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Abstract

Recurrent neural networks (RNNs), temporal convolutions, and neural differential
equations (NDEs) are popular families of deep learning models for time-series data,
each with unique strengths and tradeoffs in modeling power and computational
efficiency. We introduce a simple sequence model inspired by control systems
that generalizes these approaches while addressing their shortcomings. The Lin-
ear State-Space Layer (LSSL) maps a sequence u + y by simply simulating a
linear continuous-time state-space representation & = Ax + Bu,y = Cz + Du.
Theoretically, we show that LSSL models are closely related to the three aforemen-
tioned families of models and inherit their strengths. For example, they generalize
convolutions to continuous-time, explain common RNN heuristics, and share fea-
tures of NDEs such as time-scale adaptation. We then incorporate and generalize
recent theory on continuous-time memorization to introduce a trainable subset of
structured matrices A that endow LSSLs with long-range memory. Empirically,
stacking LSSL layers into a simple deep neural network obtains state-of-the-art
results across time series benchmarks for long dependencies in sequential image
classification, real-world healthcare regression tasks, and speech. On a difficult
speech classification task with length-16000 sequences, LSSL outperforms prior
approaches by 24 accuracy points, and even outperforms baselines that use hand-
crafted features on 100x shorter sequences.

1 Introduction

A longstanding challenge in machine learning is efficiently modeling sequential data longer than a
few thousand time steps. The usual paradigms for designing sequence models involve recurrence
(e.g. RNNs), convolutions (e.g. CNNs), or differential equations (e.g. NDEs), which each come
with tradeoffs. For example, RNNs are a natural stateful model for sequential data that require
only constant computation/storage per time step, but are slow to train and suffer from optimization
difficulties (e.g., the "vanishing gradient problem" [39]), which empirically limits their ability to
handle long sequences. CNNs encode local context and enjoy fast, parallelizable training, but are not
sequential, resulting in more expensive inference and an inherent limitation on the context length.
NDEs are a principled mathematical model that can theoretically address continuous-time problems
and long-term dependencies [37], but are very inefficient.

Ideally, a model family would combine the strengths of these paradigms, providing properties like
parallelizable training (convolutional), stateful inference (recurrence) and time-scale adaptation

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



4 )
: ( A
Output
c | Y
Discretize c c or ]\
l . ! R N -
D fds A D A % A e > f .
4 T ’ T K = (CAB)
N . . . )
""""""" B B B %k
B [ u
Input
.lmr.,,Ill,lllll....lll_II oy |l'I“I"'IIIII"II""I| I.,..,_._.Illl._l
i L i I PR )
Continuous-time Recurrent Convolutional
/' continuous data / unbounded context V' local information
W/ rregular sampling  efficient inference / parallelizable training

Figure 1: (Three views of the LSSL) A Linear State Space Layer layer is a map ur € R — 3 € R,
where each feature u; — y is defined by discretizing a state-space model A, B, C, D with a parameter At.
The underlying state space model defines a discrete recurrence through combining the state matrix A and
timescale At into a transition matrix A. (Left) As an implicit continuous model, irregularly-spaced data
can be handled by discretizing the same matrix A using a different timescale At. (Center) As a recurrent
model, inference can be performed efficiently by computing the layer timewise (i.e., one vertical slice at a
time (u¢, Te, Yt ), (Wet1, Te41, Yet1), - - -), by unrolling the linear recurrence. (Right) As a convolutional model,
training can be performed efficiently by computing the layer depthwise in parallel (i.e., one horizontal slice at a
time (u¢)ieir), (Yt )te(r), - - -)» by convolving with a particular filter.

(differential equations), while handling very long sequences in a computationally efficient way.
Several recent works have turned to this question. These include the CKConv, which models a
continuous convolution kernel [44]]; several ODE-inspired RNNs, such as the UnICORNN [47]]; the
LMU, which speeds up a specific linear recurrence using convolutions [12} 58]; and HiPPO [24], a
generalization of the LMU that introduces a theoretical framework for continuous-time memorization.
However, these model families come at the price of reduced expressivity: intuitively, a family that is
both convolutional and recurrent should be more restrictive than either.

