NAS-Bench-Suite-Zero:
Accelerating Research on Zero Cost Proxies

Arjun Krishnakumar®, Colin White*2, Arber Zela*', Renbo Tu*?,
Mahmoud Safari', Frank Hutter'*

LUniversity of Freiburg, 2Abacus.Al, 3University of Toronto,
4Bosch Center for Artificial Intelligence

Abstract

Zero-cost proxies (ZC proxies) are a recent architecture performance prediction
technique aiming to significantly speed up algorithms for neural architecture search
(NAS). Recent work has shown that these techniques show great promise, but cer-
tain aspects, such as evaluating and exploiting their complementary strengths, are
under-studied. In this work, we create NAS-Bench-Suite-Zero: we evaluate 13
ZC proxies across 28 tasks, creating by far the largest dataset (and unified codebase)
for ZC proxies, enabling orders-of-magnitude faster experiments on ZC proxies,
while avoiding confounding factors stemming from different implementations.
To demonstrate the usefulness of NAS-Bench-Suite-Zero, we run a large-scale
analysis of ZC proxies, including a bias analysis, and the first information-theoretic
analysis which concludes that ZC proxies capture substantial complementary infor-
mation. Motivated by these findings, we present a procedure to improve the perfor-
mance of ZC proxies by reducing biases such as cell size, and we also show that
incorporating all 13 ZC proxies into the surrogate models used by NAS algorithms
can improve their predictive performance by up to 42%. Our code and datasets are
available at https://github.com/automl/naslib/tree/zerocost.

1 Introduction

Algorithms for neural architecture search (NAS) seek to automate the design of high-performing
neural architectures for a given dataset. NAS has successfully been used to discover architectures
with better accuracy/latency tradeoffs than the best human-designed architectures [5, 9} 28] |38]]. Since
early NAS algorithms were prohibitively expensive to run [58]], a long line of recent work has focused
on improving the runtime and efficiency of NAS methods (see [9} 49| for recent surveys).

A recent thread of research within NAS focuses on zero-cost proxies (ZC proxies) [IL, 23]. These
novel techniques aim to give an estimate of the (relative) performance of neural architectures from
just a single minibatch of data. Often taking just five seconds to run, these techniques are essentially
“zero cost” compared to training an architecture or to any other method of predicting the performance
of neural architectures [48]]. Since the initial ZC proxy was introduced [23|], there have been many
follow-up methods [l1,16]. However, several recent works have shown that simple baselines such
as “number of parameters” and “FLOPS” are competitive with all existing ZC proxies across most
settings, and that most ZC proxies do not generalize well across different benchmarks, thus requiring
broader large-scale evaluations in order to assess their strengths [2, [25]]. A recent landscape overview
concluded that ZC proxies show great promise, but certain aspects are under-studied and their true

*Equal contribution. Work done while RT was part-time at Abacus.AlL Email to:
{krishnan, zelaa, fh}Ocs.uni-freiburg.de, colin@abacus.ai, renbo.tu@mail.utoronto.ca,
safarim@informatik.uni-freiburg.de.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/automl/naslib/tree/zerocost

Examples: Examples: . q
Jacob. Cov. NAS-Bench-101 [Generahzatlon] [Mutual Info.]

EPE-NAS TransNAS-Bench-101
NAS-Bench-360 ooooo

Zen-Score

H(y | Zin'--vzik)
23 Benchmarks I:>

\%’ [Arch. Biases][NAS Integration]

[

[1.5M total evaluations]

Figure 1: Overview of NAS-Bench-Suite-Zero. We implement and pre-compute 13 ZC proxies on
28 tasks in a unified framework, and then use this dataset to analyze the generalizability, complemen-
tary information, biases, and NAS integration of ZC proxies.

potential has not been realized thus far [45]]. In particular, it is still largely unknown whether ZC
proxies can be effectively combined, and how best to integrate ZC proxies into NAS algorithms.

In this work, we introduce NAS-Bench-Suite-Zero: a unified and extensible collection of 13
ZC proxies, accessible through a unified interface, which can be evaluated on a suite of 28 tasks
through NASLib [30] (see Figure[I). In addition to the codebase itself, we release precomputed
ZC proxy scores across all 13 ZC proxies and 28 tasks, which can be used to speed up ZC proxy
experiments. Specifically, we show that the runtime of ZC proxy experiments such as NAS analyses
and bias analyses are shortened by a factor of at least 10% when using the precomputed ZC proxies in
NAS-Bench-Suite-Zero. By providing a unified framework with ready-to-use scripts to run large-
scale experiments, NAS-Bench-Suite-Zero eliminates the overhead for researchers to compare
against many other methods and across all popular NAS benchmark search spaces, helping the
community to rapidly increase the speed of research in this promising direction. Our benchmark
suite was very recently used successfully in the Zero Cost NAS Competition at AutoML-Conf 2022.
See Appendix |F| for more details. In Appendix B} we give detailed documentation, including a
datasheet [[10], license, author responsibility, code of conduct, and maintenance plan. We welcome
contributions from the community and hope to grow the repository and benchmark suite as more ZC
proxies and NAS benchmarks are released.

To demonstrate the usefulness of NAS-Bench-Suite-Zero, we run a large-scale analysis of ZC
proxies: we give a thorough study of generalizability and biases, and we give the first information-
theoretic analysis. Interestingly, based on the bias study, we present a concrete method for
improving the performance of a ZC proxy by reducing biases (such as the tendency to favor larger
architectures or architectures with more conv operations). This may have important consequences
for the future design of ZC proxies. Furthermore, based on the information-theoretic analysis, we
find that there is high information gain of the validation accuracy when conditioned on multiple
ZC proxies, suggesting that ZC proxies do indeed compute substantial complementary information.
Motivated by these findings, we incorporate all 13 proxies into the surrogate models used by NAS
algorithms [44, 47], showing that the Spearman rank correlation of the surrogate predictions can
increase by up to 42%. We show that this results in improved performance for two predictor-based
NAS algorithms: BANANAS [47] and NPENAS [44].

Our contributions. We summarize our main contributions below.

* We release NAS-Bench-Suite-Zero, a collection of benchmarks and ZC proxies that unifies
and accelerates research on ZC proxies — a promising new sub-field of NAS — by enabling
orders-of-magnitude faster evaluations on a large suite of diverse benchmarks.

