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ABSTRACT

Designed for tracking user goals in dialogues, a dialogue state tracker is an es-
sential component in a dialogue system. However, the research of dialogue state
tracking has largely been limited to unimodality, in which slots and slot values
are limited by knowledge domains (e.g. restaurant domain with slots of restaurant
name and price range) and are defined by specific database schema. In this paper,
we propose to extend the definition of dialogue state tracking to multimodality.
Specifically, we introduce a novel dialogue state tracking task to track the informa-
tion of visual objects that are mentioned in video-grounded dialogues. Each new
dialogue utterance may introduce a new video segment, new visual objects, or new
object attributes and a state tracker is required to update these information slots
accordingly. Secondly, to facilitate research of this task, we developed DVD-DST,
a synthetic video-grounded dialogue benchmark with annotations of multimodal di-
alogue states. Thirdly, we designed a novel baseline, Video-Dialogue Transformer
Network (VDTN), for this task. VDTN combines both object-level features and
segment-level features and learns contextual dependencies between videos and
dialogues to generate multimodal dialogue states. We optimized VDTN for a state
generation task as well as a self-supervised video understanding task which recov-
ers video segment or object representations. Finally, we trained VDTN to use the
decoded states in a response prediction task. Together with comprehensive ablation
and qualitative analysis, we discovered interesting insights towards building more
capable multimodal dialogue systems.

1 INTRODUCTION

The main goal of dialogue research is to develop intelligent agents that can assist humans through
conversations. For example, in the dialogue in Figure 1, a dialogue agent is helping users to find a
restaurant based on their preferences of price ranges and food choices. A crucial part of a dialogue
system is Dialogue State Tracking (DST), which is responsible for tracking and updating user goals
in the form of dialogue states, including a set of (slot, value) pairs such as (price, “moderate”) and
(food, “japanese”). Numerous machine learning approaches have been proposed to tackle DST,
including fixed-vocabulary models (Ramadan et al., 2018; Lee et al., 2019) and open-vocabulary
models (Lei et al., 2018b; Wu et al., 2019; Le et al., 2020c), for either single-domain (Wen et al.,
2017) or multi-domain dialogues (Eric et al., 2017; Budzianowski et al., 2018).

However, the research of DST has largely limited the scope of dialogue agents to unimodality. In
this setting, the slots and slot values are defined by the knowledge domains (e.g. restaurant domain)
and database schema (e.g. data tables for restaurant entities). The ultimate goal of dialogue research
towards building artificial intelligent assistants necessitates DST going beyond unimodal systems. In
this paper, we propose Multimodal Dialogue State Tracking (MM-DST) that extends the DST task in
a multimodal world. Specifically, MM-DST extends the scope of dialogue states by defining slots
and slot values for visual objects that are mentioned in visually-grounded dialogues. For research
purposes, following (Alamri et al., 2019), we limited visually-grounded dialogues as ones with a
grounding video input and the dialogues contain multiple turns of (question, answer) pairs about this
video. Each new utterance in such dialogues may focus on a new video segment, new visual objects,
or new object attributes, and the tracker is required to update the dialogue state accordingly at each
turn. A comparison of traditional DST and our proposed MM-DST can be seen in Figure 1.

Toward MM-DST, we developed a synthetic benchmark based on the CATER universe (Girdhar &
Ramanan, 2020) with detailed annotations of dialogue states. In total, our benchmark contains more

1



Under review as a conference paper at ICLR 2022

Dialogue

HUMAN: I am looking for a cheap 
restaurant in the centre of the city.

Dialogue State

PRICE = cheap
AREA = centre

Database
NAME PRICE AREA       FOOD CHOICE 

Pizza centre cheap centre italian

JP house cheap centre japanese 

Pizza express moderate west italian 

Rice house expensive east chinese 

Dialogue Management
MACHINE: There are 3 restaurants 
that meet your requirements. What 
type of food do you prefer?

Data 
Query

HUMAN: I would prefer some 
japanese food for now.

MACHINE: JP house is a japanese 
restaurant with low price and in the 
centre.  Would you want to reserve 
a table?

PRICE= cheap
AREA = centre

FOOD CHOICE = japanese

Data Query
Sushi bar cheap centre japanese

Burger kitchen moderate north western 

… … … ...

Visually-grounded Dialogue

HUMAN: Until the end of the cube 
rotation, what types of actions does 
the big cone perform most?

Multimodal Dialogue State

Visual Object ReasoningMACHINE: sliding

Visual 
Grounding

HUMAN: After this period, does 
the cyan cube slide more 
frequently than the earlier 
mentioned cone?  

...

Visual 
Grounding

SHAPE = cube

SIZE = big; SHAPE = cone

START = 0s; END = 5.1s

SHAPE=cube; COLOR = cyan

SIZE = big; SHAPE = cone

START = 5.1s; END = 9.8s

Visual Object Reasoning
MACHINE: True

Grounding Video

(a) Conventional Dialogue State Tracking

(b) Multimodal Dialogue State Tracking

...

... ...