Our first goal is to construct an expressive model family that combines all 3 paradigms while
preserving their strengths. The Linear State-Space Layer (LSSL) is a simple sequence model that
maps a 1-dimensional function or sequence u(t) — y(¢) through an implicit state x(¢) by simulating
a linear continuous-time state-space representation in discrete-time

i(t) = Ax(t) + Bu(t) (1)
y(t) = Cx(t) + Du(t), 2

where A controls the evolution of the system and B, C, D are projection parameters. The LSSL can
be viewed as an instantiation of each family, inheriting their strengths (Fig. [I):

* LSSLs are recurrent. If a discrete step-size At is specified, the LSSL can be discretized
into a linear recurrence using standard techniques, and simulated during inference as a
stateful recurrent model with constant memory and computation per time step.

» LSSLs are convolutional. The linear time-invariant systems defined by (I)+(2) are known
to be explicitly representable as a continuous convolution. Moreover, the discrete-time
version can be parallelized during training using convolutions [12} 44].

* LSSLs are continuous-time. The LSSL itself is a differential equation. As such, it can
perform unique applications of continuous-time models, such as simulating continuous
processes, handling missing data [45], and adapting to different timescales.

Surprisingly, we show that LSSLs do not sacrifice expressivity, and in fact generalize convolutions
and RNNSs. First, classical results from control theory imply that all 1-D convolutional kernels can
be approximated by an LSSL [59]]. Additionally, we provide two results relating RNNs and ODEs



that may be of broader interest, e.g. showing that some RNN architectural heuristics (such as gating
mechanisms) are related to the step-size At and can actually be derived from ODE approximations.
As corollaries of these results, we show that popular RNN methods are special cases of LSSLs.

The generality of LSSLs does come with tradeoffs. In particular, we describe and address two
challenges that naive LSSL instantiations face when handling long sequences: (i) they inherit the
limitations of both RNNs and CNNs at remembering long dependencies, and (ii) choosing the state
matrix A and timescale At appropriately are critical to their performance, yet learning them is
computationally infeasible. We simultaneously address these challenges by specializing LSSLs using
a carefully chosen class of structured matrices A, such that (i) these matrices generalize prior work
on continuous-time memory [24]] and mathematically capture long dependencies with respect to a
learnable family of measures, and (ii) with new algorithms, LSSLs with these matrices A can be
theoretically sped up under certain computation models, even while learning the measure A and
timescale At.

We empirically validate that LSSLs are widely effective on benchmark datasets and very long time
series from healthcare sensor data, images, and speech.

* On benchmark datasets, LSSLs obtain SoTA over recent RNN, CNN, and NDE-based methods
across sequential image classification tasks (e.g., by over 10% accuracy on sequential CIFAR) and
healthcare regression tasks with length-4000 time series (by up to 80% reduction in RMSE).

» To showcase the potential of LSSLs to unlock applications with extremely long sequences, we
introduce a new sequential CelebA classification task with length-38000 sequences. A small LSSL
comes within 2.16 accuracy points of a specialized ResNet-18 vision architecture that has 10x more
parameters and is trained directly on images.

* Finally, we test LSSLs on a difficult dataset of high-resolution speech clips, where usual speech
pipelines pre-process the signals to reduce the length by 100x. When training on the raw length-
16000 signals, the LSSL not only (i) outperforms previous methods by over 20 accuracy points
in 1/5 the training time, but (ii) outperforms all baselines that use the pre-processed length-160
sequences, overcoming the limitations of hand-crafted feature engineering.

Summary of Contributions

* We introduce Linear State-Space Layers (LSSLs), a simple sequence-to-sequence transformation
that shares the modeling advantages of recurrent, convolutional, and continuous-time methods.
Conversely, we show that RNNs and CNNs can be seen as special cases of LSSLs (Section [3).

* We prove that a structured subclass of LSSLs can learn representations that solve continuous-time
memorization, allowing it to adapt its measure and timescale (Section .1)). We also provide new
algorithms for these LSSLs, showing that they can be sped up computationally under an arithmetic
complexity model Section[4.2]

* Empirically, we show that LSSLs stacked into a deep neural network are widely effective on time
series data, even (or especially) on extremely long sequences (Section[3).

2 Technical Background

We summarize the preliminaries on differential equations that are necessary for this work. We first
introduce two standard approximation schemes for differential equations that we will use to convert
continuous-time models to discrete-time, and will be used in our results on understanding RNNs. We
give further context on the step size or timescale At, which is a particularly important parameter
involved in this approximation process. Finally, we provide a summary of the HiPPO framework for
continuous-time memorization [24]], which will give us a mathematical tool for constructing LSSLs
that can address long-term dependencies.

