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ABSTRACT

Causal Transformers are trained to predict the next token for a given context. While
it is widely accepted that self-attention is crucial for encoding the causal structure of
sequences, the precise underlying mechanism behind this in-context autoregressive
learning ability remains unclear. In this paper, we take a step towards understanding
this phenomenon by studying the approximation ability of Transformers for next-
token prediction. Specifically, we explore the capacity of causal Transformers to
predict the next token xt+1 given an autoregressive sequence (x1, . . . , xt) as a
prompt, where xt+1 = f(xt), and f is a context-dependent function that varies
with each sequence. On the theoretical side, we focus on specific instances, namely
when f is linear or when (xt)t≥1 is periodic. We explicitly construct a Transformer
(with linear, exponential, or softmax attention) that learns the mapping f in-context
through a causal kernel descent method. The causal kernel descent method we
propose provably estimates xt+1 based solely on past and current observations
(x1, . . . , xt), with connections to the Kaczmarz algorithm in Hilbert spaces. We
present experimental results that validate our theoretical findings and suggest their
applicability to more general mappings f .

1 INTRODUCTION

The transformative impact of deep learning on artificial intelligence has led to increasingly powerful
architectures, with Transformers (Vaswani et al., 2017) at the forefront. These models have in
particular revolutionized natural language processing (NLP) (Devlin et al., 2018), and now serve as
the foundation for large-scale language models, such as GPT (Radford et al., 2018; Brown et al., 2020),
significantly advancing artificial intelligence’s capabilities in both understanding and generating
human language, setting new benchmarks across various tasks.

Most recent large language models (Hoffmann et al., 2022; Team et al., 2023; Jiang et al., 2023;
Dubey et al., 2024) are causal Transformers pretrained to predict the most likely next token xt+1

from a finite vocabulary given a context x1:t = (x1, · · · , xt). These models excel at such tasks and
beyond, demonstrating what is known as in-context learning: after training, they show remarkable
few-shot learning capabilities, inferring patterns from just a few examples within the context (Brown
et al., 2020). Recent studies suggest that in-context learning capabilities emerge from the Transformer
performing optimization on an inner objective during its forward pass, where the attention matrix
plays a crucial role (Von Oswald et al., 2023a; Mahankali et al., 2023; Ahn et al., 2023; Zhang et al.,
2023; Kim & Suzuki, 2024). In particular, Cheng et al. (2024) demonstrate that trained Transformers
can perform in-context learning through kernel ridge regression. However, the question of why causal
Transformers excel at general autoregressive prediction remains open.

In this paper, we propose a kernel interpretation for the autoregressive setting. We introduce a
framework to rigorously analyze the expressivity of deep Transformers in next-token prediction.
Specifically, we consider sequences generated according to xt+1 = f(xt), with f a context-dependent
function in a vector-valued Reproducing Kernel Hilbert Space (RKHS) associated with a positive
semi-definite kernel k. This generalizes the works of Von Oswald et al. (2023b); Sander et al. (2024).
Within this framework, we explore how successive attention layers solve a causal kernel least square
regression problem to predict the next token accurately, as described in Figure 1.
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x1:t T0 e01:t T

+

e11:t . . . T

+

en1:t unt = Pent ≃ xt+1

Figure 1: Illustration of the method proposed in this paper. Given a sequence x1:t, a first layer T0 computes
augmented tokens e01:t. Next, a stack of n identical Transformer layers T with residual connections iteratively
update the tokens ek1:t, following the causal kernel descent method introduced in Section 4. For autoregressive
sequences presented in Assumption 1, and under specific instances outlined in Assumption 2, projecting ent
with a projector P yields an estimate un

t of xt+1 as n and t approach +∞, as stated in Theorem 1.

More precisely, we make the following contributions:

• In Section 3, we formalize the sequence generation model that serves as the foundation for our
theoretical results. We then present our main result in Theorem 1, demonstrating that there exists
a Transformer model, with an explicit construction, that, given the first t tokens x1:t, accurately
predicts the next token xt+1 as t tends to +∞, for specific instances, namely when f is linear or
when the sequence (xt)t≥1 is periodic.

• In Section 4, we present the methodology underlying the proof of Theorem 1. We introduce a
family of causal kernel descent methods that build an estimate u⋆

t of xt+1, based only on past
and current observations x1:t. This approach modifies a least squares gradient descent method to
account for causality while preserving the parallelization benefits of the Transformer architecture.
In Theorems 2, 3, and 4, we prove that for the specific cases considered, u⋆

t − xt+1 converges to 0
as t→ +∞, drawing connections to the Kaczmarz algorithm (Kaczmarz, 1937) in Hilbert spaces.
Finally, Proposition 5 shows that the causal kernel descent methods can be implemented with a
Transformer model, as illustrated in Figure 1.

• In Section 5, we first present experimental results that validate our theoretical findings and extend
them to a more general class of mappings f beyond those studied in Sections 3 and 4. We then
empirically show that the Transformer models constructed in Theorem 1 can be successfully
fine-tuned to obtain faster convergence of the estimate with the sequence length t.

2 BACKGROUND AND RELATED WORK

Transformers. Transformers (Vaswani et al., 2017) process sequences of tokens (x1, · · · , xT )
or arbitrarily length T . After embedding the sequence into a new sequence (e1, · · · , eT ), the
Transformer consists of a series of blocks with residual connections (He et al., 2016). Each block
comprises two primary components: a multi-head self-attention mechanism and a feedforward multi-
layer perceptron, with the latter operating independently on each token. We will almost always
disregard the feedforward layer in this study (except when building augmented tokens), as is common
in theoretical analyses of in-context learning (Mahankali et al., 2023; Ahn et al., 2023; Zhang et al.,
2023). In contrast, the multi-head self-attention mechanism involves pairwise interaction between the
tokens. This module consists in applying multiple self-attention operations in parallel, parametrized
by a set of weight matrices (Wh

Q,W
h
K ,Wh

V )1≤h≤H , where H denotes the number of attention heads
(Vaswani et al., 2017; Michel et al., 2019). The output of the multi-head self-attention mechanism is
given by:

et ← et + T (e1:t), with T (e1:t) :=
H∑

h=1

t∑
s=1

Ah
t,sW

h
V es, (1)

where Ah, the attention matrix, determines the attention weights between tokens and is typically
defined as: Ah

t,: = N (⟨Wh
Qet,W

h
Ke:⟩), with ⟨·, ·⟩ representing a dot product and N being a normal-

ization function. The standard choice is to consider N = softmax, i.e.

Ah
t,s = e⟨W

h
Qet,W

h
Kes⟩/

t∑
τ=1

e⟨W
h
Qet,W

h
Keτ ⟩.

One can also consider the unormalized attention when N = exp. Another approach is to con-
sider N = id, which corresponds to what is known (despite being non-linear) as linear attention

2
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(Katharopoulos et al., 2020), enabling faster inference. One significant advantage of equation 1 is
that the updates on the et’s can be computed in parallel during training, leveraging modern hardware
for faster computations.