Dialogue Management
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Figure 1: Multimodal Dialogue State Tracking (MM-DST): We proposed to extend the traditional
DST from unimodality to multimodality. Compared to traditional DST (a), MM-DST (b) define
dialogue states, consisting of slots and slots values for visual objects that are mentioned in dialogues.

than 13k dialogues, each of which contains 10 dialogue turns, resulting in 130k (human, system)
utterance pairs and corresponding dialogue states.

We also introduced Video-Dialogue Transformer Network (VDTN), a neural network architecture
that combines both object-level features and segment-level features in video and learns contextual
dependencies between videos and dialogues. Specifically, we maintained the information granularity
of visual objects, embedded by object classes and their bounding boxes and injected with segment-
level visual context. VDTN enables interactions between each visual object representation and
word-level representation in dialogues to decode dialogue states. To decode multimodal dialogue
states, we adopted a decoding strategy inspired by the Markov decision process in traditional DST
(Young et al., 2010). In this strategy, a model learns to decode the state at a dialogue turn based on
the predicted/ observed dialogue state available from the last dialogue turn.

Compared to the conventional DST, MM-DST involves the new modality from visual inputs. Our ex-
periments show that simply combining visual and language representations in traditional DST models
results in poor performance. Towards this challenge, we enhanced VDTN with self-supervised video
understanding tasks which recovers object-based or segment-based representations. Benchmarked
against strong unimodal DST models, we observed significant performance gains from VDTN. We
provided comprehensive ablation analysis to study the efficacy of VDTN models. Interestingly, we
also showed that using decoded states brought performance gains in a dialogue response prediction
task, supporting our motivation for introducing multimodality into DST research.

2 MULTIMODAL DIALOGUE STATE TRACKING TASK

Traditional DST. As defined by Mrkšić et al. (2017), the traditional DST includes an input of
dialogue D and a set of slots S to be tracked from turn to turn. At each dialogue turn t, we denote the
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dialogue context as Dt, containing all utterances up to the current turn. The objective of DST is for
each turn t, predict a value vti of each slot si from a predefined set S, conditioned by the dialogue
context Dt. We denote the dialogue state at turn t as Bt = {(si, vti)}|

i=|S|
i=1 . An example of dialogue

state ground-truth can be seen in Figure 1a. Note that a majority of traditional DST models assume
slots are conditionally independent, given the dialogue context (Zhong et al., 2018; Budzianowski
et al., 2018; Wu et al., 2019; Lee et al., 2019; Gao et al., 2019). The objective is then defined as:

B̂t = argmax
Bt

P (Bt|Dt, θ) = argmax
Bt

|S|∏
i

P (vti |si,Dt, θ) (1)

Motivation to Multimodality. Yet, the above definition of DST are still limited to unimodality and
our ultimate goal of building intelligent dialogue agents, ideally with similar level of intelligence
as humans, inspires us to explore mulitmodality. In neuroscience literature, several studies have
analyzed how humans can perceive the world in visual context. Bar (2004); Xu & Chun (2009) found
that humans can recognize multiple visual objects and how their contexts, often embedded with other
related objects, facilitate this capacity. Our work is more related to the recent study (Fischer et al.,
2020) which focuses on human capacity to create temporal stability across multiple objects. The study
shows that some object features are carried over across memory episodes as a mechanism to maintain
stable representations of objects over time. The multimodal DST task is designed to develop a similar
capacity in multimodal dialogue systems. Specifically, we require systems to maintain a recurring
information state of multiple objects, including their own features, over a time period segmented
by dialogue turns. While computer science literature has focused on related human capacities in
intelligent systems, they are mostly limited to vision-only tasks e.g. (He et al., 2016; Ren et al., 2015)
or QA tasks e.g. (Antol et al., 2015; Jang et al., 2017) but not in a dialogue task. Most closely related
work in the dialogue domain is (Pang & Wang, 2020) and almost concurrent to our work is (Kottur
et al., 2021). However, (Kottur et al., 2021) is limited to a single object per dialogue, and (Pang &
Wang, 2020) extends to multiple objects but does not require to maintain an information state with
component slots for each object. Our work aims to complement these directions and address their
limitations with a novel definition of multimodal dialogue state.

Multimodal DST (MM-DST). To this end, we proposed to extend conventional dialogue states.
First, we use visual object identities themselves as a component of the dialogue state to account
for the perception of multiple objects (Bar, 2004; Xu & Chun, 2009). A dialogue state might have
one or more objects and a dialogue system needs to update the object set as the dialogue carries on.
Secondly, for each object, we define slots that represent the information state of objects in dialogues
(as denoted by Fischer et al. (2020) as “content” features of objects memorized by humans). The
value of each slot is subject-specific and updated based on the dialogue context of the corresponding
object. This definition of DST is closely based on the above well-studied human capacities while
complementing the conventional dialogue research (Young et al., 2010; Mrkšić et al., 2017), and
more lately multimodal dialogue research (Pang & Wang, 2020; Kottur et al., 2021).

