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Abstract

In this study, we adapt generative models trained on large source datasets to scarce
target domains. We adapt a pre-trained Generative Adversarial Network (GAN)
without retraining the generator, avoiding catastrophic forgetting and over-fitting.
Starting from the observation that target images can be ‘embedded’ onto the latent
space of a pre-trained source-GAN, our method finds the latent code corresponding
to the target domain on the source latent manifold. Optimizing a latent learner
network during inference generates a novel target embedding that is supplied to
the source-GAN generator to generate target samples. Our method, albeit simple,
can be used to generate data from multiple target distributions using a generator
trained on a single source distribution.

1 Introduction

1.1 Few Shot Image Generation - Background

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] form a family of highly successful
deep generative models for generation of high-quality realistic data such as images [Karras et al.,
2018, 2019, 2020a]. However, one of their major caveats is that they require a large number of images
for proper training [Sushko et al., 2021, Shermin et al., 2021, Tran et al., 2021]. This problem poses
practical restrictions on their applications [Rao et al., 2021], as the number of training data is often
limited to the order of hundreds or even tens at times [Zhao et al., 2020]. Therefore, it is crucial to
adapt GANs for few-shot settings.

One way to accomplish this objective is to utilise a generative model built on a larger, but ‘close’
source dataset [Wang et al., 2018, 2020]. Several ideas, such as learning latent transformations [Wang
et al., 2020], retraining generators on target data with Elastic-weight consolidation regularization
[Li et al., 2020], and cross-domain correspondence [Ojha et al., 2021], have been proposed. All of
them adapt the generator of a GAN trained on a large source dataset to the target dataset so that
the re-trained generator imbibes the target’s "style" while keeping the source domain’s "variability."
While the above methods demonstrate progress in adapting a pretrained GAN, they have flaws such as
lack of diversity owing to over-fitting. De-novo retraining on each new target may lead to forgetting
source information. In this paper, we’ll answer the question Can a GAN trained on a single large
source dataset be adapted to various target domains with few instances without retraining the
source generator?
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1.2 Motivation and Contributions

Recently, it has been observed that out-of-distribution data can be embedded [Abdal et al., 2019,
2021, Richardson et al., 2021, Tov et al., 2021] on to the latent space of high-fidelity GANs such
as StyleGAN [Karras et al., 2019, 2020a]. Further, traversal in the latent space of such high-fidelity
GANs have shown to yield a variety of images [Karras et al., 2020a]. This motivates us to hypothesize
the existence of a target-data manifold in the latent space of the pretrained source-GAN.
Towards this end, we propose solving an inference-time optimization problem on the latent space
of a pretrained GAN to locate the latent vectors that create the target data during inference without
retraining the source-generator. This work’s contributions are: (a) We propose a simple procedure
to utilize a GAN trained on large-scale source-data to generate samples from a target domain with
very few (1-10) examples. (b) Our procedure is shown to be capable of generating data from multiple
target domains using a single source-GAN without the need for re-training or fine-tuning it. (c)
Extensive experimentation shows that our method generates diverse and high-quality target samples
with very few examples surpassing the performance of the baseline methods.

Even though our method is aimed at finding the latent manifold corresponding to the target data, it is
unique in multiple respects as compared to other latent-transformation methods such as MineGAN
[Wang et al., 2020]. Specifically, (a) Proposed method finds point estimates via inference-time
optimization compared to [Wang et al., 2020] where a distribution-level transformation is sought,
leading to overfitting with few samples. (b) We train a latent learner every time we desire to generate a
batch of images. This contributes to the diversity. (c) This method does not retrain the source generator
with target data which preserves the diversity imbibed via source-data and enables generation from
multiple targets at once.

2 Proposed Method

2.1 Overview

Given a few target samples and a GAN trained on a source dataset, our method optimizes a new
multi-layer perceptron (which we refer to as latent learning network) to generate “novel” target latent
vectors. The source-generator uses them to create new target domain images. In our method, the
generator is fixed and not trainable. Latent learning network and discriminator are our only trainable
module.