Expressivity. The universal approximation properties of encoder-only Transformers are well estab-
lished. Yun et al. (2019); Nath et al. (2024); Furuya et al. (2024) demonstrate that Transformers can
approximate permutation-equivariant functions. A more constructive approach, though applicable
to a narrower class of functions, is proposed by Wang & E (2024). When it comes to decoder-only
models, the expressivity of Transformers for next-token prediction is not yet fully understood, though
a popular recent line of works studies the in-context learning ability of Transformers.
In-context learning. A major property of Transformers is that they adapt their computations given
the context. In particular, given a context (x1, g(x1), · · · , xn), a trained large Transformer can
infer the next output g(xn) without parameter updates. Many recent studies have contributed to
understanding this phenomenon. The seminal work of Von Oswald et al. (2023a) considers functions
g of the form g(x) = w⊤x for some w and construct a linear Transformer for which the forward
pass is equivalent to a single step of gradient descent on a mean squared error loss. Theoretical
guarantees are provided by Mahankali et al. (2023); Ahn et al. (2023); Zhang et al. (2023), showing
a trained one-layer linear Transformer implements one step of (preconditioned) gradient descent.
Other works study the softmax attention without accounting for training dynamics (Garg et al., 2022;
Akyürek et al., 2022; Li et al., 2023). Of particular interest to us is the recent work of Cheng et al.
(2024) which shows that there exists a simple parameter configuration of non-linear Transformers
such that they implement gradient descent in the function space with respect to the RKHS metric
induced by the attention kernel. In this work, we take a step further by considering a more general
next-token prediction task and propose a causal kernel descent method that can be implemented by a
Transformer to solve it. For this, we extend the autoregressive in-context learning setting introduced
by Sander et al. (2024), where tokens are generated according to an autoregressive process of order 1:
xt+1 = f(xt), where f(x) = Wx for a context-dependant parameter W , varying with each sequence.
The autoregressive in-context learning ability is described as the model’s capacity to decompose its
prediction into two steps: first, estimating W through an in-context mapping, and then applying a
straightforward prediction function, which is either equal to or closely related to x 7→Wx. However,
Sander et al. (2024) focus solely on linear Transformers, whereas our study encapsulates linear,
exponential, and softmax Transformers. Our key contribution is showing how such Transformers
can implement an optimization algorithm–termed causal kernel descent–within their forward pass.
This can be interpreted as a mesa-optimization mechanism (Von Oswald et al., 2023b).
Neural Ordinary Differential Equations. Neural ODEs (Weinan, 2017; Chen et al., 2018) are
a class of implicit models where a neural network F parameterizes a vector field in an ordinary
differential equation (ODE), as follows:

de

dτ
(τ) = F(e(τ)), (2)

where τ denotes the continuous depth of the network. For a given input e(0), a neural ODE outputs a
deep representation e⋆, which is the solution (when it exists) of equation 2 with initial condition e(0),
at some finite or infinite time horizon. Neural ODEs can be viewed as a continuous-depth analog
of deep Residual Networks (He et al., 2016), where the latter corresponds to an Euler discretization
for solving equation 2 (Marion et al., 2023). As such, neural ODEs are widely employed to better
understand the theoretical properties of Residual Networks. In the context of Transformers, the
neural ODE framework has emerged as a valuable tool for studying attention-based models, such
as the impact of the choice of normalization function N on model behavior (Sander et al., 2022)
and the emergence of clusters (Geshkovski et al., 2024). However, these studies do not address the
autoregressive setting, which we tackle in this work.

3 TRANSFORMERS FOR AUTOREGRESSIVE IN-CONTEXT LEARNING

Notations. Throughout the paper, we denote d the dimension of xt, ∥.∥ the ℓ2 norm, O(d) the
orthogonal manifold, Sd−1 the unit sphere in Rd and ∗ the adjoint.

In this section, we describe the types of autoregressive sequences we consider and present our main
results, which show that we can explicitly construct Transformer models that approximate the next
token in the sequence.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PROPOSED FRAMEWORK

Reproducing Kernel Hilbert Space. For k : Rd × Rd → R a positive definite kernel, we define
H as the vector-valued Reproducing Kernel Hilbert Space (RKHS) associated with the feature map
φ : Rd → H, where φ(x) = k(x, ·). Therefore, for any function f ∈ H, there exists a linear map
W : H → Rd such that f(x) = Wφ(x), where, denoting W = (w1, · · · , wd) as d vectors of H,
∥W∥H :=

∑d
i=1 ∥wi∥2H is finite.

We consider autoregressive sequences of order 1, which we formalize in the following assumption.

Assumption 1 (Autoregressive sequences.). We consider sequences of order 1, defined as follows:

• Initial State: The sequence starts with some x1 ∈ Sd−1.

• Hidden Variable: We suppose there is a hidden variable f ∈ H such that the subsequent states are
generated autoregressively as xt+1 = f(xt) for t ≥ 1.

Note that although we focus on first-order recursions here, higher-order recursions can be considered
by embedding tokens in a higher-dimensional space. Indeed, for recursions of the form xt+1 =
g(xt, · · · , xt−τ ) for some context mapping g, defining yt := (xt, · · · , xt−τ ) ∈ R(τ+1)d, one has
yt+1 = (xt+1, · · · , xt+1−τ ) = (g(xt, · · · , xt−τ ), · · · , xt+1−τ ) which only depends on yt. We thus
have yt+1 = f(yt) for some mapping f . Therefore as long as the recursion memory is finite, our
approach can be generalized. The formulation in Assumption 2 differs from the classical in-context
learning setup, where sequences consist of input-output pairs (xi, yi), that are often supposed to be
iid. We argue that modeling sequences with xt+1 = f(xt) better reflects the nature of real-world
sequences on which causal Transformers, such as large language models (LLMs), are trained.
Indeed, our proposed model incorporates autoregressive relationships, aligning more closely with
the data LLMs encounter during training. However, similarly to in-context learning, in order to
accurately predict the next token xt+1 given the previous states x1:t as inputs, a Transformer would
have to implicitly estimate the hidden map f . In this paper, we propose a general method to provide
an estimate of xt+1 given x1:t. However, to prove that such an estimate can be built with a standard
Transformer, and in order to prove our universality results in Theorem 1, we consider specific choices
for the kernel k and the function f , summarized in the following assumption.

Assumption 2 (Specific considerations.). We define the following instances.

(1) k(x, y) = kid(x, y) := ⟨x, y⟩, f(x) = Wx for some W ∈ O(d).

(2) k(x, y) = kexp(x, y) := e⟨x,y⟩ and f(x) = Ωx for some Ω ∈ O(d).

(3) k = kexp, the sequence (xt)t≥1 is periodic and xt ∈ Sd−1 for all t.

Note that for these specific kernel choices, because ∥xt∥ = 1, one has k(xt, xt) = k(x1, x1) for all t.
This follows because k(xt, xt) depends only on ∥xt∥ = ∥x1∥.

Augmented tokens. A crucial step in our construction is the building of augmented tokens for a
sequence (x1, · · · , xT ). Indeed, in Von Oswald et al. (2023b) and Sander et al. (2024), augmented
tokens are used, explicitly encoding the relative positions of tokens xt. This approach is similar to
in-context learning, where sequences often consist of pairs (xi, yi) to encode both input and output
information. However, such a construction with attention-based models is non-trivial. Sander et al.
(2024) propose a method for constructing augmented tokens using general positional encoding. In
this work, we provide a more detailed result, showing that augmented tokens can be computed with
a one-layer Transformer that employs dot-product absolute positional encoding. We introduce a
beginning-of-sequence token x0 := 0d and consider the extended sequence x0:T = (x0, x1, · · · , xT ).
In this work, we are going to consider the augmented tokens e0t ∈ R4d+2 defined as

e0t := (xt−1, 0, xt, 1, xt, 0d) for t > 1, and e01 := (0d, 1, xt, 1, 0d, 0d).