We denote a grounding visual input in the form of a video V with one or more visual objects oj . We
assume these objects are semantically different enough (by appearance, by characters, etc.) such
that each object can be uniquely identified (e.g. by an object detection module ω). The objective of
MM-DST is for each dialogue turn t, predict a value vti of each slot si ∈ S for each object oj ∈ O.
We denote the dialogue state at turn t as Bt = |{(oj , si, vti,j)}|

i=|S|,j=|O|
i=1,j=1 . Assuming all slots are

conditionally independent given dialogue and video context, the objective of MM-DST is defined as:

B̂t = argmax
Bt

P (Bt|Dt,V, θ) = argmax
Bt

|O|∏
j

|S|∏
i

P (vti,j |si, oj ,Dt,V, θ)P (oj |V, ω) (2)

One limitation of this representation is the assumption of a universal slot ontology, with a predefined
set of slots. However, this limitation is not just limited to multimodal dialogues, but has been noted
and addressed to some extent in unimodal DST (Rastogi et al., 2020). We assume a universal slot set
in this work and will reserve future work to tackle this limitation.

Another limitation of the current representation is the absence of temporal placement of objects in
time. Naturally humans are able to associate objects and their temporal occurrence over a certain
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Figure 2: Video-Dialogue Transformer Network(VDTN) has 4 key components: (a) Visual Per-
ception and Encoder (Section 3.1) (b) Dialogue Encoder (Section 3.2) (c) Transformer Network
(Section 3.3) (d1) State Decoder (Section 3.4) and (d2) Visual Decoder (Section 3.4)

period. Similarly, in dialogue, we want the dialogue agent to achieve this capacity over the length of
a conversation. Therefore, we defined two temporal-based slots: sstart and send, denoting the start
time and end time of the video segment that an object can be located by each dialogue turn. In this
work, we assume that a dialogue turn is limited to a single continuous time span, and hence, sstart
and send can be defined turn-wise, identically for all objects. While this is a strong assumption, we
believe it covers a large portion of natural conversational interactions. An example of multimodal
dialogue state can be seen in Figure 1b.

3 VIDEO-DIALOGUE TRANSFORMER NETWORK

Compared to traditional DST, MM-DST involves additional information from visual inputs. A naive
adaptation of conventional DST to MM-DST is to directly combine visual features extracted by a
pretrained visual model. Most often a 3D-CNN model can be used to extract sub-clips from videos
and extracted feature vectors are concatenated to dialogue context representations. However, as
shown in our experiments, this extension of conventional DST results in poor performance and does
not address the challenge of visual object reasoning in visually-grounded dialogues. In this paper,
we established a strong baseline for MM-DST and called this model Video-Dialogue Transformer
Network (VDTN). VDTN is composed of 4 major components (refer to Figure 2 for an overview):

3.1 VISUAL PERCEPTION AND ENCODER

This module encodes videos at both frame-level and segment-level representations. Frame-level
representations consist of visual-object embeddings and their spatial locations. In each frame, each
visual object representation is combined with the representations of the video segment corresponding
to that frame to facilitate both spatial and temporal perception.

Specifically, we used a Faster R-CNN model (Ren et al., 2015) finetuned on the CATER universe to
extract object representations. We used this model to output the bounding boxes and object identifiers
(object classes) in each video frame of the video. For an object oj , we denoted the four values of its
bounding boxes as bbj = (x1j , y

1
j , x

2
j , y

2
j ) and oj as the object class itself. We standardized the video

features by extracting features of up to Nobj = 10 objects per frame and normalizing all bounding
box coordinates by the frame size.
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Secondly, we used a ResNeXt model (Xie et al., 2017) finetuned on Kinetics dataset (Kay et al., 2017).
We used this model to extract the segment-level representations of videos, denoted as zm ∈ R2048

for a segment m. Practically, we followed the best practice in computer vision by using a temporal
sliding window with strides to sample video segments and passed segments to ResNeXt model to
extract features. To standardize visual features, we use the same striding configuration Nstride to
sub-sample segments for ResNeXt and frames for Faster R-CNN models.

Note that we do not finetuned the visual feature extractors in VDTN and keep the extracted features
fixed. To transform these features into VDTN embedding space, we first concatenated all object
identities tokens of OBJ<class>) of all frames, separated by a special token FRAME<number>, where
<number> is the temporal order of the frame. This results in a sequence of tokens Xobj of length
Lobj = (Nobj + 1)× (|V|/Nstride) where |V| is the number of video frames. Correspondingly, we
concatenated bounding boxes of all objects, and used a zero vector in positions of FRAME<number>
tokens. We denoted this sequence as Xbb ∈ RLobj×4. Similarly, we stacked each ResNeXt feature
vector by (Nobj + 1) for each segment, and obtained a sequence Xcnn ∈ RLobj×2048.

We passed each ofXbb andXcnn to a linear layer with ReLU activation to map their feature dimension
to a uniform dimension d. We used a learnable embedding matrix to embed each token in Xobj ,
resulting in embedding features of dimensions d. A video input representation is the element-wise
summation of all above vectors, resulting in a vector ZV ∈ RLobj×d.

