobileAgent/
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct


Under review as submission to TMLR

SoM-Based Indexing Methods. SoM-based methods involve annotating UI elements with unique identi-
fiers within the screenshot, allowing the MLLM to reference these elements by their indices when generating
actions. This approach mitigates the challenges associated with direct coordinate outputs, such as preci-
sion and adaptability to dynamic interfaces. MM-Navigator Yan et al. (2023) represents a breakthrough
in zero-shot GUI navigation using GPT-4V Achiam et al. (2023). By employing SoM prompting Yang
et al. (2023), MM-Navigator annotates screenshots through OCR and icon recognition, assigning unique
numeric IDs to actionable widgets. This enables GPT-4V to generate indexed action descriptions rather
than precise coordinates, enhancing action execution accuracy. Building upon the SoM-based approach,
AppAgent Zhang et al. (2023a) integrates autonomous exploration and human demonstration observation
to construct a comprehensive knowledge base. This framework allows the agent to navigate and operate
smartphone applications through simplified action spaces, such as tapping and swiping, without requiring
backend system access. Tested across 10 different applications and 50 tasks, AppAgent showcases superior
adaptability and efficiency in handling diverse high-level tasks, further advancing multimodal phone automa-
tion. OmniParser Lu et al. (2024b) enhances the SoM-based method by introducing a robust screen parsing
technique. It combines fine-tuned interactive icon detection models and functional captioning models to con-
vert UI screenshots into structured elements with bounding boxes and labels. This comprehensive parsing
significantly improves GPT-4V’s ability to generate accurately grounded actions, ensuring reliable operation
across multiple platforms and applications. GUI Narrator Wu et al. (2024c) utilizes video captioning to guide
the VLM, aiding in the deeper understanding of GUI operations. The framework uses the mouse cursor as
a visual prompt, highlighting it with a green bounding box to enhance the VLM’s interpretative abilities
with high-resolution screenshots. By extracting screenshots from before and after GUI actions occur in the
video as keyframes, it provides temporal and spatial logic to the action screenshots. These are combined
into prompts to further guide the VLM in producing accurate action descriptions, thereby improving its
performance.

Direct Coordinate Output Methods. Direct coordinate output methods enable MLLMs to determine
the exact (x, y) positions of UI elements from screenshots, facilitating precise interactions without relying
on indexed references. This approach leverages the advanced visual grounding capabilities of MLLMs to
interpret and interact with the UI elements directly. VisionTasker Song et al. (2024b) introduces a two-stage
framework that combines vision-based UI understanding with LLM task planning. Utilizing models like
YOLOv8 Varghese & Sambath (2024) and PaddleOCR Du et al. (2020), VisionTasker parses screenshots
to identify widgets and textual information, transforming them into natural language descriptions. This
structured semantic representation allows the LLM to perform step-by-step task planning, enhancing the
accuracy and practicality of automated mobile task execution. The Mobile-Agent series Wang et al. (2024c;b)
leverages visual perception tools to accurately identify and locate both visual and textual UI elements
within app screenshots. Mobile-Agent-v1 utilizes coordinate-based actions, enabling precise interaction with
UI elements. Mobile-Agent-v2 extends this by introducing a multi-agent architecture comprising planning,
decision, and reflection agents. Mobile-Agent-E Wang et al. (2025d) optimizes the multi-agent architecture
by detailing the responsibilities of each agent. It also introduces a long-term memory mechanism through
the design of a Self-Evolution Module, which accumulates experience and enables agents to evolve, thereby
enhancing adaptability to new tasks. MobileExperts Zhang et al. (2024b) advances the direct coordinate
output method by incorporating tool formulation and multi-agent collaboration. This dynamic, tool-enabled
agent team employs a dual-layer planning mechanism to efficiently execute multi-step operations while
reducing reasoning costs by approximately 22%. By dynamically assembling specialized agents and utilizing
reusable code block tools, MobileExperts demonstrates enhanced intelligence and operational efficiency in
complex phone automation tasks. Unlike AppAgent, AppAgent v2 Li et al. (2024d) integrates parsers
with visual features and employs UI element coordinates along with Index information, creating a more
flexible action space. This allows the agent to manage dynamic interfaces and non-standard UI elements
more adeptly, thereby enhancing its adaptability to various complex tasks. VisionDroid Liu et al. (2024d)
applies MLLMs to automated GUI testing, focusing on detecting non-crash functional bugs through vision-
based UI understanding. By aligning textual and visual information, VisionDroid enables the MLLM to
comprehend GUI semantics and operational logic, employing step-by-step task planning to enhance bug
detection accuracy. Evaluations across multiple datasets and real-world applications highlight VisionDroid’s
superior performance in identifying and addressing functional bugs.

25



Under review as submission to TMLR

While multimodal prompt strategies have significantly advanced phone automation by integrating visual
and textual data, they still face notable challenges. Approaches that do not utilize SoM maps and instead
directly output coordinates rely heavily on the MLLM’s ability to accurately ground UI elements for precise
manipulation. Although recent innovations Wang et al. (2024b); Zhang et al. (2024b); Liu et al. (2024d) have
made progress in addressing the limitations of MLLMs’ grounding capabilities, there remains considerable
room for improvement. Enhancing the robustness and accuracy of UI grounding is essential to achieve more
reliable and scalable phone automation.

4.2 Training-Based Models

The subsequent sections delve into these approaches, discussing the development of task-specific model
architectures, supervised fine-tuning strategies and reinforcement learning techniques in both general-purpose
and Phone UI-specific scenarios.

Table 3: Summary of task-specific model architectures

Method Date Task Type Backbone Size Contributions

Auto-GUI Zhang & Zhang (2023) 2023.09 General N/A
60M /
200M /
700M

Direct screen interaction;
Chain-of-action; Action

histories and future plans

CogAgent Hong et al. (2024) 2023.12 General CogVLM 18B High-res input (1120 × 1120);
Specialized in GUI understanding

WebVLN-Net Chen et al. (2024b) 2023.12 Screen Under-
standing, QA N/A N/A Web navigation with

visual and HTML content

ScreenAI Baechler et al. (2024) 2024.02 Screen Under-
standing, QA N/A 4.6B UI and infographic under-

standing; Flexible patching

CoCo-Agent Ma et al. (2024) 2024.02 General
LLaVA

(LLaMA-2-
chat-7B, CLIP)

N/A
Comprehensive perception;

Conditional action prediction;
Enhanced automation

Ferret-UI You et al. (2024) 2024.04 Screen Under-
standing, Referring Ferret N/A "Any resolution" tech-niques;

Precise referring and grounding

LVG Qian et al. (2024b) 2024.06 Screen Under-
standing, Grounding

SWIN Trans-
former, BERT N/A Visual UI grounding; Layout-

guided contrastive learning
Textual
Foresight Burns et al. (2024) 2024.06 Screen Under-

standing, Referring BLIP-2 N/A Predict UI state;
UI representation learning

MobileFlow Nong et al. (2024) 2024.07 General Qwen-VL-Chat 21B Hybrid visual encoders; Variable
resolutions; Multilingual support

UI-Hawk Zhang et al. (2024d) 2024.08 Screen Under-
standing, Grounding N/A N/A

History-aware encoder;
Screen stream processing;

FunUI benchmark

Ferret-UI 2 Li et al. (2024f) 2024.10 Screen Under-
standing, Referring Ferret N/A Multi-platform;

High-resolution encoding

OS-Atlas Wu et al. (2024e) 2024.10 Screen Under-
standing, Grounding

Qwen2-VL,
InternVL-2 4B / 7B Grounding data synthesis;

Largest GUI grounding corpus

ShowUI Lin et al. (2024b) 2024.11 General Qwen2-VL 2B Visual tokens selection;
Cross-modal understanding

Aguvis Xu et al. (2024c) 2024.12 General Qwen2-VL 7B /
72B

Comprehensive data pipeline;
Two-stage training;Cross-platform

Aria-UI Yang et al. (2024b) 2024.12 Screen Under-
standing, Grounding Aria 3.9B Diversified dataset pipeline;

Multimodal dynamic action history

UI-TARS Qin et al. (2025) 2025.01 General Qwen2-VL 2B / 7B /
72B

System-2 Reasoning; Online boot-
strapping; Reflection tuning

GUI-Bee Fan et al. (2025) 2025.01 Screen Under-
standing, Grounding

SeeClick,
UIX-7B,

Qwen-GUI
N/A Model-Environment alignment;

Self-exploratory Data

V-Droid Dai et al. (2025) 2025.03 General Llama-3.1-8B 8b Verifier-driven framework

MP-GUI Wang et al. (2025e) 2025.03 General InternVL2-8B 8B Screen Under-
standing, Referring

26

https://github.com/cooelf/Auto-GUI
https://github.com/cooelf/Auto-GUI
https://github.com/THUDM/CogVLM
https://github.com/THUDM/CogVLM
https://github.com/WebVLN/WebVLN
https://github.com/WebVLN/WebVLN
https://github.com/google-research-datasets/screen_qa
https://github.com/google-research-datasets/screen_qa
https://github.com/xbmxb/CoCo-Agent
https://github.com/xbmxb/CoCo-Agent
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/aburns4/textualforesight
https://github.com/aburns4/textualforesight
https://github.com/aburns4/textualforesight
https://github.com/OS-Copilot/OS-Atlas
https://github.com/OS-Copilot/OS-Atlas
https://github.com/showlab/ShowUI
https://github.com/showlab/ShowUI
https://github.com/xlang-ai/aguvis
https://github.com/xlang-ai/aguvis
https://github.com/AriaUI/Aria-UI
https://github.com/AriaUI/Aria-UI
https://github.com/bytedance/UI-TARS
https://github.com/bytedance/UI-TARS
https://gui-bee.github.io/
https://gui-bee.github.io/
https://github.com/BigTaige/MP-GUI
https://github.com/BigTaige/MP-GUI


Under review as submission to TMLR

4.2.1 Task-Specific LLM-based Agents

To advance AI agents for phone automation, significant efforts have been made to develop Task Specific
Model Architectures that are tailored to understand and interact with GUIs by integrating visual perception
with language understanding. These models address unique challenges posed by GUI environment, such
as varying screen sizes, complex layouts, and diverse interaction patterns. A summary of notable Task
Specific Model Architectures is presented in Table 3, highlighting their main contributions, domains, and
other relevant details.

General-Purpose Models. The general-purpose GUI-specific LLMs are designed to handle a wide range
of tasks across different applications and interfaces. They focus on enhancing direct GUI interaction, high-
resolution visual recognition, and comprehensive perception to improve the capabilities of AI agents in under-
standing and navigating complex mobile GUIs. One significant challenge in this domain is enabling agents
to interact directly with GUIs without relying on environment parsing or application-specific APIs, which
can introduce inefficiencies and error propagation. To tackle this, Auto-GUI Zhang & Zhang (2023) presents
a multimodal agent that directly engages with the interface. It introduces a chain-of-action technique that
leverages previous action histories and future action plans, enhancing the agent’s decision-making process
and leading to improved performance in GUI control tasks. High-resolution input is essential for recognizing
tiny UI elements and text prevalent in GUIs. CogAgent Hong et al. (2024) addresses this by employing
both low-resolution and high-resolution image encoders within its architecture. Supporting input resolutions
up to 1120 × 1120, CogAgent effectively recognizes small page elements and text. Understanding UIs and
infographics requires models to interpret complex visual languages and design principles. ScreenAI Baechler
et al. (2024) improves upon existing architectures by introducing a flexible patching strategy and a novel
textual representation for UIs. During pre-training, this representation teaches the model to interpret UI
elements effectively. Leveraging large language models, ScreenAI automatically generates training data at
scale, covering a wide spectrum of tasks in UI and infographic understanding. Enhancing both perception
and action response is crucial for comprehensive GUI automation. CoCo-Agent Ma et al. (2024) proposes two
novel approaches: comprehensive environment perception (CEP) and conditional action prediction (CAP).
CEP enhances GUI perception through multiple aspects, including visual channels (screenshots and detailed
layouts) and textual channels (historical actions). CAP decomposes action prediction into determining the
action type first, then identifying the action target conditioned on the action type. Addressing the need for
effective GUI agents in applications featuring extensive Mandarin content, MobileFlow Nong et al. (2024)
introduces a multimodal LLM specifically designed for mobile GUI agents. MobileFlow employs a hybrid vi-
sual encoder trained on a vast array of GUI pages, enabling it to extract and comprehend information across
diverse interfaces. The model incorporates a Mixture of Experts (MoE) and specialized modality alignment
training tailored for GUIs. ShowUI Lin et al. (2024b) employs the UI-Guided visual tokens selection method,
which randomly selects a subset of tokens from each component during training. This approach retains the
original positional information while reducing redundant tokens by 33%, thereby accelerating training speed
by 1.4 times. Furthermore, by using interleaved vision-language-action streaming combined with high-quality
training data, it significantly improves the training speed and performance of GUI visual agents. Aguvis Xu
et al. (2024c) employs a two-stage training method to enhance the generalization and efficiency of GUI agents.
It uses single-step task data to train the model’s grounding abilities and multi-step task data to develop the
model’s planning and reasoning capabilities. This approach significantly improves the overall performance of
the agents. UI-TARS Qin et al. (2025) employs a more in-depth and structurally robust System-2 reasoning
method, combined with online bootstrapping and reflection tuning strategies. This combination effectively
assists the model in handling complex tasks in dynamic environments and continuously optimizes overall per-
formance. V-Droid Dai et al. (2025) introduces a novel verifier-driven architecture where the LLM does not
generate actions directly but instead scores and selects from a finite set of extracted actions, improving task
success rates and significantly reducing latency. Collectively, these general-purpose Task Specific Model Ar-
chitectures address key challenges in phone automation by enhancing direct GUI interaction, high-resolution
visual recognition, comprehensive environment perception, and conditional action prediction. By leveraging
multimodal inputs and innovative architectural designs, these models significantly advance the capabilities
of AI agents in understanding and navigating complex mobile GUIs, paving the way for more intelligent and
autonomous phone automation solutions.

27



Under review as submission to TMLR

Phone UI-Specific Models. Phone UI-Specific Model Architectures have primarily focused on screen
understanding tasks, which are essential for enabling AI agents to interact effectively with graphical user
interfaces. These tasks can be categorized into three main types: UI grounding, UI referring, and screen
question answering (QA). Figure 10 illustrates the differences between these categories.

UI Grounding Screen QA GUI Navigation UI Referring

On this page, to click on 
the search bar, where 
should I navigate to?

[488, 658, 1448, 866]

What’s the title of the 
first link in this page?

The title is 
“zjunlp/LLMAgentPapersMust
- read Papers on LLM Agents.”

Open this paper.

Tap[969, 1049]

Stars show likes, forks 
show copies, branches for 
versions, tags for releases, 
activity for updates.

What is function of this 
area[475, 495, 1254, 632]?

Figure 10: Illustration of screen understanding tasks. (a) UI Grounding involves identifying UI elements
corresponding to a given description; (b) UI Referring focuses on generating descriptions for specified UI
elements; (c) Screen Question Answering requires answering questions based on the content of the screen.