The intuition behind augmented tokens is that they enable the model to directly access two successive
elements in the sequence. Importantly, while prior works, such as Von Oswald et al. (2023a;b),
directly worked on augmented tokens, one of our contribution lies in showing how they can be
computed using positional encoding-based attention. The augmented tokens incorporate standard
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beginning-of-sequence tokens, while the 1’s correspond to concatenated positional encodings, which
are technically required in our proofs. More precisely, the following proposition shows that the e0t
can be approximated with a Transformer layer.

Proposition 1. There exists a sequence of one-layer and 2-heads causal Transformer T n
0 with

N = softmax followed by a feedforward layer, such that T0(x0:t) := limn→+∞ T n
0 (x0:t) = e0t .

A proof of this result, along with the explicit construction of the corresponding model, is provided in
Appendix A.1. Here, e01 should be interpreted as a new beginning-of-sequence token. The 0’s and
1’s in e0t correspond to specific choices of positional encodings, which are crucial for handling the
softmax normalization in our main Theorem 1. From this point onward, we will consider the new
augmented tokens e0t .

3.2 MAIN RESULT

We now present our main theorem. Using the augmented tokens e0t , we demonstrate that a stack of
Transformer layers can approximate the next token xt+1 based solely on e01:t (and thus solely on x1:t

as well) as t increases.

Approximation with Transformers. We consider a modelMn composed of n identical Trans-
former layers T with residual connections, followed by a projection. The model iterates from the
beginning-of-sequence token e0t as:

Mn(x1:t) := Pent , where ek+1
t = ekt + T (ek1:t), 0 ≤ k ≤ n− 1, (3)

with P : R4d+2 → Rd the projector selecting the last d coordinates, which can be integrated in the
form of a token-wise feedforward layer.

We have the following main theorem, which shows that for the specific instances we consider, there
exist Transformer layers T such that limt→+∞ limn→+∞Mn(x1:t)− xt+1 = 0.

Theorem 1 ( On the expressivity of Transformers for Next Token Prediction). For each instance
in Assumption 2, there exists an attention-only, one-layer, two-head causal Transformer T with
attention normalization N such that, for any autoregressive sequence (xt)t≥1 generated according
to Assumption 1,Mn(x1:t) converges exponentially fast as n goes to infinity. Furthermore, denoting
M(x1:t) := limn→+∞Mn(x1:t), one has limt→+∞(M(x1:t)− xt+1) = 0. More specifically:

• For instance (1), N = id, and the convergence of (M(x1:t)− xt+1) to 0 is exponentially fast in t
for almost all x1 and W .

• For instance (2), N = exp or N = softmax.

• For instance (3), N = exp or N = softmax, and the convergence of (M(x1:t) − xt+1) to 0 is
exponentially fast in t.

Finally, for any of the instances above, whenN = id orN = exp, we haveMn(x1:t) =M(x1:t) as
long as n ≥ t, so that limn,t→+∞, n≥t(Mn(x1:t)− xt+1) = 0.

We emphasize that the models T correspond to explicit constructions. Specifically, we have:

W 1
Q,W

1
K ∈ Rd×(4d+2), W 1

V ,W
2
V ∈ R(4d+2)×(4d+2), W 2

Q,W
2
K ∈ R(d+1)×(4d+2).

More precisely, one has

W
(1)
Q = W

(1)
K = [0d×d+1, Id, 0d×2d+1],

W
(1)
V = −

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d×d+1 0d×d+1 0d×d 0d×d

0d×d+1 0d×d+1 0d×d Id

 ,

W
(2)
Q = [0d+1×d+1, Id+1, 0d+1×2d],

W
(2)
K = [Id+1, 0d+1×d+1, 0d+1×2d],

W
(2)
V =

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d×d+1 0d×d+1 0d×d 0d×d

0d×d+1 0d×d+1 Id 0d×d

 .

The proof of Theorem 1, which is in Appendix A.9, relies on demonstrating that the modelMn

implements a causal kernel descent method, which we describe and analyze in Section 4.
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Remark 1. In Theorem 1, we have ∥Mn(x1:t) − xt+1∥ ≤ ε1(n, t) + ε2(t), with ε1(n, t) =
∥Mn(x1:t) −M(x1:t)∥ and ε2(t) = ∥M(x1:t) − xt+1∥. The proof of Theorem 1 reveals that
limn→+∞ ε1(n, t) = 0 and limt→+∞ ε2(t) = 0. When N = id or N = exp, ε1(n, t) = 0 if n ≥ t,
hence the last statement of the theorem. When N = softmax, we conjecture that ε1(n, t) → 0 as
n, t→ +∞ and t/n→ 0, which implies limn,t→+∞ and t/n→0(Mn(x1:t)− xt+1) = 0. We provide
evidence for this conjecture in the last paragraph of Appendix A.9.

The modelM introduced in Theorem 1 also has a continuous-time interpretation, which we now
formulate.

Neural ODE Interpretation. The modelM defined in Theorem 1 as the limit when n—the number
of Transformer layers—goes to infinity can be interpreted as a continuous-time neural ODE (Chen
et al., 2018). Specifically,M satisfies

M(x1:t) := lim
τ→+∞

Pet(τ), where
det
dτ

(τ) = T (e1:t(τ)) with et(0) = T0(x0:t). (4)

We now present the theory behind our constructions to guarantee consistent approximation of the
next token xt+1 as the sequence size increases.

Comparison with RNNs. Even though we consider autoregressive sequences, it is not straightfor-
ward that recurrent neural networks (RNNs) can effectively capture these models. This is because
estimating W in-context requires computations with long-range dependencies. Determining the
optimal W indeed requires inverting the data covariance matrix. Attention mechanisms inherently
handle such procedure, which is proven in this work. We believe RNNs would require more layers
to “propagate” such information. While each RNN layer is less computationally expensive than
an attention layer, the overall cost might be similar. Investigating this is complex and beyond the
scope of this article, which demonstrates how current Transformer-based architectures are particularly
well-suited for in-context learning due to their global attention mechanism.

4 CAUSAL KERNEL DESCENT

In this section, we introduce a causal method to instantiate the iterations in equation 3 and prove
Theorem 1. Specifically, we propose a causal kernel descent method that incorporates causality into
standard gradient descent for least squares minimization.

4.1 CAUSAL DESCENT

Non-Causal Descent. We consider a sequence x1:T := (x1, · · · , xT ) ∈ RT×d. The goal is to
solve the least squares minimization problem of minimizing

∑T−1
s=1 ∥f(xs)− xs+1∥2 with respect to

f ∈ H. Recall that for any f ∈ H, there exists a linear map W : H → Rd such that f(x) = Wφ(x)
for all x ∈ Rd. Thus, we consider the least squares optimization problem:

min
W

E(W ) :=

T−1∑
s=1

∥Wφ(xs)− xs+1∥2. (5)

We solve equation 5 using gradient descent with step size η
2 , starting from an initial W 0 and iterating

for 0 ≤ k ≤ n− 1:

W k+1 = W k − η

T−1∑
s=1

(W kφ(xs)− xs+1)φ(xs)
∗.