* We run a large-scale analysis of 13 ZC proxies across 28 different combinations of search spaces
and tasks by studying the generalizability, bias, and mutual information among ZC proxies.

* Motivated by our analysis, we present a procedure to improve the performance of ZC proxies by
reducing biases, and we show that the complementary information of ZC proxies can significantly
improve the predictive power of surrogate models commonly used for NAS.

Table 1: List of ZC proxies in NAS-Bench-Suite-Zero. Note that “neuron-wise” denotes whether
the total score is a sum of individual weights.

Name Data-dependent Neuron-wise Type In NAS-Bench-Suite-Zero
epe-nas [21] X Jacobian
fisher [42] Pruning-at-init
flops [25] Baseline
grad-norm [1] Pruning-at-init
grasp [43] Pruning-at-init
12-norm [1] X X Baseline
jacov [23] X Jacobian
nwot [23] X Jacobian
params [25] X Baseline
plain [1] Baseline
snip [14] Pruning-at-init
synflow [39] X Pruning-at-init
zen-score [16] X X Piece. Lin.

2 Background and Related Work

Given a dataset and a search space — a large set of neural architectures — NAS seeks to find the
architecture with the highest validation accuracy (or the best application-specific trade-off among
accuracy, latency, size, and so on) on the dataset. NAS has been studied since the late 1980s [24, 40]]
and has seen a resurgence in the last few years [18} 58], with over 1000 papers on NAS in the last
two years alone. For a survey of the different techniques used for NAS, see [9,49].

Many NAS methods make use of performance prediction. A performance prediction method is
any function which predicts the (relative) performance of architectures, without fully training the
architectures [48]. BRP-NAS [8]], BONAS [34], and BANANAS [47] are all examples of NAS
methods that make use of performance prediction. While performance prediction speeds up NAS
algorithms by avoiding fully training neural networks, many still require non-trivial computation time.
On the other hand, a recently-proposed line of techniques, zero-cost proxies (ZC proxies) require just
a single forward pass through the network, often taking just five seconds [23].

Zero-cost proxies. The original ZC proxy estimated the separability of the minibatch of data into
different linear regions of the output space [23]]. Many other ZC proxies have been proposed since
then, including data-independent ZC proxies [1} 15} 16, 139], ZC proxies inspired by pruning-at-
initialization techniques [1} 114} |39} 43|, and ZC proxies inspired by neural tangent kernels [4, [35]].
See Table[I for a full list of the ZC proxies we use in this paper. We describe theoretical ZC proxy
results in Appendix [C.T.

Search spaces and tasks. In our experiments, we make use of several different NAS benchmark
search spaces and tasks. NAS-Bench-101 [54] is a popular cell-based search space for NAS research.
It consists of 423 624 architectures trained on CIFAR-10. The cell-based search space is designed
to model ResNet-like and Inception-like cells [12}137]. NAS-Bench-201 [[6] is a cell-based search
space consisting of 15 625 architectures (6 466 non-isomorphic) trained on CIFAR-10, CIFAR-100,
and ImageNet16-120. NAS-Bench-301 [560] is a surrogate NAS benchmark for the DARTS search
space [[19]. The search space consists of normal cell and reduction cells, with 10*® total architectures.
TransNAS-Bench-101 [7] is a NAS benchmark consisting of two different search spaces: a “micro”
(cell-based) search space of size 4 096, and a macro search space of size 3 256. The architectures are
trained on seven different tasks from the Taskonomy dataset [55)]. NAS-Bench-Suite [22] collects
these search spaces and tasks within the unified framework of NASLib [30]. In this work, we extend
this collection by adding two datasets from NAS-Bench-360 [41], SVHN, and four datasets from
Taskonomy. NAS-Bench-360 is a collection of diverse tasks that are ready-to-use for NAS research.

Large-scale studies of ZC proxies. A few recent works [2,[25]145]/48]] investigated the performance
of ZC proxies in ranking architectures over different NAS benchmarks, showing that the relative
performance highly depends on the search space, but none study more than 12 total tasks, and none
make the ZC proxy values publicly available. Two predictor-based NAS methods have recently
been introduced: OMNI [48] and ProxyBO [33]]. However, OMNI only uses a single ZC proxy, and

Table 2: Overview of ZC proxy evaluations in NAS-Bench-Suite-Zero. * Note that EPE-NAS is
only defined for classification tasks [21]].

Search space Tasks Num. ZC proxies Num. architectures Total ZC proxy evaluations
NAS-Bench-101 1 13 10000 130000
NAS-Bench-201 3 13 15625 609 375
NAS-Bench-301 1 13 11221 145873
TransNAS-Bench-101-Micro 7 12* 3256 273504
TransNAS-Bench-101-Macro 7 12* 4096 344 064
Add’l. 201, 301, TNB-Micro 9 13 600 23400
Total 28 13 44798 1526216

while ProxyBO uses three, the algorithm dynamically chooses one in each iteration (so individual
predictions are made using a single ZC proxy at a time). Recently, NAS-Bench-Zero was introduced
[2], a new benchmark based on popular computer vision models ResNet [[12] and MobileNetV2
[31], which includes 10 ZC proxies. However, the NAS-Bench-Zero dataset is currently not publicly
available. For more related work details, see Appendix

Only two prior works combine the information of multiple ZC proxies together in architecture
predictions [1, 2] and both only use the voting strategy to combine at most four ZC proxies. Our
work is the first to publicly release ZC proxy values, combine ZC proxies in a nontrivial way, and
exploit the complementary information of 13 ZC proxies simultaneously.

3 Overview of NAS-Bench-Suite-Zero

In this section, we give an overview of the NAS-Bench-Suite-Zero codebase and dataset, which
allows researchers to quickly develop ZC proxies, compare against existing ZC proxies across diverse
datasets, and integrate them into NAS algorithms, as shown in Sections E] and@

We implement all ZC proxies from Table in the same codebase (NASLib [30Q]). For all ZC proxies,
we use the default implementation from the original work. While this list covers 13 ZC proxies,
the majority of ZC proxies released to date, we did not yet include a few other ZC proxies, for
example, due to requiring a trained supernetwork to make evaluations [4} 35] (therefore needing to
implement a supernetwork on 28 benchmarks), implementation in TensorFlow rather than PyTorch
[26]], or unreleased code. Our modular framework easily allows additional ZC proxies to be added to
NAS-Bench-Suite-Zero in the future.