Approximations of differential equations. Any differential equation &(t) = f(¢,z(t)) has an
equivalent integral equation x(t) = x(to) + f;o f(s,z(s)) ds. This can be numerically solved by

storing some approximation for z, and keeping it fixed inside f (¢, z) while iterating the equation.
For example, Picard iteration is often used to prove the existence of solutions to ODEs by iterating



the equation x; 1 (t) := z;(¢to) + ftz f(s,2:(s)) ds . In other words, it finds a sequence of functions
xo(t), z1(t), ... that approximate the solution z(t) of the integral equation.

Discretization. On the other hand, for a desired sequence of discrete times ¢;, approximations
to x(tg), z(t1), ... can be found by iterating the equation x(t;11) = x(t;) + f;j“ f(s,x(s))ds.
Different ways of approximating the RHS integral lead to different discretization schemes. We single
out a discretization method called the generalized bilinear transform (GBT) which is specialized
to linear ODEs of the form (T)). Given a step size At, the GBT update is

z(t+ At) = (I —alAt- A)HI + (1 — )At - A)z(t) + AT — aAt - A B -u(t).  (3)

Three important cases are: o = 0 becomes the classic Euler method which is simply the first-order
approximation x (¢ + At) = x(t) + At - 2'(t); « = 1 is called the backward Euler method; and
o= % is called the bilinear method, which preserves the stability of the system [61].

In Section [3.2) we will show that the backward Euler method and Picard iteration are actually related

to RNNs. On the other hand, the bilinear discretization will be our main method for coanutiIE

accurate discrete-time approximations of our continuous-time models. In particular, define A and B
1

to be the matrices appearing in (3) for « = 5. Then the discrete-time state-space model is

Ty = Z{L'tfl + E’U,t (4)
yr = Cxy + Duy. @)

At as a timescale. In most models, the length of dependencies they can capture is roughly pro-
1

portional to z;. Thus we also refer to the step size At as a timescale. This is an intrinsic part
of converting a continuous-time ODE into a discrete-time recurrence, and most ODE-based RNN
models have it as an important and non-trainable hyperparameter [24, 47, |58]. On the other hand,
in Section we show that the gating mechanism of classical RNNs is a version of learning At.
Moreover when viewed as a CNN, the timescale At can be viewed as controlling the width of
the convolution kernel (Section [3.2). Ideally, all ODE-based sequence models would be able to

automatically learn the proper timescales.

Continuous-time memory. Consider an input function u(t), a fixed probability measure w(t), and
a sequence of N basis functions such as polynomials. At every time ¢, the history of u before time ¢
can be projected onto this basis, which yields a vector of coefficients z(t) € R” that represents an
optimal approximation of the history of u with respect to the provided measure w. The map taking
the function u(t) € R to coefficients z(t) € R¥ is called the High-Order Polynomial Projection
Operator (HiPPO) with respect to the measure w. In special cases such as the uniform measure
w =I{]0, 1]} and the exponentially-decaying measure w(t) = exp(—t), Gu et al. [24]] showed that
x(t) satisfies a differential equation (t) = A(t)x(t) + B(t)u(t) (i.e., (I)) and derived closed forms
for the matrix A. Their framework provides a principled way to design memory models handling
long dependencies; however, they prove only these few special cases.

3 Linear State-Space Layers (LSSL)

We define our main abstraction, a model family that generalizes recurrence and convolutions. Sec-
tion [3.1] first formally defines the LSSL, then discusses how to compute it with multiple views.
Conversely, Section [3.2] shows that LSSLs are related to mechanisms of the most popular RNNs.

3.1 Different Views of the LSSL
Given a fixed state space representation A, B, C, D, an LSSL is the sequence-to-sequence mapping
defined by discretizing the linear state-space model (1) and (2).

Concretely, an LSSL layer has parameters A, B, C, D, and At. It operates on an input u € REXH
representing a sequence of length L where each timestep has an H-dimensional feature vector. Each
feature h € [H]| defines a sequence (ugh))te[ £]» which is combined with a timescale Aty, to define an
output y®) € R” via the discretized state-space model @)+().

Computationally, the discrete-time LSSL can be viewed in multiple ways (Fig.[I).



As arecurrence. The recurrent state z;_; € R¥*¥ carries the context of all inputs before time ¢.

The current state z; and output y; can be computed by simply following equations @)+(). Thus the
LSSL is a recurrent model with efficient and stateful inference, which can consume a (potentially
unbounded) sequence of inputs while requiring fixed computation/storage per time step.