3.2 DIALOGUE ENCODER

Another encoder encodes dialogue into continuous representations. Given a dialogue context Dt,
We tokenized all dialogue utterances into sequences of words, separated by special tokens USR for
human utterance and SYS for system utterance. We used a trainable embedding matrix and sinusoidal
positional embeddings to embed this sequence into representation dimension d.

Flattening State into Sequence. Similar to the recent work in traditional DST (Lei et al., 2018b;
Le et al., 2020b; Zhang et al., 2020), we are motivated by the DST decoding strategy following a
Markov principle and used the dialogue state of the last dialogue turn Bt−1 as an input to generate
the current state Bt. Using the same notations from (2), we can represent Bt into a sequence of
oj , si, and vti,j tokens, such as “OBJ4 shape cube OBJ24 size small color red”. This sequence is
then concatenated with utterances from Dt, separated by a special token PRIOR_STATE. We denoted
the resulting sequence as Xctx which is passed to the embedding matrix and positional encoding
as described above. As we showed in our experiments, to encode dialogue context, this strategy
needs only a few dialogue utterances (that is closer to the current turn t) and Bt−1, rather than the
full dialogue history from turn 1. Therefore, dialogue representations Zctx have more compressed
dimensions of |Xctx| × d where |Xctx| < |Dt|.

3.3 MULTIMODAL TRANSFORMER NETWORK

We concatenated both video and dialogue representations, denoted as ZV D = [ZV ;ZD]. ZV D has a
length of Lobj + Lctx and embedding dimension d. We pased ZV D to a vanilla Transformer network
(Vaswani et al., 2017) through multiple multi-head attention layers with normalization (Ba et al.,
2016) and residual connections (He et al., 2016). Each layer allows multimodal interactions between
object-level representations from videos and word-level representations from dialogues.

3.4 DIALOGUE STATE GENERATION AND SELF-SUPERVISED VIDEO UNDERSTANDING

State Decoder. This module decodes dialogue state sequence auto-regressively, i.e. each token
is conditioned on all dialogue and video representations as well as all tokens previously decoded.
The ground-truth dialogue states are flattened into sequences as described in Section 3.2. At the first
decoding position, a special token STATE is embedded into dimension d (by a learned embedding
layer and sinusoidal positional encoding) and concatenated to ZV D. The resulting sequence is passed
to the Transformer network and the output representations of STATE are passed to a linear that
transforms representations to state vocabulary embedding space. The decoder applies the same
procedure for the subsequent positions to decode dialogue states auto-regressively.
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During training, we directly used the ground-truth dialogue states and applied a causal mask to
simulate the auto-regressive process. We applied a softmax layer and optimize the model by mini-
mizing the negative log-likelihood. Note that this decoder design partially avoids the assumption of
conditionally independent slots from (1) and (2). Denoting bk,t as the kth token in Bt, i.e. token of
slot, object identity, or slot value, we defined the DST loss function as the negative log-likelihood:

P (Bt|Dt,V) =
|Bt|∏
k

P (bk,t|b<k,t, Xctx, Xobj) Ldst = −
∑

logP (bk,t|b<k,t, Xctx, Xobj) (3)

During test time, we applied beam search to decode states with the maximum length of 25 tokens in
all models and a beam size 5. An END_STATE token is used to mark the end of each sequence.

Visual Decoder. Finally, moving away from conventional unimodal DST, we proposed to enhance
our DST model with a Visual Decoder that learns to recovers visual representations in a self-
supervised learning task to improve video representation learning. Specifically, during training time,
we randomly sampled visual representations and masked each of them with a zero vector. At the
object level, in the mth video frame, we randomly masked a row from Xbb(m) ∈ RNobj×4. Since
each row represents an object, we selected a row to mask by a random object index j ∈ [1, Nobj ] such
that the same object has not been masked in the preceding frame or following frame. We used this
masking strategy to train the models to learn the dynamics of an object based on its visual context.
We denote the Transformer output representations from video inputs as Z ′V ∈ RLobj×d. This vector
is passed to a linear mapping fbb to bounding box features R4. We defined the learning objective as:

Lobj =
∑
j

1masked × l(fbb(Z ′V,j), Xbb,j), j ∈ [1, Lobj ] (4)

where l is a loss function and 1masked = {0, 1} is a masking indicator. We experimented with both
L1 and L2 loss and reported the results. Similarly, at the segment level, we randomly selected a
segment to mask such that the preceding or following segments have not been chosen for masking:

Lseg =
∑
j

1masked × l(fcnn(Z ′V,j), Xcnn,j), j ∈ [1, Lobj ] (5)

4 EXPERIMENTS

DVD-DST Benchmark. To study the multimodal DST task as defined in this paper, there are not
many available suitable benchmarks. As mentioned in Section 2, the closest possible studies to our
task are (Pang & Wang, 2020; Kottur et al., 2021) but each contains its own shortfalls. In existing
popular benchmarks of multimodal dialogues such as VisDial (Das et al., 2017a), we observed that a
large number of data samples contain strong distribution bias in dialogue context, in which dialogue
agents can simply ignore the whole dialogue and rely on image-only features (Kim et al., 2020), or
annotation bias, in which the causal link connecting dialogue history and current turn question is
actually harmful (Qi et al., 2020). These biases would obviate the need for a DST task.