2.2 Background

2.2.1 Generative Adversarial Networks (StyleGAN)

We use StyleGAN2 [Karras et al., 2020a] as the backbone for generator. StyleGAN2 has two latent
spaces: (i) initial latent space, Z ⊆ R512, and (ii) intermediate latent space, W ⊆ R512. An 8-layer
MLP is used to map z ∈ Z to w ∈ W . To begin with, Manipulating an image requires finding the
corresponding latent code. Previous research [Abdal et al., 2019] suggests that it may not be possible
to embed a given image directly into the Z or W space by using a common latent representation; the
results improve if a separate code is chosen for each layer of the StyleGAN. We call this latent space
as extended intermediate latent space and denote it as W+.

2.2.2 Problem Formulation

Consider a StyleGAN2 model with generator GθG having parameters θG and discriminator DθD
with parameters θD. Let pS(s) be the underlying distribution of the source data S on which it was
trained. Let the extended intermediate latent space of GθG be represented by W+. We are given few
samples from target data T ∼ pT (t). Our objective is to use the trained networks GθG , DθD and
target images T to generate samples I ∼ pT (t). Note, GθG(w) represents the images generated by
the generator GθG , and w ∈ W+ as the input from the extended latent space.

2.3 Latent Learning Network

During inference/generation, our objective is to find a latent vector wL ∈ W+ that lies on the target
manifold. To achieve this, we use a feed forward network with ReLU activations which we call
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the latent learner LθL with parameters θL. The input to this network is a random vector χ where
χ ∼ N (0, I) is sampled from the normal distribution with arbitrary dimensions. Therefore, the
objective is to obtain a wL = LθL(χ) such that GθG(wL) ∼ pT (t).
To train LθL , we enforce target domain attributes on GθG(wL) using two-component losses. First,
standard style loss [Gatys et al., 2016] between t and GθG(wL) captures target domain image
characteristics. The second component of the loss function is an adversarial loss: the discriminator,
DθD , of StyleGAN2 acts as a critic that aims to discriminate between the generated image, GθG(wL),
and the original target image, t ∈ T , whereas LθL aims to fool the discriminator. We are fine-tuning
DθD and LθL while leaving GθG untouched. Our training objective is as follows:

θ∗L, θ
∗
D = argmin

θL
max
θD

(
Lstyle + Ladv

)
(1)

Lstyle = E
χ,t

[∑
l

βl

RlCl
||Al;GθG

(LθL
(χ)) −Al;t||22

]
(2)

Ladv = E
t

[
logDθD (t)

]
+ E

χ

[
log(1−DθD (GθG(LθL(χ))))

]
(3)

Here, Lstyle is the style loss, Rl and Cl are dimensions of feature map of lth-layer, Al denotes gram
matrix of corresponding feature maps as shown in [Gatys et al., 2016]. We have used VGG-19 model
to get the feature maps. βl is the hyperparameter corresponding to lth-layer, which is set to 1 for all
l. Ladv is the adversarial loss explained above. While training, generator parameters θG are kept
constant, but the gradient is propagated to the latent learner. To update the latent learner, LθL , we
use non-saturating adversarial loss as outlined in [Goodfellow et al., 2014]. Once the latent learner
converges, its output w∗

L = Lθ∗
L
(χ) is used as the input to the generator to obtain the final generated

target images t∗ = GθG(w
∗
L). Figure 1 presents an illustration of the proposed method.

2.3.1 Inference-stage latent learner retraining

Figure 1: Given a trained StyleGAN [Karras
et al., 2019, 2020a] on a source dataset and
a few examples from the target domain, our
method trains a latent-learner LθL (a MLP)
to generate a new latent code starting from a
random Gaussian noise vector. The generated
latent code is then fed to the source Generator
to generate a ‘novel’ target domain sample.

We train the latent learner afresh during inference-
stage, whenever we desire to generate a batch of
images from the target domain. Note that the same
set of target samples are used for training LθL every
time, albeit it is trained afresh with different initial-
ization. This would ensure that LθL would not overfit
on the few target data points (unlike in [Wang et al.,
2020]), thus inducing diversity in the generated sam-
ples. This procedure nevertheless, comes at the cost
of an increased inference time which is manageable
in many practical settings since the latent learner is
a simple 3-layer MLP.

2.4 Implementation Details

The proposed method is inference time optimization.
During inference, we optimise the latent learner’s
parameter space using style (Eq. 2) and adversarial
loss (Eq. 3). We use VGG-19 model to calculate style loss; the layers utilised to extract feature maps
are - {conv1_2, conv2_2, conv3_4, conv4_4, conv5_4}. Unless otherwise specified, the latent learner
is a 3-layer MLP with 512 neurons per layer. The hidden layers use ReLU activation, while the last
layer has none. We use a batch size of 8.