As a convolution. For simplicity let the initial state be z_; = 0. Then @)+({) explicitly yields
yr = C (A)" Buo + C (A)" ' Buis + - - + CABuy_1 + Buy, + Duy. (6)
Then y is simply the (non-circular) convolution y = Kr,(4, B, C) * u + Du, where

Kr(A,B,C) = (CAiB)ie[L] € Rl = (CB,CAB,...,CA"'B). (7)

Thus the LSSL can be viewed as a convolutional model where the entire output y € R¥ <L can be
computed at once by a convolution, which can be efficiently implemented with three FFTs.

The computational bottleneck. We make a note that the bottleneck of (i) the recurrence view is
matrix-vector multiplication (MVM) by the discretized state matrix A when simulating (), and
(i) the convolutional view is computing the Krylov function K, (7). Throughout this section we
assumed the LSSL parameters were fixed, which means that A and K,(A, B, C') can be cached for
efficiency. However, learning the parameters A and At would involve repeatedly re-computing these,
which is infeasible in practice. We revisit and solve this problem in Section[4.2]

3.2 Expressivity of LSSLs

For a model to be both recurrent and convolutional, one might expect it to be limited in other ways.
Indeed, while [12}44] also observe that certain recurrences can be replaced with a convolution, they
note that it is not obvious if convolutions can be replaced by recurrences. Moreover, while the LSSL
is a linear recurrence, popular RNN models are nonlinear sequence models with activation functions
between each time step. We now show that LSSLs surprisingly do not have limited expressivity.

Convolutions are LSSLs. A well-known fact about state-space systems (I)+(2)) is that the output
y is related to the input u by a convolution y(t) = [ h(7)u(t — 7)dr with the impulse response h
of the system. Conversely, a convolutional filter / that is a rational function of degree N can be
represented by a state-space model of size N [59]. Thus, an arbitrary convolutional filter h can be
approximated by a rational function (e.g., by Padé approximants) and represented by an LSSL.

In the particular case of LSSLs with HiPPO matrices (Sections [2]and[4.T), there is another intuitive
interpretation of how LSSL relate to convolutions. Consider the special case when A corresponds to
a uniform measure (in the literature known as the LMU [58]] or HIPPO-LegT [24] matrix). Then for a
fixed dt, equation (I)) is simply memorizing the input within sliding windows of ﬁ elements, and
equation (2) extracts features from this window. Thus the LSSL can be interpreted as automatically
learning convolution filters with a learnable kernel width.

RNNs are LSSLs.  We show two results about RNNs that may be of broader interest. Our first
result says that the ubiquitous gating mechanism of RNNs, commonly perceived as a heuristic to
smooth optimization [28], is actually the analog of a step size or timescale At.

Lemma 3.1. A (1-D) gated recurrence xy = (1 — 0(z))xi—1 + o(2)uy, where o is the sigmoid
function and z is an arbitrary expression, can be viewed as the GBT(a = 1) (i.e., backwards-Euler)
discretization of a 1-D linear ODE &(t) = —x(t) + u(t).

Proof. Applying a discretization requires a positive step size At. The simplest way to parameter-
ize a positive function is via the exponential function At = exp(z) applied to any expression z.
Substituting this into @) with A = —1, B = 1, &« = 1 exactly produces the gated recurrence. O

While Lemma [3.1]involves approximating continuous systems using discretization, the second result
is about approximating them using Picard iteration (Section[2). Roughly speaking, each layer of
a deep linear RNN can be viewed as successive Picard iterates x(t), 1 (t), ... approximating a
function x(t) defined by a non-linear ODE. This shows that we do not lose modeling power by using



linear instead of non-linear recurrences, and that the nonlinearity can instead be “moved” to the depth
direction of deep neural networks to improve speed without sacrificing expressivity.

Lemma 3.2. (Infinitely) deep stacked LSSL layers of order N = 1 with position-wise non-linear
functions can approximate any non-linear ODE &(t) = —x + f(t, x(¢)).

We note that many of the most popular and effective RNN variants such as the LSTM [28]], GRU [14],
QRNN [3]], and SRU [33], involve a hidden state z; € R¥ that involves independently “gating”
the H hidden units. Applying Lemma [3.1] they actually also approximate an ODE of the form in
Lemma[3.2] Thus LSSLs and these popular RNN models can be seen to all approximate the same
type of underlying continuous dynamics, by using Picard approximations in the depth direction and
discretization (gates) in the time direction. Appendix [C] gives precise statements and proofs.