We define a prediction variable uk
s := W kφ(xs). By right-multiplying the gradient descent equation

by φ(xt), we obtain:

uk+1
t = uk

t − η

T−1∑
s=1

k(xt, xs)(u
k
s − xs+1), (6)

which corresponds to a least squares descent on the predictions. However, this descent is non-causal
because the update of ut depends on u1:T−1 and x1:T , making it unsuitable for implementation in a
causal Transformer. We now propose a causal formulation for equation 6.

6
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Causal Descent. Inspired by the descent in equation 6, we propose a modified least squares descent
that introduces causality, ensuring that each estimate of xt+1 is based solely on past and current
observations x1:t. To achieve this, we define the following causal kernel descent, which incorporates
both an unnormalized and a row-wise normalized framework. Starting from any initial u0

t , the descent
iterates for 0 ≤ k ≤ n− 1 as follows:

uk+1
t = uk

t − η

t∑
s=1

At,s(u
k
s − 1s<txs+1) with At,s =

{
k(xt, xs), if k = kid

k(xt, xs) or k(xt,xs)∑t
τ=1 k(xt,xτ )

, if k = kexp
.

(7)
We denote A the corresponding lower triangular matrix. Note that this descent is causal in the sense
that un

t depends only on x1:t. Note also that each iteration in equation 7 can be parallelized.

For well-chosen step sizes η, the method in equation 7 converges. Specifically, we have the following
proposition:

Proposition 2. For each causal kernel descent in equation 7, there exists η⋆ and u⋆
t such that, for all

0 < η < η⋆, un
t → u⋆

t exponentially fast as n goes to infinity. Specifically:

• When At,s = k(xt, xs), then η⋆ = 2
k(x1,x1)

. Moreover, when η = 1
k(x1,x1)

, un
t = u⋆

t if n ≥ t.

• When At,s =
k(xt,xs)∑t

τ=1 k(xt,xτ )
, then η⋆ = 2.

Our proof, in Appendix A.2, relies on the lower triangular property of the matrix A.

Our objective is to show that u⋆
t is “close” to xt+1 when t is sufficiently big, demonstrating that the

causal kernel descent accurately tracks the future states provided it has seen sufficiently long context.
We have the following result.

Proposition 3. Let (µt)t≥1 be the unique sequence of vectors satisfying

t∑
s=1

µsk(xs, xt) = xt+1, ∀t ≥ 1. (8)

Then for all t ≥ 1, xt+1 − u⋆
t = k(x1, x1)µt.

For a proof, see Appendix A.3. From Proposition 3, we see that limt→+∞(u⋆
t − xt+1) = 0 is

equivalent to having limt→+∞ µt = 0. We provide a dual interpretation for µ in Appendix B.

4.2 CONVERGENCE IN THE SEQUENCE LENGTH

−1.0
−0.5

0.0
0.5

1.0

−1.0 −0.5
0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

ν1

ν2

ν3

ν4

ν5

ν6

ν

P1 · · ·Ptν

Figure 2: For some random vectors ν
(green) and ν1, · · · ν6 in S2, we display P6ν
(grey), P5P6ν (orange), ... and P1 · · ·P6ν.

In this section, we prove that under the instances defined
in Assumption 2, limt→+∞(u⋆

t − xt+1) = 0. For any µ
satisfying equation 8, we define the following map from
H to Rd:

Wt :=

t∑
s=1

µsφ(xs)
∗. (9)

By construction, we have for all t: Wtφ(xt) =
xt+1. To prove that limt→+∞ µt = 0 (and therefore
limt→+∞(u⋆

t − xt+1) = 0), we will actually prove a
stronger result, showing that for the instances in Assump-
tion 2 and in a specific limit sense, Wt →W . For this, we
define

νt :=
φ(xt)√
k(xt, xt)

=
φ(xt)

∥φ(xt)∥H
and Pt := (I − νtν

∗
t ) .

(10)
Therefore, Pt is the orthogonal projection onto the subspace orthogonal to φ(xt). With these notations,
we have the following proposition:
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Proposition 4 (Estimate Update Recursion). For all t ≥ 1, we have
Wt −W = −WP1P2 · · ·Pt.

For a proof, see Appendix A.4. Intuitively, the recursive relationship in Proposition 4 shows how
the difference between Wt and W is progressively reduced by successive orthogonal projections.
Such a process is illustrated in Figure 2, where each point corresponds to an iterate νt, defined as
νt = P1 · · ·Ptν. Note that without further assumptions, there is no guarantee that (Wt −W )x
converges to 0 for arbitrary x. However, for the specific instances considered in Assumption 2, we
are able to establish convergence for vectors x in a certain space.

We first focus on instance (1), where we can derive convergence speed results.

Linear recursions and dot-product kernel. In this section, we consider instance (1) from As-
sumption 2. Under these assumptions, we prove the following theorem:
Theorem 2 (k = kid, linear recursions). Under instance (1) in Assumption 2, one has that
limt→+∞(u⋆

t − xt+1) = 0. In addition, for almost all W and x1, Wt →W exponentially fast.

Proof sketch. We first show that Wt −W = −(W (I − x1x
⊤
1 ))

tW−t+1. We then establish that for
almost all W and x1, ρ(W (I − x1x

⊤
1 )) < 1, where ρ denotes the spectral radius.

See Appendix A.5 for a full proof. We now turn to the case where k = kexp.

Linear recursions and exponential kernel. In this paragraph, we consider instance (2) in As-
sumption 2. We present the following theorem, with a complete proof provided in Appendix A.6.
Theorem 3 (k = kexp, linear recursions). Under instance (2) in Assumption 2, for any x ∈ Rd,
(W ∗

t −W ∗)x→ 0. In particular, limt→+∞(u⋆
t − xt+1) = 0.

Proof sketch. We consider the subset ofH comprising functions x 7→∑τ
s=1 asνs, for as ∈ Rd and

τ ≥ 1. This subset is a pre-Hilbert space under the inner product inherited fromH. By completing
this space with respect to the induced norm from H, we obtain a new Hilbert space H′. We show
that PtPt−1 · · ·P1 → 0 strongly in H′ as t → +∞. For this, we observe that the convergence of
PtPt−1 · · ·P1 is equivalent to the convergence of the Kaczmarz algorithm (Kaczmarz, 1937). A
sequence (νs)s≥1 of unit vector for which PtPt−1 · · ·P1 → 0 strongly as t→ +∞ is referred to as
effective. The specificities of our case are twofold: first, νs ∈ H′, which is potentially of infinite
dimension, and second, the vectors νs follow an autoregressive relation. We show that the sequence
(νs)s≥1 is effective inH′. Note that because Ω ∈ O(d), one has for any positive integers t, s, r that
⟨νs+r, νt+r⟩ = ⟨νs, νt⟩. Such sequence is called stationary. Bochner’s theorem states that there
exists a measure σ on the unit circle S1–called spectral measure–such that, for all t ≥ 1,

at := ⟨νt+1, ν1⟩ =
∫
S1

zt dσ(z).

We then use the following characterization from Kwapień & Mycielski (2001); Rainis Haller (2005).

Theorem (Effectiveness of stationary sequences (Kwapień & Mycielski, 2001)). A stationary
sequence of unit vectors which is linearly dense in a Hilbert space is effective if and only if its spectral
measure either coincides with the normalized Lebesgue measure or is singular with respect to the
Lebesgue measure.

This characterization combined with Fourier analysis results shows that the sequence (νs)s≥1 is
effective. While this does not necessarily imply the strong convergence of Wt −W = −WP1 · · ·Pt

to 0, this is enough to prove that limt→+∞(u⋆
t − xt+1) = 0.