We found that a recent benchmark called DVD (Le et al., 2021b) can address both biases. The
dialogues are grounded on videos from CATER (Shamsian et al., 2020), which contain visually
simple yet highly varied objects. The dialogues in DVD are synthetically designed with both short-
term and long-term object references. These specifications remove the annotation bias in terms of
object appearances in visual context and cross-turn dependencies in dialogue context. Moreover, as
shown by our experiments in Table 1, models with access to videos only do not perform as well as
models with access to dialogue only. This indicates less distribution bias in dialogue context in DVD
than other benchmarks and models can generalize better by relying on dialogue features.

However, we noted that DVD is designed for response prediction and only contains the dialogue
states up to the second last turn in each dialogue. Therefore, we generated new dialogues following
(Le et al., 2021b) but included state annotation at all dialogue turns. Moreover, we chose to generate
dialogue data based on an extended CATER video split (Shamsian et al., 2020) rather than the
original CATER video data (Girdhar & Ramanan, 2020). The extended CATER split (Shamsian
et al., 2020) includes additional annotations of bounding box boundaries of each visual object in
video frames. This annotation facilitates experiments with models of perfect visual perception, i.e.
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P (oj |V, ω) ≈ 1. As shown in (Le et al., 2021b), objects can be uniquely referred in utterances based
on their appearance by one or more following aspects: “size”, “color”, “material”, and “shape”. We
directly reuse these and define them as slots in our dialogue states, in addition to 2 temporal slots for
sstart and send. We denote the new benchmark as DVD-DST and elaborate further in Appendix B.

We also want to highlight that like other synthetic benchmarks such as CLEVR (Johnson et al.,
2017), we want to use DVD in this work as a test bed to study and design better multimodal dialogue
systems. However, we do not intend to use it as a training data for practical systems. The DVD-DST
benchmark should be used to supplement real-world video-grounded dialogue datasets.

Baselines. We benchmarked VDTN on DVD-DST with the following baseline models: (1) Q-
retrieval (tf-idf), for each test sample, directly retrieves the training sample the with most similar
question utterance and use its state as the predicted state; (2) State prior selects the most common
tuple of (object, slot, value) in training split and uses it as predicted states; (3) Object (random),
for each test sample, randomly selects one object predicted by the visual perception model and a
random (slot, value) tuple (with slots and values inferred from object classes) as the predicted state;
(4) Object (all) is similar to (3) but selects all possible objects and all possible (slot, value) tuples
as the predicted state; (5) RNN(+Attn) uses RNN as encoder and an MLP as decoder with a vanilla
dot-product attention; We experimented with strong unimodal DST baselines, including: (6) TRADE
(Wu et al., 2019); (7) UniConv (Le et al., 2020b); and (8) NADST (Le et al., 2020c). We implemented
baselines (5) to (8) and tested them on dialogues with or without videos. When video inputs are
applied, we embedded both object and segment-level features using the same method as described in
Section 3.1. The embedded features are integrated into baselines in the same techniques in which the
original models treat dialogue representations. Refer to Appendix C for our training details.

Evaluation. We followed the evaluation metrics from unimodal DST benchmarks (Budzianowski
et al., 2018; Henderson et al., 2014a). In these benchmarks, a joint state accuracy compared the
predicted state and ground-truth state per dialogue turn. The prediction is counted as correct only
when all the component values exactly match the oracle values. In multimodal states, there are both
discrete slots (object attributes) as well as continuous slots (temporal start and end time). For these
slots, we followed (Hu et al., 2016; Gao et al., 2017) by using Intersection-over-Union (IoU) between
predicted temporal segment and ground-truth segment. The predicted segment is counted as correct
if its IoU with the oracle is more than p, where we chose p = {0.5, 0.7}. We reported the joint
state accuracy of discrete slots only (“Joint Obj State Acc”) as well as all slot values (“Joint State
IoU@p”). We also reported the performance of component state predictions, including predictions of
object identities oj , object slot tuples (oj , si, vi,j), and object state tuples (oj , si, vi,j)∀si ∈ S . Since
a model may simply output all possible object identities and slot values and achieve 100% component
accuracies, we reported the F1 metric for each of these component predictions.

Overall results. From Table 1, we have the following observations: (1) we noted that simply using
naive retrieval models such as Q-retrieval achieved zero joint state accuracy only. State prior achieved
only about 15% and 8% F1 on object identities and object slots, showing that a model cannot simply
rely on distribution bias of dialogue states. (2) The results of Object (random/all) show that in
DVD-DST, dialogues often focus on a subset of visual objects and an object perception model alone
cannot predict dialogue states well. (3) The performance gains of RNN models show the benefits of
neural network models compared to retrieval models. The higher results of RNN(D) against RNN(V)
showed the dialogue context is essential and reinforced the above observation (2). (4) Comparing
TRADE and UniConv, we noted that TRADE performed slightly better in component predictions, but
was outperformed in joint state prediction metrics. This showed the benefits of UniConv which avoids
the assumptions of conditionally independent slots and learns to extract the dependencies between
slot values. (5) Results of TRADE, UniConv, and NADST all displayed minor improvement when
adding video inputs to dialogue inputs, displaying their weakness when exposed to cross-modality
learning. (6) VDTN achieves significant performance gains and achieves the SOTA results in all
component or joint prediction metrics.