3.3 Deep LSSLs

The basic LSSL is defined as a sequence-to-sequence map from RY — R’ on 1D sequences of
length L, parameterized by parameters A € RV*N B ¢ RV*!1,C ¢ RN, D € R At € R.
Given an input sequence with hidden dimension H (in other words a feature dimension greater than 1),
we simply broadcast the parameters B, C, D, At with an extra dimension H. Each of these H copies
is learned independently, so that there are H different versions of a 1D LSSL processing each of the
input features independently. Overall, the standalone LSSL layer is a sequence-to-sequence map with
the same interface as standard sequence model layers such as RNNs, CNNs, and Transformers.

The full LSSL architecture in a deep neural network is defined similarly to standard sequence
models such as deep ResNets and Transformers, involving stacking LSSL layers connected with
normalization layers and residual connections. Full architecture details are described in Appendix [B]
including the initialization of A and At, computational details, and other architectural details.

4 Combining LSSLs with Continuous-time Memorization

In Section 3] we introduced the LSSL model and showed that it shares the strengths of convolutions
and recurrences while also generalizing them. We now discuss and address its main limitations, in
particular handling long dependencies (Section[4.T]) and efficient computation (Section[d.2)).

4.1 Incorporating Long Dependencies into LSSLs

The generality of LSSLs means they can inherit the issues of recurrences and convolutions at address-
ing long dependencies (Section [I)). For example, viewed as a recurrence, repeated multiplication by
A could suffer from the vanishing gradients problem [39, 44]. We confirm empirically that LSSLs
with random state matrices A are actually not effective (Section[5.4) as a generic sequence model.

However, one advantage of these mathematical continuous-time models is that they are theoretically
analyzable, and specific A matrices can be derived to address this issue. In particular, the HiPPO
framework (Section 2)) describes how to memorize a function in continuous time with respect to a
measure w [24]]. This operator mapping a function to a continuous representation of its past is denoted
hippo(w), and was shown to have the form of equation (T)) in three special cases. However, these
matrices are non-trainable in the sense that no other A matrices were known to be hippo operators.

To address this, we theoretically resolve the open question from [24], showing that hippo(w) for any
measure w|/|results in (T) with a structured matrix A.

Theorem 1 (Informal). For an arbitrary measure w, the optimal memorization operator hippo(w)
has the form ©(t) = Az(t) + Bu(t) (1) for a low recurrence-width (LRW) [[I7] state matrix A.

For measures covering the classical orthogonal polynomials (OPs) [52] (in particular, corresponding
to Jacobi and Laguerre polynomials), there is even more structure.

Corollary 4.1. For w corresponding to the classical OPs, hippo(w) is 3-quasiseparable.

Although beyond the scope of this section, we mention that LRW matrices are a type of structured
matrix that have linear MVM [17]. In Appendix [D]we define this class and prove Theorem[I] Quasi-

'To be precise, the measures that correspond to orthogonal polynomials [52].



separable matrices are a related class of structured matrices with additional algorithmic properties.
We define these matrices in Definition 4 and prove Corollary @.1]in Appendix [D.3]

Theorem [1] tells us that a LSSL that uses a state matrix A within a particular class of structured
matrices would carry the theoretical interpretation of continuous-time memorization. Ideally, we
would be able to automatically learn the best A within this class; however, this runs into computational
challenges which we address next (Section . For now, we define the LSSL-fixed or LSSL-f to be
one where the A matrix is fixed to one of the HIPPO matrices prescribed by [24].

4.2 Theoretically Efficient Algorithms for the LSSL

Although A and At are the most critical parameters of an LSSL which govern the state-space (c.f.
Section [4.1)) and timescale (Sections [2]and [3.2), they are not feasible to train in a naive LSSL. In
particular, Section[3.1|noted that it would require efficient matrix-vector multiplication (MVM) and
Krylov function (7)) for A to compute the recurrent and convolutional views, respectively. However,
the former seems to involve a matrix inversion (3)), while the latter seems to require powering A up L
times.

In this section, we show that the same restriction of A to the class of quasiseparable (Corollary {.T),
which gives an LSSL the ability to theoretically remember long dependencies, simultaneously grants
it computational efficiency.

First of all, it is known that quasiseparable matrices have efficient (linear-time) MVM [40]. We show
that they also have fast Krylov functions, allowing efficient training with convolutions.

Theorem 2. For any k-quasiseparable matrix A (with constant k) and arbitrary B, C, the Krylov
function K1 (A, B, C) can be computed in quasi-linear time and space O(N + L) and logarithmic
depth (i.e., is parallelizable). The operation count is in an exact arithmetic model, not accounting for
bit complexity or numerical stability.