Periodic recursions. In this paragraph, we turn to instance (3) in Assumption 2, where k = kexp
and the sequence (xt)t≥1 is assumed to be periodic. The motivation for considering periodic
sequences is to better align with real-world next-token prediction tasks, where the vocabulary has a
finite size and is frequently repeated in cyclical patterns. We have the following theorem (proof in
Appendix A.7).
Theorem 4 (k = kexp, periodic recursions.). Under instance (3) in Assumption 2, one has that
limt→+∞(u⋆

t − xt+1) = 0 exponentially fast.

8
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4.3 IMPLEMENTATION WITH TRANSFORMERS

We can now use the previous results stating that the output of the causal kernel method u⋆
t approaches

xt+1 as t increases to construct the models presented in Section 3.

Expressing equation 7 with a Transformer. We have the following proposition, which, combined
with Theorems 2, 3 and 4, allow us to prove Theorem 1.
Proposition 5. For any η > 0, for each configuration of equation 7, there exists an attention-only, one-
layer, two-head causal Transformer T with attention normalization N such that, for any autoregres-
sive sequence (xt)t≥1 generated according to Assumption 1, defining ekt := (xt−1, 0, xt, 1, xt, u

k
t )

for t > 1 and ek1 := (0d, 1, xt, 1, 0d, u
k
t ), e

1:n
1:t solves equation 3 if and only if u1:n

1:t solves equation 7.
More specifically,

• When At,s = k(xt, xs) and k = kid, we have N = id.

• When At,s = k(xt, xs) and k = kexp, we have N = exp.

• When At,s =
k(xt,xs)∑t

τ=1 k(xt,xτ )
and k = kexp, we have N = softmax.

Here again, we stress that the transformer layers T correspond to an explicit construction. See
Appendix A.8 for a constructive proof. With Proposition 5, we prove Theorem 1, in Appendix A.9.

Figure 3: Evolution of the squared error ∥u⋆
t − xt+1∥2 with t for different scenarios. The curves are averaged

over five sequences x1:t. Left: instances (1) and (2) (with random W and Ω), illustrating Theorems 2 and 3
(d = 15). Center: instance (3), illustrating Theorem 4 (d = 15, the period tp is randomly sampled between 20
and 40, and a random sequence is repeated tp times). Right: instance (4) described in Section 5 (d = 4).

5 EXPERIMENTS

In this section, we present experimental results. Our code will be open-sourced.

Illustration of the Theorems. We first illustrate the theoretical results of Theorems 2, 3, and 4. For
the three instances in Assumption 2, we compute u⋆

t as defined in Proposition 2. We then examine
the evolution of ∥u⋆

t − xt+1∥2 with t. The corresponding curves are shown in Figure 3 (left and
center), illustrating the convergence of u⋆

t − xt+1 to zero for the considered instances. As predicted
by our theory, the convergence is exponential for instances (1) and (3).

More Complex Iterations. We also explore the potential convergence of u⋆
t − xt+1 to zero for

a new instance (4), described as follows. The key idea is to apply “non-linear rotations” to 2-
dimensional chunks of the input. Each of these rotations is parameterized by an angle θ and a scalar
q, and defined as z 7→ Rθz

q , where Rθ is a 2 dimensional rotation of angle θ. We now formalize this
idea. We consider sequences {xt} in R2p generated according to the process in Assumption 1, where
the mapping f : R2p → R2p is defined as follows. We first convert the real vector xt into a complex
vector zt ∈ Cp, where z

(j)
t = x

(2j−1)
t + i x

(2j)
t , for j = 1, 2, . . . , p. We then apply a unitary matrix

U ∈ Cp×p to zt, defining z′t = Uzt. Next, we modulate the magnitude and phase of z′t with a scalar
q ∈ R and a bias vector θ ∈ Rp as follows:

z′′t = exp(iθ)⊙ (|z′t| ⊙ exp (iq arg (z′t))) ,

9
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where ⊙ denotes element-wise multiplication, |z′t| is the element-wise magnitude, and arg(z′t) is the
element-wise phase of z′t. We then compute zt+1 = U⋆z′′t , where U⋆ is the Hermitian transpose of U .
Finally, we convert zt+1 back to a real vector xt+1 ∈ R2p. The sequence starts from an initial vector
x1 ∈ R2p, normalized to unit length. The unitary matrix U and bias vector θ are randomly initialized.
The parameter q controls the non-linearity applied to the phase of the transformed vector. In Figure 3
(right), we plot ∥u⋆

t − xt+1∥2 against t for d = 4, q = 2, and k = kexp. We observe convergence to
zero, suggesting that our causal kernel descent method may generalize to more complex settings.

0 20 40 60 80 100
t

10 3

10 2

1
d xt + 1 (x1 : t) 2

1
d xt + 1 n (x1 : t) 2

1
d xt + 1 n

0(x1 : t) 2

Figure 4: Errors 1
d
∥G(x1:t) − xt+1∥2 against t for G ∈

{M,Mn
θ0
,Mn

θ⋆}. Results are averaged over the whole test set.

Training Mn. In Theorem 1, the
number of layers, n, is taken to infin-
ity to obtain the estimate u⋆

t of xt+1.
However, we experimentally demon-
strate that fine-tuning the modelMn

in equation 3 leads to a trained model
that competes with the infinitely deep
model M. For this, we take N =
softmax to build Mn, and fine-tune
the corresponding weights. Note that,
for simplicity, we consider square ma-
trices for the parameters, by complet-
ing the parameters with zeros. To em-
phasize the parameter dependency, we
denote byMn

θ0
the corresponding ini-

tialization (which therefore satisfies
Theorem 1). We take d = 15, n = 6, and consider instance (2) with randomly generated Ω’s and
x1’s, for a dataset with 212 elements, that we split into train, validation, and test sets with respective
sizes of 60%, 20%, and 20% of the original dataset. We train the model using Adam (Kingma &
Ba, 2014) on the Mean Squared Error (MSE) loss for next-token prediction on sequences of length
T = 100, i.e., we minimize:

ℓ(θ) :=
1

d

T−1∑
t=1

∥Mn
θ (x1:t)− xt+1∥2,

over the parameters θ ofMn, starting from the initialization θ0. We train for 5000 epochs with
early stopping. We denote by Mn

θ⋆
the corresponding model. We then examine how the error

1
d∥Mn

θ⋆
(x1:t) − xt+1∥2 behaves with t. We find that not only doesMn

θ⋆
significantly outperform

Mn
θ0

, but it also outperforms the infinite depth modelM when t ≳ 20, as shown in Figure 5.

CONCLUSION

In this paper, we took a step towards understanding the universality of Transformers for next-token
prediction by considering sequences of the form xt+1 = f(xt) for some hidden variable f . We
demonstrated in Theorem 1 that an explicitly constructed Transformer can accurately predict the next
token xt+1 as t→ +∞, in specific cases where f is linear or the sequence (xt)t≥1 is periodic. Our
construction corresponds to the Transformer implementing causal kernel descent methods, which
provably provide consistent estimates of the next token xt+1 under the specific cases considered in
this paper. Experimental results validated our theoretical findings and indicated that these methods
can be extended to more general mappings f , paving the way for future investigations to generalize
our theoretical results.