To build NAS-Bench-Suite-Zero, we extend the collection of NASLib’s publicly available bench-
marks, known as NAS-Bench-Suite [22]]. This allows us to evaluate and fairly compare all ZC
proxies in the same framework without confounding factors stemming from different implemen-
tations, software versions or training pipelines. Specifically, for the search spaces and tasks, we
use NAS-Bench-101 (CIFAR-10), NAS-Bench-201 (CIFAR-10, CIFAR-100, and ImageNet16-120),
NAS-Bench-301 (CIFAR-10), and TransNAS-Bench-101 Micro and Macro (Jigsaw, Object Classifi-
cation, Scene Classification, Autoencoder) from NAS-Bench-Suite. We add the remaining tasks from
TransNAS-Bench-101 (Room Layout, Surface Normal, Semantic Segmentation), and three tasks each
for NAS-Bench-201, NAS-Bench-301, and TransNAS-Bench-101-Micro: Spherical-CIFAR-100,
NinaPro, and SVHN. This yields a total of 28 benchmarks in our analysis. For all NAS-Bench-201
and TransNAS-Bench-101 tasks, we evaluate all ZC proxy values and the respective runtimes, for
all architectures. For NAS-Bench-301, we evaluate on all 11221 randomly sampled architectures
from the NAS-Bench-301 dataset, due to the computational infeasibility of exhaustively evaluating
the full set of 10'® architectures. Similarly, we evaluate 10000 architectures from NAS-Bench-101.
Finally, for Spherical-CIFAR-100, NinaPro, and SVHN, we evaluate 200 architectures per search
space, since only 200 architectures are fully trained for each of these tasks. See Table 2]

We run all ZC proxies from Table [T on Intel Xeon Gold 6242 CPUs and save their evaluations in
order to create a queryable table with these pre-computed values. We use a batch size of 64 for all ZC
proxy evaluations, except for the case of TransNAS-Bench-101: due to the extreme memory usage of
the Taskonomy tasks (> 30GB memory), we used a batch size of 32. The total computation time for
all 1.5M evaluations was 1100 CPU hours.

Spearman rank correlations between ZC proxy values and validation accuracies

plain
grasp
fisher
epe_nas . -0.1 -0. X . 0.00 0.01 X
grad_norm | -0. -0.! 0.31 m 0.
snip 0. b -0. B8 0.20 -0.14
synflow . . -0. . . 0.00 0.27
12 _norm H 0.08 = -0.03 N i -020 0.28
params [REX 0.16 -0.00 A . -0.18 0.32
zen b 0.10 -0.04 ¥ I -0.01 0.27
jacov L 0.07 0.08) 0.45 0.19
flops [EOK 0.79 0.48 . . 0.76 0.85
nwot \ 0.83 0.63) 0.67 0.89

< o » X o \3) » " N\ % o \3 S o
P @‘* P @\,\@ R g@@ e S
o™ % G 0 @ N (@07 @ 0 F ¢ o 0 oV o™ 0 g o8 @8
RGN LS SR WG G w8 o o e @ R
AW o o - o AQ> oD W @5” o> o> o> o> o) Sla
JECEIC SR JRCSIR PR I e ey o

Figure 2: Spearman rank correlation coefficient between ZC proxy values and validation accuracies,
for each ZC proxy and benchmark. The rows and columns are ordered based on the mean scores
across columns and rows, respectively.

Speedups and recommended usage. The average time to compute a ZC proxy across all tasks is
2.6 seconds, and the maximum time (computing grasp on TNB-Macro Autoencoder) is 205 seconds,
compared to 10~° seconds when instead querying the NAS-Bench-Suite-ZeroAPI.

When researchers evaluate ZC proxy-based NAS algorithms using queryable NAS benchmarks, the
bottleneck is often (ironically) the ZC proxy evaluations. For example, for OMNI [48] or ProxyBO
[33]] running for 100 iterations and 100 candidates per iteration, the total evaluation time is roughly 9
hours, yet they can be run on NAS-Bench-Suite-Zero in under one minute. Across all experiments
done in this paper (mutual information study, bias study, NAS study, etc.), we calculate that using
NAS-Bench-Suite-Zero decreases the computation time by at least three orders of magnitude. See
Appendix [D.4]for more details.

Since NAS-Bench-Suite-Zero reduces the runtime of experiments by at least three orders
of magnitude (on queryable NAS benchmarks), we recommend researchers take advantage of
NAS-Bench-Suite-Zero to (i) run hundreds of trials of ZC proxy-based NAS algorithms, to reach
statistically significant conclusions, (ii) run extensive ablation studies, including the type and usage
of ZC proxies, and (iii) increase the total number of ZC proxies evaluated in the NAS algorithm.
Finally, when using NAS-Bench-Suite-Zero, researchers should report the real-world time NAS
algorithms would take, by adding the time to run each ZC proxy evaluation (which can be queried in
NAS-Bench-Suite-Zero) to the total runtime of the NAS algorithm.

4 Generalizability, Mutual Information, and Bias of ZC Proxies

In this section, we use NAS-Bench-Suite-Zero to study concrete research questions relating to the
generalizability, complementary information, and bias of ZC proxies.

4.1 RQ 1: How well do ZC proxies generalize across different benchmarks?

In Figure 2} for each ZC proxy and each benchmark, we compute the Spearman rank correlation
between the ZC proxy values and the validation accuracies over a set of 1000 randomly drawn
architectures (see Appendix D for the full results on all benchmarks). Out of all the ZC proxies, nwot
and flops have the highest rank correlations across all benchmarks. On some of the benchmarks,
such as TransNAS-Bench-101-Micro Autoencoder and Room Layout, all of the ZC proxies exhibit
poor performance on average, while on the widely used NAS-Bench-201 benchmarks, almost all of
them perform well. Several methods, such as snip and grasp, perform well on the NAS-Bench-201
tasks, but on average are outperformed by params and f1lops on the other benchmarks.

Although no ZC proxy performs consistently across all benchmarks, we may ask a related question:
is the performance of all ZC proxies across benchmarks correlated enough to capture similarities
among benchmarks? In other words, can we use ZC proxies as a tool to assess the similarities among
tasks. This is particularly important in meta-learning or transfer learning, where a meta-algorithm
aims to learn and transfer knowledge across a set of similar tasks. To answer this question, we

compute the Pearson correlation of the ZC proxy scores on each pair of benchmarks. See Figure[3.
As expected, benchmarks that are based on the same or similar search spaces are highly correlated
with respect to the ZC proxy scores. For example, we see clusters of high correlation for the
Trans-NAS-Bench-101-Macro benchmarks, and the NAS-Bench-201 benchmarks.

