
Towards Modular Learning of Deep Causal Generative Models

Md Musfiqur Rahman 1 Murat Kocaoglu 1

Abstract
Shpitser & Pearl (2008) proposed sound and com-
plete algorithms to compute identifiable observa-
tional, interventional, and counterfactual queries
for certain causal graph structures. However,
these algorithms assume that we can correctly
estimate the joint distributions, which is imprac-
tical for high-dimensional datasets. During the
current rise of foundational models, we have ac-
cess to large pre-trained models to generate real-
istic high-dimensional samples. To address the
causal inference problem with high dimensional
data, we propose a sequential adversarial train-
ing algorithm for learning deep causal generative
models by dividing the training problem into in-
dependent sub-parts, thereby enabling the use of
such pre-trained models. Our proposed algorithm
called WhatIfGAN, arranges generative models
according to a causal graph and trains them to
imitate the underlying causal model even with
unobserved confounders. Finally, with a semi-
synthetic Colored MNIST dataset, we show that
WhatIfGAN can sample from identifiable causal
queries involving high-dimensional variables.

1 Introduction
Recently there has been an increasing interest in developing
causal prediction methods in many applications such as med-
ication effect and recruitment fairness estimation (Castro
et al., 2020; Wu et al., 2019). Many existing approaches uti-
lize the structural assumptions encoded in the causal graph
to estimate interventional and counterfactual distributions
in the presence of unobserved variables, called latent con-
founders. The well-known identification algorithms (Sh-
pitser & Pearl, 2008) use distributional invariances implied
by the causal graph. However, these algorithms require ac-
cess to the probability distributions of observed variables,

1School of Electrical and Computer Engineering, Purdue Uni-
versity, West Lafayette, Indiana, USA. Correspondence to: Md
Musfiqur Rahman <rahman89@purdue.edu>, Murat Kocaoglu
<mkocaoglu@purdue.edu>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling

D
ia
gn
os
is

S
ym

p
to
m
s

X
ra
yI
m
ag
e

n
S
∼

N
(0
,1
)

nX ∼ N(0, 1) nD ∼ N(0, 1)

U ∼ N(0, 1) (Represents the confounder)

+ + +

GS(nS, U)

GD(X,nD, U)

GX(S, nX)

Figure 1. Deep generative model representation for frontdoor
graph. Each NN (ex: GS ,GX ,GD) mimics the true mechanism.

except for some special cases (Jung et al., 2020) which is
difficult for high-dimensional variables, such as images.

Consider the task of predicting a patient’s diagno-
sis from their symptoms given the causal graph:
Symptoms → XrayImage → Diagnosis,Symptoms ←
[Hospital Location] → Diagnosis. Suppose, we have
collected data across two hospitals, but the hospital ID
is kept hidden the same as a confounder. The symp-
toms distribution changes across two hospitals and dif-
ferent methods are also used to classify X-ray images to
obtain a diagnosis. This is the front-door graph (Pearl,
2009), where the causal effect of Symptoms on Diagnosis,
i.e., P (Diagnosis|do(Symptoms)) is uniquely computable
or identifiable, with explicit access to the distribution
p(XrayImage|Symptoms). However, we do not have an
explicit representation of this high-dimensional image dis-
tribution. Thus identification algorithm can not be applied.

In recent years, there has been tremendous improvement in
high-dimensional sampling such as generating images and
videos with generative adversarial networks (GANs) (Good-
fellow et al., 2014; Karras et al., 2019). GANs might require
abundant data and resources to train from scratch but if pre-
trained, can be used as black boxes. Although they solve
high-dimensional sampling, they do not offer any causal
capabilities. Kocaoglu et al. (2018) introduces a deep causal
model that produces interventional images after training
on observational data. However, they assume causal suffi-
ciency, i.e., each observed variable is caused by independent
unobserved variables. In contrast, two observable variables
sharing an unobserved confounder, i.e., the semi-Markovian

Towards Modular Learning of Deep Causal Generative Models

model, is quite common in the real world.

For semi-Markovian models, Xia et al. (2021) follows a
similar approach as (Kocaoglu et al., 2018) to arrange neu-
ral models as a causal graph. For example, the XrayImage
causal graph can be represented with generative models as
in Figure 1. They propose a minimization-maximization
method to identify and estimate causal effects. Xia et al.
(2023) extends these to identify and estimate counterfac-
tual queries. However, these methods can not trivially be
extended for continuous high-dimensional image data. Be-
sides, they learn semi-Markovian models by training all the
variables together, with a common loss function. Training
multiple generative models involving both high and low-
dimensional variables is challenging. Even if some models
are available as pre-trained, these neural causal approaches
are not adapted to employ these large generative models as
black boxes, failing to utilize their full potential in causality.

In this paper, we propose WhatIfGAN, a modular adver-
sarial learning of deep causal generative models, accord-
ing to specific sub-graph structures. This modularity al-
lows us to plug in large pre-trained models for specific
modules and continue the usual training process for the
rest of the graph. In Figure 1, we can plug in a pre-
trained GAN model and use its XrayImage output to train
Symptoms and Diagnosis mechanisms together. We show
that, by using c-component factorization (Tian & Pearl,
2002) and do-calculus rules (Pearl, 1995), we can employ
modular training to correctly estimate causal effects such as
P (Diagnosis|do(Symptoms)) after training converges.

2 Background
Definition 2.1 (Structural causal model, (SCM) (Pearl,
1980)). An SCM is a 5-tuple M = (G =
(V, E),N ,U ,F , P (.)). V = {V1, V2, ..., Vn} is a set of
observed random variables. N is a set of exogenous ran-
dom variables each causing a single observed variable. U
is a set of latent confounders, i.e., unobserved common
causes shared by two observable variables referring to
the semi-Markovian causal model. A set of determinis-
tic functions F={fV1 , fV2 , .., fVn} generates each observed
variable from other observed and unobserved variables as
Vi = fi(Pai, Ei, USi

), where Pai ⊂ V , Ei ∈ N and
USi

:= {Uj : j ∈ Si} for some Si, such that USi
⊂ U .

P(.) is a product probability distribution over N and U and
projects a joint distribution PV over the variables set V .

An SCMM, induces a causal graph G = (V, E) containing
nodes for each variable Vi ∈ V . A node Vi is a parent of
Vj and represented by a directed edge Vi → Vj ∈ E if only
if Vi is in the domain of fVj . Accordingly, the set Pa(Vi)
becomes the parent nodes of the node Vi in the causal graph.
G has a bi-directed edge, Vi ↔ Vj ∈ E between Vi and Vj

if and only if they share a latent confounder. C-components
are maximal set of nodes in G, pairwise connected by bi-
directed paths. If there exists a directed path from Vi to Vj

then Vi is an ancestor of Vj , i.e., Vi = AnG(Vj). An inter-
vention do(vi) replaces fi with the equation Vi = vi and
in all functions where Vi occurs. The distribution induced
on the observed variables after an intervention is Pvi(V).
Graphically, it is represented by GVi

where all edges incom-
ing to Vi are removed.

Definition 2.2 (Causal identifiability). Let X,Y,Z be dis-
joint variables sets in G. Px(y) is defined as the causal
effect of the action/intervention do(X = x) on the variables
in Y. Similarly, P (Yx = y|e) is a counterfactual effect re-
ferring to some hypothetical action/intervention do(X = x)
conditioned on some evidence e, i.e., values of some vari-
ables in V . Let M be the set of all causal models that induce
the same causal graph G but possibly different in N ,U ,F .
Consider, causal objects ϕ = P (Yx = y|e) (or, Px(y))
and θ = [P (V), P (V|do(Z′)),∀Z′ ⊆ Z] (or, P (V)) are
computable from each model in M. We define that ϕ is
θ-identifiable (θ

⊥

ϕ) in G if there exists a unique determin-
istic function gG determined by the graph structure, such
that ϕ = gG(θ) in any M ∈ M. Shpitser & Pearl (2007)
provided a sound and complete algorithm to derive gG.