One current limitation of our approach is the deterministic aspect of the sequences considered in
the paper. A possible extension of our work would be considering noisy dynamics of the form
xt+1 = f(xt) + εt where the εt’s are i.i.d random variables. Another open problem concerns the
ability of other sequential architectures such as RNNs or state-space models to learn in-context such
autoregressive processes. These questions are left for future research.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. Let n > 0 be an integer.

We define positional encodings pt ∈ R as

pt = (−1)tnt,

We concatenate the input embeddings and positional encodings and define

xp
t = (xt, pt) ∈ Rd+1.

We define the weight matrices W (h)
Q ,W

(h)
K ,W

(h)
V for each head h = 1, 2 as follows:

• W
(1)
Q = [01×d, 1], W

(1)
K = [01×d, −1], W

(1)
V =

(
Id 0d×1

02d×d 02d×1

)
.

• W
(2)
Q = [01×d, 1], W

(2)
K = [01×d, 1], W

(2)
V =

(
0d×d 0d×1

Id 0d×1

0d×d 0d×1

)
.

With such constructions, one has

• ⟨W (1)
Q xp

t ,W
(1)
K xp

s⟩ = −pspt and W
(1)
V xp

s = (xs, 0, 0).

• ⟨W (2)
Q xp

t ,W
(2)
K xp

s⟩ = pspt and W
(1)
V xp

s = (0, xs, 0).

The corresponding attention scores are

Ah
t,s =

e(−1)hpspt∑t
τ=1 e

(−1)hpτpt

=
1∑t

τ=1 e
(−1)hpτpt−(−1)hpspt

.

When h = 1, one has that (−1)hpspt = (−1)t−s+1n2st is maximal and strictly positive when
s = t− 1. Similarly, when h = 2, one has that (−1)hpspt = (−1)t−sn2st is maximal and strictly
positive when s = t. Therefore, A1

t,s → δs=t−1 and A2
t,s → δs=t as n→ +∞.

We therefore consider the forward rule defined as, for t ≥ 1:

Fn(x0:T )t =

t∑
s=1

A1
t,s · (xs, 0, 0) +

t∑
s=1

A2
t,s · (0, xs, 0).

As n→ +∞, one has Fn(x0:T )t → (xt−1, xt, 0) := F(x0:T )t.

We then apply a feedforward map G on each token (xt−1, xt, 0) defined as g(a, b, c) =

(

(
a

1a=0d

)
,

(
b
1

)
, (1 − 1a=0d)b, c) to obtain the desired augmented tokens et. The feedforward

map G can be approximated with a sigmoid based perceptron Gn using the fact that 2
1+e∥a∥n → 1a=0d

as n→ +∞.

Denoting T0 the Transformer composed of the attention module F and the feedforward module G
conludes the proof.
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A.2 PROOF OF PROPOSITION 2

Proof. Recall that the matrix A is defined as:

At,s =

{
k(xt, xs)1s≤t, if k = kid

k(xt, xs)1s≤t or k(xt,xs)∑t
τ=1 k(xt,xτ )

1s≤t, if k = kexp
.

We have in matrix notations:

un
1:t = (It − (It − ηA)n)A−1(A− diag(A))x2:t+1.

Importantly, when At,s = k(xt, xs), for all 0 < η < 2
k(x1,x1)

, one has (It − ηA)n → 0t×t

exponentially fast. In this case, we therefore have η⋆ = 2
k(x1,x1)

. Even more, when η = 1
k(x1,x1)

, the
matrix (It − ηA) is nilpotent, and (It − ηA)n = 0t×t for n ≥ t.

When At,s = k(xt,xs)∑t
τ=1 k(xt,xτ )

, for all 0 < η < 2, one has (It − ηA)n → 0t×t exponentially fast. In
this case, we therefore have η⋆ = 2.

In both cases, when 0 < η < η⋆, we have limn→+∞ un
1:t = u⋆

1:t := A−1(A− diag(A))x2:t+1.

A.3 PROOF OF PROPOSITION 3

Proof. When 0 < η < η⋆, at convergence, we have:

u⋆
1:t = x2:t+1 −A−1 diag(A)x2:t+1.

Writing z := A−1 diag(A)x2:t+1 and µs :=
zs

k(x1,x1)
, we obtain the recursions on µ:

t∑
s=1

µsk(xs, xt) =
k(xt, xt)

k(x1, x1)
xt+1 = Wφ(xt), ∀t ≥ 1, (11)

where the second equality comes from the fact that ∥xt∥ = ∥x1∥.
We have u⋆

t = xt+1 − k(x1, x1)µt.

A.4 PROOF OF PROPOSITION 4

Proof. We have
Wt+1 = Wt + µt+1φ(xt+1)

∗.

Right multiplying by φ(xt+1) gives

µt+1k(xt+1, xt+1) = xt+2 −Wtφ(xt+1)

Therefore,

Wt+1 = Wt(I −
φ(xt+1)φ(xt+1)

∗

k(xt+1, xt+1)
) +

xt+2

k(xt+1, xt+1)
φ(xt+1)

∗.

Since
xt+2φ(xt+1)

∗ = Wφ(xt+1)φ(xt+1)
∗,

we obtain

Wt+1 = (Wt −W )(I − φ(xt+1)φ(xt+1)
∗

k(xt+1, xt+1)
) +W

Since W1 = Wν1ν
∗
1 , it follows that Wt −W = −WP1P2 · · ·Pt, where Ps = (I − νsν

∗
s ) is the

orthogonal projection onto the subspace orthogonal to νs.
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A.5 PROOF OF THEOREM 2

Proof. We first prove the second statement of the theorem, that is that Wt −W → 0 exponentially
fast for almost all x1 and W .

Let’s first fix W and x1. In what follows we denote x := x1 to ease the notations.

Let ∆t = Wt −W . We have

∆t+1 = ∆tW
t(I − xx⊤)W−t.

Unrolling, we obtain

∆t+1 = ∆1(W (I − xx⊤))tW−t = −(W (I − xx⊤))t+1W−t,

because ∆1 = −W (I − xx⊤).

For fixed W and x, let y be an eigenvector of norm 1 of W (I − xx⊤). There exists λ such that

W (I − xx⊤)y = λy.

If |λ| = 1, then because W preserves the norm, it follows that

∥(I − xx⊤)y∥2 = ∥y∥2 = 1.

Developing, we get
∥x⟨x, y⟩∥2 = 0.

But since
∥x⟨x, y⟩∥2 = ⟨x, y⟩2,

we must have ⟨x, y⟩ = 0, and therefore Wy = λy, so that λ is also an eigenvalue of W .

Therefore, to show that for almost all x and W , ρ(W (I − xx⊤)) < 1, it suffices to show that for
almost all y ∈ V (W ):

⟨x, y⟩ ≠ 0,

where V (W ) denotes the eigen vectors of unit norms of W .

Let DO(d) be the subset of O(d) of orthogonal matrices with distinct eigenvalues and let W ∈
DO(d).

Let λ1, · · · , λd be the eigenvalues of W and b1, · · · , bd be d corresponding eigenvectors. Let
y ∈ V (W ), and λ be the corresponding eigenvalue.

Writing y =
∑d

i=1 yibi, one has on the one hand that

Wy = λy

and on the other hand

Wy =

d∑
i=1

yiλibi.

Identifying the coefficients gives λ = λi whenever yi ̸= 0. Since the λi’s are all distinct, necessarily
exactly one yi is non-zero, and y ∈ Cbi.