Answer to RQ 1: Only a few ZC proxies generalize well across most benchmarks and tasks. However,
ZC proxies can be used to assess similarities across benchmarks. This suggests the potential future
direction of incorporating them as task features in a meta-learning setting [20].

4.2 RQ 2: Are ZC proxies complementary with respect to explaining validation accuracy?

While Figure [2 shows the

perfor}nance of each indi- Correlation between benchmarks based on ZC proxy values

vidual ZC Proxy, now we P 0.33 041 093 P 0.45 029 0.16 061 0.57 0.50
consider the combined per- \\w\g& 32 1.00 0.99 092 0.49 041 0.38 [0.14 KU 34 0.38 051 044 0.35
formance of mu]tip]e 7C ,\%@XG@Q 99 1.00 0.96 051 0.3 0.37 0.12 EELRGNE] 0.35 040 051 0.44 0.34
prox1es. If ZC pI'OXlCS mea- ‘\\a’lﬁy < 0.96 1.00 0.58 0.21 0.36 '0.10 0 46 048 0.55 047 0.35
. . O
sure different characteris- \\\9‘5\'& © 0.51 058 1.00 NENOETE 0.45 047 038 0.68 062 0.55
. . &
tics of architectures, then a & BREIOZIEYT) < o0 057 00| 070 [080) 065 | 064|048 055 052
. . o .
NAS algorlthm can e)fpl()lt & > © 036 087 1.00 095 082 55 0.57 0.40 046 0.42
their complementary infor- @& o
. . N o L 090 0.95 1.00 0.94 [0.12 048 0.47 037 046 045
mation in order to yield — @ &
. . RO RN R SRR] 0.79 082 0.94 1.0 (0481 032 030 023 033 0,57
improved results. While o o o
A A R 030 012 048 1.00 033 0.19 052 046 0.50
prior work [25, 45] com- = g o
putes the correlation among Qﬁﬁm’ ‘\st“‘* : 046 066 055 048 032 1.00 0.9 0.57 049
. . N~ ’
palrs Of ZC pl‘OXlGS, our E\d ngs@ (,\A@“ 0.48 0.38 0.64 057 047 030 0.19 0.96 0.43 0.35
true goal is to assess the “&\x‘“&@&ﬁiﬁ"w\ 0.51 055 068 0.49 040 0.37 023 052 0.51 039 1.00 0.97 095 0.92 061 0.68
complementary information & ‘m@“’x o 044 0.47 062 0.55 0.46 046 0.33 046 0.57 043 0.9 0 099 0.90 056 0.72
. . o> s
of ZC proxies with respect <« N V&Qe& 0.34 035 055 052 042 045 0.37 050 049 0. 99 1.00 0.92 056 0.67
SIS

to explaining the ground- %

truth validation accuracy. & &
. X3

Furthermore, we wish to F

041 043 059 0.26 0.17 0.150.07 O. 0.43 0. 092 1.00 0.73 0.71

0.36 0.38 0.20 0.32 0.26 0.19 0.12 0. 0.46 0. 0.61 0.56 0.56 0.73 1.00 0.80 0.89

Psg&’ N ¥ . 0.46 0.52 0.42 0.56 0.51 0.42 0.26 0. 0.84 0. 0.68 0.72 0.67 0.71 0.80 1.00 0.93
measure the complementary ¥ "
. . <N ‘,&LV\“ & 0.12 0.37 0.38 0.45 0.35 0.50 0.39 0.32 0.22 0.30 0.73 0.69 0.72 0.72 0.69 0.79 0.89 0.93 1.00
information of more than &% o . S— 5 S .
just two ZC proxies at a ST 00 o o T o e A S
] P A~ o ‘eﬂ“ 8> »@\ & 0 0 0 ® x@* o v& 02 07 (80 0 \,\P.L o oY Q
. F h ® W W eF W W XL%\‘\:\X\’\AXL& o @L ,»(} \A\’S’% }\\x \,\“L o "S}\, \N*(' \‘&
time. or this, we turn to “\%@ P ‘\%@ /\\\‘aﬂ%@x/ $@ \@Bx ‘\%@ e “\‘a %@x \@m o

information theoretic mea-
sures: by treating the valida-
tion accuracy and ZC proxy
values as random variables,
we can measure the entropy
of the validation accuracy conditioned on one or more ZC proxies, which intuitively tells us the
information that one or more ZC proxies reveal about the validation accuracy.

Figure 3: Pearson correlation coefficient between ZC proxy scores on
pairs of benchmarks. The entries in the plot are ordered based on the
mean score across each row and column.

Formally, given a search space .9, let) denote the uniform distribution of validation accuracies over
the search space, and let y denote a random sample from). Similarly, for a ZC proxy ¢ from 1 to 13,
let Z; denote the uniform distribution of the ZC proxy values, and let z; denote a random sample
from Z,. Let H(-) denote the entropy function. For all pairs z;, z; of ZC proxies, we compute the
conditional entropy H(y | z;,2;), as well as the information gain H(y | z;) — H(y | zi,2;). See
Figure[d] The entropy computations are based on 1000 randomly sampled architectures, using 24-bin
histograms for density smoothing (see Appendix [D|for more details). We see that synflow and
plain together give the most information about the ground truth validation accuracies, due to their
substantial complementary information.