Generative adversarial networks (GANs) (Goodfellow
et al., 2014). GANs are neural generative models that can
sample from high dimensional non-parametric data distri-
butions. A generator network produces samples through
a feed-forward computation. Another trainable neural net-
work called the discriminator penalizes the generator by
differentiating its output as real or fake. The goal of the gen-
erator is to convince the discriminator that the fake samples
are from the real data distribution.

3 WhatIFGAN Modular Training
The conditional GAN architecture (Mirza & Osindero, 2014)
can be arranged according to a causal graph to produce sam-
ples of each variable, by feeding the samples obtained from
its parents’ generators (Kocaoglu et al., 2018). Besides
the independent exogenous noise, for the semi-Markovian
model, we feed the same confounding noise samples into
the generators of two variables that are confounded in the
causal graph. Consider the front-door graph of Figure 1, for
the semi-Markovian causal model: S = fS(nS , U), X =
fX(S, nX), D = fD(X,nD, U). Here, nS , nX , nD are ex-
ogenous noises and U is the confounder between S and D.
To learn the structural functions fS , fX , fD of this causal
model, we organize a set of neural networks, GS ,GX ,GD

as shown in Figure 1. During the forward pass, we sample
Gaussian noise U and feed it into both GS and GD. This ar-
chitecture ensures that GS and GD train themselves to learn
the dataset distributions while affecting each other through

Towards Modular Learning of Deep Causal Generative Models

confounding paths. We utilize the generative models as
below:

Definition 3.1 (Deep Causal Generative Model, DCM). Let
D = (V, E) be a causal graph and Z = {Z1, Z2, . . . , Zn}
and U = {U1, U2, . . . , Um} be two sets of mutually inde-
pendent random variables to be used in place of unknown
exogenous N and confounding noises U of the true SCM.
Here, n = |N |,m = |U|. Let Ti index the noise terms that
will act as confounders adjacent to Vi in the GAN. ∀i, j, If
Vi ↔ Vj ∈ E then |UTi

∩UTj
| = 1 and if Vi ↔ Vj /∈ E then

UTi ∩ UTj = ∅, i.e., two variables share one noise variable
. A collection of feed-forward neural networks G with the
output G(Z,U) = [G1(Z,U),G2(Z,U), . . . ,Gn(Z,U)]
is defined as a Deep Causal Generative Model (DCM) for
the causal graph G if ∃ a set of neural network layers fi such
that Gi(Z,U) = fi({Gj(Z,U)}j∈Pai

, Zi, UTi
),∀i ∈ [n].

DCM induces the distribution Q(.). DCM can represent any
SCM with the same graph G given sufficiently representa-
tive neural nets and large random noises.

3.1 Modular Training

In order to train deep causal generative models in a mod-
ular fashion and utilize pre-trained models, we propose a
modular training algorithm WhatIfGAN. When there exist
unobserved confounders, for example in Figure 2, we can
not train each node’s mechanism separately by matching
only conditional distributions p(x|pax) as we can do for
causal sufficient case. Suppose, we have an observational
dataset D ∼ P (V) and our goal is to train a DCM to induce
this distribution, i.e., Q(V) = P (V). If we train the genera-
tor GS first, and the rest of the mechanisms later, GS can
match the marginal distributions P (S) but might ignore the
dependence induced by the unobserved confounder between
S and D since there is no incentive for that. By ignoring
the confounders, it is not possible to induce dependence
S ⊥̸⊥ D|X . As a result, Q(S,X,D) is not guaranteed to
match with P (S,X,D). This suggests that causal mecha-
nisms in the same c-component (here GS and GD) should
be trained together with a common loss.

To match the joint distribution P (V) for semi-Markovian
models, we propose using Tian’s factorization (Tian &
Pearl, 2002). It factorizes P (V) into c-factors: the
joint distributions of each c-component Sj intervened on
their parents, i.e., Ppa(Sj)(Sj). For graph G, P (v) =
P (x|do(s))P (s, d|do(x)). This factorization suggests that
fitting P (V) is equivalent to fitting each of the c-factors.

Since, we only have access to the P (V) dataset, we utilize
P (V) distribution to fit these c-factors by leveraging the
do-calculus rule-2 (Pearl, 1995) and modularize the train-
ing process. In Figure 2, P (x|do(s)) = P (x|s) since do-
calculus rule-2 applies, i.e., intervening on S is equivalent
to conditioning on S. We can use the conditional distribu-

S D

X

S

X

S D

X

Dataset: Match Match

Step (2/ 3): Train X
Or, use pretrained X

Step (3/ 3): Train S, DStep (1/ 3): Find Training Order

Graph G

Figure 2. Modular Training on front-door graph

tion as a proxy to the c-factor to learn Q(x|do(s)) with GX .
However, P (s, d|do(x)) ̸= P (s, d|x). To find a proxy dis-
tribution to train the mechanisms in a c-component Y (here
{S,D}), we search for an ancestor set A (i.e., {X}) such
that for the parent set Pa(Y ∪ A) (i.e., ∅), rule-2 applies.
Thus, we match P (s, x, d) as proxy to P (s, d|do(x)) and
train GS and GD. Ancestor A satisfies the condition below:

Definition 3.2 (Modularity condition). Given a graph G and
a c-component variable set Y, a setA ⊆ An(Y)\Y is said
to satisfy the modularity condition if it is the smallest set that
satisfies P (Y ∪A|do(Pa(Y ∪A))) = P (Y ∪A|Pa(Y ∪
A)), i.e., do-calculus rule-2 (Pearl, 1995) applies.

We train the c-components one by one by matching the dis-
tribution implied by ancestor setA that satisfies the modular
condition. For each c-component, we train the mechanisms
in Y to learn the c-factor-alternative P (Y ∪A|do(Pa(Y ∪
A))) distribution by matching the observational distribu-
tion P (Y ∪ A|Pa(Y ∪ A)). Since this is sampled from
simply P (V) dataset, it does not require Pa(Y ∪ A) to be
intervened on. Now, to match P (Y ∪ A|Pa(Y ∪ A)) =
Q(Y ∪ A|do(Pa(Y ∪ A))) with our generative models,
we pick the values of Pa(Y ∪ A) from P (V) dataset and
intervene in our DCM with those values. Since we do not
need generated samples for Pa(Y ∪ A) from DCM, we do
not require them to be pre-trained. Thus, at step 2/3 in Fig-
ure 2, to match P (x|s) = Q(x|do(s)) with our generative
models, we pick the observations of S from P (V) dataset
and intervene in our DCM without any involvement of GS .

At step 3/3, we train mechanisms of the next c-component
i.e. [GS ,GD]. Ancestor set A = {X} satisfies the modu-
larity condition for Y = {S,D}. As a proxy to the c-factor
of Y, we match P (Y ∪ A|do(Pa(Y ∪ A))) = P (s, x, d).
Since we train the mechanisms in Y only, we need pre-
trained GA to generate correct samples for the joint. We
can either train mechanisms of A prior to Y (as we did)
or we can use pre-trained mechanisms of A if provided.
In our case, we can freeze training of [GX] and use their
pre-trained weights from the previous step. We use it
only to produce correct samples to feed into GD and train
[GS ,GD] to match the distribution: P (s, x, d) = Q(s, x, d).
Since P (s, d|do(x)) = P (s,x,d)

Ps(d)
and we have matched both

Towards Modular Learning of Deep Causal Generative Models

P (s, x, d) and Ps(d), c-factor P (s, d|do(x)) will match as
well. However, if we want to match P (s, x, d) directly, we
can not use the pre-trained GX and it will be hard to reach
convergence (please see Section 4 for details).

However, in place of [GX]→ [GS ,GD], if we consider the
training order [GS ,GD]→ [GX], it would not be possible
to train the mechanisms. Because, to train [GS ,GD] we
have to match the joint distribution P (s, x, d) but we do not
have GX as pre-trained. Thus we always need a valid train-
ing order of the c-component mechanisms to match P (V).
To obtain a partial order for training the c-components, we
construct a directed acyclic graph calledH-graph containing
c-components as nodes. Unlike Pa(Y ∪ A), conditioning
and intervening are not the same for variables in A, i.e.,
rule-2 does not apply. Thus, to match the alternative distri-
bution P (Y ∪ A|Pa(Y ∪ A)) while training only GY, we
need to ensure that the causal mechanisms of A, i.e., GA
are correctly trained a priori. We express this training order
with directed edges from h-nodes containing variables in A
towards the h-node of Y in theH-graph.