• UI Grounding involves identifying and localizing UI elements on a screen that correspond to a
given natural language description. This task is critical for agents to perform precise interactions
with GUIs based on user instructions. MUG Li et al. (2022) proposes guiding agent actions through
multi-round interactions with users, improving the execution accuracy of UI grounding in complex
or ambiguous instruction scenarios. It also leverages user instructions and previous interaction his-
tory to predict the next agent action. LVG (Layout-guided Visual Grounding) Qian et al. (2024b)
addresses UI grounding by unifying detection and grounding of UI elements within application in-
terfaces. LVG tackles challenges such as application sensitivity, where UI elements with similar
appearances have different functions across applications, and context sensitivity, where the function-
ality of UI elements depends on their context within the interface. By introducing layout-guided
contrastive learning, LVG learns the semantics of UI objects from their visual organization and
spatial relationships, improving grounding accuracy. UI-Hawk Zhang et al. (2024d) enhances UI
grounding by incorporating a history-aware visual encoder and an efficient resampler to process
screen sequences during GUI navigation. By understanding historical screens, UI-Hawk improves
the agent’s ability to ground UI elements accurately over time. An automated data curation method
generates training data for UI grounding, contributing to the creation of the FunUI benchmark for
evaluating screen understanding capabilities. Aria-UI Yang et al. (2024b) leverages strong MLLMs
such as GPT-4o to generate diverse and high-quality element instructions for grounding training. It
employs a two-stage training method that incorporates action history in textual or interleaved text-
image formats, enabling the model to develop both single-step localization capabilities and multi-step
context awareness. This approach demonstrates robust performance and generalization ability across
various tasks. Similar research includes GUI-Bee Fan et al. (2025), which autonomously explores

28



Under review as submission to TMLR

environments to collect high-quality data, thereby aligning GUI action grounding models with new
environments and significantly enhancing model performance. OS-Atlas Wu et al. (2024e) unifies
the action space, enabling models to adapt to UI grounding tasks across multiple platforms. Addi-
tionally, TAG (Tuning-free Attention-driven Grounding) Xu et al. (2024a) introduces a method that
leverages the inherent attention mechanisms of pre-trained MLLMs to accurately identify and locate
elements within a GUI without the need for tuning. Validation shows that this method performs com-
parably to or even surpasses tuned approaches across multiple benchmark datasets, demonstrating
exceptional generalization capabilities. This offers a new perspective for the application of MLLMs
in UI grounding.

• UI Referring focuses on generating natural language descriptions for specified UI elements on a
screen. This task enables agents to explain UI components to users or other agents, facilitating
better communication and interaction. Ferret-UI You et al. (2024) is a multimodal LLM designed
for enhanced understanding of mobile UI screens, emphasizing precise referring and grounding tasks.
By incorporating any resolution techniques to handle various screen aspect ratios and dividing
screens into sub-images for detailed analysis, Ferret-UI generates accurate descriptions of UI elements.
Training on a curated dataset of elementary UI tasks, Ferret-UI demonstrates strong performance
in UI referring tasks. Leveraging the Ferret-UI framework, Ferret-UI 2 Li et al. (2024f) integrates
an adaptive N-grid partitioning mechanism. This system enhances image feature extraction by
dynamically resizing grids, thereby improving the model’s efficiency and accuracy without sacrificing
resolution. Additionally, Ferret-UI 2 demonstrates remarkable cross-platform portability. Textual
Foresight Burns et al. (2024) uses user actions as a bridge, requiring the model to predict the
global textual description of the next UI state based on the current UI screen and a local action.
With limited training data, the Textual Foresight method achieves superior performance compared
to similar models, demonstrating exceptional data efficiency. UI-Hawk Zhang et al. (2024d) also
contributes to UI referring by defining tasks that require the agent to generate descriptions for UI
elements based on their role and context within the interface. By processing screen sequences and
understanding the temporal relationships between screens, UI-Hawk improves the agent’s ability to
refer to UI elements accurately.

• Screen Question Answering involves answering questions about the content and functionality of
a screen based on visual and textual information. This task requires agents to comprehend complex
screen layouts and extract relevant information to provide accurate answers. ScreenAI Baechler
et al. (2024) specializes in understanding screen UIs and infographics, leveraging the common visual
language and design principles shared between them. By introducing a flexible patching strategy
and a novel textual representation for UIs, ScreenAI pre-trains models to interpret UI elements
effectively. Using large language models to automatically generate training data, ScreenAI covers
tasks such as screen annotation and screen QA. WebVLN Chen et al. (2024b) extends vision-and-
language navigation to websites, where agents navigate based on question-based instructions and
answer questions using information extracted from target web pages. By integrating visual inputs,
linguistic instructions, and web-specific content like HTML, WebVLN enables agents to understand
both the visual layout and underlying structure of web pages, enhancing screen QA capabilities.
UI-Hawk Zhang et al. (2024d) further enhances screen QA by enabling agents to process screen
sequences and answer questions based on historical interactions. By incorporating screen question
answering as one of its fundamental tasks, UI-Hawk improves the agent’s ability to comprehend
and reason about screen content over time. MP-GUI Wang et al. (2025e) introduces a specialized
MLLM for GUI understanding with three dedicated perceivers for graphical, textual, and spatial
modalities. Using a fusion gate to adaptively combine these modalities and an automated data
collection pipeline to address training data scarcity, MP-GUI achieves strong performance on GUI
understanding tasks including screen QA despite limited training data.

These Phone UI-Specific Model Model Architectures demonstrate the importance of focusing on screen
understanding tasks to enhance AI agents’ interaction with complex user interfaces. By categorizing these
tasks into UI grounding, UI referring, and screen question answering, researchers have developed specialized
models that address the unique challenges within each category. Integrating innovative techniques such as

29



Under review as submission to TMLR

layout-guided contrastive learning, history-aware visual encoding, and flexible patching strategies has led to
significant advancements in agents’ abilities to understand, navigate, and interact with GUIs effectively.

4.2.2 Supervised Fine-Tuning

Supervised fine-tuning has emerged as a crucial technique for enhancing the capabilities of LLMs in GUI
tasks within phone automation. By tailoring models to specific tasks through fine-tuning on curated datasets,
researchers have significantly improved models’ abilities in GUI grounding, optical character recognition
(OCR), cross-application navigation, and efficiency. A summary of notable works in this area is presented
in Table 4, highlighting their main contributions, domains, and other relevant details.

Table 4: Summary of supervised fine-tuning methods for phone GUI agents

Method Date Task Type Backbone Size Contributions

MobileAgent Ding (2024) 2024.01 General Qwen 7B Standard Operating Procedure;
Human-machine interaction

SeeClick Cheng et al. (2024) 2024.01 General Qwen-VL 9.6B GUI grounding pre-training;
ScreenSpot benchmark

ReALM Moniz et al. (2024) 2024.04 Reference
Resolution FLAN-T5 80M–3B

Formulated reference resolution
as language modeling; Improved

performance on resolving references

GUICourse Chen et al. (2024c) 2024.06 General
Qwen-VL,
Fuyu-8B,

MiniCPM-V
N/A

Suite of datasets
(GUIEnv, GUIAct, GUIChat);
Enhanced OCR and grounding

GUI Odyssey Lu et al. (2024a) 2024.06 General Qwen-VL N/A Cross-app navigation dataset;
Agent with history resampling

IconDesc Haque & Csallner (2024) 2024.09 Alt-Text
Generation GPT-3.5 N/A

Generated alt-text for UI
icons using partial UI data;

Improved accessibility

TinyClick Pawlowski et al. (2024) 2024.10 General Florence-2 0.27B
Single-turn agent;
Multitask training;

MLLM-based data augmentation

InfiGUIAgent Liu et al. (2025b) 2025.01 General Qwen2-VL 2B Model-Environment alignment;
Self-exploratory Data

Agent-R Yuan et al. (2025) 2025.01 General LLama-3.1 8B Self-reflection capabilities;
Real-time error correction

Supervised fine-tuning has been effectively applied to develop more versatile and efficient GUI agents by
enhancing their fundamental abilities and GUI knowledge. One of the fundamental challenges in developing
visual GUI agents is enabling accurate interaction with screen elements based solely on visual inputs, known
as GUI grounding. SeeClick Cheng et al. (2024) addresses this challenge by introducing a visual GUI agent
that relies exclusively on screenshots for task automation, circumventing the need for extracted structured
data like HTML, which can be lengthy and sometimes inaccessible. Recognizing that GUI grounding is a key
hurdle, SeeClick enhances the agent’s capability by incorporating GUI grounding pre-training. The authors
also introduce ScreenSpot, the first realistic GUI grounding benchmark encompassing mobile, desktop, and
web environment. Experimental results demonstrate that improving GUI grounding through supervised fine-
tuning directly correlates with enhanced performance in downstream GUI tasks. InfiGUIAgent Liu et al.
(2025b) is trained using a supervised fine-tuning method and employs the Reference-Augmented Annotation
approach to fully leverage spatial information, establishing bidirectional connections between GUI elements
and text descriptions, thereby enhancing the model’s understanding of GUI visual language. Additionally,
the model incorporates Hierarchical Reasoning and Expectation-Reflection Reasoning capabilities, enabling
the agent to perform complex reasoning natively, which improves its grounding ability. Beyond grounding,
agents require robust OCR capabilities and comprehensive knowledge of GUI components and interactions
to function effectively across diverse applications. GUICourse Chen et al. (2024c) tackles these challenges by
presenting a suite of datasets designed to train visual-based GUI agents from general VLMs. The GUIEnv

30

https://github.com/alipay/mobile-agent
https://github.com/alipay/mobile-agent
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/yiye3/GUICourse
https://github.com/yiye3/GUICourse
https://github.com/OpenGVLab/GUI-Odyssey
https://github.com/OpenGVLab/GUI-Odyssey
https://github.com/SamsungLabs/TinyClick
https://github.com/SamsungLabs/TinyClick
https://github.com/Reallm-Labs/InfiGUIAgent
https://github.com/Reallm-Labs/InfiGUIAgent
https://github.com/bytedance/Agent-R
https://github.com/bytedance/Agent-R


Under review as submission to TMLR

dataset strengthens OCR and grounding abilities by providing 10 million website page-annotation pairs
for pre-training and 0.7 million region-text QA pairs for supervised fine-tuning. To enrich the agent’s
understanding of GUI components and interactions, the GUIAct and GUIChat datasets offer extensive
single-step and multi-step action instructions and conversational data with text-rich images and bounding
boxes. As users frequently navigate across multiple applications to complete complex tasks, enabling cross-
app GUI navigation becomes essential for practical GUI agents.GUI Odyssey Lu et al. (2024a) addresses
this need by introducing a comprehensive dataset specifically designed for training and evaluating cross-app
navigation agents. The GUI Odyssey dataset comprises 7,735 episodes from six mobile devices, covering six
types of cross-app tasks, 201 apps, and 1,399 app combinations. By fine-tuning the Qwen-VL model with a
history resampling module on this dataset, they developed OdysseyAgent, a multimodal cross-app navigation
agent. Extensive experiments show that OdysseyAgent achieves superior accuracy compared to existing
models, significantly improving both in-domain and out-of-domain performance on cross-app navigation
tasks. Efficiency and scalability are also critical considerations, especially for deploying GUI agents on
devices with limited computational resources. TinyClick Pawlowski et al. (2024) demonstrates that even
compact models can achieve strong performance on GUI automation tasks through effective supervised fine-
tuning strategies. Utilizing the Vision-Language Model Florence-2-Base, TinyClick focuses on the primary
task of identifying the screen coordinates of UI elements corresponding to user commands. By employing
multi-task training and Multimodal Large Language Model-based data augmentation, TinyClick significantly
improves model performance while maintaining a compact size of 0.27 billion parameters and minimal latency.
MobileAgent Ding (2024) combines LoRA and SOP methods to effectively reduce computational overhead
through low-rank adaptive supervised fine-tuning, while breaking down complex tasks into subtasks to
enhance the model’s understanding and execution efficiency. At the same time, this approach does not impose
additional burdens on inference speed, significantly improving the model’s performance and responsiveness.
The performance of agents is often limited by their inability to recover from errors. Agent-R Yuan et al.
(2025) identifies the first error step in an erroneous trajectory and combines it with a correct trajectory to
create a corrected path, thus enabling real-time error correction. By training on self-generated corrected
trajectories and using an iterative supervised fine-tuning approach, Agent-R dynamically identifies and
rectifies errors, gradually enhancing decision-making abilities. Moreover, under a multi-task training strategy,
its training outcomes improve significantly. This method offers new directions for developing more intelligent
and adaptable GUI agents.

Supervised fine-tuning has also been applied to domain-specific tasks to address specialized challenges in
particular contexts, such as reference resolution and accessibility. In the context of Reference Resolution
in GUI Contexts, ReALM Moniz et al. (2024) formulates reference resolution as a language modeling
problem, enabling the model to handle various types of references, including on-screen entities, conversa-
tional entities, and background entities. By converting reference resolution into a multiple-choice task for
the LLM, ReALM significantly improves the model’s ability to resolve references in GUI contexts. For
Accessibility and UI Icons Alt-Text Generation, IconDesc Haque & Csallner (2024) addresses the
challenge of generating informative alt-text for mobile UI icons, which is essential for users relying on screen
readers. Traditional deep learning approaches require extensive datasets and struggle with the diversity and
imbalance of icon types. IconDesc introduces a novel method using Large Language Models to autonomously
generate alt-text with partial UI data, such as class, resource ID, bounds, and contextual information from
parent and sibling nodes. By fine-tuning an off-the-shelf LLM on a small dataset of approximately 1.4k
icons, IconDesc demonstrates significant improvements in generating relevant alt-text, aiding developers in
enhancing UI accessibility during app development.

These works collectively demonstrate that supervised fine-tuning is instrumental in advancing GUI agents
for phone automation. By addressing specific challenges through targeted datasets and training strate-
gieswhether enhancing GUI grounding, improving OCR and GUI knowledge, enabling cross-app navigation,
or optimizing for accessibilityresearchers have significantly enhanced the performance and applicability of
GUI agents. The advancements summarized in Figure 4 highlight the ongoing efforts and progress in this
field, paving the way for more intelligent, versatile, and accessible phone automation solutions capable of
handling complex tasks in diverse environment.

31



Under review as submission to TMLR

4.2.3 Reinforcement Learning

Reinforcement Learning (RL) Kaelbling et al. (1996) has emerged as a powerful technique for training agents
to interact autonomously with GUIs across various platforms, including phones, web browsers, and desktop
environment. Although RL-based approaches for phone GUI agents are relatively few, significant progress
has been made in leveraging RL to enhance agent capabilities in dynamic and complex GUI environment. In
this section, we discuss RL approaches for GUI agents across different platforms, highlighting their unique
challenges, methodologies, and contributions. A summary of notable RL-based methods is presented in
Figure 5, which includes specific RL-related features such as the type of RL used (online or offline) and the
targeted platform.