Now we can ask the same question for k tuples of ZC proxies. Given an ordered list of & ZC proxies
Ziys Zigs - - - %iy,» We define the information gain of z;, conditioned on y as follows:

IG(z:,) = H(y | ziyy- -y 2ip_y) —HW | Ziyy- oy 2ip)- (1)
Intuitively, IG computes the marginal information we learn about y when z;, is revealed, assuming
we already knew the values of z;,,...,2;, ,. We compare the conditional entropy vs. number of

2For completeness, we re-run that experiment and include the results in Appendix@

Pairwise conditional entropy on NB301-CF10

198 210 190 184 185 187 1.86- 2l 252 255

Information gain on NB301-CF10

[SCEMECIIRY 144 131 152 157 156 1.54

epe_nas [KE
synflow 205 210 208 208 209 K g 258 synflow 142“ 123 135 130 1.31 1.31
plain 210 214 212 211 214 215 64 265 LEN 1.26 120“ 123 125 125 123
nwot 1.90 205 214 [REZEPEIRPMPYTAPL] X 40 248 nwot 1.19 110@0.73 0.69
zen 1.84 210 2.12 PEINEPIEPXRPY PP X .39 246 2. zen (RERRRERNNZY -0.00 0.33

flops 1.85 2.08 2. 255 292 326 282 285 8 & 248 2. flops ARCRNRAR 0.34

12_norm 1.87 208 2. 267 282 282 325 294 & X 248 12_norm 3¢ 1.11 | 0.59
params 263 288 285 294 324 A .4 247 2. params 3 1.10 061 ’_’
snip 216 216 215 217 2.16 K] . 273 snip 113 130 129 131
grad_norm 217 217 216 218 2.16 KX 3.46 273 grad_norm 113 129 129 1.30

JICII 252 255 264 240 239 239 240 240 2. 8 3 293 fisher b X [X:1) 1.05 1.05
[[lcHl 255 258 265 248 246 248 248 247 g g 3.43 grasp X X 0.78 0. 0.97 0.96

JECOA 283 287 292 274 273 274 274 274 3.10 3 jacov 0.70 0.66 0.85 083

A e ° \ SR\ et 0 N S oV B O et ° W SR\ R Ol
o QNGB @ e (o AP e (@R 0 o QNGB W 18 (o o P e (@0 o
o2 o KB &6, A S RN @50 &6, A A
NB301-CF10 NB201-CF100 TNB101_MACRO-autoencoder
3.5 3.0
—— random ordering —— random ordering 35 —— random ordering
33'0 ~—— greedy ordering 225 ~—— greedy ordering 230 ~—— greedy ordering
g25 —— minimum k-tuple 1] —— minimum k-tuple 2 —— minimum k-tuple
c c 2.0 € 25
o 2.0 o o
= w © 2.0
c c 15 c
£ 2 215
210 210 240
3 3 S,
05 05 05
0.0 0.0
12 3 4 5 6 7 8 9 10 11 12 13 12 3 4 5 6 7 8 9 10 11 12 13 12 3 4 5 6 7 8 9 10 11 12
Number of ZC proxies Number of ZC proxies Number of ZC proxies

Figure 4: Given a ZC proxy pair (3, j), we compute the conditional entropy H (y | 2;, z;) (top left),
and information gain H(y | z;) — H(y | z, z;) (top right). Conditional entropy H(y | zi,, ..., 2i,)
vs. k, where the ordering z;,, ..., %;, is selected using three different strategies. The minimum
k-tuple and greedy ordering significantly overlap in the first two figures (bottom).

ZC proxies for three different orderings of the ZC proxies. The first is a random ordering (averaged
over 100 random trials), which tells us the average information gain when iteratively adding more
ZC proxies. The second is a greedy ordering, computed by iteratively selecting the ZC proxy that
maximizes IG(z;,), for k from 1 to 13. The final plot exhaustively searches through (1,5’) sets to find
the k proxies which minimize H (y | z;,, - . . 2,), for k from 1 to 13 (note that this may not define a
valid ordering). See Figure[d, and Appendix [D/for the complete results. We see that there is very
substantial information gain when iteratively adding ZC proxies, even if the ZC proxies are randomly
chosen. Optimizing the order of adding ZC proxies yields much higher IG in certain benchmarks
(e.g., NB201-CF100), and a greedy approach is shown to be not far from the optimum.

Answer to RQ 2: In some benchmarks, we see substantial complementary information among ZC
proxies. However, the degree of complementary information depends heavily on the NAS benchmark
at hand. This suggests that we cannot always expect ZC proxies to yield complementary information,
but a machine learning model might be able to identify useful combinations of ZC proxies.

4.3 RQ 3: Do ZC proxies contain biases, such as a bias toward certain operations or sizes,
and can we mitigate these biases?

Identifying biases in ZC proxies can help explain weaknesses and facilitate the development of
higher-performing ZC proxies. We define bias metrics and study ZC proxy scores for thousands
of architectures for their correlation with biases. This systematic approach yields generalizable
conclusions and avoids the noise from assessing singular architectures. We consider the following
biases: conv:pool (the numerical advantage of convolution to pooling operations in the cell), cell size
(the number of non-zero operations in the cell), num. skip connections, and num. parameters.

For each search space, ZC proxy, and bias, we compute the Pearson correlation coefficient between
the ZC proxy values and the bias values. We consider all 44K architectures referenced in Table 2,
See Table [3 and Appendix [D]for the full results. We find that many ZC proxies exhibit biases to

Table 3: Pearson correlation coefficients between predictors and bias metrics (in bold) on different
datasets. For example, for Cell size on NB201-CF100, snip has a correlation of -0.04 (indicating
very little bias), while synflow has a correlation of 0.57 (meaning it favors larger architectures).

Name Conv:pool Cell size Num. skip connections Num. parameters
NB201-CF10 | NB301-CF10 | NB201-CF100 | NB201-IM | NB301-CF10 | NB201-CF100 | NB101-CF10 | NB301-CF10

epe-nas 0.05 -0.02 0.35 0.35 0.01 0.09 -0.02 -0.01
fisher 0.05 0.01 -0.03 -0.05 -0.15 -0.03 0.11 0.17
flops 0.59 0.70 0.30 0.30 -0.35 -0.30 1.00 0.99
grad-norm 0.35 0.27 -0.04 -0.05 -0.26 -0.26 0.30 0.51
grasp 0.01 0.28 -0.01 0.01 0.03 0.00 -0.03 0.24
12-norm 0.87 0.76 0.41 0.41 -0.33 -0.41 0.62 0.99
jacov 0.05 -0.11 0.35 0.35 0.08 0.09 -0.18 -0.10
nwot 0.06 0.78 0.28 0.28 -0.21 0.06 0.74 0.95
params 0.61 0.78 0.29 0.29 -0.32 -0.29 1.00 1.00
plain -0.33 -0.45 0.14 0.14 0.02 0.02 0.03 -0.45
snip 0.37 0.27 -0.04 -0.04 -0.28 -0.28 0.44 0.50
synflow 0.53 0.41 0.57 0.58 -0.20 -0.14 0.57 0.62
zen-score 0.05 0.75 0.35 0.35 -0.33 0.09 0.68 0.99
val-acc | 0.36 | 0.45 | 0.35 | 0.43 | 0.13 | -0.06 | 0.09 | 0.47

various degrees. Interestingly, some biases are consistent across search spaces, while others are not.
For example, 12-norm has a conv:pool bias on both NB201-C10 and NB301-C10, while nwot has a
strong conv:pool bias on NB301-C10 and almost no bias on NB201-C10. While validation accuracy
does not correlate with number of skip connections, most ZC proxies in the benchmark exhibit a
negative bias towards this metric.