Definition 3.3 (H-graph). Given a causal graph G, let the
set of c-components in G be C = {C1, . . . Ct}. Choose a
partition {Hk}k of C such that theH-graphH = (VH, EH),
defined as follows, is acyclic: VH = {Hk}k and for any
s, t, Hs → Ht ∈ EH, iff P (Ht|do(pa(Ht) ∩ Hs)) ̸=
P (Ht|pa(Ht) ∩Hs), i.e., do-calculus rule-2 does not hold.
Note that one can always choose a partition of C to ensure
H is acylic: TheH graph with a single node H1 = C.

For any arbitrary graph (details in Appendix B.2), we run
Algorithm 1: Contruct-H-graph() to build aH-graph. In
Algorithm 2, we train each h-node Hk according to the par-
tial order ofH-graph to match with the c-factors-alternative
distributions. Finally, Algorithm 6: TrainModule() (in
Appendix E) employs conditional Wasserstein GAN with
penalized gradients (Gulrajani et al., 2017) to train the gen-
erators in GHk

on dataset D such that the joint distributions
implied by the set A matches. This sub-routine uses all
mechanisms in Hk∪A to produce samples but only updates
the mechanisms in GHk

corresponding to the current h-
node. After calling TrainModule() for each of the h-nodes
according to the partial order ofH-graph, WhatIfGAN will
find a DCM equivalent to the true SCM that matches P (V)
distribution. Thus, it will sample from interventional and
counterfactual distributions identifiable from P (V). In Fig-
ure 2, we can correctly sample from Ps(D) after training
converges. We set S = s instead of using GS and propagate
those values to generate the rest of the variables. These
contributions are presented in Theorem 3.4 and proved in
Appendix C.3.

Theorem 3.4. LetM1 = (G = (V, E),N ,U ,F , P (.)) be
the true SCM andM2 = (G,N ′,U ′,F ′, Q(.)) be the DCM.
Suppose, Algorithm 2, Modular Training on Dataset D ∼

P (V) converges for each h-node in theH-graph and DCM
induces Q(V). Then, we have i)P (V) = Q(V), and ii) for
any interventional or counterfactual causal query KM1(V)
identifiable from D, we have KM1

(V) = KM2(V).

4 Experimental Evaluation
To illustrate WhatIfGAN performance in learning the
joint distribution involving both low and high-dimensional
Colored-MNIST (LeCun et al., 1998) variables, we ran an
experiment on the front-door graph D → Image → A,
D ↔ A. We constructed a synthetic SCM where a variable
U affects both D and A binary variables but is kept hidden in
the dataset to make it act like a confounder. Image variable I
shows the digit value of D, and A is some attribute of I . Sup-
pose we are given a dataset sampled from P (D,A, I) distri-
bution. Our goal is to estimate the causal effect of D on vari-
able A. To measure the ground truth causal effect, we can
use the backdoor criterion (Pearl, 1993), P (A|do(D)) =∑

U P (A|D,U)P (U) since we have access to U in the
true SCM. In the observational dataset, P (A|do(D)) is
identifiable with the front-door criterion (Pearl, 2009):
P (A|do(D)) =

∑
I P (I|D)

∑
D′ P (A|D′, I)P (D′). We

describe the experimental setup in more detail in Ap-
pendix D.2 and provide our implementation at https:
//github.com/Musfiqshohan/WhatIfGAN.

To produce correct samples from P (A|do(D)), we have to
match P (D,A, I) with the DCM. GAN convergence using
this joint distribution loss is difficult since the losses gener-
ated by low and high-dimensional variables are not easily
comparable and non-trivial to correctly re-weight. Existing
causal effect estimation algorithms can not address this since
there is no estimator that does not contain explicit image dis-
tribution, which is practically impossible to estimate. Thus,
we map samples of I to a low-dimensional representation,
RI with a trained encoder and match P (D,A,RI) instead
of the joint P (D,A, I). We use a fully connected NN to
produce D, a deep convolution GAN to generate images,
and a classifier to classify images into variable A such that
D and A are confounded. For this graph, the correspond-
ing H-graph is [I] → [D,A]. We can either train GI by
matching P (I|D) or employ a pre-trained generative model
that takes digits D as input and outputs a colored D-digit
image. Next, we train GD and GA, matching P (D,A, I)
(i.e., P (D,A,RI)) since ancestor set is A ={I} for c-
component {D,A}.
In Figure 3, we compare our method with (Xia et al., 2023):
NCM and a version of our method: WhatIfGAN-rep that
does not use modular training. Since NCM trains all mecha-
nisms with the same loss function calculated from both low
and high-dimensional samples, it learns marginal distribu-
tion P (I) (Figure 3 col-1) but does not converge to match
P (D,A, I) (dashed-lines). WhatIfGAN-rep uses a low-dim

https://github.com/Musfiqshohan/WhatIfGAN
https://github.com/Musfiqshohan/WhatIfGAN

Towards Modular Learning of Deep Causal Generative Models

Figure 3. Training on front-door graph: D → I → A, D ↔ A.
Image generation (left) and distribution convergence (right).

representation of images: RI and matches P (D,A,RI)
without modularization. We observe WhatIfGAN-rep to
converge (dotted lines) slower compared to the modular
training and produce low-quality images (Figure 3 col-2). Fi-
nally, WhatIfGAN modular training matches P (D,A,RI)
and converges faster (solid-lines) for P (D,A), P (A|do(D))
and produces high-quality images from P (I|do(D)) (Fig-
ure 3 col-3).

5 Conclusion
Our proposed modular training algorithm learns deep causal
generative models with high-dimensional variables in the
presence of unobserved confounders. After convergence,
WhatIfGAN can generate high-dimensional samples from
identifiable interventional and counterfactual distributions.

6 Limitations and Future work
Similar to most causal inference algorithms, we had to make
the assumption of having a fully specified causal graph with
latents, as prior. With the advancements in causal discovery
with latents, it might be possible to reliably learn part of
the structure and leverage the partial identifiability results
from the literature. Indeed, this would be one of the future
directions we are interested in. Another limitation of this
work is that we assume each confounder to cause only two
observed variables which is considered as semi-Markovian
in literature. We aim to extend our work for non-Markovian
causal models where confounders can cause any number of
observed variables.

Acknowledgements
This research has been supported in part by NSF Grant
CAREER 2239375.

References
Bareinboim, E. and Pearl, J. Causal inference by surrogate

experiments: Z-identifiability. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, UAI’12, pp. 113–120, Arlington, Virginia,
USA, 2012. AUAI Press. ISBN 9780974903989.

Castro, D. C., Walker, I., and Glocker, B. Causality matters
in medical imaging. Nature Communications, 11(1):3673,
2020.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio,
Y. Generative adversarial nets. In NIPS, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
Advances in neural information processing systems, 30,
2017.

Jung, Y., Tian, J., and Bareinboim, E. Learning causal
effects via weighted empirical risk minimization. Ad-
vances in neural information processing systems, 33:
12697–12709, 2020.

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4401–4410, 2019.

Kocaoglu, M., Snyder, C., Dimakis, A. G., and Vishwanath,
S. Causalgan: Learning causal implicit generative models
with adversarial training. In International Conference on
Learning Representations, 2018.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.

Pearl, J. Causality: models, reasoning, and inference, 1980.

Pearl, J. [bayesian analysis in expert systems]: comment:
graphical models, causality and intervention. Statistical
Science, 8(3):266–269, 1993.

Pearl, J. Causal diagrams for empirical research. Biometrika,
82(4):669–688, 1995.

Pearl, J. Causality. Cambridge university press, 2009.

Shpitser, I. and Pearl, J. What counterfactuals can be tested.
In Proceedings of the Twenty-Third Conference on Un-
certainty in Artificial Intelligence, pp. 352–359, 2007.