Table 5: Summary of reinforcement learning methods for phone GUI agents

Method Date Platform RL Type Backbone Size

DigiRL Bai et al. (2024) 2024.06 Phone Online RL AutoUI-Base 200M

DistRL Wang et al. (2024h) 2024.10 Phone Online RL T5-based 1.3B

AutoGLM Liu et al. (2024b) 2024.11 Phone,
Web Online RL GLM-4-9B-Base 9B

ScreenAgent Niu et al. (2024) 2024.02 PC OS N/A CogAgent 18B

ETO Song et al. (2024a) 2024.03 Web Offline-to-
Online RL LLaMA-2-7B-Chat 7B

AutoWebGLM Lai et al. (2024) 2024.04 Web
RL (Curriculum
Learning, Boot-
strapped RL)

ChatGLM3-6B 6B

Agent Q Putta et al. (2024) 2024.08 Web Offline RL with MCTS LLaMA-3-70B 70B

GLAINTEL Fereidouni et al. (2024) 2024.11 Web RL (Offline-to-
Online, Hybrid RL) Flan-T5 0.78B

ReachAgent Wu et al. (2025b) 2025.02 Phone Hybrid RL MobileVLM Wu et al. (2024d) N/A

VEM Zheng et al. (2025) 2025.02 Phone Environment-
Free RL N/A N/A

Digi-Q Bai et al. (2025) 2025.02 Phone Q-Function
Based RL N/A N/A

VSC-RL Wu et al. (2025a) 2025.02 Phone
Variational
Subgoal-

Conditioned RL
N/A N/A

UI-R1 Lu et al. (2025) 2025.03 Phone Rule-Based RL Qwen2.5-VL 3B

Phone Agents. Training phone GUI agents using RL presents unique challenges due to the dynamic and
complex nature of mobile applications. Agents must adapt to real-world stochasticity and handle the in-
tricacies of interacting with diverse mobile environment. Recent works have addressed these challenges by
developing RL frameworks that enable agents to learn from interactions and improve over time. DigiRL Bai
et al. (2024) andDistRL Wang et al. (2024h) both tackle the limitations of pre-trained vision-language
models (VLMs) in decision-making tasks for device control through GUIs. Recognizing that static demon-
strations are insufficient due to the dynamic nature of real-world mobile environment, these works introduce
RL approaches to train agents capable of in-the-wild device control. DigiRL proposes an autonomous RL
framework that employs a two-stage training process: an initial offline RL phase to initialize the agent using
existing data, followed by an offline-to-online RL phase that fine-tunes the model based on its own interac-
tions. By building a scalable Android learning environment with a VLM-based evaluator, DigiRL identifies
key design choices for effective RL in mobile GUI domains. The agent learns to handle real-world stochas-
ticity and dynamism, achieving significant improvements over supervised fine-tuning, with a 49.5% absolute
increase in success rate on the Android-in-the-Wild dataset. Similarly, DistRL introduces an asynchronous
distributed RL framework specifically designed for on-device control agents on mobile devices. To address
inefficiencies in online fine-tuning and the challenges posed by dynamic mobile environment, DistRL employs
centralized training and decentralized data acquisition. Leveraging an off-policy RL algorithm tailored for

32

https://github.com/DigiRL-agent/digirl
https://github.com/DigiRL-agent/digirl
https://github.com/DistRL-lab/distrl-open
https://github.com/DistRL-lab/distrl-open
https://xiao9905.github.io/AutoGLM/
https://xiao9905.github.io/AutoGLM/
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/Yifan-Song793/ETO
https://github.com/Yifan-Song793/ETO
https://github.com/THUDM/AutoWebGLM
https://github.com/THUDM/AutoWebGLM
https://github.com/sentient-engineering/agent-q
https://github.com/sentient-engineering/agent-q
https://github.com/MultifacetedNLP/Web-Agents-Unsupervised
https://github.com/MultifacetedNLP/Web-Agents-Unsupervised
https://github.com/microsoft/GUI-Agent-RL
https://github.com/microsoft/GUI-Agent-RL
https://github.com/DigiRL-agent/digiq
https://github.com/DigiRL-agent/digiq
https://ai-agents-2030.github.io/VSC-RL
https://ai-agents-2030.github.io/VSC-RL
https://github.com/lll6gg/UI-R1
https://github.com/lll6gg/UI-R1


Under review as submission to TMLR

distributed and asynchronous data utilization, DistRL improves training efficiency and agent performance
by prioritizing significant experiences and encouraging exploration. Experiments show that DistRL achieves
a 20% relative improvement in success rate compared to state-of-the-art methods on general Android tasks.
Building upon these advancements, AutoGLM Liu et al. (2024b) extends the application of RL to both phone
and web platforms. AutoGLM presents a series of foundation agents based on the ChatGLM model family,
aiming to serve as autonomous agents for GUI control. A key insight from this work is the design of an
intermediate interface that separates planning and grounding behaviors, allowing for more agile development
and enhanced performance. By employing self-evolving online curriculum RL, AutoGLM enables agents to
learn from environmental interactions and adapt to dynamic GUI environment. The approach demonstrates
impressive success rates on various benchmarks, showcasing the potential of RL in creating versatile GUI
agents across platforms.

Recent advances have brought several innovative approaches to reinforcement learning for phone GUI agents.
ReachAgent Wu et al. (2025b) decomposes mobile agent tasks into two sub-tasks: page reaching and page
operation, utilizing a two-stage fine-tuning strategy. In the first stage, supervised fine-tuning enables the
agent to better perform each sub-task. In the second stage, reinforcement learning is applied to further op-
timize the agent’s overall task completion capabilities, thereby enhancing its performance in complex tasks.
VEM Zheng et al. (2025) introduces an environment-free RL framework that decouples value estimation
from policy optimization using a pretrained Value Environment Model. Unlike traditional RL methods
that require costly environment interactions, VEM predicts state-action values directly from offline data,
distilling human-like priors about GUI interaction outcomes. This approach avoids compounding errors and
enhances resilience to UI changes by focusing on semantic reasoning. Digi-Q Bai et al. (2025) presents an
approach to train VLM-based action-value Q-functions for device control. Instead of using on-policy RL
with actual environment rollouts, Digi-Q trains the Q-function using offline temporal-difference learning on
frozen, intermediate-layer features of a VLM. This approach enhances scalability and reduces computational
costs compared to fine-tuning the entire VLM. The trained Q-function then uses a Best-of-N policy ex-
traction operator to imitate the best action without requiring environment interaction. VSC-RL Wu et al.
(2025a) addresses the learning inefficiencies in tackling complex sequential decision-making tasks with sparse
rewards and long-horizon dependencies. By reformulating vision-language sequential tasks as a variational
goal-conditioned RL problem, VSC-RL optimizes the SubGoal Evidence Lower BOund (SGC-ELBO). This
approach maximizes subgoal-conditioned return via RL while minimizing the difference with the reference
policy. UI-R1 Lu et al. (2025) explores how rule-based RL can enhance reasoning capabilities of multimodal
large language models for GUI action prediction. Using a small yet high-quality dataset of 136 challenging
tasks, UI-R1 introduces a unified rule-based action reward enabling model optimization via Group Relative
Policy Optimization (GRPO).

Web Agents. Web navigation tasks involve interacting with complex and dynamic web environment,
where agents must interpret web content and perform actions to achieve user-specified goals. RL has been
employed to train agents that can adapt to these challenges by learning from interactions and improving
decision-making capabilities. ETO Song et al. (2024a) (Exploration-based Trajectory Optimization) and
Agent Q Putta et al. (2024) both focus on enhancing the performance of LLM-based agents in web en-
vironment through RL techniques. ETO introduces a learning method that allows agents to learn from
their exploration failures by iteratively collecting failure trajectories and using them to create contrastive
trajectory pairs for training. By leveraging contrastive learning methods like Direct Preference Optimiza-
tion (DPO), ETO enables agents to improve performance through an iterative cycle of exploration and
training. Experiments on tasks such as WebShop demonstrate that ETO consistently outperforms baselines,
highlighting the effectiveness of learning from failures. Agent Q combines guided Monte Carlo Tree Search
(MCTS) with a self-critique mechanism and iterative fine-tuning using an off-policy variant of DPO. This
framework allows LLM agents to learn from both successful and unsuccessful trajectories, improving gener-
alization in complex, multi-step reasoning tasks. Evaluations on the WebShop environment and real-world
booking scenarios show that Agent Q significantly improves success rates, outperforming behavior cloning
and reinforcement learning fine-tuned baselines. AutoWebGLM Lai et al. (2024) contributes to this domain
by developing an LLM-based web navigating agent built upon ChatGLM3-6B. To address the complexity
of HTML data and the versatility of web actions, AutoWebGLM introduces an HTML simplification algo-
rithm to represent webpages succinctly. The agent is trained using a hybrid human-AI method to build web

33



Under review as submission to TMLR

browsing data for curriculum training and is further enhanced through reinforcement learning and rejection
sampling. AutoWebGLM demonstrates performance superiority on general webpage browsing tasks, achiev-
ing practical usability in real-world services. GLAINTEL Fereidouni et al. (2024) effectively utilizes human
experience and the adaptive capabilities of reinforcement learning by integrating human demonstrations with
reinforcement learning methods. This approach achieves superior performance in complex product search
tasks. Collectively, these works demonstrate how RL techniques can be applied to web agents to improve
their ability to navigate and interact with complex web environment. By learning from interactions, failures,
and leveraging advanced planning methods, these agents exhibit enhanced reasoning and decision-making
capabilities.

PC OS Agents. In desktop environment, agents face the challenge of interacting with complex software
applications and operating systems, requiring precise control actions and understanding of GUI elements. RL
approaches in this domain focus on enabling agents to perform multi-step tasks and adapt to the intricacies
of desktop GUIs. ScreenAgent Niu et al. (2024) constructs an environment where a Vision Language Model
(VLM) agent interacts with a real computer screen via the VNC protocol. By observing screenshots and
manipulating the GUI through mouse and keyboard actions, the agent operates within an automated control
pipeline that includes planning, acting, and reflecting phases. This design allows the agent to continuously
interact with the environment and complete multi-step tasks. ScreenAgent introduces the ScreenAgent
Dataset, which collects screenshots and action sequences for various daily computer tasks. The trained
model demonstrates computer control capabilities comparable to GPT-4V and exhibits precise UI positioning
capabilities, highlighting the potential of RL in desktop GUI automation. AssistGUI Gao et al. (2023)
develops an LLM-based reinforcement learning framework called Actor-Critic Embodied Agent (ACE). This
framework automates desktop GUI through visual analysis, reasoning, and action generation, significantly
improving task success rates. Additionally, it introduces a novel benchmarking framework to evaluate a
model’s ability to complete complex tasks on desktop platforms using mouse and keyboard operations. This
advancement offers a new direction for future research in desktop GUI automation.

Reinforcement Learning has proven to be a valuable approach for training GUI agents across various plat-
forms, enabling them to learn from interactions with dynamic environment and improve their performance
over time. By leveraging RL techniques, these agents can adapt to real-world stochasticity, handle com-
plex decision-making tasks, and exhibit enhanced autonomy in phone, web, and desktop environment. The
works discussed in this section showcase the progress made in developing intelligent and versatile GUI agents
through RL, paving the way for enhanced automation and user interaction across diverse platforms.

5 Datasets and Benchmarks

The rapid evolution of mobile technology has transformed smartphones into indispensable tools for commu-
nication, productivity, and entertainment. This shift has spurred a growing interest in developing intelligent
agents capable of automating tasks and enhancing user interactions with mobile devices. These agents rely
on a deep understanding of GUIs and the ability to interpret and execute instructions effectively. How-
ever, the development of such agents presents significant challenges, including the need for diverse datasets,
standardized benchmarks, and robust evaluation methodologies.

Datasets serve as the backbone for training and testing phone GUI agents, offering rich annotations and
task diversity to enable these agents to learn and adapt to complex environment. Complementing these
datasets, benchmarks provide structured environment and evaluation metrics, allowing researchers to assess
agent performance in a consistent and reproducible manner. Together, datasets and benchmarks form the
foundation for advancing the capabilities of GUI-based agents.

This section delves into the key datasets and benchmarks that have shaped the field. Subsection 5.1
reviews notable datasets that provide the training data necessary for enabling agents to perform tasks such
as language grounding, UI navigation, and multimodal interaction. Subsection 5.2 discusses benchmarks
that facilitate the evaluation of agent performance, focusing on their contributions to reproducibility, gener-
alization, and scalability. Through these resources, researchers and developers gain the tools needed to push
the boundaries of intelligent phone automation, moving closer to creating agents that can seamlessly assist
users in their daily lives.

34



Under review as submission to TMLR

Table 6: Summary of datasets for phone GUI agents. "Actions" refers to the number of distinct actions avail-
able; "Demos" refers to the number of demonstration sequences; "Apps" refers to the number of applications
covered; "Instr." refers to the number of natural language instructions; "Avg. Steps" refers to the average
number of steps per task.

Dataset Date Screenshots UI Trees Actions Demos Apps Instr. Avg. Steps Contributions

Rico Deka et al. (2017) 2017.10 4 4 N/A 10,811 9,772 N/A N/A Large-scale
mobile dataset

PixelHelp Li et al. (2020) 2020.05 4 4 4 187 4 187 4.2 Grounding instruc
tions to actions

MoTIF Burns et al. (2021) 2021.04 4 4 6 4,707 125 276 4.5 Interactive visual
environment

UIBert Bai et al. (2021) 2021.07 4 4 N/A N/A N/A 16,660 1 Pre-training task

Meta-GUI Sun et al. (2022) 2022.05 7 4 7 4,684 11 1,125 5.3 Multi-turn dialogues

UGIF Venkatesh et al. (2022) 2022.11 4 4 8 523 12 523 5.3 Multilingual UI-
grounded instructions

AITW Rawles et al. (2024b) 2023.12 4 7 7 715,142 357 30,378 6.5 Large-scale interactions

AITZ Zhang et al. (2024c) 2024.03 4 7 7 18,643 70 2,504 7.5 Chain-of-Action-
Thought annotations

GUI Odyssey Lu et al. (2024a) 2024.06 7 4 9 7,735 201 7,735 15.4 Cross-app navigation

AndroidControl Li et al. (2024a) 2024.07 4 4 8 15,283 833 15,283 4.8 UI task scaling law

AMEX Chai et al. (2024) 2024.07 4 4 8 2,946 110 2,946 12.8 Multi-level detailed
annotations

MobileViews Gao et al. (2024) 2024.09 4 4 N/A N/A 21,053 N/A N/A Largest-scale
mobile dataset

5.1 Datasets

The development of phone automation and GUI-based agents has been significantly propelled by the avail-
ability of diverse and richly annotated datasets. These datasets provide the foundation for training and
evaluating models that can understand and interact with mobile user interfaces using natural language in-
structions. In this subsection, we review several key datasets, highlighting their unique contributions and
how they collectively advance the field. Table 6 summarizes these datasets, providing an overview of their
characteristics.

Rico Deka et al. (2017) is the largest dataset from the early stage of GUI automation development, providing
a solid foundation for understanding modern mobile interfaces and developing GUI agents. It includes various
types of data, such as UI screenshots, view hierarchies, and UI metadata, offering valuable references for
researchers and developers. Based on this, subsequent studies like RICO Semantics Sunkara et al. (2022),
GUI-WORLD Chen et al. (2024a), and MobileViews Gao et al. (2024) have emerged, expanding the types and
coverage of datasets and driving the growth of GUI agent research. Among them, MobileViews is currently
the largest GUI dataset.

Early efforts in dataset creation focused on mapping natural language instructions to UI actions. PixelHelp Li
et al. (2020) pioneered this area by introducing a problem of grounding natural language instructions to
mobile UI action sequences. It decomposed the task into action phrase extraction and grounding, enabling
models to interpret instructions like "Turn on flight mode" and execute corresponding UI actions. Building on
this, UGIF Venkatesh et al. (2022) extended the challenge to a multilingual and multimodal setting. UGIF
addressed cross-modal and cross-lingual retrieval and grounding, providing a dataset with instructions in
English and UI interactions across multiple languages, thus highlighting the complexities of multilingual UI
instruction following.

Addressing task feasibility and uncertainty, MoTIF Burns et al. (2021) introduced a dataset that includes
natural language commands which may not be satisfiable within the given UI context. By incorporating
feasibility annotations and follow-up questions, MoTIF encourages research into how agents can recognize
and handle infeasible tasks, enhancing robustness in interactive environment.