Next, we present a procedure for removing these biases. For this study, we use ZC proxies that had
large biases in Table[3] and we attempt to answer the following questions: (/) can we remove these
biases, and (2) if we can remove the biases, does the performance of ZC proxies improve?

Given a search space of architectures A, let f : A — R denote a ZC proxy (a function that takes as
input an architecture, and outputs a real number). Furthermore, let b : A — R denote a bias measure
such as “cell size”. Recall that Table [3|showed that the correlation between a ZC proxy f and a bias
measure b may be high. For example, the correlation between synflow and “cell size” is high, which
means using synflow would favor larger architectures. To reduce bias, we use a simple heuristic:

1

f/(a):f(a)'m- 2

In this expression, C' is a constant that we can tune. In deciding on a strategy to tune C', we make two
observations. First, for most bias measures, the bias of val_acc is not zero, which means completely
de-biasing ZC proxies could hurt performance. Second, depending on the application, we may want
to fully remove the bias of a ZC proxy, or else remove bias only insofar as it improves performance.

Therefore, we test three different strategies to tune C by brute force: (/) “minimize”, to minimize
bias, (2) “equalize”, to match the bias with the bias of val_acc, and (3) “performance”, to optimize
the performance (Pearson correlation). See Table E] for the results.

We find that using the “performance” strategy, we are able to increase the performance of ZC proxies
by reducing their bias. Furthermore, the “equalize” strategy sometimes provide good results on par
with the “performance” strategy. This suggests a good bias mitigation strategy when we do not know
the ground truth but have information on how the ground truth correlations with bias. This may have
important consequences for the future design of ZC proxies.

Answer to RQ 3: Many ZC proxies do exhibit different types of biases to various degrees, but the
biases can be mitigated, thereby improving performance.

5 Integration into NAS

The findings in Section[4.2 showed that ZC proxies contain substantial complementary information,
conditioned on the ground-truth validation accuracies. However, no prior work has combined more
than four ZC proxies, or used a combination strategy other than a simple vote. In this section, we
combine and integrate all 13 ZC proxies into predictor-based NAS algorithms by adding the ZC
proxies directly as features into the surrogate (predictor) models.

Table 4: Bias mitigation strategies tested on the ZC proxies with the most biases. We test three
different strategies by tuning C' from Equation [2|for different objectives: minimize (tune C' to mini-
mize bias), equalize (tune C' to match ground truth’s correlation with bias metric), and performance
(tune C' to maximize correlation with ground truth). Bias and performance are Pearson correlation
coefficients of the proxy score with the bias metric and with the ground truth accuracy, respectively.
C is searched between -10 and 1000.
bias original original new new
metric bias perf. bias perf.
0.00 0.10 minimize
12-norm NB201-CF10 conv:pool 0.87 0.42 0.37 0.11 equalize
0.70 044 performance
0.00 0.03 minimize
nwot NB301-CF10 conv:pool 0.78 0.49 0.29 0.14 equalize
0.78 0.49 performance
0.01 0.64 minimize
synflow NB201-CF100 cell size 0.57 0.68 0.35 0.71 equalize
0.35 0.71 performance
0.01 0.62 minimize
synflow NB201-IM cell size 0.58 0.76 043 0.76 equalize
046 0.76 performance
-0.01 0.06 minimize
flops NB301-CF10 num. skip -0.35 0.43 0.12 -0.05 equalize
-0.35 043 performance

ZC proxy dataset strategy

We run experiments on two common predictor-based NAS algorithms: BANANAS, based on Bayesian
optimization [47], and NPENAS, based on evolution [44]. Both algorithms use a model-based
performance predictor: a model that takes in an architecture encoding as features (e.g., the adjacency
matrix encoding [46]), and outputs a prediction of that architecture’s validation accuracy. The model
is retrained throughout the search algorithm, as more and more architectures are fully trained. Recent
work has shown that boosted trees such as XGBoost achieve strong performance in NAS [48] 156].

Experimental setup. For both algorithms, we use the NASLib implementation [30] and default
parameters reported in prior work [48]]. First, we assess the standalone performance of XGBoost
when ZC proxies are added as features in addition to the architecture encoding, by randomly
sampling 100 training architectures and 1000 disjoint test architectures, and computing the Spearman
rank correlation coefficient between the set of predicted validation accuracies and the ground-truth
accuracies. On NAS-Bench-201 CIFAR-100, averaged over 100 trials, the Spearman rank correlation
(£ std. dev.) improves from 0.640 + 0.0420 to 0.908 4+ 0.012 with the addition of ZC proxies,
representing an improvement of 41.7%. Even more surprisingly, using the ZC proxies alone as
features without the architecture, results in a Spearman rank correlation of 0.907 £ 0.013, implying
that the ZC proxies subsume nearly all information contained in the architecture encoding itself.
We present the full results in Appendix [E. These results show that an ensemble of ZC proxies can
substantially increase the performance of model-based predictors.

Similar to the previous experiment, we run both NAS algorithms three different ways: using only the
encoding, only the ZC proxies, and both, as features of the predictor. Each algorithm is given 200
architecture evaluations, and we plot performance over time, averaged over 400 trials. See Figure[3]
for the results of BANANAS, and Appendix [E for the full results. We find that the ZC proxies give
the NAS algorithms a boost in performance, especially in the early stages of the search.