Therefore, if ⟨x, y⟩ = 0, then x ∈ ∪di=1(Cbi)⊥. However, for almost all x ∈ Sd−1, x /∈ ∪di=1(Cbi)⊥.
Therefore, for almost all W ∈ DO(d) and x ∈ Sd−1,

⟨x, y⟩ ≠ 0.

Since for almost all W ∈ O(d), W ∈ DO(d), we conclude that ρ(W (I − xx⊤)) < 1 for almost
all x ∈ Sd−1 and W ∈ O(d). As a consequence, for almost all x ∈ Sd−1 and W ∈ O(d),
Wt −W → 0 as t→ +∞. It already implies that, for almost all x and W , µtx

⊤
t → 0. Therefore,

Tr(µtx
⊤
t xtµ

⊤
t ) → 0. But since x⊤

t xt = 1 and Tr(µtµ
⊤
t ) = ∥µt∥, it gives µt → 0, and therefore

u⋆
t − xt+1 → 0 for almost all x1 and W .

However, to fully prove the first statement of the theorem, that is that, for all x1 and W , u⋆
t −xt+1 →

0, we follow the exact same demonstration as for Theorem 3 (corresponding to the next proof in
Appendix A.6), simply by replacing exp by id in equation 12.
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A.6 PROOF OF THEOREM 3

Proof. As mentioned in the proof sketch, we consider the subset ofH of linear combinations of the
νs:

x 7→
τ∑

s=1

asνs, for as ∈ Rd, τ ≥ 1.

This subset is a pre-Hilbert space under the inner product inherited fromH. By completing this space
with respect to the induced norm fromH, we obtain a new Hilbert spaceH′

We first show that PtPt−1 · · ·P1 → 0 strongly in H′, using a characterization from Kwapień &
Mycielski (2001).

A sequence (νs)s≥1 of unit vector for which PtPt−1 · · ·P1 → 0 strongly is referred to as effective.

The specificities of our case are twofold: first, νs ∈ H′, which is potentially of infinite dimension,
and second, the vectors νs follow an autoregressive relation. In our case, we can still show that the
sequence (νs)s≥1 is effective inH′.

Note that because Ω ∈ O(d), one has for any positive integers t, s, r that ⟨νs+r, νt+r⟩ = ⟨νs, νt⟩.
Such sequence is called stationary.

Bochner’s theorem states that there is a measure σ on the unit circle S1–called spectral measure–such
that, for all t ≥ 1,

at := ⟨νt+1, ν1⟩ =
∫
S1

zt dσ(z).

We are going to use the following characterization from Kwapień & Mycielski (2001); Rainis Haller
(2005).

Theorem (Effectiveness of stationary sequences (Kwapień & Mycielski, 2001)). A stationary
sequence of unit vectors which is linearly dense in a Hilbert space is effective if and only if its spectral
measure either coincides with the normalized Lebesgue measure or is singular with respect to the
Lebesgue measure.

Now, let Ω be an orthogonal matrix. One has

at = ⟨νt+1, ν1⟩ =
1

k(x1, x1)
k(xt+1, x1) =

1

k(x1, x1)
exp (⟨x1,Ω

tx1⟩).

Since Ω is an orthogonal matrix, it can be diagonalized via rotations with angles θ1, θ2, . . . , θp.

We therefore can write ⟨x1,Ω
tx1⟩ as

⟨x1,Ω
tx1⟩ =

p∑
i=1

(x2
1(2i−1) + x2

1(2i)) cos(θit) +

m∑
i=2p+1

x2
1i −

d∑
i=m+1

x2
1i,

for some p and m. Therefore, one can write

at = g(t(θ1, · · · , θp)),
where g is defined as

g(y1, · · · , yp) := exp

−1 + p∑
i=1

(x2
1(2i−1) + x2

1(2i)) cos(yi) +

m∑
i=p+1

x2
1i −

d∑
i=m+1

x2
1i

. (12)

The function g is periodic in each variable yi with period 2π. Since g is also C1, this allows us to
represent g as a Fourier series:

g(y) =
∑
k∈Zp

cke
i⟨y,k⟩.

Therefore,
at =

∑
k∈Zp

cke
it⟨θ,k⟩.
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Therefore, the spectral measure satisfies

σ =
∑
k∈Zp

ckδ⟨θ,k⟩.

Note that this necessarily implies that ck ≥ 0 by Bochner’s theorem. We are now going to prove that
σ is singular with respect to the Lebesgue measure.

We recall that two positive measures α and β defined on a measurable space C are singular if there
exist two disjoint measurable sets A,B such that A ∪B = C, such that α is zero on all measurable
subsets of B, while ν is zero on all measurable subsets of A. Here, α = σ, and β is the Lebesgue
measure on C = S1.

We have
A = ∪k∈Zp{⟨θ, k⟩}.

A is measurable and the Lebesgue measure β is zero on A, while by definition, σ is zero on all
measurable subsets of B := S −A.

Therefore, σ is singular with respect to the Lebesgue measure, which, using Theorem 2 from Kwapień
& Mycielski (2001) in the Hilbert spaceH′ shows that the sequence (νs)s≥1 is effective inH′.

Now, we have, by taking the adjoint ∗ of Wt −W :

W ∗
t −W ∗ = −Pt · · ·P1W

∗.

We recall that we identify W with WH′ so that W : H′ → Rd and W ∗ : Rd → H′. One has for all
x ∈ Rd

(W ∗
t −W ∗)x =

t∑
s=1

φ(xs)⟨zs, x⟩ −W ∗x = −Pt · · ·P1W
∗x→ 0

because W ∗x ∈ H′.

Therefore, for all x ∈ Rd, φ(xt)⟨zt, x⟩ → 0 in H′. Because ∥φ(xt)∥H′ = k(x1, x1) > 0, we
necessarily have ⟨zt, x⟩ → 0 for all x ∈ Rd. This is equivalent to zt → 0, and therefore u⋆

t −xt+1 →
0.

A.7 PROOF OF THEOREM 4

Proof. Let tp denotes the period of (xt)t≥1. We define

Π := P1 · · ·Ptp .

One has supν∈H′, ∥ν∥=1 ∥Πν∥ < 1 (see Rainis Haller (2005), page 2). Therefore, Πm → 0 as
m→ +∞.

As such, for any x such that φ(x) ∈ H′, Wtφ(x)→Wφ(x) exponentially fast.

In particular, for x = x1, we get that ∑
s

µsk(xs, x1)

converges exponentially fast. Since k(xs, x1) > exp(−1), it implies that µs → 0 exponentially
fast.

A.8 PROOF OF PROPOSITION 5

Proof. Building positional encodings and parameters.

Similarly to the previous proof, we consider positional encodings p1t and p2t ∈ R as

p1t = δs=1, p2t = 1.

17
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We concatenate the input embeddings and positional encodings and define

et,p = (xt−1, p
1
t , xt, p

2
t , xt, ut) = (xt−1, 0, xt, 1, xt, ut) ∈ R4d+2

if t > 1 and
e1,p = (0d, p

1
1, x1, p

2
1, 0d, u1) = (0d, 1, x1, 1, 0d, u1).

We define the weight matrices W (h)
Q ,W

(h)
K ,W

(h)
V for each head h = 1, 2 as follows:

• W
(1)
Q = W

(1)
K = [0d×d+1, Id,0d×2d+1], and

W
(1)
V = −η

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d×d+1 0d×d+1 0d×d 0d×d

0d×d+1 0d×d+1 0d×d Id

.