Towards Modular Learning of Deep Causal Generative Models

Shpitser, I. and Pearl, J. Complete identification methods
for the causal hierarchy. Journal of Machine Learning
Research, 9:1941–1979, 2008.

Tian, J. and Pearl, J. A general identification condition for
causal effects. eScholarship, University of California,
2002.

Wu, Y., Zhang, L., Wu, X., and Tong, H. Pc-fairness: A
unified framework for measuring causality-based fairness.
Advances in neural information processing systems, 32,
2019.

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. The
causal-neural connection: Expressiveness, learnability,
and inference. Advances in Neural Information Process-
ing Systems, 34:10823–10836, 2021.

Xia, K. M., Pan, Y., and Bareinboim, E. Neural causal
models for counterfactual identification and estimation.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=vouQcZS8KfW.

https://openreview.net/forum?id=vouQcZS8KfW
https://openreview.net/forum?id=vouQcZS8KfW

Towards Modular Learning of Deep Causal Generative Models

S X D

nS nX nD

U

(a) Front-door graph

X1 X2 W Y

U1

U2

(b) {P (V), Px1(V)}

⊥

Px1,x2(Y |x′
1, x

′
2)

Z X Y

U2

U1

(c) {P (V), Pz(X,Y)}

⊥

Px(Y)

Figure 4. Causal graphs with latents and respective identifiable causal queries. θ identifies ϕ :θ

⊥

ϕ

A Interventional and Counterfactual Sampling
Definition A.1 (Identifiability (Shpitser & Pearl, 2007)). Given a causal graph, G, let M be the set of all causal models that
induce G and objects ϕ and θ are computable from each model in M. We define that ϕ is θ-identifiable in G, if there exists a
deterministic function gG determined by the graph structure, such that ϕ can be uniquely computable as ϕ = gG(θ) in any
M ∈M.

Definition A.2 (Causal Effects z-Identifiability). Let X,Y,Z be disjoint sets of variables in the causal graph G. If ϕ = Px(y)
is the causal effect of the action do(X=x) on the variables in Y, and θ contains P (V) and interventional distributions
P (V \ Z′|do(Z′)), for all Z′ ⊆ Z, where ϕ and θ satisfies the definition of Identifiability, we define it as z-identifiabililty.
(Bareinboim & Pearl, 2012) proposes a z-identification algorithm to derive gG for these ϕ and θ

Definition A.3 (L1, L2, L3). We represent observational, interventional and counterfactual datasets (queries, distributions)
by L1, L2, L3 datasets (queries, distributions), respectively.

Similar to (Kocaoglu et al., 2018; Xia et al., 2023), we show that a trained DCM can sample from identifiable causal queries
from any causal layer. Here we considerM1 as the true SCM andM2 as the DCM. P (.) and Q(.) are the probability
distributions induced byM1 andM2. respectively.

Theorem A.4. Let M1 = (G = (V, E),N ,U ,F , P (.)) be an SCM. If a causal query KM1
(V) is identifiable from a

collection of observational P (V) for graph G, then any SCMM2 = (G,N ′,U ′,F ′, Q(.)) entails the same answer to
the causal query if it entails the same input distributions. Therefore, for any identifiable query K, if P (V)⊥ KM1(V) and
P (V) = Q(V), then KM1

(V) = KM2
(V) .

Proof. By definition of identifiability, we have thatKM1 = gG(P (V)) for some deterministic function gG that is determined
by the graph structure. SinceM2 has the same causal graph, the query KM2 is also identifiable and through the same
function gG, i.e., KM2

= gG(Q(V)). Thus, the query has the same answer in both SCMs, if they entail the same input
distributions over the observed variables, i.e., P (V) = Q(V).

Consider the causal graph in Figure 4(b). According to the identification algorithm, the interventional query ϕ = Px1,x2
(W)

is identifiable from θ = {P (V)}. Let us assume that after training on θ observational data, the joint distribution matches
i.e., P (V) = Q(V). Theorem A.4 implies that Px1,x2

(W) = Qx1,x2
(W) holds, i.e., WhatIfGAN will produce correct

interventional samples from Px1,x2
(W) along with other L2 queries identifiable from P (V). Similarly, in Figure 4(c), the

interventional query ϕ = Px(Y) is an unique function of θ = {P (V), Pz(X,Y)} (Bareinboim & Pearl, 2012). Therefore,
after training on datasets from θ distributions, WhatIfGAN will produce correct interventional samples from Px(Y) and other
L2 queries identifiable from {P (V), Pz(X,Y)}. Finally, in Figure 4(b), the counterfactual query ϕ = Px1,x2

(Y |x′
1, x

′
2)

is identifiable from θ = {P (V), Px1
(V)}. Thus after training on datasets from θ distributions, WhatIfGAN will produce

correct counterfactual samples from Px1,x2
(Y |x′

1, x
′
2) and other queries identifiable from {P (V), Px1

(V))}.

B WhatIfGAN: Modular Training for Arbitrary Causal Graphs
In order to train deep causal generative models in a modular fashion for a given causal graph and utilize pre-trained models,
we propose a modular training algorithm WhatIfGAN. First, consider a causally sufficient system i.e., no confounder
exists. We can train each node’s mechanism separately conditioning on its parent nodes (Kocaoglu et al., 2018) since
the causal mechanism p(x|pax) is fully observed with all its inputs and the output. Then the problem of learning causal

Towards Modular Learning of Deep Causal Generative Models

Graph G

Dataset:

Step (2/ 3): Train Z1,Z2,Z3
Or, use pretrained Z1,Z2,Z3

Match

X1

Z1

X2

Z2Z3

X1

Z1

X2

Z2Z3

X1

Z1 Z2Z3

X1

Z1

X2

Z3

Match

Step (3/ 3): Train X1, X2

H1

H2

Step (1/ 3):
Build H-graph:

Figure 5. Modular training on H-graph: H1 : [Z1, Z2, Z3]→ H2 : [X1, X2] with dataset D ∼ P (V).

mechanisms can be solved by learning these conditional distributions. However, this is not the case when some parents
become unobserved confounders in the system.

B.1 Basics of Modular Training with Unobserved Confounders

Consider the graph G in Figure 5. Suppose, we have an observational dataset D ∼ P (V) and our goal is to train a DCM
to induce this distribution, i.e., Q(V) = P (V). If we train the causal generative model GZ1

first, and the rest of the
mechanisms later, GZ1

can match the conditional distributions P (Z1|X1, Z3) but might ignore the dependence induced
by the unobserved confounders between Z1, Z3 or Z1, Z2. The training does not provide any incentive for the model to
induce the correct dependency. By ignoring the latent confounders, it is not possible to induce dependence between Z3 and
Z2 conditioned on Z1. As a result, Q(Z1, Z2, Z3) is not guaranteed to match with P (Z1, Z2, Z3). This simple observation
suggests that the causal mechanisms of variables that are in the same c-component should be trained together. Therefore, we
have to train [GZ1

,GZ2
,GZ3

] together. For similar reason, we must train [GX1
,GX2

] together. This can be accomplished
by updating the weights of all neural mechanisms in the same c-component with a common loss.

To match the joint distribution P (V) for semi-Markovian models while preserving the integrity of c-components, we propose
using Tian’s factorization (Tian & Pearl, 2002). It factorizes P (V) into c-factors: the joint distributions of each c-component
Sj intervened on their parents, i.e., Ppa(Sj)(Sj).

P (v) = P (x1, x2|do(z1))P (z1, z2, z3|do(x1)) (1)

This factorization suggests that fitting P (V) is equivalent to fitting each of the c-factors. If we had access to the L2

distributions do(z1) and do(x1),∀z1, x1, we could intervene on GZ1
and GX1

in the DCM to obtain do(z1) and do(x1)
samples. We could train the generative models to match these interventional distributions, which will ensure P (v) = Q(v)
in Equation 1 when P (x1, x2|do(z1)) = Q(x1, x2|do(z1)) and P (z1, z2, z3|do(x1)) = Q(z1, z2, z3|do(x1)).