For advancing UI understanding through pre-training, UIBert Bai et al. (2021) proposed a Transformer-based
model that jointly learns from image and text representations of UIs. By introducing novel pre-training tasks

35

http://www.interactionmining.org/rico.html
http://www.interactionmining.org/rico.html
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/aburns4/MoTIF
https://github.com/aburns4/MoTIF
https://github.com/google-research-datasets/uibert
https://github.com/google-research-datasets/uibert
https://x-lance.github.io/META-GUI-Leaderboard/
https://x-lance.github.io/META-GUI-Leaderboard/
https://github.com/google-research/google-research/tree/master/ugif
https://github.com/google-research/google-research/tree/master/ugif
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/IMNearth/CoAT
https://github.com/IMNearth/CoAT
https://github.com/OpenGVLab/GUI-Odyssey
https://github.com/OpenGVLab/GUI-Odyssey
https://github.com/google-research/google-research/tree/master/android_control
https://github.com/google-research/google-research/tree/master/android_control
https://yuxiangchai.github.io/AMEX/
https://yuxiangchai.github.io/AMEX/
https://huggingface.co/datasets/mllmTeam/MobileViews
https://huggingface.co/datasets/mllmTeam/MobileViews


Under review as submission to TMLR

that leverage the correspondence between different UI features, UIBert demonstrated improvements across
multiple downstream UI tasks, setting a foundation for models that require a deep understanding of GUI
layouts and components.

In the realm of multimodal dialogues and interactions, Meta-GUI Sun et al. (2022) proposed a GUI-based
task-oriented dialogue system. This work collected dialogues paired with GUI operation traces, enabling
agents to perform tasks through conversational interactions and direct GUI manipulations. It bridges the
gap between language understanding and action execution within mobile applications.

Recognizing the need for large-scale datasets to train more generalizable agents, several works introduced
extensive datasets capturing a wide range of device interactions. Android In The Wild (AITW) Rawles
et al. (2024b) released a dataset containing hundreds of thousands of episodes with human demonstrations
of device interactions. It presents challenges where agents must infer actions from visual appearances and
handle precise gestures. Building upon AITW, Android In The Zoo (AITZ) Zhang et al. (2024c) provided
fine-grained semantic annotations using the Chain-of-Action-Thought (CoAT) paradigm, enhancing agents’
ability to reason and make decisions in GUI navigation tasks.

To address the complexities of cross-application navigation, GUI Odyssey Lu et al. (2024a) introduced a
dataset specifically designed for training and evaluating agents that navigate across multiple apps. By
covering diverse apps, tasks, and devices, GUI Odyssey enables the development of agents capable of handling
real-world scenarios that involve integrating multiple applications and transferring context between them.

Understanding how data scale affects agent performance, AndroidControl Li et al. (2024a) studied the impact
of training data size on computer control agents. By collecting demonstrations with both high-level and low-
level instructions across numerous apps, this work analyzed in-domain and out-of-domain generalization,
providing insights into the scalability of fine-tuning approaches for device control agents.

Focusing on detailed annotations to enhance agents’ understanding of UI elements, AMEX Chai et al.
(2024) introduced a comprehensive dataset with multi-level annotations. It includes GUI interactive element
grounding, functionality descriptions, and complex natural language instructions with stepwise GUI-action
chains. AMEX aims to align agents more closely with human users by providing fundamental knowledge and
understanding of the mobile GUI environment from multiple levels, thus facilitating the training of agents
with a deeper understanding of page layouts and UI element functionalities.

Finally, we should focus on methods for generating, collecting, and annotating high-quality datasets. Dream-
Struct Peng et al. (2024) leverages LLMs to generate data design concept descriptions based on target tasks.
It then produces HTML code with target labels, embedding semantic tags within. In the post-processing
phase, Bing Search API or DALLůE is used to replace placeholder graphic elements, resulting in the final
visual content. This research offers a dataset, DreamUI, which includes 9,774 labeled UI interfaces for refer-
ence. OS-Genesis Sun et al. (2024) utilizes the method of Reverse Task Synthesis to automatically generate
task instructions and corresponding action trajectories from interactions. It then integrates these with a
trajectory reward model to produce high-quality and diverse GUI agent data. Learn-by-interact Su et al.
(2025) uses LLMs to generate data through interaction with the environment and optimizes this data via
backward construction. These high-quality data generation techniques reduce the dependency on manually
labeled data, facilitating agents’ rapid adaptation to new environments and tasks. Ferret-UI 2 Li et al.
(2024f) uses the Set-of-Mark (SoM) visual prompt method to tag each UI component with bounding boxes
and numerical labels to assist GPT-4o in recognition. Subsequently, GPT-4o generates question-and-answer
task data related to UI components, covering multiple aspects of UI comprehension and thus producing high-
quality training data. FedMobileAgent Wang et al. (2025b) automatically collects data during users’ daily
mobile usage and employs locally deployed VLM to annotate user actions, thereby generating a high-quality
dataset. Furthermore, even in the absence of explicit ground truth annotations, we can infer user intentions
through their interactions within the GUI to generate corresponding UI annotations Berkovitch et al. (2024).
This approach opens up new directions for the collection and annotation of GUI data.

Collectively, these datasets represent significant strides in advancing phone automation and GUI-based agent
research. They address various challenges, from language grounding and task feasibility to large-scale device
control and cross-app navigation. By providing rich annotations and diverse scenarios, they enable the

36



Under review as submission to TMLR

training and evaluation of more capable, robust, and generalizable agents, moving closer to the goal of
intelligent and autonomous phone automation solutions.

5.2 Benchmarks

The development of mobile GUI-based agents is not only reliant on the availability of diverse datasets but
is also significantly influenced by the presence of robust benchmarks. These benchmarks offer standardized
environment, tasks, and evaluation metrics, which are essential for consistently and reproducibly assessing
the performance of agents. They enable researchers to compare different models and approaches under
identical conditions, thus facilitating collaborative progress. In this subsection, we will review some of the
notable benchmarks that have been introduced to evaluate phone GUI agents, highlighting their unique
features and contributions. A summary of these benchmarks is provided in Table 7, which allows for a
comparative understanding of their characteristics.

Table 7: Summary of benchmarks for phone GUI agents

Benchmark Date Tasks Task
Completion

Action
Quality

Resource
Efficiency

Task Under-
standing

Format
Compliance

Completion
Awareness Reward Eval

Accuracy
MobileEnv
Zhang et al. (2023b) 2023.05 74 4 7 7 7 7 7 4 7

AutoDroid
Wen et al. (2024a) 2023.09 N/A 4 4 7 7 7 7 7 7

AndroidArena
Xing et al. (2024) 2024.02 N/A 4 4 4 4 4 4 4 7

LlamaTouch
Zhang et al. (2024e) 2024.04 496 4 4 7 4 7 4 7 4

B-MoCA
Lee et al. (2024) 2024.04 131 4 7 4 7 7 7 7 7

AndroidWorld
Rawles et al. (2024a) 2024.05 116 4 7 7 7 7 7 4 7

MobileAgent
Bench Wang et al. (2024e) 2024.06 100 4 4 4 7 7 7 4 4

AUITestAgent
Hu et al. (2024) 2024.07 N/A 4 4 7 4 4 4 4 4

VisualAgent
Bench Liu et al. (2024c) 2024.08 119 4 7 4 7 7 7 7 7

AgentStudio
Zheng et al. (2024b) 2024.10 205 4 4 7 4 7 4 4 4

AndroidLab
Xu et al. (2024b) 2024.11 138 4 4 4 4 7 7 4 4

A3 Chai et al. (2025) 2025.01 201 4 7 7 7 7 7 4 4

AutoEval Sun et al. (2025a) 2025.03 93 4 7 7 7 7 7 4 4

LearnGUI
Liu et al. (2025a) 2025.04 2,353 4 7 7 7 7 7 4 7

5.2.1 Evaluation Pipelines

Early benchmarks in the field of phone GUI agents focused on creating controlled environment for training
and evaluating these agents. MobileEnv Zhang et al. (2023b), for example, introduced a universal platform
for the training and evaluation of mobile interactions. It provided an isolated and controllable setting, with
support for intermediate instructions and rewards. This emphasis on reliable evaluations and the ability to
more naturally reflect real-world usage scenarios was a significant step forward.

To address the challenges presented by the complexities of modern operating systems and their vast action
spaces, AndroidArena Xing et al. (2024) was developed. This benchmark was designed to evaluate large
language model (LLM) agents within a complex Android environment. It introduced scalable and semi-
automated methods for benchmark construction, with a particular focus on cross-application collaboration
and user constraints such as security concerns.

37

https://github.com/X-LANCE/Mobile-Env
https://github.com/X-LANCE/Mobile-Env
https://github.com/MobileLLM/AutoDroid
https://github.com/MobileLLM/AutoDroid
https://github.com/AndroidArenaAgent/AndroidArena
https://github.com/AndroidArenaAgent/AndroidArena
https://github.com/llamatouch/llamatouch
https://github.com/llamatouch/llamatouch
https://b-moca.github.io/
https://b-moca.github.io/
https://github.com/google-research/android_world
https://github.com/google-research/android_world
https://github.com/MobileAgentBench/mobile-agent-bench
https://github.com/MobileAgentBench/mobile-agent-bench
https://github.com/MobileAgentBench/mobile-agent-bench
https://github.com/bz-lab/AUITestAgent/
https://github.com/bz-lab/AUITestAgent/
https://github.com/THUDM/VisualAgentBench
https://github.com/THUDM/VisualAgentBench
https://github.com/THUDM/VisualAgentBench
https://github.com/ltzheng/agent-studio
https://github.com/ltzheng/agent-studio
https://github.com/THUDM/Android-Lab
https://github.com/THUDM/Android-Lab
https://yuxiangchai.github.io/Android-Agent-Arena/
https://yuxiangchai.github.io/Android-Agent-Arena/
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct


Under review as submission to TMLR

Current research primarily focuses on the overall task success rate and often overlooks the evaluation of
core capabilities such as GUI grounding of agents in real-world scenarios. AgentStudio Zheng et al. (2024b)
provides a comprehensive platform that spans the entire development cycle, from environment setup and
data collection to agent evaluation and visualization. AgentStudio also introduces three benchmark datasets:
GroundUI, IDMBench, and CriticBench. These datasets are designed to evaluate agents’ capabilities in GUI
grounding, learning from videos, and success detection, respectively. Additionally, it introduces a benchmark
suite comprising 205 real-world tasks to comprehensively evaluate agents’ practical capabilities from multiple
perspectives.

Recognizing the limitations in scalability and faithfulness of existing evaluation approaches, Llama-
Touch Zhang et al. (2024e) presented a novel testbed. This testbed enabled on-device mobile UI task
execution and provided a means for faithful and scalable task evaluation. It introduced fine-grained UI com-
ponent annotation and a multi-level application state matching algorithm. These features allowed for the
accurate detection of critical information in each screen, enhancing the evaluation’s accuracy and adaptability
to dynamic UI changes.

B-MoCA Lee et al. (2024) expanded the focus of benchmarking to include mobile device control agents across
diverse configurations. By incorporating a randomization feature that could change device configurations
such as UI layouts and language settings, B-MoCA was able to more effectively assess agents’ generalization
performance. It provided a realistic benchmark with 131 practical tasks, highlighting the need for agents to
handle a wide range of real-world scenarios.

To provide a dynamic and reproducible environment for autonomous agents, AndroidWorld Rawles et al.
(2024a) introduced an Android environment with 116 programmatic tasks across 20 real-world apps. This
benchmark emphasized the importance of ground-truth rewards and the ability to dynamically construct
tasks that were parameterized and expressed in natural language. This enabled testing on a much larger
and more realistic suite of tasks.

For the specific evaluation of mobile LLM agents, MobileAgentBench Wang et al. (2024e) proposed an
efficient and user-friendly benchmark. It addressed challenges in scalability and usability by offering 100
tasks across 10 open-source apps. The benchmark also simplified the extension process for developers and
ensured that it was fully autonomous and reliable.

In the domain of GUI function testing, AUITestAgent Hu et al. (2024) introduced the first automatic,
natural language-driven GUI testing tool for mobile apps. By decoupling interaction and verification into
separate modules and employing a multi-dimensional data extraction strategy, it enhanced the automation
and accuracy of GUI testing. The practical usability of this tool was demonstrated in real-world deployments.

AndroidLab Xu et al. (2024b) presented a systematic Android agent framework. This framework included
an operation environment with different modalities and a reproducible benchmark. Supporting both LLMs
and large multimodal models (LMMs), it provided a unified platform for training and evaluating agents.
Additionally, it came with an Android Instruction dataset that significantly improved the performance of
open-source models.

LearnGUI Liu et al. (2025a) offers a novel approach by introducing the first comprehensive benchmark
specifically designed for demonstration-based learning in mobile GUI agents. Rather than pursuing universal
generalization through larger datasets, it focuses on improving agent performance in unseen scenarios through
human demonstrations. The benchmark comprises 2,252 offline tasks and 101 online tasks with high-quality
human demonstrations.

Finally, to evaluate the practical performance of mobile GUI agents in complex real-world environments,
VisualAgentBench Liu et al. (2024c) constructs a series of cross-domain tasks. This benchmark examines the
agents’ abilities in dynamic interaction and decision-making and provides abundant training trajectory data
to support further performance improvement via behavior cloning. A3 (Android Agent Arena) Chai et al.
(2025) integrates 201 tasks from 21 widely-used third-party applications, covering common real-world user
scenarios. It supports an extended action space compatible with any dataset annotation style. Additionally,
the use of business-level LLMs automates task evaluation, reducing the need for manual assessment and
enhancing scalability.

38



Under review as submission to TMLR

AutoEval Sun et al. (2025a) addresses the practicality and scalability challenges in mobile agent evaluation by
introducing a framework that requires no manual effort to define task reward signals or implement evaluation
codes. It employs a Structured Substate Representation to describe UI state changes during agent execution
and utilizes a Judge System that can autonomously evaluate agent performance with over 94% accuracy
compared to human verification.

Collectively, these benchmarks have made substantial contributions to the advancement of phone GUI agents.
They have achieved this by providing diverse environment, tasks, and evaluation methodologies. They have
addressed various challenges, including scalability, reproducibility, generalization across configurations, and
the integration of advanced models like LLMs and LMMs. By facilitating rigorous testing and comparison,
they have played a crucial role in driving the development of more capable and robust phone GUI agents.

5.2.2 Evaluation Metrics

Evaluation metrics are crucial for measuring the performance of phone GUI agents, providing quantitative
indicators of their effectiveness, efficiency, and reliability. This section categorizes and explains the various
metrics used across different benchmarks based on their primary functions.

Task Completion Metrics. Task Completion Metrics assess how effectively an agent finishes assigned tasks.
Task Completion Rate indicates the proportion of successfully finished tasks, with AndroidWorld Rawles
et al. (2024a) exemplifying its use for real-device assessments. Sub-Goal Success Rate further refines this
by examining each sub-goal within a larger task, as employed by AndroidLab Xu et al. (2024b), making
it particularly relevant for complex tasks that require segmentation. End-to-end Task Completion Rate,
used by LlamaTouch Zhang et al. (2024e), offers a holistic measure of whether an agent can see an entire
multi-step task through to completion without interruption.

Action Execution Quality Metrics. These metrics evaluate the agents precision and correctness when per-
forming specific actions. Action Accuracy, adopted by AUITestAgent Hu et al. (2024) and AutoDroid Zhang
& Zhang (2023), compares each executed action to the expected one. Correct Step measures the fraction
of accurate steps in an action sequence, whereas Correct Trace quantifies the alignment of the entire action
trajectory with the ground truth. Operation Logic checks if the agent follows logical procedures to meet task
objectives, as AndroidArena Xing et al. (2024) demonstrates. Reasoning Accuracy, highlighted in AUITestA-
gent Hu et al. (2024), gauges how well the agent logically interprets and responds to task requirements.