• W
(2)
Q = [0d+1×d+1, Id+1,0d+1×2d], W

(2)
K = [Id+1,0d+1×d+1,0d+1×2d], W

(2)
V =

η

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d+1×d+1 0d+1×d+1 0d+1×d 0d+1×d

0d×d+1 0d×d+1 0d×d 0d×d

0d×d+1 0d×d+1 Id 0d×d

.

With such constructions, one has

• ⟨W (1)
Q et,p,W

(1)
K es,p⟩ = ⟨xt, xs⟩ and W

(1)
V es,p = −η(0d+1, 0d+1, 0d, us).

• ⟨W (2)
Q et,p,W

(2)
K es,p⟩ = ⟨xt, xs−1⟩ + p1sp

2
t = ⟨xt, xs−1⟩ + δs=1 and W

(2)
V es,p =

η(0d+1, 0d+1, 0d, xs) if s > 1 and W
(2)
V e1,p = (0d+1, 0d+1, 0d, 0d).

Implementing equation 7 when At,s = k(xt, xs).

Let T be a one-layer, two-head Transformer with the parameters above (with N = id of N = exp).
Its forward rule is defined as, starting from e0t,p = et,p:

ek+1
t,p = ekt,p − η

t∑
s=1

A1
s,t(0d+1, 0d+1, 0d, u

k
s) + η

t∑
s=1

A2
s,t(0d+1, 0d+1, 0d, xs).

Therefore, the (3d + 2) first coordinates of ekt,p are not modified and the d last coordinates uk
t are

updated as

uk+1
t = uk

t − η

t∑
s=1

k(xt, xs)u
k
s + η

t∑
s=2

k(xt, xs−1)xs (13)

The second term in equation 13 reads
t∑

s=2

k(xt, xs−1)xs =

t−1∑
s=1

k(xt, xs)xs+1.

Therefore, equation 13 reads

uk+1
t = uk

t − η

t∑
s=1

k(xt, xs)(u
k
s − 1s<txs+1),

which corresponds exactly to equation 7.

Implementing equation 7 when At,s =
k(xt,xs)∑t

τ=1 k(xt,xτ )
.

Let T be a N = softmax-based, one-layer, two-head Transformer with the parameters above. Its
forward rule is defined as

ek+1
t,p = ekt,p − η

t∑
s=1

A1
s,t(0d+1, 0d+1, 0d, u

k
s) + η

t∑
s=1

A2
s,t(0d+1, 0d+1, 0d, xs).
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Therefore, the (3d + 2) first coordinates of et,p are not modified and the d last coordinates ut are
updated as

uk+1
t = uk

t − η

t∑
s=1

e⟨xt,xs⟩∑t
τ=1 e

⟨xt,xτ ⟩
uk
s + η

t∑
s=2

e⟨xt,xs−1⟩+δs=1∑t
τ=1 e

⟨xt,xτ−1⟩+δτ=1

xs. (14)

Because ∥xt∥ = 1 for all t ≥ 1 and x0 = 0, one has

t∑
τ=1

e⟨xt,xτ−1⟩+δτ=1 =

t∑
τ=1

e⟨xt,xτ ⟩

so that the second term in equation 14 reads

t∑
s=2

e⟨xt,xs−1⟩+δs=1∑t
τ=1 e

⟨xt,xτ−1⟩+δτ=1

xs =

t∑
s=2

e⟨xt,xs−1⟩∑t
τ=1 e

⟨xt,xτ ⟩
xs =

t−1∑
s=1

e⟨xt,xs⟩∑t
τ=1 e

⟨xt,xτ ⟩
xs+1.

Therefore, equation 14 reads

uk+1
t = uk

t − η

t∑
s=1

e⟨xt,xs⟩∑t
τ=1 e

⟨xt,xτ ⟩
(uk

s − 1s<txs+1),

which corresponds exactly to equation 7.

A.9 PROOF OF THEOREM 1

Proof. We first use Proposition 5. For any 0 < η < η⋆, where η⋆ of defined in Proposition 2
and for each configuration of equation 7, there exists an attention-only, one-layer, two-head causal
Transformer T such that, for any autoregressive sequence (xt)t≥1 generated according to Assumption
1, defining

ekt := (xt−1, 0, xt, 1, xt, u
k
t )

for t > 1 and
ek1 := (0d, 1, xt, 1, 0d, u

k
t ),

we have that, for any n, e1:n1:t solves equation 3 if and only if u1:n
1:t solves equation 7.

Thanks to Proposition 2, we know that un
t →n→+∞ u⋆

t , and defineM(x1:t) := u⋆
t . Then:

• When At,s = ⟨xt, xs⟩, taking N = id in the construction of T in the proof of Proposition 5, and
under instance (1), we haveM(x1:t)− xt+1 → 0, with exponential speed for almost all x1 and
W , thanks to Theorem 2.

• When At,s = e⟨xt,xs⟩ (resp. At,s = e⟨xt,xs⟩∑t
τ=1 e⟨xt,xτ ⟩ ), taking N = exp (resp. N = softmax) in the

construction of T in the proof of Proposition 5, and under instance (2), we haveM(x1:t)−xt+1 →
0 thanks to Theorem 3.

• When At,s = e⟨xt,xs⟩ (resp. At,s = e⟨xt,xs⟩∑t
τ=1 e⟨xt,xτ ⟩ ), taking N = exp (resp. N = softmax) in the

construction of T in the proof of Proposition 5, and under instance (3), we haveM(x1:t)−xt+1 →
0, with exponential speed, thanks to Theorem 4.

The last statement of Theorem 1 follows from Proposition 2. WhenN = id orN = exp, by choosing
η = 1

k(x1,x1)
, we have thatMn(x1:t) = un

t = u⋆
t =M(x1:t) whenever n ≥ t.

When N = softmax however, choosing for instance η = 1 in the proof of Proposition A.2, we
get un

1:t − u⋆
1:t = (It − A)nu⋆

1:t. Since ρ(It − A) ≤ 1 − 1
t , it is reasonable to conjecture that

∥un
t − u⋆

t ∥ is of order (1− 1
t )

n. In this case, it is sufficient to impose t
n → 0 as t, n→ +∞ to have

ε1(n, t) := ∥un
t − u⋆

t ∥ → 0 as n, t→ +∞.
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B ADDITIONAL RESULTS

Dual interpretation. We provide a dual interpretation for µ defined in Proposition 3. We conve-
niently write equation 5 as minW ∥Φ(W )−x2:T+1∥2 where for µ in Rd×T−1, Φ(W ) := (Wφ(xt))t
and Φ⊤(µ) =

∑
t µtφ(µt)

⊤. Gradient flow on E reads:

Ẇ = −∇E(W ) = −[Φ⊤(Φ(W )− x2:T+1)].

At optimality, one has W = ΦT (µ) for some µ ∈ Rd×T−1 (“kernel trick”), so that we consider the
energy F (µ) = E(ΦT (µ)). Gradient flow on F reads: µ̇ = −K[Kµ− x2:T+1] where K := ΦΦ⊤ :
µ 7→ (

∑
s k(xs, xt)µs)t. Since K is positive, we instead consider the equivalent flow

µ̇ = −[Kµ− x2:T+1].

Making this flow causal by replacing K with its masked counterpart A recovers to the results of the
previous paragraph, since, at convergence, µ satisfies equation 8.
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