(7) We also experimented with a version of VDTN in which the transformer network (Section 3.3)
was initialized from a GPT2-base model (Radford et al., 2019) with a pretrained checkpoint released
by HuggingFace1. Asides from using BPE to encode text sequences to match GPT2 embedding
indices, we keep other components of the model the same. VDTN+GPT2 is about 36× bigger than

1https://huggingface.co/gpt2
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Table 1: Overall performance of all models on the test split of DVD-DST

Model Dial Video
Obj

Identity
F1

Obj
Slot
F1

Obj
State
F1

Joint Obj
State
Acc

Joint
State

IoU@0.5

Joint
State

IoU@0.7
Q-retrieval (tf-idf) Q only - 6.7% 3.3% 2.7% 1.0% 0.8% 0.7%
State prior - - 14.9% 7.7% 0.1% 0.0% 0.0% 0.0%
Object (random) - Objs 19.8% 14.1% 0.4% 0.0% 0.0% 0.0%
Object (all) - Objs 60.5% 27.2% 1.5% 0.0% 0.0% 0.0%
RNN(V) - X 21.2% 10.8% 8.3% 1.0% 0.1% 0.1%
RNN(D) X - 57.8% 43.3% 38.0% 4.8% 1.1% 0.6%
RNN(V+D) X X 63.2% 48.5% 42.8% 6.8% 2.6% 2.3%
RNN(V+D)+Attn X X 73.4% 59.0% 46.8% 8.5% 3.3% 2.0%
TRADE (N=1) X - 75.3% 63.2% 47.8% 8.7% 2.2% 1.1%
TRADE (N=1) X X 75.8% 63.8% 48.0% 9.2% 3.3% 2.5%
TRADE (N=3) X - 74.2% 62.6% 47.2% 8.3% 2.1% 1.1%
TRADE (N=3) X X 76.1% 64.5% 48.2% 8.9% 3.2% 2.4%
UniConv (N=1) X - 70.6% 58.0% 44.7% 11.1% 4.5% 3.2%
UniConv (N=1) X X 73.6% 60.5% 46.2% 11.6% 6.1% 5.4%
UniConv (N=3) X - 76.4% 62.7% 52.5% 15.0% 6.4% 4.6%
UniConv (N=3) X X 76.4% 62.7% 50.5% 14.5% 7.8% 7.0%
NADST (N=1) X - 78.0% 63.8% 44.9% 11.6% 4.6% 3.2%
NADST (N=1) X X 78.4% 64.0% 47.7% 12.7% 6.1% 5.5%
NADST (N=3) X - 80.6% 67.3% 50.2% 15.3% 6.3% 4.3%
NADST (N=3) X X 79.0% 65.1% 49.2% 13.3% 6.3% 5.5%
VDTN (ours) X X 84.5% 72.8% 60.4% 28.0% 15.3% 13.1%
VDTN+GPT2(ours) X X 85.2% 76.4% 63.7% 30.4% 16.8% 14.3%

Table 2: Ablation results by joint state predictions, using greedy or beam search decoding styles

Video
Features

Dialogue
State

Video
loss

Greedy Beam Search
Joint Obj
State Acc

Joint State
IoU@0.5

Joint State
IoU@0.7

Joint Obj
State Acc

Joint State
IoU@0.5

Joint State
IoU@0.7

Xbb B\time - 17.3% N/A N/A 17.9% N/A N/A
Xbb +Xcnn B\time - 20.0% N/A N/A 22.4% N/A N/A
Xbb B - 16.6% 9.6% 8.3% 19.3% 11.0% 9.5%
Xbb +Xcnn B - 22.4% 12.7% 10.8% 24.8% 13.8% 11.8%
Xbb B Lobj 21.7% 11.7% 10.0% 24.0% 12.9% 11.0%
Xbb +Xcnn B Lobj 23.1% 13.2% 11.3% 26.0% 14.4% 12.4%
Xbb +Xcnn B Lseg 24.3% 13.4% 11.4% 28.0% 15.3% 13.1%

our default VDTN model. As shown in Table 1, the performance gains of VDTN+GPT2 indicates the
benefits of large-scale language models (LMs). Another benefit of using pretrained GPT2 is faster
training time as we observed the VDTN+GPT2 converged much earlier than training it from scratch.
From these observations, we are excited to see more future adaptation of large pretrained LMs, such
as (Brown et al., 2020; Raffel et al., 2020), or of pretrained multimodal transformer models, such
as (Lu et al., 2019; Zhou et al., 2020), in the MM-DST task. (8) Finally, while we noted that using
synthetic benchmarks such as DVD-DST might result in over-estimated performance of models, we
argue that the current reported results of state accuracy are reasonable due to the strict measurement
of this metric in the MM-DST task. We noted that this metric basically treat the MM-DST task
as a classification task. In DVD, there are roughly 7200 classes, each of which is a distinct set of
objects, each with many possible slot combinations. Combined with the upstream error from object
perception, we expect the current results are justifiable (See refer to Appendix E for more discussion).