Resource Utilization and Efficiency Metrics. These indicators measure how efficiently an agent handles
system resources and minimizes redundant operations. Resource Consumption, tracked by AUITestAgent Hu
et al. (2024) via Completion Tokens and Prompt Tokens, reveals how much computational cost is incurred.
Step Efficiency, applied by AUITestAgent and MobileAgentBench Wang et al. (2024e), compares actual steps
to an optimal lower bound, while Reversed Redundancy Ratio, used by AndroidArena Xing et al. (2024) and
AndroidLab Xu et al. (2024b), evaluates unnecessary detours in the action path.

Task Understanding and Reasoning Metrics. These metrics concentrate on the agents comprehen-
sion and analytical skills. Oracle Accuracy and Point Accuracy, used by AUITestAgent Hu et al. (2024),
assess how well the agent interprets task instructions and verification points. Reasoning Accuracy indi-
cates the correctness of the agents logical deductions during execution, and Nuggets Mining, employed by
AndroidArena Xing et al. (2024), measures the ability to extract key contextual information from the UI
environment.

Format and Compliance Metrics. These metrics verify whether the agent operates within expected
format constraints. Invalid Format and Invalid Action, for example, are tracked in AndroidArena Xing et al.
(2024) to confirm that an agents outputs adhere to predefined structures and remain within permissible
action ranges.

Completion Awareness and Reflection Metrics. Such metrics evaluate the agents recognition of
task boundaries and its capacity to learn from prior steps. Awareness of Completion, explored in An-
droidArena Xing et al. (2024), ensures the agent terminates at the correct time. Reflexion@K measures
adaptive learning by examining how effectively the agent refines its performance over multiple iterations.

39



Under review as submission to TMLR

Evaluation Accuracy and Reliability Metrics. These indicators measure the consistency and reliability
of the evaluation process. Accuracy, as used in LlamaTouch Zhang et al. (2024e), validates alignment between
the evaluation approach and manual verification, ensuring confidence in performance comparisons across
agents.

Reward and Overall Performance Metrics. These metrics combine various performance facets into
aggregated scores. Task Reward, employed by AndroidArena Xing et al. (2024), provides a single effectiveness
measure encompassing several factors. Average Reward, used in MobileEnv Zhang et al. (2023b), further
reflects consistent performance across multiple tasks, indicating the agents stability and reliability.

These evaluation metrics together provide a comprehensive framework for assessing various dimensions of
phone GUI agents. They cover aspects such as effectiveness, efficiency, reliability, and the ability to adapt
and learn. By using these metrics, benchmarks can objectively compare the performance of different agents
and systematically measure improvements. This enables researchers to identify strengths and weaknesses in
different agent designs and make informed decisions about future development directions.

6 Challenges and Future Directions

Integrating LLMs into phone automation has propelled significant advancements but also introduced numer-
ous challenges. Overcoming these challenges is essential for fully unlocking the potential of intelligent phone
GUI agents. This section outlines key issues and possible directions for future work, encompassing dataset de-
velopment, scaling fine-tuning, lightweight on-device deployment, user-centric adaptation, improving model
capabilities, standardizing benchmarks, and ensuring reliability and security.

Dataset Development and Fine-Tuning Scalability. The performance of LLMs in phone automation
heavily depends on datasets that capture diverse, real-world scenarios. Existing datasets often lack the
breadth needed for comprehensive coverage. Future efforts should focus on developing large-scale, annotated
datasets covering a wide range of applications, user behaviors, languages, and device types Rawles et al.
(2024b); Zhang et al. (2024c). Incorporating multimodal inputse.g., screenshots, UI trees, and natural
language instructionscan help models better understand complex user interfaces. In addition, VideoGUI Lin
et al. (2024a) proposes using instructional videos to demonstrate complex visual tasks to models, helping them
to learn how to transition from an initial state to a target state. Video datasets are expected to evolve into a
new form for future GUI datasets. However, scaling fine-tuning to achieve robust out-of-domain performance
remains a challenge. As shown by AndroidControl Li et al. (2024a), obtaining reliable results for high-level
tasks outside the training domain may require one to two orders of magnitude more data than currently
feasible. Fine-tuning alone may not suffice. Future directions should explore hybrid training methodologies,
unsupervised learning, transfer learning, and auxiliary tasks to improve generalization without demanding
prohibitively large datasets.

Lightweight and Efficient On-Device Deployment. Deploying LLMs on mobile devices confronts
substantial computational and memory constraints. Current hardware often struggles to support large
models with minimal latency and power consumption. Approaches such as model pruning, quantization, and
efficient transformer architectures can address these constraints Ding (2024). Recent innovations demonstrate
promising progress. Octopus v2 Chen & Li (2024) shows that a 2-billion parameter on-device model can
outpace GPT-4 in accuracy and latency, while Lightweight Neural App Control Christianos et al. (2024)
achieves substantial speed and accuracy improvements by distributing tasks efficiently. AppVLM Papoudakis
et al. (2025), a lightweight vision-language model, matches GPT-4o in online task completion success rate
while being up to ten times faster, making it practical for real-world deployment. Moreover, specialized
hardware accelerators and edge computing solutions can further reduce dependency on the cloud, enhance
privacy, and improve responsiveness Wang et al. (2024b). Consider leveraging the powerful code generation
capabilities of small language models (SLMs) to transform GUI task automation into a code generation
problem. This approach fully utilizes the strengths of SLMs, significantly enhancing the efficiency and
performance of GUI agents on mobile devices Wen et al. (2024b); Wang et al. (2024a).

User-Centric Adaptation: Interaction and Personalization. Current agents often rely on extensive
human intervention to correct errors or guide task execution, undermining seamless user experiences. En-

40



Under review as submission to TMLR

hancing the agent’s ability to understand user intent and reducing manual adjustments is crucial. Future
research should improve natural language understanding, incorporate voice commands and gestures, and
enable agents to learn continuously from user feedback Lee et al. (2023); Wang et al. (2024c;b); Huq et al..
Personalization is equally important. One-size-fits-all solutions are insufficient given users’ diverse prefer-
ences and usage patterns. Agents should quickly adapt to new tasks and user-specific contexts without costly
retraining. Integrating manual teaching, zero-shot learning, and few-shot learning can help agents generalize
from minimal user input Sodhi et al. (2024); Lee et al. (2023); Song et al. (2024b); Li et al. (2024b), making
them more flexible and universally applicable. For example, AdaptAgent Verma et al. (2024) is capable
of adapting to entirely new domains with as few as two human demonstrations. This not only proves the
efficiency of limited human input, but also paves a new path for the development of multi-modal agents with
broad adaptability. Similarly, LearnAct Liu et al. (2025a) demonstrates the power of human demonstrations
in mobile GUI agents, using a multi-agent framework to automatically extract knowledge from demonstra-
tions to enhance task completion. It establishes demonstration-based learning as a promising direction for
creating more personalized and adaptive mobile agents.

Advancing Model Capabilities: Grounding, Reasoning, and Beyond. Accurately grounding lan-
guage instructions in specific UI elements is a major hurdle. Although LLMs excel at language understanding,
mapping instructions to precise UI interactions requires improved multimodal grounding. Future work should
integrate advanced vision models, large-scale annotations, and more effective fusion techniques Gou et al.
(2024); Cheng et al. (2024); You et al. (2024); Zhang et al. (2024d). Beyond grounding, improving reasoning,
long-horizon planning, and adaptability in complex scenarios remains essential. Agents must handle intricate
workflows, interpret ambiguous instructions, and dynamically adjust strategies as contexts evolve. Achieving
these goals will likely involve new architectures, memory mechanisms, and inference algorithms that extend
beyond current LLM capabilities.

Standardizing Evaluation Benchmarks. Objective and reproducible benchmarks are imperative for
comparing model performance. Existing benchmarks often target narrow tasks or limited domains, compli-
cating comprehensive evaluations. Unified benchmarks covering diverse tasks, app types, and interaction
modalities would foster fair comparisons and encourage more versatile and robust solutions Wang et al.
(2024e); Xu et al. (2024b); Lu et al. (2024a); Rawles et al. (2024b). These benchmarks should provide stan-
dardized metrics, scenarios, and evaluation protocols, enabling researchers to identify strengths, weaknesses,
and paths for improvement with greater clarity.

Ensuring Reliability and Security. As agents gain access to sensitive data and perform critical tasks,
reliability and security are paramount. Current systems may be susceptible to adversarial attacks, data
breaches, and unintended actions Wu et al. (2024b). At the same time, LLM agents are also susceptible
to backdoor attacks Yang et al. (2024a); Wang et al. (2024i). Recent research like AEIA-MN Chen et al.
(2025) has demonstrated that multimodal LLM-powered mobile agents are highly vulnerable to Active En-
vironmental Injection Attacks, where attackers manipulate environmental elements (e.g., notifications) to
mislead agents, achieving attack success rates up to 93% in benchmark tests. Robust security protocols,
error-handling techniques, and privacy-preserving methods are needed to protect user information and main-
tain user trust Ma et al. (2024); Bai et al. (2024). Employing techniques such as data localization, encrypted
communication, and anonymization can effectively protect user privacy while collecting data Wang et al.
(2025b). FedMABench Wang et al. (2025c) addresses the challenges of distributed training using federated
learning, providing a comprehensive benchmark for evaluating mobile agents across heterogeneous environ-
ments. Continuous monitoring and validation processes can detect vulnerabilities and mitigate risks in
real-time Lee et al. (2023). Ensuring that agents behave predictably, respect user privacy, and maintain
consistent performance under challenging conditions will be crucial for widespread adoption and long-term
sustainability.

Addressing these challenges involves concerted efforts in data collection, model training strategies, hardware
optimization, user-centric adaptation, improved grounding and reasoning, standardized benchmarks, and
strong security measures. By advancing these areas, the next generation of LLM-powered phone GUI agents
can become more efficient, trustworthy, and capable, ultimately delivering seamless, personalized, and secure
experiences for users in dynamic mobile environment.

41



Under review as submission to TMLR

7 Conclusion

In this paper, we have presented a comprehensive survey of recent developments in LLM-driven phone
automation technologies, illustrating how large language models can catalyze a paradigm shift from static
script-based approaches to dynamic, intelligent systems capable of perceiving, reasoning about, and operating
on mobile GUIs. We examined a variety of frameworks, including single-agent architectures, multi-agent
collaborations, and plan-then-act pipelines, demonstrating how each approach addresses specific challenges
in task complexity, adaptability, and scalability. In parallel, we analyzed both prompt engineering and
training-based techniques (such as supervised fine-tuning and reinforcement learning), underscoring their
roles in bridging user intent and device action.

Beyond clarifying these technical foundations, we also spotlighted emerging research directions and pro-
vided a critical appraisal of persistent obstacles. These include ensuring robust dataset coverage, optimizing
LLM deployments under resource constraints, meeting real-world demand for user-centric personalization,
and maintaining security and reliability in sensitive applications. We further emphasized the need for stan-
dardized benchmarks, proposing consistent metrics and evaluation protocols to fairly compare and advance
competing designs.

Looking ahead, ongoing refinements in model architectures, on-device inference strategies, and multimodal
data integration point to an exciting expansion of what LLM-based phone GUI agents can achieve. We
anticipate that future endeavors will see the convergence of broader AI paradigmssuch as embodied AI and
AGIinto phone automation, thereby enabling agents to handle increasingly complex tasks with minimal
human oversight. Overall, this survey not only unifies existing strands of research but also offers a roadmap
for leveraging the full potential of large language models in phone GUI automation, guiding researchers
toward robust, user-friendly, and secure solutions that can adapt to the evolving needs of mobile ecosystems.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023. 1, 2, 5, 20, 21, 24, 25

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A composi-
tional generalist-specialist framework for computer use agents. arXiv preprint arXiv:2504.00906, 2025. 3,
19

Simone Agostinelli, Andrea Marrella, and Massimo Mecella. Research challenges for intelligent robotic
process automation. In Business Process Management Workshops: BPM 2019 International Workshops,
Vienna, Austria, September 1–6, 2019, Revised Selected Papers 17, pp. 12–18. Springer, 2019. 6

Simone Agostinelli, Marco Lupia, Andrea Marrella, and Massimo Mecella. Reactive synthesis of software
robots in rpa from user interface logs. Computers in Industry, 142:103721, 2022. 6

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive survey
and open problems. Artificial Intelligence, 258:66–95, 2018. 1

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine, and Atif M Memon.
Using gui ripping for automated testing of android applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pp. 258–261, 2012. 5

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and Atif M Memon.
Mobiguitar: Automated model-based testing of mobile apps. IEEE software, 32(5):53–59, 2014. 5

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. Power to the people: The role
of humans in interactive machine learning. AI magazine, 35(4):105–120, 2014. 1

Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic, and Rudi Studer. A
rule-based language for complex event processing and reasoning. In Web Reasoning and Rule Systems:

42



Under review as submission to TMLR

Fourth International Conference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010. Proceedings
4, pp. 42–57. Springer, 2010. 7

GEM Anscombe. Intention, 2000. 1

Yauhen Leanidavich Arnatovich and Lipo Wang. A systematic literature review of automated techniques for
functional gui testing of mobile applications. arXiv preprint arXiv:1812.11470, 2018. 1, 4

Muhammad Asadullah and Ahsan Raza. An overview of home automation systems. In 2016 2nd international
conference on robotics and artificial intelligence (ICRAI), pp. 27–31. IEEE, 2016. 6

Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for systematic testing of android
apps. In Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming
systems languages & applications, pp. 641–660, 2013. 1, 5

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Victor
Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language model for ui
and infographics understanding. arXiv preprint arXiv:2402.04615, 2024. 3, 9, 15, 26, 27, 29

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, et al. Uibert:
Learning generic multimodal representations for ui understanding. arXiv preprint arXiv:2107.13731, 2021.
3, 13, 35

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896, 2024. 3, 21, 32, 41

Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, and Aviral Kumar. Digi-q: Learning q-value functions for
training device-control agents. arXiv preprint arXiv:2502.15760, 2025. 3, 32, 33

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading,
and beyond. arXiv preprint arXiv:2308.12966, 2023. 24

Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon. Graphical user interface (gui) testing: Sys-
tematic mapping and repository. Information and Software Technology, 55(10):1679–1694, 2013. 7

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and Sağnak
Taşırlar. Fuyu-8b: A multimodal architecture for ai agents, 2023. 1

Omri Berkovitch, Sapir Caduri, Noam Kahlon, Anatoly Efros, Avi Caciularu, and Ido Dagan. Identifying
user goals from ui trajectories. arXiv preprint arXiv:2406.14314, 2024. 36

William E Bishop, Alice Li, Christopher Rawles, and Oriana Riva. Latent state estimation helps ui agents
to reason. arXiv preprint arXiv:2405.11120, 2024. 16

Daniil A Boiko, Robert MacKnight, and Gabe Gomes. Emergent autonomous scientific research capabilities
of large language models. arXiv preprint arXiv:2304.05332, 2023. 1

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin
Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating multi-modal os agents
at scale. arXiv preprint arXiv:2409.08264, 2024. 14

Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian Schaub. Exploring end user
programming needs in home automation. ACM Transactions on Computer-Human Interaction (TOCHI),
24(2):1–35, 2017. 7

Robert Bridle and Eric McCreath. Inducing shortcuts on a mobile phone interface. In Proceedings of the
11th international conference on Intelligent user interfaces, pp. 327–329, 2006. 6

43



Under review as submission to TMLR

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020. 9

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020. 1, 2, 5, 21

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023. 1

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A Plummer. Mobile
app tasks with iterative feedback (motif): Addressing task feasibility in interactive visual environments.
arXiv preprint arXiv:2104.08560, 2021. 3, 13, 35

Andrea Burns, Kate Saenko, and Bryan A Plummer. Tell me what’s next: Textual foresight for generic ui
representations. arXiv preprint arXiv:2406.07822, 2024. 3, 26, 29

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren, and
Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. arXiv preprint
arXiv:2407.17490, 2024. 3, 35, 36

Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guozhi Wang, Shuai Ren, Siyuan Huang, and Hongsheng
Li. A3: Android agent arena for mobile gui agents. arXiv preprint arXiv:2501.01149, 2025. 3, 37, 38

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024. 9

Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. From ui design image to gui
skeleton: a neural machine translator to bootstrap mobile gui implementation. In Proceedings of the 40th
International Conference on Software Engineering, pp. 665–676, 2018. 7

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong Wang,
Huichi Zhou, Yiqiang Li, et al. Gui-world: A dataset for gui-oriented multimodal llm-based agents. arXiv
preprint arXiv:2406.10819, 2024a. 3, 35

Fei Chen, Wei Ren, et al. On the control of multi-agent systems: A survey. Foundations and Trends® in
Systems and Control, 6(4):339–499, 2019. 17

Qi Chen, Dileepa Pitawela, Chongyang Zhao, Gengze Zhou, Hsiang-Ting Chen, and Qi Wu. Webvln: Vision-
and-language navigation on websites. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 1165–1173, 2024b. 3, 26, 29

Wei Chen and Zhiyuan Li. Octopus v2: On-device language model for super agent. arXiv preprint
arXiv:2404.01744, 2024. 40

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, Yi-
Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2023. 17

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Dis-
entangling computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588,
2022. 21, 22

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong
Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile gui agents. arXiv
preprint arXiv:2406.11317, 2024c. 3, 9, 21, 30

44



Under review as submission to TMLR

Yurun Chen, Xueyu Hu, Keting Yin, Juncheng Li, and Shengyu Zhang. Aeia-mn: Evaluating the robustness
of multimodal llm-powered mobile agents against active environmental injection attacks. arXiv preprint
arXiv:2502.13053, 2025. 41

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu,
Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal
models with open-source suites. arXiv preprint arXiv:2404.16821, 2024d. 24

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic
visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24185–24198, 2024e. 24

Zhiyuan Chen, Yaning Li, and Kairui Wang. Optimizing reasoning abilities in large language models: A
step-by-step approach. Authorea Preprints, 2024f. 16

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick:
Harnessing gui grounding for advanced visual gui agents. arXiv preprint arXiv:2401.10935, 2024. 3, 9, 21,
30, 41

Pengzhou Cheng, Zheng Wu, Zongru Wu, Aston Zhang, Zhuosheng Zhang, and Gongshen Liu. Os-kairos:
Adaptive interaction for mllm-powered gui agents. arXiv preprint arXiv:2503.16465, 2025. 3

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep rein-
forcement learning from human preferences. Advances in neural information processing systems, 30, 2017.
1

Filippos Christianos, Georgios Papoudakis, Thomas Coste, Jianye Hao, Jun Wang, and Kun Shao.
Lightweight neural app control. arXiv preprint arXiv:2410.17883, 2024. 3, 21, 40

Janine Clarke, Judith Proudfoot, Alexis Whitton, Mary-Rose Birch, Megan Boyd, Gordon Parker, Vijaya
Manicavasagar, Dusan Hadzi-Pavlovic, Andrea Fogarty, et al. Therapeutic alliance with a fully automated
mobile phone and web-based intervention: secondary analysis of a randomized controlled trial. JMIR
mental health, 3(1):e4656, 2016. 6

Benjamin R Cowan, Nadia Pantidi, David Coyle, Kellie Morrissey, Peter Clarke, Sara Al-Shehri, David
Earley, and Natasha Bandeira. " what can i help you with?" infrequent users’ experiences of intelligent
personal assistants. In Proceedings of the 19th international conference on human-computer interaction
with mobile devices and services, pp. 1–12, 2017. 7

Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing Yang, Rui Tan, Mo Li, and Lili Qiu. Advancing
mobile gui agents: A verifier-driven approach to practical deployment. arXiv preprint arXiv:2503.15937,
2025. 3, 26, 27

Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun Ahuja, Sheila Babayan, Felix Hill, and Rob
Fergus. Collaborating with language models for embodied reasoning. arXiv preprint arXiv:2302.00763,
2023. 2

Christian Degott, Nataniel P Borges Jr, and Andreas Zeller. Learning user interface element interactions.
In Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis, pp.
296–306, 2019. 1, 5

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols, and
Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design applications. In Proceedings
of the 30th annual ACM symposium on user interface software and technology, pp. 845–854, 2017. 3, 35

Biniam Fisseha Demissie, Yan Naing Tun, Lwin Khin Shar, and Mariano Ceccato. Vlm-fuzz: Vision language
model assisted recursive depth-first search exploration for effective ui testing of android apps. arXiv
preprint arXiv:2504.11675, 2025. 3

45



Under review as submission to TMLR

Yang Deng, Xuan Zhang, Wenxuan Zhang, Yifei Yuan, See-Kiong Ng, and Tat-Seng Chua. On the multi-turn
instruction following for conversational web agents. arXiv preprint arXiv:2402.15057, 2024. 15

Daniel C Dennett. Précis of the intentional stance. Behavioral and brain sciences, 11(3):495–505, 1988. 1

Parth S Deshmukh, Saroj S Date, Parikshit N Mahalle, and Janki Barot. Automated gui testing for enhancing
user experience (ux): A survey of the state of the art. In International Conference on ICT for Sustainable
Development, pp. 619–628. Springer, 2023. 1, 4

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018. 9

Tinghe Ding. Mobileagent: enhancing mobile control via human-machine interaction and sop integration.
arXiv preprint arXiv:2401.04124, 2024. 3, 30, 31, 40

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. ACM Trans-
actions on Software Engineering and Methodology, 33(7):1–38, 2024. 2

Ali Dorri, Salil S Kanhere, and Raja Jurdak. Multi-agent systems: A survey. Ieee Access, 6:28573–28593,
2018. 17

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu, Yehua Yang,
Qingqing Dang, et al. Pp-ocr: A practical ultra lightweight ocr system. arXiv preprint arXiv:2009.09941,
2020. 25

Peitong Duan, Chin-Yi Cheng, Gang Li, Bjoern Hartmann, and Yang Li. Uicrit: Enhancing automated
design evaluation with a ui critique dataset. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology, pp. 1–17, 2024. 16

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-learning. In
Learning for dynamics and control, pp. 486–489. PMLR, 2020. 5

Yue Fan, Lei Ding, Ching-Chen Kuo, Shan Jiang, Yang Zhao, Xinze Guan, Jie Yang, Yi Zhang, and Xin Eric
Wang. Read anywhere pointed: Layout-aware gui screen reading with tree-of-lens grounding, 2024. URL
https://arxiv.org/abs/2406.19263. 3, 14

Yue Fan, Handong Zhao, Ruiyi Zhang, Yu Shen, Xin Eric Wang, and Gang Wu. Gui-bee: Align gui action
grounding to novel environments via autonomous exploration. arXiv preprint arXiv:2501.13896, 2025. 26,
28

Moghis Fereidouni, Adib Mosharrof, and A.b. Siddique. Grounded language agent for product search via
intelligent web interactions. In Proceedings of the 1st Workshop on Customizable NLP: Progress and
Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U), pp.
6375. Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.customnlp4u-1.7. URL
http://dx.doi.org/10.18653/v1/2024.customnlp4u-1.7. 32, 34

Jingwen Fu, Xiaoyi Zhang, Yuwang Wang, Wenjun Zeng, and Nanning Zheng. Understanding mobile gui:
From pixel-words to screen-sentences. Neurocomputing, 601:128200, 2024. 7

Hiroki Furuta, Yutaka Matsuo, Aleksandra Faust, and Izzeddin Gur. Exposing limitations of language model
agents in sequential-task compositions on the web. In ICLR 2024 Workshop on Large Language Model
(LLM) Agents, 2024. 2

Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah Goodman. Understanding social
reasoning in language models with language models. Advances in Neural Information Processing Systems,
36, 2024. 16

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen Zhang,
Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical user interface automation.
arXiv preprint arXiv:2312.13108, 2023. 3, 34

46

https://arxiv.org/abs/2406.19263
http://dx.doi.org/10.18653/v1/2024.customnlp4u-1.7


Under review as submission to TMLR

Jianfeng Gao, Michel Galley, and Lihong Li. Neural approaches to conversational ai. In The 41st international
ACM SIGIR conference on research & development in information retrieval, pp. 1371–1374, 2018. 1

Longxi Gao, Li Zhang, Shihe Wang, Shangguang Wang, Yuanchun Li, and Mengwei Xu. Mobileviews: A
large-scale mobile gui dataset. arXiv preprint arXiv:2409.14337, 2024. 3, 35

Yingqiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu, Juntao Tan, and Yongfeng Zhang. Llm as os, agents
as apps: Envisioning aios, agents and the aios-agent ecosystem. arXiv e-prints, pp. arXiv–2312, 2023. 15

Ben Goertzel. Artificial general intelligence: concept, state of the art, and future prospects. Journal of
Artificial General Intelligence, 5(1):1, 2014. 2

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng, Song-Chun
Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent gaming interaction. arXiv preprint
arXiv:2309.09971, 2023. 17

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
Navigating the digital world as humans do: Universal visual grounding for gui agents. arXiv preprint
arXiv:2410.05243, 2024. 3, 9, 11, 20, 41

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang, Feiyue Ni, Ruihua Song, Longfei Li, Jinjie Gu,
and Chenyi Zhuang. Intelligent virtual assistants with llm-based process automation. arXiv preprint
arXiv:2312.06677, 2023. 3, 14

Tiago Guerreiro, Ricardo Gamboa, and Joaquim Jorge. Mnemonical body shortcuts: improving mobile
interaction. In Proceedings of the 15th European conference on Cognitive ergonomics: the ergonomics of
cool interaction, pp. 1–8, 2008. 6

Unmesh Gundecha. Selenium Testing Tools Cookbook. Packt Publishing Ltd, 2015. 17

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest, and
Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. arXiv
preprint arXiv:2402.01680, 2024. 1, 2

Thilo Hagendorff. Machine psychology: Investigating emergent capabilities and behavior in large language
models using psychological methods. arXiv preprint arXiv:2303.13988, 1, 2023. 9

Sabrina Haque and Christoph Csallner. Infering alt-text for ui icons with large language models during app
development. arXiv preprint arXiv:2409.18060, 2024. 3, 30, 31

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models. arXiv preprint
arXiv:2401.13919, 2024. 14

Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence Duchien. Tracking the
software quality of android applications along their evolution (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 236–247. IEEE, 2015. 5

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent collaborative
framework. arXiv preprint arXiv:2308.00352, 2023. 1, 2

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14281–14290, 2024. 2, 3, 14, 15,
26, 27

Jakub Hoscilowicz, Bartosz Maj, Bartosz Kozakiewicz, Oleksii Tymoshchuk, and Artur Janicki. Clickagent:
Enhancing ui location capabilities of autonomous agents. arXiv preprint arXiv:2410.11872, 2024. 3, 11,
21

47



Under review as submission to TMLR

Yongxiang Hu, Xuan Wang, Yingchuan Wang, Yu Zhang, Shiyu Guo, Chaoyi Chen, Xin Wang, and
Yangfan Zhou. Auitestagent: Automatic requirements oriented gui function testing. arXiv preprint
arXiv:2407.09018, 2024. 3, 37, 38, 39

Tian Huang, Chun Yu, Weinan Shi, Zijian Peng, David Yang, Weiqi Sun, and Yuanchun Shi. Promptrpa:
Generating robotic process automation on smartphones from textual prompts. arXiv preprint
arXiv:2404.02475, 2024a. 3, 19, 22

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716, 2024b. 1

Faria Huq, Jeffrey P Bigham, and Nikolas Martelaro. Whats important here?: Opportunities and challenges
of llm in retrieving information from web interface. R0-FoMo: Robustness of Few-shot and Zero-shot
Learning in Large Foundation Models. 41

Becky Inkster, Shubhankar Sarda, Vinod Subramanian, et al. An empathy-driven, conversational artificial
intelligence agent (wysa) for digital mental well-being: real-world data evaluation mixed-methods study.
JMIR mHealth and uHealth, 6(11):e12106, 2018. 1

Casper S Jensen, Mukul R Prasad, and Anders Møller. Automated testing with targeted event sequence
generation. In Proceedings of the 2013 International Symposium on Software Testing and Analysis, pp.
67–77, 2013. 5

Wenjia Jiang, Yangyang Zhuang, Chenxi Song, Xu Yang, Joey Tianyi Zhou, and Chi Zhang. Appagentx:
Evolving gui agents as proficient smartphone users. arXiv preprint arXiv:2503.02268, 2025. 3, 16

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to llm-based agents
for software engineering: A survey of current, challenges and future. arXiv preprint arXiv:2408.02479, 2024.
1

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal
of artificial intelligence research, 4:237–285, 1996. 32

Ning Kang, Bharat Singh, Zubair Afzal, Erik M van Mulligen, and Jan A Kors. Using rule-based natural
language processing to improve disease normalization in biomedical text. Journal of the American Medical
Informatics Association, 20(5):876–881, 2013. 7

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020. 9

Nikitas Karanikolas, Eirini Manga, Nikoletta Samaridi, Eleni Tousidou, and Michael Vassilakopoulos. Large
language models versus natural language understanding and generation. In Proceedings of the 27th Pan-
Hellenic Conference on Progress in Computing and Informatics, pp. 278–290, 2023. 7, 9

Courtney Kennedy and Stephen E Everett. Use of cognitive shortcuts in landline and cell phone surveys.
Public Opinion Quarterly, 75(2):336–348, 2011. 6

Veton Kepuska and Gamal Bohouta. Next-generation of virtual personal assistants (microsoft cortana, apple
siri, amazon alexa and google home). In 2018 IEEE 8th annual computing and communication workshop
and conference (CCWC), pp. 99–103. IEEE, 2018. 7

B Kirubakaran and V Karthikeyani. Mobile application testingchallenges and solution approach through au-
tomation. In 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering,
pp. 79–84. IEEE, 2013. 5

Ravi Kishore Kodali and Kopulwar Shishir Mahesh. Low cost implementation of smart home automation. In
2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
pp. 461–466. IEEE, 2017. 6

48



Under review as submission to TMLR

Ravi Kishore Kodali, Sasweth C Rajanarayanan, Lakshmi Boppana, Samradh Sharma, and Ankit Kumar.
Low cost smart home automation system using smart phone. In 2019 IEEE R10 humanitarian technology
conference (R10-HTC)(47129), pp. 120–125. IEEE, 2019. 6

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents
on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024a. 14, 24

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language model
agents. arXiv preprint arXiv:2407.01476, 2024b. 16

Jürgen Köhl, Rogier Kolnaar, and Willem J Ravensberg. Mode of action of microbial biological control
agents against plant diseases: relevance beyond efficacy. Frontiers in plant science, 10:845, 2019. 1

Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki. Outfox: Llm-generated essay detection through
in-context learning with adversarially generated examples. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 21258–21266, 2024. 9

Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein. Automated testing of
android apps: A systematic literature review. IEEE Transactions on Reliability, 68(1):45–66, 2018. 5

Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tanriverdi, and Yunus Donmez.
Qbe: Qlearning-based exploration of android applications. In 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST), pp. 105–115. IEEE, 2018. 1, 5

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning:
A survey. Information Fusion, 85:1–22, 2022. 5

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-based web navigating agent.
In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
5295–5306, 2024. 3, 32, 33

Chris Lamberton, Damiano Brigo, and Dave Hoy. Impact of robotics, rpa and ai on the insurance industry:
challenges and opportunities. Journal of Financial Perspectives, 4(1), 2017. 6