However, we only have access to the P (V) dataset. Our key idea is to leverage the do-calculus rule-2 (Pearl, 1995) and
relate L1 distribution to L2 to fit these c-factors and modularize the training process. In Figure 5, P (z1, z2, z3|do(x1)) =
P (z1, z2, z3|x1) since do-calculus rule-2 applies, i.e., intervening on X1 is equivalent to conditioning on X1. We can
then use the conditional distribution as a proxy to the c-factor to learn Q(z1, z2, z3|do(x1)) with the DCM. However,
P (x1, x2|do(z1)) ̸= P (x1, x2|z1). Thus, we include Z1 into the joint distribution that needs to be fit together with X1, X2

and check if the parent set of {X1, X2, Z1} satisfy rule-2. We continue until we reach the joint P (x1, x2, z1, z3) to be the
alternative distribution for {X1, X2}’s c-factor. Thus, to find a proxy distribution to train the mechanisms in a c-component
Y, we search for an ancestor setA such that the parent set Pa(Y∪A) satisfies rule-2 for the joint. We include the ancestors
since only they can affect Y’s mechanisms from outside of the c-component. We restate the modularity condition in
Definition 3.2 here.
Definition B.1 (Modularity condition). Given causal graph G and a c-component variable set Y, a setA ⊆ An(Y)\Y is said
to satisfy the modularity condition if it is the smallest set that satisfies P (Y∪A|do(Pa(Y∪A))) = P (Y∪A|Pa(Y∪A)),
i.e., do-calculus rule-2 (Pearl, 1995) applies.

To fit the joint distribution according to (1), we identify the modularity condition for each c-component and train them one

Towards Modular Learning of Deep Causal Generative Models

by one. For each c-component, we train the mechanisms in Y to learn the c-factor-alternative P (Y ∪ A|do(Pa(Y ∪ A)))
distribution by matching the observational distribution P (Y∪A|Pa(Y∪A)). Since this is sampled from simply L1 dataset,
it does not require Pa(Y ∪ A) to be intervened on. Now, to match P (Y ∪ A|Pa(Y ∪ A)) = Q(Y ∪ A|do(Pa(Y ∪ A)))
with our generative models, we pick the observations of Pa(Y ∪ A) from L1 dataset and intervene in our DCM with those
values. Since we do not need generated samples for Pa(Y∪A) from DCM, rather their observations from the given dataset,
we do not require them to be trained beforehand. However, the order in which we train c-components matters. For example,
G has two c-components in Figure 5. First, consider training the c-components in the [GZ1

,GZ2
,GZ3

]→ [GX1
,GX2

] order.
A = ∅ satisfies modularity condition for the c-component Y = {Z1, Z2, Z3} since P (z1, z2, z3|do(x1)) = P (z1, z2, z3|x1)
holds. At step (2/3) in Figure 5, we can produce samples from the mechanisms of Z1, Z2, Z3 by intervening on their parent
X1 with real observations from dataset D. Thus, we do not need GX1

to be pre-trained. [GZ1
,GZ2

,GZ3
] converges by

matching P (z1, z2, z3|x1) = Q(z1, z2, z3|do(x1)).

Now, we train mechanisms of the next c-component [GX1 ,GX2] in our training order (step 3/3). Ancestor set A =
{Z1, Z3} satisfies the modularity condition for Y = {X1, X2}. As an alternative to the c-factor of Y, we have to match
P (Y ∪ A|do(Pa(Y ∪ A))) = P (x1, x2, z1, z3). But we would like to train the mechanisms in the c-component of Y
only. Therefore, we need GA to generate correct samples for the joint. We can either train mechanisms of A prior to
Y (as we did) or we can use pre-trained mechanisms of A if provided. In our case, since they were already trained and
will never be updated again, we can freeze training of [GZ1 ,GZ3] and use their pre-trained weights from the previous
step. We use them only to produce correct samples to feed into GX2 and train [GX1 ,GX2] to match the distribution:
P (x1, x2, z1, z3) = Q(x1, x2, z1, z3). The c-factors in Equation 1, are identifiable from the alternative distributions that we
matched above. Therefore, DCM matches the joint distribution P (V) as well.

If we consider the opposite training order of the c-components, i.e., [GX1
,GX2

]→ [GZ1
,GZ2

,GZ3
], it would not be possible

to train the mechanisms in them. Because, to train [GX1
,GX2

] we have to match the joint distribution P (x1, x2, z1, z3) as
mentioned above. But, we do not have [GZ1

,GZ3
] as pre-trained which can produce correct samples. Thus we always need

a valid training order of the c-component mechanisms to match P (V). We now have two challenges: to find a valid training
order of the c-components and for each c-component, find an ancestor set A to match the c-factor alternative distributions
utilizing the already trained models.

B.2 Algorithm Description

To obtain a partial order for training the c-components, we construct a directed graph structure calledH-graph containing
c-components as nodes. Suppose, an ancestor set A satisfies the modularity condition for Y. Even though we will train
only GY, A appears together with Y in the joint distribution that we need to fit. Thus, we need to ensure that the causal
mechanisms of A, i.e., GA is correctly trained a priori. Therefore, A should be trained before Y in the correct training
order. On a different note, To construct A, we start with an empty set and check if Pa(Y ∪ A) satisfies the conditions
of rule-2 for Y ∪ A. If not, we add parents of Y ∪ A to construct the new A. We continue the process until Pa(Y ∪ A)
satisfies conditions of rule-2. Thus if a c-component contains parents of Y which does not satisfy the rule-2 for Y, they will
eventually be included in A, and thus their c-component has to be trained earlier than Y. We express this training order with
a directed edge towards the h-node of Y in theH-graph. Adding edges in this way will ensure that all variables in A appear
in ancestor h-nodes of Y inH. While adding edges, we merge c-components on any cycle into a single h-node. Thus some
h-node might contain more than one c-component. The final structure is a directed acyclic graph (DAG) and contains a valid
partial order T for modular training. We restateH-graph in Definition 3.3 here.

Definition B.2 (H-graph). Given a causal graph G, let the set of c-components in G be C = {C1, . . . Ct}. Choose a
partition {Hk}k of C such that theH-graphH = (VH, EH), defined as follows, is acyclic: VH = {Hk}k and for any s, t,
Hs → Ht ∈ EH, iff P (Ht|do(pa(Ht) ∩Hs)) ̸= P (Ht|pa(Ht) ∩Hs), i.e., do-calculus rule-2 does not hold. Note that one
can always choose a partition of C to ensureH is acylic: TheH graph with a single node H1 = C.

We run the subroutine Contruct-H-graph() in Algorithm 1 to build H-graphs. We check the edge condition and merge
cycles if any. In Figure 5 step (1/3), we build the H-graph H1 : [Z1, Z2, Z3]→ H2 : [X1, X2] for G. After constructing
theH-graph, in Algorithm 2, we train each h-node Hk according to the partial order T to match with c-factors-alternative
distribution that corresponds to the c-components in Hk. We initialize a set A = {V : V ⊆ AnG(Hk)} to keep track of the
joint distribution we need to match to train each h-node Hk. We search for the smallest set of ancestors A, of current h-node
Hk such that A satisfies the modularity condition for Hk tested by Algorithm 7: IsRule2(.). A implies the joint distribution

Towards Modular Learning of Deep Causal Generative Models

Algorithm 1 Construct_Hgraph(G)
1: Input: Causal Graph G
2: C ← get_ccomponents(G)
3: Create nodes Hk = Ck inH, ∀Ck ∈ C
4: for each Hs, Ht ∈ H such that s ̸= t do
5: if ∃(Vs, Vt) ∈ (Hs, Ht) such that Vs = Pa(Vt) and

P (Ht|do(Vs)) ̸= P (Ht|Vs) then
6: H.add(Hs → Ht)
7: end if
8: end for
9: H ←Merge(H, cyc), ∀cyc ∈ Cycles(H)

10: Return: H

Algorithm 2 Modular Training(G,D)
1: Input: Causal Graph G, Dataset D.
2: Initialize DCM G
3: H ← Construct_Hgraph(G)
4: for each Hk ∈ H in partial order do
5: Initialize A ← V
6: for each S ⊆ AnG(Hk) do
7: if IsRule2(Hk, S) = 1&|S| < |A| then
8: A ← S
9: end if

10: end for
11: GHk ←TrainModule(GHk , G,Hk,A,D)
12: end for
13: Return: G

in Equation 2, which is sufficient for training the current h-node Hk to learn the c-factors PPa(Ci)(Ci),∀Ci ∈ Hk.