Ablation analysis. Table 2 shows the results of different variants of VDTN models. We observed that:
(1) Compared to greedy decoding, beam search decoding improves the performance in all models.
As beam search decoding selects the best decoded state by the joint probabilities of tokens, this
observation indicates the benefits of considering slot values to be co-dependent and their relationships
should be modelled. This is consistent with similar observations in later work of unimodal DST (Lei
et al., 2018b; Le et al., 2020c). (2) By considering the temporal placement of objects and defining
time-based slots, we noted the performance gains by “Joint Obj State Acc” (B vs. B\time). The
performance gains show the interesting relationships between temporal slots and discrete-only slots
and the benefits of modelling both in dialogue states. (3) The results of using self-supervised losses
displayed the benefits of enhancing models with better video representations. We observed that
segment-based learning is marginally more powerful than object-based learning.
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Table 3: Results by self-supervised objectives

Video self-
supervision Loss Joint Obj

State Acc
Joint State
IoU@0.5

Joint State
IoU@0.7

None N/A 24.8% 13.8% 11.8%
Lobj L1 26.0% 14.4% 12.4%
Lobj L2 24.1% 13.3% 11.4%
Lobj (tracking) L1 27.2% 14.7% 12.6%
Lobj (tracking) L2 22.9% 12.7% 10.9%
Lseg L1 28.0% 15.3% 13.1%
Lseg L2 27.4% 14.7% 12.7%
Lobj + Lseg L1 23.7% 13.0% 11.2%
Lobj + Lseg L2 24.3% 13.4% 11.6%

Impacts of self-supervised video representa-
tion learning. From Table 3, we noted that
compared to a model trained only with the
DST objective Ldst, models enhanced with self-
supervised video understanding objectives can
improve the results. However, we observe that
L1 loss works more consistently than L2 loss in
most cases. Since L2 loss minimizes the squared
differences between predicted and ground-truth
values, it may be susceptible to outliers (of seg-
ment features or bounding boxes) in the dataset.
Since we could not control these outliers, an L1
loss is more suitable. We also tested with Lobj (tracking), in which we assumed bounding box anno-
tations during training, and simply passed unmasked visual features to VDTN for an object tracking
task. All output representations are used to predict the ground-truth bounding box coordinates of all
objects. Interestingly, we found Lobj (tracking) only improves the results significantly, as compared
to the self-supervised learning objective Lobj . This indicates that our self-supervised learning tasks
do not heavily rely on object boundary annotations. Finally, we found combining both segment and
object-level self-supervision is not useful. This is possible due to our current masking strategy that
masks object and segment features independently. Therefore, the resulting context features might not
be sufficient for recovering masked representations.

Table 4: Results of response
predictions (by greedy/beam
search states):

Dialogue State Accuracy
No state 43.0%
B\time 46.8%/47.1%
B 48.7%/48.9%

Impacts on downstream response prediction task. Finally, we
tested the benefits of studying multimodal DST for a response pre-
diction task. Specifically, we used the best VDTN model to decode
dialogue states across all samples in DVD-DST. We then used the
predicted slots, including object identities and temporal slots, to
filter the video inputs by objects and segments. We then used these
filtered videos as input to train new VDTN models with an MLP as
the response prediction layer. Note that these models are not trained
with Ldst or self-supervised objectives, but only with a cross-entropy
loss to predict answer candidates. From Table 4, we observed the
benefits of visual inputs filtered by states, resulting in accuracy improvement of up to 5.9% accuracy
score. Note that there are more sophisticated approaches such as neural module networks (Andreas
et al., 2016; Hu et al., 2018) and symbolic reasoning (Yi et al., 2018; Chen et al., 2020) to fully
exploit the decoded dialogue states. We leave this extension for future research.

For more experiment results, analysis, and qualitative examples, please refer to Appendix D.

5 DISCUSSION AND CONCLUSION

Related Work. Our work is related to the research of unimodal DST and visually-grounded dialogues.
We show that the scope of DST (Young et al., 2010; Mrkšić et al., 2017; Lei et al., 2018b; Gao
et al., 2019; Le et al., 2020c), can be further extended to a multimodal world. Within the research
of visually-grounded dialogues, our work is related to (De Vries et al., 2017; Das et al., 2017a;
Chattopadhyay et al., 2017; Hori et al., 2019; Thomason et al., 2019). However, these approaches are
not designed to track objects across dialogue turns, and they do not maintain a recurring memory/state
of these objects and their features throughout dialogues. Most of the prior approaches introduced
techniques inspired by vision-language tasks such as VQA (Rohrbach et al., 2015; Antol et al., 2015;
Jang et al., 2017; Lei et al., 2018a). Our work, instead, was inspired from a dialogue-based angle, with
a new learning task for multimodal DST. For more detailed related work, please refer to Appendix A.