Huy Viet Le, Sven Mayer, Maximilian Weiß, Jonas Vogelsang, Henrike Weingärtner, and Niels Henze. Short-
cut gestures for mobile text editing on fully touch sensitive smartphones. ACM Transactions on Computer-
Human Interaction (TOCHI), 27(5):1–38, 2020. 7

Juyong Lee, Taywon Min, Minyong An, Dongyoon Hahm, Haeone Lee, Changyeon Kim, and Kimin Lee.
Benchmarking mobile device control agents across diverse configurations. arXiv preprint arXiv:2404.16660,
2024. 3, 37, 38

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steven Y Ko, Sangeun Oh, and
Insik Shin. Explore, select, derive, and recall: Augmenting llm with human-like memory for mobile task
automation. arXiv preprint arXiv:2312.03003, 2023. 3, 9, 14, 23, 24, 41

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative
agents for" mind" exploration of large language model society. Advances in Neural Information Processing
Systems, 36:51991–52008, 2023a. 1

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and Ka-
tia Sycara. Theory of mind for multi-agent collaboration via large language models. arXiv preprint
arXiv:2310.10701, 2023b. 17

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. In International conference on machine learning,
pp. 19730–19742. PMLR, 2023c. 24

49



Under review as submission to TMLR

Tao Li, Gang Li, Jingjie Zheng, Purple Wang, and Yang Li. Mug: Interactive multimodal grounding on user
interfaces. arXiv preprint arXiv:2209.15099, 2022. 3, 28

Tao Li, Gang Li, Zhiwei Deng, Bryan Wang, and Yang Li. A zero-shot language agent for computer control
with structured reflection. arXiv preprint arXiv:2310.08740, 2023d. 16

Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. Sugilite: creating multimodal smartphone automation
by demonstration. In Proceedings of the 2017 CHI conference on human factors in computing systems, pp.
6038–6049, 2017. 6

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu, and Oriana
Riva. On the effects of data scale on computer control agents. arXiv preprint arXiv:2406.03679, 2024a. 3,
9, 10, 35, 36, 40

Wei Li, Fu-Lin Hsu, William Bishop, Folawiyo Campbell-Ajala, Max Lin, and Oriana Riva. Uinav: A
practical approach to train on-device automation agents. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 6: Industry Track), pp. 36–51, 2024b. 41

Xiaolei Li, Jialun Cao, Yepang Liu, Shing-Chi Cheung, and Hailong Wang. Reusedroid: A vlm-empowered
android ui test migrator boosted by active feedback. arXiv preprint arXiv:2504.02357, 2025. 3

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems: workflow,
infrastructure, and challenges. Vicinagearth, 1(1):9, 2024c. 17

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei. Appagent
v2: Advanced agent for flexible mobile interactions. arXiv preprint arXiv:2408.11824, 2024d. 3, 15, 24, 25

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language instructions
to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020. 3, 13, 35

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Humanoid: A deep learning-based approach
to automated black-box android app testing. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1070–1073. IEEE, 2019. 1, 5

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenxing Xu,
Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the capability, efficiency and
security. arXiv preprint arXiv:2401.05459, 2024e. 1, 2

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana Prasad Sathya Moor-
thy, Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Mastering universal user interface understanding
across platforms, 2024f. URL https://arxiv.org/abs/2410.18967. 3, 26, 29, 36

Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen Wu, Mingyi Yan, Zhengyuan Yang, Lijuan Wang, and
Mike Zheng Shou. Videogui: A benchmark for gui automation from instructional videos. arXiv preprint
arXiv:2406.10227, 2024a. 40

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan
Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual agent. arXiv
preprint arXiv:2411.17465, 2024b. 3, 26, 27

Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. Continuous, evolutionary and large-scale: A
new perspective for automated mobile app testing. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 399–410. IEEE, 2017. 5

Xufeng Ling, Ming Gao, and Dong Wang. Intelligent document processing based on rpa and machine learning.
In 2020 Chinese Automation Congress (CAC), pp. 1349–1353. IEEE, 2020. 6

50

https://arxiv.org/abs/2410.18967


Under review as submission to TMLR

Guangyi Liu, Pengxiang Zhao, Liang Liu, Zhiming Chen, Yuxiang Chai, Shuai Ren, Hao Wang, Shibo He,
and Wenchao Meng. Learnact: Few-shot mobile gui agent with a unified demonstration benchmark. arXiv
preprint arXiv:2504.13805, 2025a. 3, 16, 24, 37, 38, 41

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
information processing systems, 36, 2024a. 24

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv preprint
arXiv:2411.00820, 2024b. 3, 10, 32, 33

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai, Xinyi
Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual foundation agents.
arXiv preprint arXiv:2408.06327, 2024c. 3, 37, 38

Xiaoyi Liu, Yingtian Shi, Chun Yu, Cheng Gao, Tianao Yang, Chen Liang, and Yuanchun Shi. Understanding
in-situ programming for smart home automation. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 7(2):1–31, 2023. 6

Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang, Xiaotian Han,
Hongxia Yang, and Fei Wu. Infiguiagent: A multimodal generalist gui agent with native reasoning and
reflection. arXiv preprint arXiv:2501.04575, 2025b. 3, 30

Zhe Liu, Cheng Li, Chunyang Chen, Junjie Wang, Boyu Wu, Yawen Wang, Jun Hu, and Qing Wang.
Vision-driven automated mobile gui testing via multimodal large language model. arXiv preprint
arXiv:2407.03037, 2024d. 2, 3, 14, 22, 24, 25, 26

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network for
task-oriented agent collaboration. In First Conference on Language Modeling, 2024e. 17

Gio Lodi. Xctest introduction. In Test-Driven Development in Swift: Compile Better Code with XCTest and
TDD, pp. 13–25. Springer, 2021. 17

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang, Kaipeng
Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui navigation on
mobile devices. arXiv preprint arXiv:2406.08451, 2024a. 3, 9, 21, 30, 31, 35, 36, 41

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based gui agent.
arXiv preprint arXiv:2408.00203, 2024b. 2, 3, 14, 22, 24, 25

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and Hong-
sheng Li. Ui-r1: Enhancing action prediction of gui agents by reinforcement learning. arXiv preprint
arXiv:2503.21620, 2025. 3, 32, 33

Ewa Luger and Abigail Sellen. " like having a really bad pa" the gulf between user expectation and experience
of conversational agents. In Proceedings of the 2016 CHI conference on human factors in computing systems,
pp. 5286–5297, 2016. 1

Dezhao Luo, Bohan Tang, Kang Li, Georgios Papoudakis, Jifei Song, Shaogang Gong, Jianye Hao, Jun Wang,
and Kun Shao. Vimo: A generative visual gui world model for app agent. arXiv preprint arXiv:2504.13936,
2025. 3

Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on model-based
reinforcement learning. Science China Information Sciences, 67(2):121101, 2024. 5

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. Coco-agent: A comprehensive cognitive mllm agent for
smartphone gui automation. In Findings of the Association for Computational Linguistics ACL 2024, pp.
9097–9110, 2024. 3, 15, 26, 27, 41

51



Under review as submission to TMLR

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation system for android
apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 224–234,
2013. 5

Rizwan Majeed, Nurul Azma Abdullah, Imran Ashraf, Yousaf Bin Zikria, Muhammad Faheem Mushtaq, and
Muhammad Umer. An intelligent, secure, and smart home automation system. Scientific Programming,
2020(1):4579291, 2020. 6

Indrani Medhi, Kentaro Toyama, Anirudha Joshi, Uday Athavankar, and Edward Cutrell. A comparison
of list vs. hierarchical uis on mobile phones for non-literate users. In Human-Computer Interaction–
INTERACT 2013: 14th IFIP TC 13 International Conference, Cape Town, South Africa, September 2-6,
2013, Proceedings, Part II 14, pp. 497–504. Springer, 2013. 13

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: Llm agent
operating system. arXiv e-prints, pp. arXiv–2403, 2024. 15

Anja Meironke and Stephan Kuehnel. How to measure rpa’s benefits? a review on metrics, indicators, and
evaluation methods of rpa benefit assessment. 2022. 6

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain,
and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196, 2024. 9

George E Monahan. State of the arta survey of partially observable markov decision processes: theory,
models, and algorithms. Management science, 28(1):1–16, 1982. 11

Joel Ruben Antony Moniz, Soundarya Krishnan, Melis Ozyildirim, Prathamesh Saraf, Halim Cagri Ates,
Yuan Zhang, Hong Yu, and Nidhi Rajshree. Realm: Reference resolution as language modeling. arXiv
preprint arXiv:2403.20329, 2024. 3, 30, 31

Sílvia Moreira, Henrique S Mamede, and Arnaldo Santos. Process automation using rpa–a literature review.
Procedia Computer Science, 219:244–254, 2023. 6

Michel Nass. On overcoming challenges with GUI-based test automation. PhD thesis, Blekinge Tekniska
Högskola, 2024. 1, 4

Michel Nass, Emil Alégroth, and Robert Feldt. Why many challenges with gui test automation (will) remain.
Information and Software Technology, 138:106625, 2021. 1, 4

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and Qi Wang.
Screenagent: A vision language model-driven computer control agent. arXiv preprint arXiv:2402.07945,
2024. 3, 32, 34

Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, and Wenhao Xu. Mobileflow:
A multimodal llm for mobile gui agent. arXiv preprint arXiv:2407.04346, 2024. 3, 26, 27

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous evaluation
and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024. 16

Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Reinforcement learning based
curiosity-driven testing of android applications. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 153–164, 2020. 1, 5

Georgios Papoudakis, Thomas Coste, Zhihao Wu, Jianye Hao, Jun Wang, and Kun Shao. Appvlm: A
lightweight vision language model for online app control. arXiv preprint arXiv:2502.06395, 2025. 3, 40

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th annual
acm symposium on user interface software and technology, pp. 1–22, 2023. 1

52



Under review as submission to TMLR

Syeh Mujeeb Patel and Syed Jilani Pasha. Home automation system (has) using android for mobile phone.
International Journal Of Scientific Engeneering and Technology Research„ ISSN, pp. 2319–8885, 2015. 6

Neha Patil, Dhananjay Bhole, and Prasanna Shete. Enhanced ui automator viewer with improved android
accessibility evaluation features. In 2016 International Conference on Automatic Control and Dynamic
Optimization Techniques (ICACDOT), pp. 977–983. IEEE, 2016. 17

Pawel Pawlowski, Krystian Zawistowski, Wojciech Lapacz, Marcin Skorupa, Adam Wiacek, Sebastien Postan-
sque, and Jakub Hoscilowicz. Tinyclick: Single-turn agent for empowering gui automation. arXiv preprint
arXiv:2410.11871, 2024. 3, 9, 21, 30, 31

Yi-Hao Peng, Faria Huq, Yue Jiang, Jason Wu, Xin Yue Li, Jeffrey P Bigham, and Amy Pavel. Dream-
struct: Understanding slides and user interfaces via synthetic data generation. In European Conference
on Computer Vision, pp. 466–485. Springer, 2024. 36

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Reasoning
with large language models, a survey. arXiv preprint arXiv:2407.11511, 2024. 16

David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of computational agents. Cam-
bridge University Press, 2010. 1

Dhanya Pramod. Robotic process automation for industry: adoption status, benefits, challenges and research
agenda. Benchmarking: an international journal, 29(5):1562–1586, 2022. 6

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199, 2024. 3, 32, 33

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong Sun.
Communicative agents for software development. arXiv preprint arXiv:2307.07924, 6(3), 2023. 1

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15174–15186, 2024a. 2

Yijun Qian, Yujie Lu, Alexander G Hauptmann, and Oriana Riva. Visual grounding for user interfaces. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 6: Industry Track), pp. 97–107, 2024b. 3, 26, 28

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,
Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native agents. arXiv
preprint arXiv:2501.12326, 2025. 3, 26, 27

Alec Radford. Improving language understanding by generative pre-training. 2018. 1, 2, 5, 9, 21

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 1, 2, 5, 21

Okko J Räsänen and Jukka P Saarinen. Sequence prediction with sparse distributed hyperdimensional coding
applied to the analysis of mobile phone use patterns. IEEE transactions on neural networks and learning
systems, 27(9):1878–1889, 2015. 13

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair,
Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic benchmarking
environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024a. 3, 37, 38, 39

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Androidinthewild: A
large-scale dataset for android device control. Advances in Neural Information Processing Systems, 36,
2024b. 3, 35, 36, 40, 41

53



Under review as submission to TMLR

Alberto Monge Roffarello, Aditya Kumar Purohit, and Satyam V Purohit. Trigger-action programming for
wellbeing: Insights from 6590 ios shortcuts. IEEE Pervasive Computing, 2024. 7

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Lan-
guage agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024. 16

Yoav Shoham. Agent-oriented programming. Artificial intelligence, 60(1):51–92, 1993. 1

Chloe Sinclair. The role of selenium in mobile application testing. 17

Shiwangi Singh, Rucha Gadgil, and Ayushi Chudgor. Automated testing of mobile applications using scripting
technique: A study on appium. International Journal of Current Engineering and Technology (IJCET), 4
(5):3627–3630, 2014. 17

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for web actions.
In First Conference on Language Modeling, 2024. 3, 9, 19, 41

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with large language models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2998–3009, 2023a. 9, 16

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error: Exploration-
based trajectory optimization for llm agents. arXiv preprint arXiv:2403.02502, 2024a. 3, 21, 32, 33

Yunpeng Song, Yiheng Bian, Yongtao Tang, and Zhongmin Cai. Navigating interfaces with ai for enhanced
user interaction. arXiv preprint arXiv:2312.11190, 2023b. 2, 21, 22

Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma, and Zhongmin Cai. Visiontasker: Mobile task
automation using vision based ui understanding and llm task planning. In Proceedings of the 37th Annual
ACM Symposium on User Interface Software and Technology, pp. 1–17, 2024b. 3, 14, 24, 25, 41

Zirui Song, Yaohang Li, Meng Fang, Zhenhao Chen, Zecheng Shi, and Yuan Huang. Mmac-copilot: Multi-
modal agent collaboration operating system copilot. arXiv preprint arXiv:2404.18074, 2024c. 3, 17, 18

Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforcement learning: State-of-the-
art, pp. 387–414. Springer, 2012. 11

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-interact: A
data-centric framework for self-adaptive agents in realistic environments. arXiv preprint arXiv:2501.10893,
2025. 36

Jiahui Sun, Zhichao Hua, and Yubin Xia. Autoeval: A practical framework for autonomous evaluation of
mobile agents. arXiv preprint arXiv:2503.02403, 2025a. 3, 37, 39

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards multi-modal
conversational agents on mobile gui. arXiv preprint arXiv:2205.11029, 2022. 3, 35, 36

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou
Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory construction via
reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024. 36

Yuchen Sun, Shanhui Zhao, Tao Yu, Hao Wen, Samith Va, Mengwei Xu, Yuanchun Li, and Chongyang Zhang.
Gui-xplore: Empowering generalizable gui agents with one exploration. arXiv preprint arXiv:2503.17709,
2025b. 3

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles Baechler, Yu-Chung Hsiao, Abhanshu Sharma, James
Stout, et al. Towards better semantic understanding of mobile interfaces. arXiv preprint arXiv:2210.02663,
2022. 3, 35

54



Under review as submission to TMLR

Rehan Syed, Suriadi Suriadi, Michael Adams, Wasana Bandara, Sander JJ Leemans, Chun Ouyang,
Arthur HM Ter Hofstede, Inge Van De Weerd, Moe Thandar Wynn, and Hajo A Reijers. Robotic process
automation: contemporary themes and challenges. Computers in Industry, 115:103162, 2020. 6