We remark that Theorem [2]is non-obvious. To illustrate, it is easy to see that unrolling (7)) for a general
matrix A takes time LIN“. Even if A is extremely structured with linear computation, it requires LN
operations and linear depth. The depth can be reduced with the squaring technique (batch multiply b
A, A%, A* .. )), but this then requires LN intermediate storage. In fact, the algorithm for Theorem
is quite sophisticated (Appendix [E) and involves a divide-and-conquer recursion over matrices of
polynomials, using the observation that (7) is related to the power series C(I — Az) "B .

Unless specified otherwise, the full LSSL refers to an LSSL with A satisfying Corollary In
conclusion, learning within this structured matrix family simultaneously endows LSSLs with long-
range memory through Theorem [I]and is theoretically computationally feasible through Theorem 2}
We note the caveat that Theorem [2]is over exact arithmetic and not floating point numbers, and thus
is treated more as a proof of concept that LSSLs can be computationally efficient in theory. We
comment more on the limitations of the LSSL in Section

5 Empirical Evaluation

We test LSSLs empirically on a range of time series datasets with sequences from length 160 up to
38000 (Sections 5.1 and [5.2)), where they substantially improve over prior work. We additionally
validate the computational and modeling benefits of LSSLs from generalizing all three main model
families (Section[5.3), and analyze the benefits of incorporating principled memory representations
that can be learned (Section [5.4).

Baselines. Our tasks have extensive prior work and we evaluate against previously reported best
results. We highlight our primary baselines, three very recent works explicitly designed for long
sequences: CKConv (a continuous-time CNN) [44], UnICORNN (an ODE-inspired RNN) [47], and
Neural Controlled/Rough Differential Equations (NCDE/NRDE) (a sophisticated NDE) [31} [37].
These are the only models we are aware of that have experimented with sequences of length >10k.

5.1 Image and Time Series Benchmarks



Table 1: (Pixel-by-pixel image classification.) Table 2: (Vital signs prediction.) RMSE for pre-

(Top) our methods. (Middle) recurrent baselines. dicting respiratory rate (RR), heart rate (HR), and
(Bottom) convolutional + other baselines. blood oxygen (SpO2). * indicates our own runs to
complete results for the strongest baselines.
Model SMNIST pMNIST sCIFAR
LSSL 9953 9876  84.65 Model RR HR  Sp02
LSSL-fixed 99.50 98.60 81.97 LSSL 0.350 0432 0.141
LipschitzZRNN 994 963 642 LSSL-fixed 0.378 0.561 0.221
LMUFFT [12] - 98.49 - UnICORNN [47] 1.06 1.39 0.869*
UNIcoRNN [47] - 98.4 - coRNN [47] 1.45 1.81 -
HiPPO-RNN [24] 98.9 98.3 61.1 CKConv 1.214*%  2.05* 1.051*
URGRU [25] 99.27 96.51 74.4 NRDE [37] 1.49 297 1.29
IndRNN [34] 99.0 96.0 - IndRNN [47] 1.47 2.1 -
Dilated RNN [8]] 98.0 96.1 - expRNN [47] 1.57 1.87 -
r-LSTM [56]] 98.4 95.2 72.2 LSTM 2.28 10.7 -
CKConv [44] 9932 9854  63.74 Transformer 261 12.2¢ 3027
TrellisNet [4] 99.20 98.13 73.42 XGBoost [53] 1.67 4.72 1.52
TCN [3] 99.0 97.2 - Random Forest [S5] 1.85 5.69 1.74
Transformer [56]  98.9 97.9 62.2 Ridge Regress. [S5] 3.86 17.3 4.16

Table 3: (Sequential

We test on the sequential MNIST, permuted MNIST, and sequential CI- CelebA Classification.)

FAR tasks (Table[T), popular benchmarks which were originally designed LSSL-f ResNet
to test the ability of recurrent models to capture long-term dependencies
of length up to 1k [2]]. LSSL sets SoTA on sCIFAR by more than 10 Att. 78.89 81.35
points. We note that all results were achieved with at least 5x fewer g/ISO 92.36 93.92

. . mil.  90.95 92.89
parameters than the previous SoTA (Appendix [F). WL 90.57 93.25
We additionally use the BDIMC healthcare datasets (Table [2), a suite
of widely studied time series regression problems of length 4000 on
estimating vital signs. LSSL reduces RMSE by more than two-thirds on all datasets.