Q(Hk ∪ A|do(pa(Hk ∪ A) = P (Hk ∪ A|pa(Hk ∪ A)); Training: Hk, Pre-trained:A (2)

Finally, we call a subroutine Algorithm 6: TrainModule(). This function employs conditional Wasserstein GAN with
penalized gradients (Gulrajani et al., 2017) to train the generators in GHk

on dataset D such that the joint distributions
implied by the set A matches. This sub-routine uses all mechanisms in Hk ∪ A to produce samples but only updates the
mechanisms in GHk

corresponding to the current h-node and returns those after convergence. In Figure 5, this sub-routine
will match P (z1, z2, z3|x1) = Q(z1, z2, z3|do(x1)) at step (2/3) and P (x1, x2, z1, z3) = Q(x1, x2, z1, z3) at step (3/3).
After calling TrainModule() for each of the h-nodes according to the partial order of H-graph, WhatIfGAN will find a
DCM equivalent to the true SCM that matches P (V) distribution. Furthermore, it will sample from L2 and L3 distributions
identifiable from P (V). These contributions are presented formally in Theorem 3.4. We provide the formal proof in
Appendix C.3. WhatIfGAN sampling. For L2 sampling, we set the intervened variables to fixed values instead of using their
neural network and push forward those values to generate the rest of the variables as usual. For L3 sampling of Px(Y |x′),
we follow i) Abduction: With rejection sampling, we record the posterior exogenous nX , confounding U and the Gumbel
noises that yield X = x′ in the DCM. ii) Action: We perform do(x) intervention in the DCM. iii) Prediction: We push
forward pre-recorded exogenous noise as input to all neural networks.

C Theoretical Analysis

C.1 Identifiable distributions from WhatIfGAN Modular Training

In this section, we show that WhatIfGAN modular training will match the observational joint distribution P (V). We start
with some definitions that would be required during our proofs.

Definition C.1 (Intervention Set, I). Intervention Set, I represents the set of all available interventional variables such that
after performing intervention I ∈ I on G, we observe GI . I includes I = ∅, which refers to "no intervention" and implies
the original graph G and the observational data P (V). All proofs here are considered for I = ∅.
Definition C.2 (Sub-graph, (G)V). Let GV be a sub-graph of G containing nodes in V and all arrows between such nodes.
(G)V refers to the sub-graph of G containing nodes in V only.

Proposition C.3. Let V ∈ V be some arbitrary variable sets. The set of c-components formed from a sub-graph (G)V is
not affected by additional interventions on their parents from outside of the sub-graph. Formally, (G

Pa(V)
)V and (G)V has

the same set of c-components.

Proof. Let C((G)V) be the c-components which consists of nodes of V in graph (G)V . In sub-graph (G
Pa(V)

)V , no extra
intervention is being done on any node in V rather only on Pa(V) where V and Pa(V) are two disjoint sets. Therefore, the
c-components can be produced from this sub-graph will be same as for G. i.e., C(G

V Pa(V)
) = C(G).

Lemma C.4. Let V ′ be a set called focus-set. V ′ be arbitrary subsets of observable variables V and {Ci}i be the set of c-
components in G. Let Pa(V ′) be a set called action-set. and S be a set called remain-set, defined as S := V\{V ′∪Pa(V ′)},

Towards Modular Learning of Deep Causal Generative Models

S(i) as S(i) = S∩Ci i.e., some part of the remain-set that are located in c-component Ci. Thus, S =
⋃
i

S(i). We also define

active c-components C+
i as C+

i := Ci \ {S(i)∪Pa(V ′)} i.e., the variables in focus-set that are located in c-component Ci.
Given these sets, Tian’s factorization can be applied to a sub-graph under proper intervention. Formally, we can factorize
as below:

PPa(V ′)(V
′) =

∏
i

PPa(C+
i)(C

+
i)

Proof. (G
Pa(V ′)

)V ′ and (G)V ′ have the same c-components according to Proposition C.3. According to Tian’s factorization
for causal effect identification (Tian & Pearl, 2002), we know that

PPa(V ′)(V) =
∏
i

PPa(Ci)∪Pa(V ′)(Ci)

[let η = Pa(V ′), i.e., action-set]

=⇒ Pη(η)× Pη(V \ η|η) =
∏
i

PPa(Ci)∪η(Ci)

=⇒ Pη(V \ {Pa(V ′)}) =
∏
i

PPa(Ci)∪η(Ci)

(3)

We ignore conditioning on action-set η = Pa(V ′) since we are intervening on it. Now, we have a joint distribution of
focus-set and remain-set with action-set as an intervention.

=⇒ Pη(V
′ ∪ S) =

∏
i

PPa(Ci)∪η(Ci)

[Here, S := V\{V ′∪Pa(V ′)} =⇒ V \ {Pa(V ′)} = V ′ ∪ S]

=⇒
∑
S

Pη(V
′ ∪ S) =

∑
S

∏
i

PPa(Ci)∪η(Ci)

=⇒
∑
S

Pη(V
′ ∪ S) =

∏
i

∑
S(i)

PPa(Ci)∪η(Ci)

[Since, S(i) = S ∩ Ciand ∀(i, j), i ̸= j, Ci ∩ Cj = ∅ =⇒ Si ∩ Sj = ∅]

(4)

Here, ∀i, S(i) are disjoint partitions of the variable set S and contained in only c-component Ci, i.e, S(i) = S ∩ Ci.
Since ∀i,j , Ci ∩ Cj = ∅, this implies that Si ∩ Sj = ∅ would occur as well. Intuitively, remain-sets located in different
c-components do not intersect. Therefore, each of the probability terms at R.H.S, PPa(Ci)∪η(Ci) is only a function of S(i)
instead of whole S. This gives us the opportunity to push the marginalization of S(i) inside the product and marginalize the
probability term. After marginalizing S(i) from the joint, we define rest of the variables as active c-components C+

i . The
following figure helps to visualize all the sets. For our case, intervention I1, I2 = ∅

S1

C1

C1

C1 C1

Pa(V')

Pa(V')

V

V'

I1

I2

C1
+ C2

+

C3
+ C4

+

C2

C4 C3

Action-set

Focus-set

Remain-set

Active
C-component

C-component

Figure 6. Visualization of focus-sets, action-sets, and remain-sets

Towards Modular Learning of Deep Causal Generative Models

We continue the derivation as follows:

=⇒ PPa(V ′)(V
′) =

∏
i

PPa(Ci)∪Pa(V ′)(C
+
i)

[Here, C+
i = Ci \ S(i), i.e., active c-component: focus-set elements located in Ci]

=
∏
i

PPa(C+
i)∪{Pa(Ci)\Pa(C+

i)}∪Pa(V ′)(C
+
i)

=
∏
i

PX∪Z(C
+
i) [Let, X = Pa(C+

i) and Z = {Pa(Ci) ∪ Pa(V ′)} \X]

(5)

Here, we have variable set C+
i in the joint distribution. Now, if we intervene on the parents Pa(C+

i), rest of the intervention
which is outside C+

i becomes ineffective. Therefore, we have X = Pa(C+
i), the intervention which shilds the rest of

the interventions, Z = {Pa(Ci) ∪ Pa(V ′)} \ X . Therefore, we can apply do-calculus rule 3 on Z and remove those
interventions. Finally,

=⇒ PPa(V ′)(V
′) =

∏
i

PPa(C+
i)(C

+
i) [We apply Rule 3 since Ci ⊥⊥ Z|XGX

] (6)

Corollary C.5, suggests that Tian’s factorization can be applied on the h-nodes ofH.