6 Conclusions, Limitations, and Broader Impact

In this work, we created NAS-Bench-Suite-Zero: an extensible collection of 13 ZC proxies
(covering the majority that currently exist), accessible through a unified interface, which can be
evaluated on a suite of 28 NAS benchmark tasks. In addition to the codebase, we release precomputed
ZC proxy scores across all 13 ZC proxies and 28 tasks, giving 1.5 million total ZC proxy evaluations.
This dataset can be used to speed up ZC proxy-based NAS experiments, e.g., from 9 hours to 4

NB201 CF100 NB201 IMGNT NB301 CF10

47.0
—— Encoding —— Encoding 04.4{ — Encoding

725 zcps 465 zcps zcps
3 —— Encoding + ZCPs s —— Encoding + ZCPs 5 94.3] ~ Encoding + ZCPs
< 720 < 46.0 <
> > >

94.2

& 715 © 455 ®
o e e
3 3 3
o o 0 941
S 70 S as0 S
< < <

70.5 445 94.0

70.0 44.0 93.9

105 106 105 106
Time (s) Time (s) Time (s)

Figure 5: Performance of BANANAS with and without ZC proxies as additional features in the
surrogate model. Each curve shows the mean and standard error across 400 trials.

minutes (see Section [3). Overall, NAS-Bench-Suite-Zero eliminates the overhead in ZC proxy
research, with respect to comparing against different methods and across a diverse set of tasks.

To motivate the usefulness of NAS-Bench-Suite-Zero, we conducted a large-scale analysis of
the generalizability, bias, and the first information-theoretic analysis of ZC proxies. Our empirical
analysis showed substantial complementary information of ZC proxies conditioned on validation
accuracy, motivating us to ensemble all 13 into predictor-based NAS algorithms. We show that using
several ZC proxies together significantly improves the performance of the surrogate models used in
NAS, as well as improving the NAS algorithms themselves.

Limitations and future work. Although our work makes substantial progress towards motivating
and increasing the speed of ZC proxy research, there are still some limitations of our analysis. First,
our work is limited to empirical analysis. However, we discuss existing theoretical results in Appendix
Furthermore, there are some benchmarks on which we did not give a comprehensive evaluation.
For example, on NAS-Bench-301, we only computed ZC proxies on 11 000 architectures, since the
full space of 10'® architectures is computationally infeasible. In the future, a surrogate model [53} [56]
could be trained to predict the performance of ZC proxies on the remaining architectures. Finally,
there is very recent work on applying ZC proxies to one-shot NAS methods [52], which tested one
ZC proxy at a time with one-shot models. Since our work motivates the ensembling of ZC proxies,
an exciting problem for future work is to incorporate 13 ZC proxies into the one-shot framework.

Broader impact. The goal of our work is to make it faster and easier for researchers to run
reproducible, generalizable ZC proxy experiments and to motivate further study on exploiting the
complementary strengths of ZC proxies. By pre-computing ZC proxies across many benchmarks,
researchers can run many trials of NAS experiments cheaply on a CPU, reducing the carbon footprint
of the experiments [[11,27]. Due to the notoriously high GPU consumption of prior research in NAS
[28. 158]], this reduction in CO2 emissions is especially worthwhile. Furthermore, our hope is that
our work will have a positive impact in the NAS and automated machine learning communities by
showing which ZC proxies are useful in which settings, and showing how to most effectively combine
ZC proxies to achieve the best predictive performance. By open-sourcing all of our code and datasets,
AutoML researchers can use our library to further test and develop ZC proxies for NAS.

Acknowledgments and Disclosure of Funding

This research was supported by the following sources: Robert Bosch GmbH is acknowledged for
financial support; the German Federal Ministry of Education and Research (BMBF, grant Renormal-
izedFlows 01IS19077C); TAILOR, a project funded by EU Horizon 2020 research and innovation
programme under GA No 952215; the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under grant number 417962828; the European Research Council (ERC) Consolidator
Grant “Deep Learning 2.0” (grant no. 101045765). Funded by the European Union. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the ERC. Neither the European Union nor the ERC can be held responsible for
them.

Funded by
the European Union

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Mohamed S Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas Donald Lane.
Zero-cost proxies for lightweight nas. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

Hanlin Chen, Ming Lin, Xiuyu Sun, and Hao Li. Nas-bench-zero: A large scale
dataset for understanding zero-shot neural architecture search. Openreview preprint
https://openreview.net/forum?id=hP-SILoczR, 2021.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785-794, 2016.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet
in four gpu hours: A theoretically inspired perspective. In Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen,
Yuandong Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search using
predictor pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16276-16285, 2021.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo
Li. Transnas-bench-101: Improving transferability and generalizability of cross-task neural
architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5251-5260, 2021.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. Brp-nas: Prediction-based nas using gcns. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 10480-10490. Curran Associates, Inc., 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
In JMLR, 2019.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
Wallach, Hal Daumé Tii, and Kate Crawford. Datasheets for datasets. Communications of the
ACM, 64(12):86-92, 2021.

Karen Hao. Training a single ai model can emit as much carbon as five cars in their lifetimes.
MIT Technology Review, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Mojan Javaheripi, Shital Shah, Subhabrata Mukherjee, Tomasz L Religa, Caio CT Mendes,
Gustavo H de Rosa, Sebastien Bubeck, Farinaz Koushanfar, and Debadeepta Dey. Litetransform-
ersearch: Training-free on-device search for efficient autoregressive language models. arXiv
preprint arXiv:2203.02094, 2022.

Nambhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

Yuhong Li, Cong Hao, Pan Li, Jinjun Xiong, and Deming Chen. Generic neural architecture

search via regression. Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 34, 2021.

11

[16] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-nas: A zero-shot nas for high-performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 347-356, 2021.

[17] Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture
search. In JMLR, 2020.

[18] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 19-34, 2018.

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[20] Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon,
Sirui Hong, Frank Hutter, Rongrong Ji, Julio C. S. Jacques Junior, Ge Li, Marius Lindauer,
Zhipeng Luo, Meysam Madadi, Thomas Nierhoff, Kangning Niu, Chunguang Pan, Danny Stoll,
Sebastien Treguer, Jin Wang, Peng Wang, Chenglin Wu, Youcheng Xiong, Arbér Zela, and
Yang Zhang. Winning solutions and post-challenge analyses of the chalearn autodl challenge
2019. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):3108-3125,
2021.

[21] Vasco Lopes, Saeid Alirezazadeh, and Luis A Alexandre. Epe-nas: Efficient performance
estimation without training for neural architecture search. In International Conference on
Artificial Neural Networks, pages 552-563. Springer, 2021.

[22] Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian,
Mahmoud Safari, Kaicheng Yu, and Frank Hutter. Nas-bench-suite: Nas evaluation is (now)
surprisingly easy. In International Conference on Learning Representations, 2022.

[23] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In Proceedings of the International Conference on Machine Learning (ICML), 2021.