5.2 Speech and Image Classification for Very Long Time Series

Raw speech is challenging for ML models due to high-frequency sampling resulting in very long
sequences. Traditional systems involve complex pipelines that require feeding mixed-and-matched
hand-crafted features into DNNs [42]. Table [ reports results for the Speech Commands (SC)
dataset [31]] for classification of 1-second audio clips. Few methods have made progress on the raw
speech signal, instead requiring pre-processing with standard mel-frequency cepstrum coefficients
(MFCC). By contrast, LSSL sets SoTA on this dataset while training on the raw signal. We note
that MFCC extracts sliding window frequency coefficients and thus is related to the coefficients
z(t) defined by LSSL-f (Section 2] Section[d.1} [24], Appendix [D). Consequently, LSSL may be
interpreted as automatically learning MFCC-type features in a trainable basis.

To stress-test the LSSL’s ability to handle extremely long sequences, we create a challenging new
sequential-CelebA task, where we classify 178 x 218 images = 38000-length sequences for 4 facial
attributes: Attractive (Att.), Mouth Slightly Open (MSO), Smiling (Smil.), Wearing Lipstick (WL)
[36]. We chose the 4 most class-balanced attributes to avoid well-known problems with class
imbalance. LSSL-f comes close to matching the performance of a specialized ResNet-18 image
classification architecture that has 10x the parameters (Table[3). We emphasize we are the first to
demonstrate that this is possible to do with a generic sequence model.

5.3 Advantages of Recurrent, Convolutional, and Continuous-time Models

We validate that the generality of LSSLs endows it with the strengths of all three families.

Convergence Speed. As a recurrent and NDE model that incorporates new theory for continuous-
time memory (Section[4.1]), the LSSL has strong inductive bias for sequential data, and converges
rapidly to SoTA results on our benchmarks. With its convolutional view, training can be parallelized
and it is also computationally efficient in practice. Table[5|compares the time it takes the LSSL-f to



Table 4: (Raw Speech Classification; Timescale Shift.) (Top): Raw signals (length 16000); 1 — f indicates
test-time change in sampling rate by a factor of f. (Bottom): Pre-processed MFCC features used in prior work
(length 161). X denotes computationally infeasible.

LSSL LSSL-f CKConv UnICORNN N(C/R)DE ODE-RNN [45] GRU-ODE [16]

1—-1 9587 90.64 71.66 11.02 16.49 X X
1— % 88.66 78.01 65.96 11.07 15.12 X X
MFCC 93.58  92.55 95.3 90.64 89.8 65.9 47.9

Table 5: (Modeling and Computational Benefits of LSSLs.) In each benchmark category, we compare the
number of epochs (ep.) it takes a LSSL-f to reach the previous SoTA (PSoTA) results as well as a near-SoTA
target. We also report the wall clock time it took to reach PSoTA relative to the previous best model.

Permuted MNIST BDIMC Heart Rate Speech Commands RAW
98% Acc. PSoTA  Time 1.5RMSE PSoTA Time 65% Acc. PSoTA  Time
LSSL-fixed 16 ep. 104 ep. 0.19x  9ep. 10 ep. 0.07x  9ep. 10 ep. 0.14x
CKConv 118 ep. 200ep. 1.0x X X X 188 ep. 280ep. 1.0x
UnICORNN 75 ep. X X 116 ep. 467 ep. 1.0x X X X

achieve SoTA, in either sample (measured by epochs) or computational (measured by wall clock)
complexity. In all cases, LSSLs reached the target in a fraction of the time of the previous model.

Timescale Adaptation. Table [d]also reports the results of continuous-time models that are able to
handle unique settings such as missing data in time series, or test-time shift in timescale (we note
that this is a realistic problem, e.g., when deployed healthcare models are tested on EEG signals
that are sampled at a different rate [48] 49]). We note that many of these baselines were custom
designed for such settings, which is of independent interest. On the other hand, LSSLs perform
timescale adaptation by simply changing its At values at inference time, while still outperforming the
performance of prior methods with no shift. Additional results on the CharacterTrajectories dataset
from prior work [31}44]) are in Appendix[F] where LSSL is competitive with the best baselines.

5.4 LSSL Ablations: Learning the Memory Dynamics and Timescale

We demonstrate that the At and A parameters, which LSSLs are able to automatically learn in
contrast to prior work, are indeed critical to the performance of these continuous-time models. We
note that learning At adds only O(H) parameters and learning A adds O(N) parameters, adding
less than 1% parameter count compared to the base models with O(H N) parameters.