Corollary C.5. Consider a causal graph G. Let {Ci}i∈[t] be the c-components of G. Let H = (VH, EH) be the h-graph
constructed by Algorithm 1 where VH = {Hk}k. Suppose Hk is some node inH. We have that Hk = {Ci}i∈Tk

for some
Tk ⊆ [t]. With slight abuse of notation we use Hk interchangeably with the set of nodes that are in Hk. Then,

PPa(Hk)(Hk) =
∏
i∈[t]

PPa(Ci)(Ci) (7)

Proof. Let, V ′ = Hk, C+
i = Ci \ ∅ = Ci. Then, this corollary is a direct application of Lemma C.4.

C.2 Matching Distributions with WhatIfGAN Modular Training

Definition C.6 (Training order: T). We define a training order, T = {σ0, . . . , σm} where σi = {Hk}k. If Hk1
→

Hk2
, Hk1

∈ σi, Hk2
∈ σj then i < j.

Definition C.7 (Notation for distributions). Q(.) is the observational distribution induced by the deep causal SCM. P (.) is
the true (observational/interventional) distribution.

Definition C.8 (Ancestor setA in G). Let parents of a variable set V be Pa(V) =
⋃

V ∈V

Pa(V)\V. Now, for some h-node

Hk ∈ H-graph, we define A := the minimal subset of ancestors exists in the causal graph G such that the following holds,

p(Hn ∪ A|do(pa(Hn ∪ A)) = p(Hn ∪ A|pa(Hn ∪ A)) (8)

For training any h-node in the training order T = {σ0, . . . , σm}, i.e., Hk ∈ σj , 0 < j ≤ m, if only observational data is
available, we search for an ancestor set A such that A satisfies modularity condition for Hk:

P (Hk ∪ A|do(pa(Hk ∪ A)) = P (Hk ∪ A|pa(Hk ∪ A)) (9)

Then we can train the mechanisms in Hk to learn the P (V) c-factors by matching the following alternative distribution from
D dataset,

P (Hk ∪ A|pa(Hk ∪ A)) = Q(Hk ∪ A|do(pa(Hk ∪ A)))
=⇒ P (Hk ∪ A|do(pa(Hk ∪ A)) = Q(Hk ∪ A|do(pa(Hk ∪ A)))

(10)

Towards Modular Learning of Deep Causal Generative Models

C.2.1 MATCHING OBSERVATIONAL DISTRIBUTIONS WITH MODULAR TRAINING ON D ∼ P (V)
Now, we provide the theoretical proof of the correctness of WhatIfGAN Modular Training matching observational distribution
by training on observational dataset D. Since, we have access to only observational data we remove the intervention-
indicating superscript/subscript and addressH asH, ancestor set A as A and dataset D as D.

Proposition C.9. Suppose Algorithm 2: WhatIfGAN Modular Training converges for each h-node inH-graph constructed
from G = (V, E). Suppose the observational distribution induced by the deep causal model is Q(V) after training on data
sets D ∼ P (V). Then,

P (V) = Q(V) (11)

Proof. According to Tian’s factorization we can factorize the joint distributions into c-factors as follows:

P (V) = P (H) =
∏

Hk∈H

∏
Ci∈Hk

Ppa(Ci)(Ci) (12)

We can divide the set of c-components C = {C1, . . . Ct} into disjoint partitions or h-nodes as Hk = {Ci}i∈Tk
for some

Tk ⊆ [t]. Following Corollary C.5, we can combine the c-factors in each partitions and rewrite it as:∏
Hk∈H

∏
Ci∈Hk

Ppa(Ci)(Ci) = Ppa(H0)
(H0)× Ppa(H1)

(H1)× . . .× Ppa(Hn)
(Hn) (13)

Now, we prove that we match each of these terms according to the training order T .

For any root h-nodes Hk ∈ σ0 :
Due to the construction ofH graphs in Algorithm 1, the following is true for any root nodes, Hk ∈ σ0.

P (Hk|Pa(Hk)) = PPa(Hk)
(Hk) (14)

WhatIfGAN training convergence for the DCM in Hk ∈ σ0. (Algorithm 2 ensures that the following matches:

P (Hk|Pa(Hk)) = QPa(Hk)
(Hk)

=⇒ PPa(Hk)
(Hk) = QPa(Hk)

(Hk)
(15)

Since, Equation 14 is true, observational data is sufficient for training the mechanisms in Hk ∈ σ0. Thus, we do not need to
train on interventional data.

For the h-node Hk ∈ σ1 :
Now we show that we can train mechanisms in Hk by matching P (V) c-factors with D ∼ P (V) data set. Let us assume,
∃A ⊆ σ0 such that A = An(Hk),i.e., ancestors set of Hk in the H-graph that we have already trained with available D
dataset. To apply Lemma C.4 in causal graph G, consider V ′ = Hk ∪ A as the focus-set, Pa(V ′) as the action-set. Thus,
active c-components: C+

j := Cj ∩ V ′

Then we get the following:

P (Hk ∪ A|do(Pa(Hk ∪ A))) =
∏

Ci∈Hk

Ppa(Ci)(Ci)×
∏

HS∈{A}

∏
C+

j ⊆HS

PPa(C+
j)(C

+
j)

[Here, 1st term is the factorization of the current h-node
and 2nd term is the factorization of the ancestors set.]

=⇒ P (Hk ∪ A|do(Pa(Hk ∪ A))) = Ppa(Hk)(Hk) ∗
∏

HS∈A

∏
C+

j ⊆HS

PPa(C+
j)(C

+
j)

(16)

Here according to Corollary C.5, we combine the c-factors Ppa(Ci)(Ci) for c-components in Hk to form Ppa(Hk)(Hk). We

Towards Modular Learning of Deep Causal Generative Models

continue the derivation as follows:

=⇒ PPa(Hk)
(Hk) =

P (Hk ∪ A|do(Pa(Hk ∪ A)))∏
HS∈A

∏
C+

j ⊆HS

PPa(C+
j)(C

+
j)

=⇒ PPa(Hk)
(Hk) =

Q(Hk ∪ A|do(Pa(Hk ∪ A)))∏
HS∈A

∏
C+

j ⊆HS

QPa(C+
j)(C

+
j)

(17)

Here the R.H.S numerator follows from previous line according to Equation 10. For the denominator at R.H.S, ∀HS ∈ A,
we have already matched P (HS∪A|do(pa(HS∪A))), during training ofA = An(Hk) h-nodes. According to Lemma C.4,
matching these distribution is sufficient to match the distribution at R.H.S denominator. Therefore, our DCM will produce
the same distribution as well. This implies that from Equation 17 we get,

Ppa(Hk)
(Hk) = Qpa(Hk)

(Hk) (18)

Similarly, we train each h-node following the training order T and match the distribution in Equation 13. This finally shows
that,

P (V) =
∏
j≤n

Ppa(Hj)
(Hj) =

∏
j≤n

Qpa(Hj)
(Hj) = Q(V) (19)

C.3 Identifiability of Algorithm 2:WhatIfGAN Modular Training

Theorem C.10. Suppose, modular training on Dataset D converges for each h-node in theH-graph and DCM induces Q(V).
Then, for any interventional and counterfactual causal query KM1(V) identifiable from D, we have KM1(V) = KM2(V).

Proof. Let M1 = (G = (V, E),N ,U ,F , P (.)) be the true SCM and M2 = (G,N ′,U ′,F ′, Q(.)) be the deep causal
generative model represented by WhatIfGAN. For any Hk ∈ H, we observe the joint distribution P (Hk ∪A∪Pa(Hk ∪A))
in the input D datasets. Thus we can train all the mechanisms in the current h-node Hk by matching the following
distribution from the partially observable datasets:

P (Hk ∪ A|pa(Hk ∪ A)) = Q(Hk ∪ A|do(pa(Hk ∪ A))) (20)

Now, as we are following a valid partial order of theH-graph to train the h-nodes, we train the mechanisms of each h-node
to match the input distribution only once and do not update it again anytime during the training of rest of the network. As
we move to the next h-node of the partial order for training, we can keep the weights of the Ancestor h-nodes fixed and only
train the current one and can successfully match the joint distribution in Equation 20. In the same manner, we would be
able to match the distributions for each h-node and reach convergence for each of them. WhatIfGAN Training convergence
implies that Q(V) = P (V) i.e., for all input dataset distributions. Therefore, according to Theorem A.4, WhatIfGAN is
capable of producing samples from correct interventional or counterfactual distributions that are identifiable from the input
distributions.