3 Experiments and Results

3.1 Datasets

Following previous work [Li et al., 2020, Ojha et al., 2021], we consider Flickr Faces HQ (FFHQ)
[Karras et al., 2019] as one of the source domain datasets and adapt to the following target domains:
(i) FFHQ-Babies [Ojha et al., 2021], (ii) FFHQ-Sunglasses [Ojha et al., 2021], (iii) face sketches
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(a) 10-shot training examples of
FFHQ-Babies.

(b) Babies generated using CDC
[Ojha et al., 2021].

(c) Babies generated using our
method.

(d) 10-shot training examples of
FFHQ-Sunglasses.

(e) Images generated using CDC
[Ojha et al., 2021].

(f) Images generated using our
method.

(g) 10-shot training examples of
sketches.

(h) Sketches generated using CDC
[Ojha et al., 2021].

(i) Sketches generated using our
method.

(j) 10-shot training examples of
bitmoji.com emojis.

(k) Emojis generated using CDC
[Ojha et al., 2021].

(l) Emojis generated using our
method.

(m) 10-shot training examples of
Amedeo’s painting.

(n) Amedeo’s painting generated us-
ing CDC [Ojha et al., 2021].

(o) Amedeo’s painting generated us-
ing our method.

Figure 2: Source domain: FFHQ. Each row represents one target domain among — Babies, Sun-
glasses, Sketches, Emoji and Amedeo Modigliani’s face paintings. The first column presents 10-shot
training examples from the target domains. The second column presents 10 images generated using
CDC [Ojha et al., 2021]. The third column presents 10 images generated using our proposed method.
[Wang and Tang, 2009], (iv) emoji faces from bitmoji.com API [Taigman et al., 2016, Hua et al.,
2017], and (v) portrait paintings from the artistic faces dataset [Yaniv et al., 2019].

Table 1: FID scores (↓) for domains with ample
data.

Method Babies Sunglasses Sketches Bitmoji
TGAN 104.79 55.61 53.41 66.69
TGAN + ADA 102.58 53.64 66.99 68.71
BSA 140.34 76.12 69.32 105.56
FreezeD 110.92 51.29 46.54 71.16
MineGAN 98.23 68.91 64.34 86.44
EWC 87.41 59.73 71.25 74.87
CDC 74.39 42.13 45.67 69.54
Proposed Method 63.31 35.64 35.59 64.50

Next, we employ LSUN Church [Yu et al., 2015]
as a source domain and adapt to haunted houses
[Ojha et al., 2021] and Van Gogh’s house paint-
ings [Ojha et al., 2021]. Both source and target
domain datasets use 256x256 images. Unless
otherwise noted, all our tests use 10 randomly
picked target samples.

3.2 Methodology, Metrics and Baselines

Methodology: Even though very few (1, 5, or
10) target examples are used in the method for
adaptation, the evaluation is conducted on a larger target set. For example, there are approximately
300, 2500, 2700 and unlimited examples in the sketches [Wang and Tang, 2009], FFHQ-Babies [Ojha
et al., 2021], FFHQ-Sunglasses [Ojha et al., 2021], and emoji [Taigman et al., 2016, Hua et al., 2017]
datasets, respectively.
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Table 2: Density (↑) and Coverage (↑) scores.

Method Babies Sketches
Density Coverage Density Coverage

TGAN 0.379 0.250 0.221 0.401
TGAN + ADA 0.434 0.285 0.193 0.374
FreezeD 0.418 0.217 0.415 0.436
MineGAN 0.803 0.125 0.394 0.263
EWC 0.301 0.325 — —
CDC 0.690 0.467 0.149 0.492
Proposed Method 1.118 0.611 0.445 0.716

Table 3: Intra-cluster pairwise LPIPS distance (↑)

Method Amedeo’s Paintings Sketches
TGAN 0.41 0.39
TGAN + ADA 0.51 0.41
BSA 0.39 0.35
FreezeD 0.40 0.39
MineGAN 0.42 0.40
CDC 0.60 0.45
Proposed Method 0.61 0.48