Memory dynamics A. We validate that vanilla LSSLs suffer from the modeling issues described in
Sectiond] We tested that LSSLs with random A matrices (normalized appropriately) perform very
poorly (e.g., 62% on pMNIST). Further, we note the consistent increase in performance from LSSL-f
to LSSL despite the negligible parameter difference. These ablations show that (i) incorporating the
theory of Theorem [I]is actually necessary for LSSLs, and (ii) further training the structured A is
additionally helpful, which can be interpreted as learning the measure for memorization (Section .T)).

Timescale At. Section [3.2] showed that LSSL’s ability to learn At is its direct generalization of the
critical gating mechanism of popular RNNs, which previous ODE-based RNN models [[12, 24,147, 58]
cannot learn. We note that on sCIFAR, LSSL-f with poorly-specified At gets only 49.3% accuracy.
Additional results in Appendix [F]show that learning At alone provides an orthogonal boost to learning
A, and visualizes the noticeable change in At over the course of training.

6 Discussion

In this work we introduced a simple and principled model (LSSL) inspired by a fundamental
representation of physical systems. We showed theoretically and empirically that it generalizes and
inherits the strengths of the main families of modern time series models, that its main limitations of
long-term memory can be resolved with new theory on continuous-time memorization, and that it is
empirically effective on difficult tasks with very long sequences.



Related work. The LSSL is related to several rich lines of work on recurrent, convolutional, and
continuous-time models, as well as sequence models addressing long dependencies. Appendix [A]
provides an extended related work connecting these topics.

Tuning. Our models are very simple, consisting of identical L(inear)SSL layers with simple position-
wise non-linear modules between layers (Appendix [B). Our models were able to train at much higher
learning rates than baselines and were not sensitive to hyperparameters, of which we did light tuning
primarily on learning rate and dropout. In contrast to previous baselines [4, |31, 144]], we did not use
hyperparameters for improving stability and regularization such as weight decay, gradient clipping,
weight norm, input dropout, etc. While the most competitive recent works introduce at least one
hyperparameter of critical importance (e.g. depth and step size [37]], o and At [47], wo [44]) that are
difficult to tune, the LSSL-fixed has only A¢, which the full LSSL can even learn automatically (at
the expense of speed).

Limitations. Sections [I]and [3|and Fig. [ mention that a potential benefit of having the recurrent
representation of LSSLs may endow it with efficient inference. While this is theoretically possible,
this work did not experiment on any applications that leverage this. Follow-up work showed that it is
indeed possible in practice to speed up some applications at inference time.

Theorem [J]'s algorithm is sophisticated (Appendix [D) and was not implemented in the first version of
this work. A follow-up to this paper found that it is not numerically stable and thus not usable on
hardware. Thus the algorithmic contributions in Theorem [2|serve the purpose of a proof-of-concept
that fast algorithms for the LSSL do exist in other computation models (i.e., arithmetic operations
instead of floating point operations), and leave an open question as to whether fast, numerically stable,
and practical algorithms for the LSSL exist.

As described in Appendix [B] by freezing the A matrix and At timescale, the LSSL-fixed is able to be
computed much faster than the full LSSL, and is comparable to prior models in practice (Table 3)).
However, beyond computational complexity, there is also a consideration of space efficiency. Both
the LSSL and LSSL-fixed suffer from a large amount of space overhead (described in Appendix [BJ) —
using O(N L) instead of O(L) space when working on a 1D sequence of length L — that essentially
stems from using the latent state representation of dimension N. Consequently, the LSSL can be
space inefficient and we used multi-GPU training for our largest experiments (speech and high
resolution images, Tables [3|and [4)).

These fundamental issues with computation and space complexity were revisited and resolved in
follow-up work to this paper, where a new state space model (the Structured State Space) provided a
new parameterization and algorithms for state spaces.

Conclusion and future work. Modern deep learning models struggle in applications with very long
temporal data such as speech, videos, and medical time-series. We hope that our conceptual and
technical contributions can lead to new capabilities with simple, principled, and less engineered
models. We note that our pixel-level image classification experiments, which use no heuristics (batch
norm, auxiliary losses) or extra information (data augmentation), perform similar to early convnet
models with vastly more parameters, and is in the spirit of recent attempts at unifying data modalities
with a generic sequence model [[18]. Our speech results demonstrate the possibility of learning
better features than hand-crafted processing pipelines used widely in speech applications. We are
excited about potential downstream applications, such as training other downstream models on top of
pre-trained state space features.
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