Theorem C.11. Suppose, modular training on Dataset D converges for each h-node in the H-graph and DCM induces
Q(V). Then, we have i)P (V) = Q(V), and ii) for any interventional and counterfactual causal query KM1

(V) identifiable
from D, we have KM1

(V) = KM2(V).

Proof. Theorem 3.4 is restated here. The first part of the theorem is proved in Proposition C.9. The second part can be
proved with Theorem C.10.

Theorem C.10
L2, L3

Identification

Lemma C.4
Focus set to

Active
c-components

Corollary C.5
h-nodes to

c-components

Proposit ion C.3
Graphs containing

same c-components

Proposit ion C.9
Matches P(V) by
Mod-Training on

D~P(V)

Theorem C.11
Convergence

& ID with D~P(V)

Figure 7. Flowchart of proofs

Towards Modular Learning of Deep Causal Generative Models

D Experimental Evaluation

D.1 Training Details and Compute

We performed our experiments on a machine with RTX-3090 GPU. The experiments took 1-4 hours to complete. We ran the
experiment for 300 epochs. We repeated each experiment multiple times to observe the consistent behavior. Our dataset
contained 20K samples and batch_size 200 using the ADAM optimizer. After a few epochs, we generated 20k fake samples.
Next, we calculated the required distributions from the real dataset and 20k fake samples. We calculated TVD and KL
distance between these two distributions. For Wassertein GAN with gradient penalty, we used LAMBDA_GP=10. We had
learning_rate= 5 ∗ 1e− 4. We used Gumbel-softmax with a temperature starting from 1 and decreasing till it is 0.1. We used
different architectures for different experiments since each experiment dealt with different data types: low-dimensional and
image. Details are provided in the code. For low dimensional variables, we used input_dim× 256× 256× output_dim.
with BatchNorm and ReLU between each layer. Please check our code for architectures of other neural networks such as
encoders and image generators.

D.2 Image Mediator Experiment

D A

Figure 8. Left: Frontdoor causal graph w/ image mediator. Right: Modular Training on frontdoor causal graph with training order:
{I} → {D,A} Training converges matching P (D,A) and P (A|do(D)).

In this section, we provide additional information about the experiment described in Section 4. We have domain D = [0, 1],
Image size=3×32×32 and C = [0, 1, 2]. Let U0, e1, e2, e3 are randomly generate exogenous noise. D = U0+e1, Image =
f2(D, e2), C = f3(Image, e3, U0). f2 is a function which takes D and e2 as input and produces different colored images
showing D digit in it. f3 is a classifier with random weights that takes U0 and Image as input and produces C such a
way that |P (C|do(D = 0)) − P (C|D = 0)|, |P (C|do(D = 1)) − P (C|do(D = 0))|and|P (C|D = 1) − P (C|D = 0)|
is high. We calculate ground truth of P(C|do(D)) with backdoor criterion.

P (C|do(D)) =
∑
U0

P (C|D,U0)P (D|U0)

. WhatIfGAN samples from P (C|do(D)) after training. The query is identifiable with frontdoor criterion when U0 is
unobserved. Image is a mediator here.

P (C|do(D)) =
∑

Image

P (Image|D)
∑
D′

P (C|D′, Image)P (D′)

This inference is not possible with identification algorithm. WhatIfGAN can achieve that by producing Image samples
instead of learning its distribution. Training We use a lower-dimensional representation RI of Image variable and fit
P (D,RI,C) instead of P (D, Image, C). Samples from P (Image|do(D = 1))

Towards Modular Learning of Deep Causal Generative Models

E Algorithms & Pseudo-codes

Algorithm 3 isIdentifiable(G, I, query)
1: Input: Causal Graph G = (V , E), Interventions = I , Causal query distribution= query
2: if type(query)=Counterfactual then
3: Return Run_IDC(G, query, I)
4: else if type(query)=Interventional then
5: Return Run_ID(G, query) or hasSurrogates(G, query, I)
6: end if

Algorithm 4 RunGAN(G,G, VK, I,N)
1: Input:Causal Graph G = (V , E), DCM G, target variable set VK, Intervention I , Pre-defined noise N .
2: for Vi, Vj ∈ VK such that i < j do
3: if Vi, Vj has latent confounder then
4: z ∼ p(z)
5: conf [Vi]← Append(conf [Vi], z)
6: conf [Vj]← Append(conf [Vj], z) // Assigning same confounding noise [fix for multiple confounders]
7: end if
8: end for
9: for Vi ∈ VK in causal graph,G topological order do

10: if Vi ∈ I.keys() then
11: vi = I[Vi] // Assigning intervened value
12: else
13: par = get_parents(Vi, G)
14: if Vi ∈ N.keys() then
15: exos, conf, gumbel = N [Vi]
16: else
17: exos ∼ p(z)
18: conf = conf [Vi]
19: gumbel = ∅. //New Gumbel noise will be assigned during forward pass
20: end if
21: vi = Gθi(exos, conf, gumbel, v̂par)
22: end if
23: v̂← Append(v̂, vi)
24: end for
25: Return Samples v or Fail

Algorithm 5 Evaulate_GAN(G,G, I, query)
1: Input:Causal Graph G = (V , E), DCM= G, Available Interventions = I, Causal query distribution=query
2: if isIdentifiable(G, I, query) = False then
3: Return: Fail
4: end if
5: if type(query)= observation then
6: Y = Extract(query)
7: samples← RunGAN(G,G, [Y], ∅, ∅)
8: else if type(query)= Intervention then
9: Y, (X,x) := Extract(query)

10: samples← RunGAN(G,G, [Y], {X : x}, ∅)
11: else if type(query)= Counterfactual then
12: Y, (X,x), (X,x′) := Extract(query)
13: exos, conf, gumbel← RejectionSampling({X : x′})
14: N ← [exos, conf, gumbel]
15: samples← RunGAN(G, [Y], {X : x}, N)
16: end if
17: Return samples

Towards Modular Learning of Deep Causal Generative Models

Algorithm 6 TrainModule(G, G,H∗,A,D)
1: Input: DCM G, Graph G(V , E), h-node H∗, Ancestor set A, Data D, Params θH , λ = 10
2: while θH∗ has not converged do
3: for each (Ai, Xi, Di) ∈ (A,D) do
4: Vr = H∗ ∪ Ai ∪ Pa(H∗ ∪ Ai) ∪Xi

5: Initialize critic Dwi

6: for t = 1, . . . ,m {m samples} do
7: Sample real data vr

x ∼ Di

8: xr ← get_intv_values(Xi, Di)
9: vf

x = RunGAN(G,xr, Vr, θH∗)
10: v̂x = ϵvr

x + (1− ϵ)vf
x

11: L
(t)
i = Dwi(v

f
x)− Dwi(v

r
x) ∗ λ(∥∇v̂xDwi(v̂x)∥2 − 1)2

12: end for
13: wi = Adam(∇wi

1
m

∑m
t=1 L

(t)
i , wi)

14: Gloss = Gloss +
1
m

∑m
j=1−Dwi(v

f
x)

15: end for
16: for θ ∈ θH∗ {All hnode mechanisms} do
17: θ = Adam(∇θGloss, θ)
18: end for
19: end while
20: Return: θ1, . . . θn

Algorithm 7 IsRule2(Y,X, I = ∅ (by default))
1: Input: Variable sets Y and X , Intervention I .
2: Return:
3: if P (Y ∪X|do(Pa(Y ∪X)), do(I)) = P (Y ∪X|Pa(Y ∪X), do(I)) = True then
4: Return:1
5: else
6: Return:0
7: end if