Maryam Taeb, Amanda Swearngin, Eldon Schoop, Ruijia Cheng, Yue Jiang, and Jeffrey Nichols. Axnav:
Replaying accessibility tests from natural language. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, pp. 1–16, 2024. 3, 22, 24

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of intelligent
llm agents. arXiv preprint arXiv:2306.03314, 2023. 17

Wrick Talukdar and Anjanava Biswas. Improving large language model (llm) fidelity through context-aware
grounding: A systematic approach to reliability and veracity. arXiv preprint arXiv:2408.04023, 2024. 9

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng Yue,
Jiechuan Jiang, Yewen Li, et al. Cradle: Empowering foundation agents towards general computer control.
In NeurIPS 2024 Workshop on Open-World Agents. 3, 17, 19

Brian Tang and Kang G Shin. Steward: Natural language web automation. arXiv preprint arXiv:2409.15441,
2024. 14

Alejandro Torreno, Eva Onaindia, Antonín Komenda, and Michal Štolba. Cooperative multi-agent planning:
A survey. ACM Computing Surveys (CSUR), 50(6):1–32, 2017. 17

Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and Anna Rita Fasolino. Automated func-
tional testing of mobile applications: a systematic mapping study. Software Quality Journal, 27:149–201,
2019. 1, 4

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and Hoang D
Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint arXiv:2501.06322, 2025.
17

Alok Mani Tripathi. Learning Robotic Process Automation: Create Software robots and automate business
processes with the leading RPA tool–UiPath. Packt Publishing Ltd, 2018. 6

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models-a critical investigation. Advances in Neural Information Processing
Systems, 36:75993–76005, 2023. 9

Rejin Varghese and M Sambath. Yolov8: A novel object detection algorithm with enhanced performance and
robustness. In 2024 International Conference on Advances in Data Engineering and Intelligent Computing
Systems (ADICS), pp. 1–6. IEEE, 2024. 25

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017. 9

Sagar Gubbi Venkatesh, Partha Talukdar, and Srini Narayanan. Ugif: Ui grounded instruction following.
arXiv preprint arXiv:2211.07615, 2022. 3, 35

Gaurav Verma, Rachneet Kaur, Nishan Srishankar, Zhen Zeng, Tucker Balch, and Manuela Veloso. Adapta-
gent: Adapting multimodal web agents with few-shot learning from human demonstrations. arXiv preprint
arXiv:2411.13451, 2024. 14, 16, 41

Boshi Wang, Xiang Yue, and Huan Sun. Can chatgpt defend its belief in truth? evaluating llm reasoning
via debate. arXiv preprint arXiv:2305.13160, 2023a. 9

Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile ui using large language
models. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–17,
2023b. 3, 11, 13, 23, 24

55



Under review as submission to TMLR

Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu, Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li,
Junjie Xu, Xianfeng Tang, et al. A comprehensive survey of small language models in the era of large
language models: Techniques, enhancements, applications, collaboration with llms, and trustworthiness.
arXiv preprint arXiv:2411.03350, 2024a. 40

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023c. 1, 2

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and
Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via multi-agent
collaboration. arXiv preprint arXiv:2406.01014, 2024b. 2, 3, 9, 11, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26,
40, 41

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv preprint
arXiv:2401.16158, 2024c. 2, 3, 9, 11, 22, 24, 25, 41

Junyang Wang, Haiyang Xu, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and Jitao Sang. Mobile-agent-
v: Learning mobile device operation through video-guided multi-agent collaboration. arXiv preprint
arXiv:2502.17110, 2025a. 3, 16, 24

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. Frontiers of
Computer Science, 18(6):186345, 2024d. 1

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen, and
Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile llm agents. arXiv
preprint arXiv:2406.08184, 2024e. 3, 37, 38, 39, 41

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024f. 24

Shuai Wang, Weiwen Liu, Jingxuan Chen, Weinan Gan, Xingshan Zeng, Shuai Yu, Xinlong Hao, Kun Shao,
Yasheng Wang, and Ruiming Tang. Gui agents with foundation models: A comprehensive survey. arXiv
preprint arXiv:2411.04890, 2024g. 4

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asynchronous dis-
tributed reinforcement learning framework for on-device control agents. arXiv preprint arXiv:2410.14803,
2024h. 3, 21, 32

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv preprint
arXiv:2311.03079, 2023d. 24

Wenhao Wang, Zijie Yu, William Liu, Rui Ye, Tian Jin, Siheng Chen, and Yanfeng Wang. Fedmo-
bileagent: Training mobile agents using decentralized self-sourced data from diverse users. arXiv preprint
arXiv:2502.02982, 2025b. 36, 41

Wenhao Wang, Zijie Yu, Rui Ye, Jianqing Zhang, Siheng Chen, and Yanfeng Wang. Fedmabench: Bench-
marking mobile agents on decentralized heterogeneous user data. arXiv preprint arXiv:2503.05143, 2025c.
3, 41

Yifei Wang, Dizhan Xue, Shengjie Zhang, and Shengsheng Qian. Badagent: Inserting and activating back-
door attacks in llm agents. arXiv preprint arXiv:2406.03007, 2024i. 41

56



Under review as submission to TMLR

Yiqin Wang, Haoji Zhang, Jingqi Tian, and Yansong Tang. Ponder & press: Advancing visual gui agent
towards general computer control. arXiv preprint arXiv:2412.01268, 2024j. 3, 21

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and Heng Ji.
Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint arXiv:2501.11733, 2025d.
3, 18, 24, 25

Ziwei Wang, Weizhi Chen, Leyang Yang, Sheng Zhou, Shengchu Zhao, Hanbei Zhan, Jiongchao Jin,
Liangcheng Li, Zirui Shao, and Jiajun Bu. Mp-gui: Modality perception with mllms for gui understanding.
arXiv preprint arXiv:2503.14021, 2025e. 3, 26, 29

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022. 16, 21, 22

Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun Li. Droidbot-gpt: Gpt-powered ui automation for
android. arXiv preprint arXiv:2304.07061, 2023. 2, 3, 11, 13, 21, 22, 23, 24

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In Proceedings of
the 30th Annual International Conference on Mobile Computing and Networking, pp. 543–557, 2024a. 2,
3, 9, 11, 13, 15, 23, 24, 37

Hao Wen, Shizuo Tian, Borislav Pavlov, Wenjie Du, Yixuan Li, Ge Chang, Shanhui Zhao, Jiacheng Liu,
Yunxin Liu, Ya-Qin Zhang, et al. Autodroid-v2: Boosting slm-based gui agents via code generation. arXiv
preprint arXiv:2412.18116, 2024b. 40

Biao Wu, Yanda Li, Meng Fang, Zirui Song, Zhiwei Zhang, Yunchao Wei, and Ling Chen. Foundations and
recent trends in multimodal mobile agents: A survey. arXiv preprint arXiv:2411.02006, 2024a. 4

Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghunathan. Adversarial
attacks on multimodal agents. arXiv preprint arXiv:2406.12814, 2024b. 41

Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P Bigham. Screen parsing: Towards reverse engineering
of ui models from screenshots. In The 34th Annual ACM Symposium on User Interface Software and
Technology, pp. 470–483, 2021. 7

Qinchen Wu, Difei Gao, Kevin Qinghong Lin, Zhuoyu Wu, Xiangwu Guo, Peiran Li, Weichen Zhang, Hengxu
Wang, and Mike Zheng Shou. Gui action narrator: Where and when did that action take place? arXiv
preprint arXiv:2406.13719, 2024c. 3, 14, 24, 25

Qingyuan Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Vsc-rl: Advancing autonomous
vision-language agents with variational subgoal-conditioned reinforcement learning. arXiv preprint
arXiv:2502.07949, 2025a. 3, 32, 33

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023. 17

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, and Shuo
Shang. Mobilevlm: A vision-language model for better intra-and inter-ui understanding. arXiv preprint
arXiv:2409.14818, 2024d. 3, 14, 32

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. Reachagent: Enhancing mobile agent via page reaching
and operation. arXiv preprint arXiv:2502.02955, 2025b. 3, 32, 33

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen Ding,
Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui agents. arXiv
preprint arXiv:2410.23218, 2024e. 3, 26, 29

57



Under review as submission to TMLR

Zongru Wu, Pengzhou Cheng, Zheng Wu, Tianjie Ju, Zhuosheng Zhang, and Gongshen Liu. Smoothing
grounding and reasoning for mllm-powered gui agents with query-oriented pivot tasks. arXiv preprint
arXiv:2503.00401, 2025c. 3

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents: A survey.
arXiv preprint arXiv:2309.07864, 2023. 2, 15, 16, 17

Xiaobo Xia and Run Luo. Gui-r1: A generalist r1-style vision-language action model for gui agents. arXiv
preprint arXiv:2504.10458, 2025. 3

Yuchen Xia, Manthan Shenoy, Nasser Jazdi, and Michael Weyrich. Towards autonomous system: flexible
modular production system enhanced with large language model agents. In 2023 IEEE 28th International
Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE, 2023. 1

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the weakness
of large language model agents within a complex android environment. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6061–6072, 2024. 3, 37, 39, 40

Hai-Ming Xu, Qi Chen, Lei Wang, and Lingqiao Liu. Attention-driven gui grounding: Leveraging pretrained
multimodal large language models without fine-tuning. arXiv preprint arXiv:2412.10840, 2024a. 29

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang, Jie Tang,
and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android autonomous agents.
arXiv preprint arXiv:2410.24024, 2024b. 3, 37, 38, 39, 41

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu, and
Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv preprint
arXiv:2412.04454, 2024c. 3, 26, 27

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for zero-shot
smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023. 3, 14, 22, 24, 25

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark prompting
unleashes extraordinary visual grounding in gpt-4v, 2023. URL https://arxiv.org/abs/2310.11441.
14, 25

Wenkai Yang, Xiaohan Bi, Yankai Lin, Sishuo Chen, Jie Zhou, and Xu Sun. Watch out for your agents!
investigating backdoor threats to llm-based agents. arXiv preprint arXiv:2402.11208, 2024a. 41

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui: Visual
grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024b. 26, 28

Yulong Yang, Xinshan Yang, Shuaidong Li, Chenhao Lin, Zhengyu Zhao, Chao Shen, and Tianwei Zhang.
Security matrix for multimodal agents on mobile devices: A systematic and proof of concept study. arXiv
preprint arXiv:2407.09295, 2024c. 22

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024. 21, 22

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with multi-
modality. arXiv preprint arXiv:2304.14178, 2023. 24

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 12380–12403, 2024. 19

58

https://arxiv.org/abs/2310.11441


Under review as submission to TMLR

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. arXiv preprint
arXiv:2404.05719, 2024. 3, 9, 15, 20, 26, 29, 41

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference trees. arXiv preprint
arXiv:2404.02078, 2024. 9

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Training language
model agents to reflect via iterative self-training. arXiv preprint arXiv:2501.11425, 2025. 3, 30, 31

Samer Zein, Norsaremah Salleh, and John Grundy. A systematic mapping study of mobile application testing
techniques. Journal of Systems and Software, 117:334–356, 2016. 5

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Qingwei
Lin, Saravan Rajmohan, et al. Large language model-brained gui agents: A survey. arXiv preprint
arXiv:2411.18279, 2024a. 4

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Ap-
pagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023a. 2, 3, 9, 11, 14,
15, 21, 22, 24, 25

Danyang Zhang, Lu Chen, and Kai Yu. Mobile-env: A universal platform for training and evaluation of
mobile interaction. arXiv preprint arXiv:2305.08144, 2023b. 3, 37, 40

Jiayi Zhang, Chuang Zhao, Yihan Zhao, Zhaoyang Yu, Ming He, and Jianping Fan. Mobileexperts: A
dynamic tool-enabled agent team in mobile devices. arXiv preprint arXiv:2407.03913, 2024b. 2, 3, 11, 19,
22, 24, 25, 26

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint arXiv:2403.02713, 2024c. 3,
35, 36, 40

Jiwen Zhang, Yaqi Yu, Minghui Liao, Wentao Li, Jihao Wu, and Zhongyu Wei. Ui-hawk: Unleashing the
screen stream understanding for gui agents. 2024d. 3, 9, 20, 26, 28, 29, 41

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and Mengwei
Xu. Llamatouch: A faithful and scalable testbed for mobile ui automation task evaluation. arXiv preprint
arXiv:2404.16054, 2024e. 3, 7, 37, 38, 39, 40

Shaoqing Zhang, Zhuosheng Zhang, Kehai Chen, Xinbe Ma, Muyun Yang, Tiejun Zhao, and Min Zhang.
Dynamic planning for llm-based graphical user interface automation. arXiv preprint arXiv:2410.00467,
2024f. 11, 16

Xuan Zhang, Yang Deng, Zifeng Ren, See-Kiong Ng, and Tat-Seng Chua. Ask-before-plan: Proactive
language agents for real-world planning. arXiv preprint arXiv:2406.12639, 2024g. 3, 19

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration. arXiv preprint
arXiv:2408.15978, 2024h. 19

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents. arXiv
preprint arXiv:2309.11436, 2023. 3, 9, 14, 15, 26, 27, 39

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru Tang, Xinbei Ma, Zhiwei He, Yiming Wang, Mark
Gerstein, Rui Wang, Gongshen Liu, et al. Igniting language intelligence: The hitchhiker’s guide from
chain-of-thought reasoning to language agents. arXiv preprint arXiv:2311.11797, 2023c. 22

59



Under review as submission to TMLR

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023. 9

Yu Zhao, Brent Harrison, and Tingting Yu. Dinodroid: Testing android apps using deep q-networks. ACM
Transactions on Software Engineering and Methodology, 33(5):1–24, 2024. 5

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web agent, if
grounded. arXiv preprint arXiv:2401.01614, 2024a. 2, 3, 11, 20

Jiani Zheng, Lu Wang, Fangkai Yang, Chaoyun Zhang, Lingrui Mei, Wenjie Yin, Qingwei Lin, Dongmei
Zhang, Saravan Rajmohan, and Qi Zhang. Vem: Environment-free exploration for training gui agent with
value environment model. arXiv preprint arXiv:2502.18906, 2025. 32, 33

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar prompting
with memory for computer control. In The Twelfth International Conference on Learning Representations,
2023. 24

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan. Agentstudio: A
toolkit for building general virtual agents. arXiv preprint arXiv:2403.17918, 2024b. 3, 37, 38

Yuqi Zhou, Shuai Wang, Sunhao Dai, Qinglin Jia, Zhaocheng Du, Zhenhua Dong, and Jun Xu. Chop:
Mobile operating assistant with constrained high-frequency optimized subtask planning. arXiv preprint
arXiv:2503.03743, 2025. 3, 19

60


	Introduction
	Development of Phone Automation
	Phone Automation Before the LLM Era
	Automation Testing
	Shortcuts
	Robotic Process Automation

	Challenges of Traditional Methods
	Limited Generality
	High Maintenance Costs
	Poor Intent Comprehension
	Weak Screen GUI Perception

	LLMs Boost Phone Automation
	Emerging Commercial Applications

	Frameworks and Components of Phone GUI Agents
	Perception in Phone GUI Agents
	UI Information Perception
	Phone State Perception

	Brain in Phone GUI Agents
	Storage
	Decision Making

	Action in Phone GUI Agents
	Multi-Agent Framework
	Role-Coordinated Multi-Agent
	Scenario-Based Task Execution

	Plan-Then-Act Framework

	LLMs for Phone Automation
	Prompt Engineering
	Text-Based Prompting
	Multimodal Prompting

	Training-Based Models
	Task-Specific LLM-based Agents
	Supervised Fine-Tuning
	Reinforcement Learning


	Datasets and Benchmarks
	Datasets
	Benchmarks
	Evaluation Pipelines
	Evaluation Metrics


	Challenges and Future Directions
	Conclusion