[24] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks using
genetic algorithms. In ICGA, volume 89, pages 379-384, 1989.

[25] Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang,
and Yu Wang. Evaluating efficient performance estimators of neural architectures. Advances in
Neural Information Processing Systems, 34, 2021.

[26] Daniel S Park, Jachoon Lee, Daiyi Peng, Yuan Cao, and Jascha Sohl-Dickstein. Towards
nngp-guided neural architecture search. arXiv preprint arXiv:2011.06006, 2020.

[27] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training. arXiv preprint arXiv:2104.10350, 2021.

[28] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2019.

[29] Robin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy
performance estimation for neural architecture search. Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS), 34, 2021.

[30] Michael Ruchte, Arber Zela, Julien Siems, Josif Grabocka, and Frank Hutter. Naslib: A modular
and flexible neural architecture search library. https://github. com/automl/NASLib, 2020.

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510-4520, 2018.

[32] David W Scott. Sturges’ rule. Wiley Interdisciplinary Reviews: Computational Statistics,
1(3):303-306, 2009.

12

https://github.com/automl/NASLib

[33] Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Cui
Bin. Proxybo: Accelerating neural architecture search via bayesian optimization with zero-cost
proxies. arXiv preprint arXiv:2110.10423, 2021.

[34] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. Advances in Neural
Information Processing Systems, 33, 2020.

[35] Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low. Nasi:
Label-and data-agnostic neural architecture search at initialization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2022.

[36] Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Kian Hsiang Low. Unifying and boosting
gradient-based training-free neural architecture search. ArXiv, abs/2201.09785, 2022.

[37] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818-2826, 2016.

[38] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the International Conference on Machine Learning (ICML), 2019.

[39] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurlPS), 33:6377-6389, 2020.

[40] Manoel Tenorio and Wei-Tsih Lee. Self organizing neural networks for the identification
problem. Advances in Neural Information Processing Systems, 1, 1988.

[41] Renbo Tu, Mikhail Khodak, Nicholas Carl Roberts, Nina Balcan, and Ameet Talwalkar. Nas-
bench-360: Benchmarking diverse tasks for neural architecture search. Openreview submission,
2021.

[42] Jack Turner, Elliot J Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. Blockswap:
Fisher-guided block substitution for network compression on a budget. In Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

[43] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

[44] Chen Wei, Chuang Niu, Yiping Tang, Yue Wang, Haihong Hu, and Jimin Liang. Npenas:
Neural predictor guided evolution for neural architecture search. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[45] Colin White, Mikhail Khodak, Renbo Tu, Shital Shah, Sébastien Bubeck, and Debadeepta
Dey. A deeper look at zero-cost proxies for lightweight nas. In ICLR Blog Track, 2022.
https://iclr-blog-track.github.i0/2022/03/25/zero-cost-proxies/.

[46] Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2020.

[47] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[48] Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), volume 34, 2021.

[49] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on neural architecture
search. arXiv preprint arXiv:1905.01392, 2019.

13

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10734-10742, 2019.

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gho-
laminejad, Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to
spatial convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9127-9135, 2018.

Lichuan Xiang, Lukasz Dudziak, Mohamed S Abdelfattah, Thomas Chau, Nicholas D Lane,
and Hongkai Wen. Zero-cost proxies meet differentiable architecture search. arXiv preprint
arXiv:2106.06799, 2021.

Shen Yan, Colin White, Yash Savani, and Frank Hutter. Nas-bench-x11 and the power of
learning curves. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2021.

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In Proceedings of the International
Conference on Machine Learning (ICML), 2019.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3712-3722, 2018.

Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank
Hutter. Surrogate nas benchmarks: Going beyond the limited search spaces of tabular nas
benchmarks. In Proceedings of the International Conference on Learning Representations
(ICLR), 2022.

Qingin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, and
Rongrong Ji. Training-free transformer architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10894—10903, 2022.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2017.

ChecKklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] [The main claims in the abstract and introduction reflect
the paper’s contributions and scope.]

(b) Did you describe the limitations of your work? [Yes] [See Section|[6]]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See
Section[6}]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] [We read the ethics review guidelines and ensured our paper conforms to
them.]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We did not
include theoretical results.]

(b) Did you include complete proofs of all theoretical results? [N/A] [We did not include
theoretical results.]

3. If you ran experiments (e.g. for benchmarks)...

14

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] [We in-
clude the code, data, and instructions needed to reproduce the results here: https
//github.com/automl/naslib/tree/zerocost!]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] [We discuss all experimental details in Sections E and E, and
Appendices[D]and[E.]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] [We report error bars in Sections E] and E}]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] [We include the compute and
resources used in Section[3}]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] [We cited the creators
of all benchmarks we used in Section [2]]

(b) Did you mention the license of the assets? [N/A] [We mention the licenses in Appendix
[Bl]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
[We include a new dataset, available at https://github.com/automl/naslib/
tree/zerocost!]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] [Our asset does not include data based on people.]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] [Our asset does not include data based on
people.]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] [We did not conduct research with human subjects.]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] [We did not conduct research with human
subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] [We did not conduct research with human
subjects.]

15

https://github.com/automl/naslib/tree/zerocost
https://github.com/automl/naslib/tree/zerocost
https://github.com/automl/naslib/tree/zerocost
https://github.com/automl/naslib/tree/zerocost

	Introduction
	Background and Related Work
	Overview of NAS-Bench-Suite-Zero
	Generalizability, Mutual Information, and Bias of ZC Proxies
	RQ 1: How well do ZC proxies generalize across different benchmarks?
	RQ 2: Are ZC proxies complementary with respect to explaining validation accuracy?
	RQ 3: Do ZC proxies contain biases, such as a bias toward certain operations or sizes, and can we mitigate these biases?

	Integration into NAS
	Conclusions, Limitations, and Broader Impact
	NAS Best Practices Checklist
	Dataset Documentation
	Author responsibility and license
	Maintenance plan
	Code of conduct
	Datasheet

	Related Work Continued
	Theoretical results for ZC proxies

	Details from Section 4
	Details from Section 4.1: generalization
	Initial results with FBNet

	Details from Section 4.2: information theory
	Details from Section 4.3: biases
	NAS-Bench-Suite-Zero Speedup Details

	Details from Section 5
	Feature importances of ZC proxies
	Ablation study on the number of ZC proxies
	Additional NAS results

	ZC Proxy Competition