Metrics: We compute and report Fréchet Inception Distance (FID) [Heusel et al., 2017] and density
and coverage metrics [Naeem et al., 2020] to quantify quality and diversity, respectively. Further, we
report Learned Perceptual Image Patch Similarity (LPIPS) [Zhang et al., 2018] metric, which gives
an idea about overfitting on the small amount of target data as shown in [Ojha et al., 2021].
Baselines:We compare our method against the following baselines - Transferring GAN (TGAN)
[Wang et al., 2018], Batch Statistics Adaptation (BSA) [Noguchi and Harada, 2019], MineGAN
[Wang et al., 2020], Freeze-D [Mo et al., 2020], Non-leaking Adaptive Data Augmentation [Karras
et al., 2020b, Zhao et al., 2020] (TGAN + ADA), Elastic Weight Consolidation (EWC) [Li et al.,
2020], and Few-shot Image Generation via Cross-domain Correspondence (CDC) [Ojha et al., 2021].

3.3 Results

As shown in Table 1, our strategy outperforms state-of-the-art methods on all four datasets. From
Table 2, it’s clear that the proposed strategy generates diverse, high-quality samples. As in [Ojha et al.,
2021], we allocate 1000 generated images to one of k = 10 possible clusters based on the lowest
LPIPS distance [Zhang et al., 2018]. Next, we compute the average the pair-wise LPIPS metric among
cluster members. Finally, we average over k clusters. A lower value of this measure indicates less
diversified images. It can be seen from Table 3, our technique provides the best intra-cluster pair-wise
LPIPS distance for Amedeo Modigliani’s paintings and sketches datasets. Figure 2 presents a few
samples generated using CDC [Ojha et al., 2021] and our proposed method when adapting a FFHQ
generator to various target domains — Babies, Sunglasses, Sketches, and Amedeo Modigliani’s face
painting. It can be seen that the images generated using proposed method are crisp and diverse. Refer
to the supplementary material for church to haunted house and church to Van Gogh’s house painting
adaptation.

Table 4: Effect of k in k-shot adaptation on generation quality as measured using FID score (↓).

Method 1-shot 5-shot 10-shot
Babies Sketches Babies Sketches Babies Sketches

CDC 105.58 81.95 73.63 51.01 74.39 45.67
Proposed Method 105.13 79.20 65.47 41.88 62.14 35.59

3.4 Ablation Studies

Number of Target Examples: So far, we have used 10 target domain images. Table 4 shows how
number of training data affects generation quality. We compare the proposed approach to SOTA CDC
[Ojha et al., 2021]. Generation quality improves with k, and the proposed technique performs better
in almost all cases. For qualitative analysis, see supplementary.

4 Conclusion

In this study, we demonstrate that existing source models can be used as-is (without retraining or
fine-tuning) to model new distributions with less data. We feel our work is an important step towards
few-shot ‘generative domain adaptation,’ where the same source generator can generate source
domain samples and many target domain samples. Our method can also be seen as a step toward
continual learning for generative tasks where the same generator can generate data from diverse
domains.
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Appendix

A Qualitative Analysis of Impact of k on Generation for k-shot Adaptation

In the main paper, we have provided quantitative comparison of generation quality as k in k-shot
generation is varied from 1 to 10. Here, we present some visual samples of 1-shot and 5-shot
adaptation for FFHQ → Babies. Figure 4c and 5c presents newly generated baby samples using
the proposed method under 1-shot and 5-shot settings respectively. As can be seen, variation in the
generated images increases in the 5-shot adaptation. As compared to the current SOTA CDC [Ojha
et al., 2021], our method generates images that are more crisp and exhibits more variety.

(a) Random images generated using a source StyleGAN2 trained on LSUN Church [Yu et al., 2015].

(b) 10-shot training examples of haunted house [Ojha
et al., 2021].

(c) 10-shot training examples of Van Gogh’s house
paintings [Ojha et al., 2021].

(d) Haunted houses generated by our proposed method. (e) Van Gogh style house paintings generated by pro-
posed method.

Figure 3: Source domain: LSUN Church [Yu et al., 2015]. Target Domain: Haunted house [Ojha
et al., 2021] and Van Gogh’s house paintings [Ojha et al., 2021].
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(a) 1-shot training example of baby for adaptation.

(b) Images generated using CDC [Ojha et al., 2021].

(c) Images generated using proposed method.

Figure 4: Examples of images generated after 1-shot adaptation.
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(a) 5-shot training example of baby for adaptation.

(b) Images generated using CDC [Ojha et al., 2021].

(c) Images generated using proposed method.

Figure 5: Examples of images generated after 5-shot adaptation.
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