Limitations and Conclusion. We noted the current work are limited to a synthetic benchmark with
a limited video domain (3D objects). However, we expect that MM-DST task is still applicable and
can be extended to other video domains (e.g. videos of humans). We expect that MM-DST is useful
in dialogues centered around a “focus group” of objects. For further discussion, including a potential
extension of MM-DST to videos of humans, please refer to Appendix E. In summary, in this work,
we formally define a novel multimodal DST task to test models ability to track visual objects and
their attributes in dialogues. For this task, we introduced a new benchmark, and proposed VDTN
as a strong baseline with a video self-supervised learning strategy. Our experiments indicate the
multimodal reasoning capacities of VDTN and the potentials of MM-DST in a dialogue system.
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6 ETHICS STATEMENT

During the research of this work, there is no human subject involved and hence, no ethical concerns
regarding the experimental procedures and results. The data is used from a synthetically developed
dataset, in which all videos are simulated in a 3D environment with synthetic non-human visual
objects. We intentionally chose this dataset to minimize any distribution bias and make fair com-
parisons between all baseline models. However, we wanted to emphasize on ethical usage of any
potential adaptation of our methods in real applications. Considering the development of AI in
various industries, the technology introduced in this paper may be used in practical applications, such
as dialogue agents with human users. In these cases, the adoption of the MM-DST task or VDTN
should be strictly used to improve the model performance and only for legitimate and authorized
purposes. It is crucial that any plan to apply or extend MM-DST in real systems should consider
carefully all potential stakeholders as well as the risk profiles of application domains. For instance, in
case a dialogue state is extended to human subjects, any information used as slots should be clearly
informed and approved by the human subjects before the slots are tracked from turn to turn.

7 REPRODUCIBILITY STATEMENT

In this paper, we reported the full technical details of VDTN in Section 3, the dataset and evaluation
details in Section 4. Due to the page limit of the conference, we included more data preprocessing
and training details in Appendix B and C. To improve the reproducibility of this work, we will fully
release the dataset MM-DST as well as the complete implementation of VDTN. We will also release
the pretrained models of VDTN to replicate the experiment results reported in this paper. Note that all
experiments did not require particularly large computing resources as we limited all model training to
a single GPU, specifically on a Tesla V100 GPU of 16G configuration.
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A DETAILS OF RELATED WORK

Our work is related to two domains: dialogue state tracking and visually-grounded dialogues.

A.1 DIALOGUE STATE TRACKING

Dialogue State Tracking (DST) research aims to develop models that can track essential information
conveyed in dialogues between a dialogue agent and human (defined as hidden information state
by Young et al. (2010) or belief state by Mrkšić et al. (2017)). DST research has evolved largely
within the domain of task-oriented dialogue systems. DST is conventionally designed in a modular
dialogue system (Wen et al., 2017; Budzianowski et al., 2018; Le et al., 2020b) and preceded by a
Natural Language Understanding (NLU) component. NLU learns to label sequences of dialogue
utterances and provides a tag for each word token (often in the form of In-Out-Begin representations)
(Kurata et al., 2016; Shi et al., 2016; Rastogi et al., 2017). To avoid credit assignment problems and
streamline the modular designs, NLU and DST have been integrated into a single module (Mrkšić
et al., 2017; Xu & Hu, 2018; Zhong et al., 2018). These DST approaches can be roughly categorized
into two types: fixed-vocabulary or open-vocabulary. Fixed-vocabulary approaches are designed for
classification tasks which assume a fixed set of (slot, value) candidates and directly retrieve items
from this set to form dialogue states during test time (Henderson et al., 2014b; Ramadan et al., 2018;
Lee et al., 2019). More recently, we saw more approaches toward open-vocabulary strategies which
learn to generate candidates based on input dialogue context (Lei et al., 2018b; Gao et al., 2019; Wu
et al., 2019; Le et al., 2020c). Our work is more related to open-vocabulary DST, but we essentially
redefined the DST task with multimodality. Based on our literature review, we are the first to formally
extend DST and bridge the gap between traditional task-oriented dialogues and multimodal dialogues.

A.2 VISUALLY-GROUNDED DIALOGUES

A novel challenge to machine intelligence, the intersection of vision and language research has
expanded considerably in the past few years. Earlier benchmarks test machines to perceive visual
inputs, and learn to generate captions (Farhadi et al., 2010; Lin et al., 2014; Rohrbach et al., 2015),
ground text phrases and objects (Kazemzadeh et al., 2014; Plummer et al., 2015), and answer
questions about the visual contents (Antol et al., 2015; Zhu et al., 2016; Jang et al., 2017; Lei et al.,
2018a). As an orthogonal development from Visual Question Answering problems, we noted recent
work that targets vision-language in dialogue context, in which an image or video is given and the
dialogue utterances are centered around its visual contents (De Vries et al., 2017; Das et al., 2017a;
Chattopadhyay et al., 2017; Hori et al., 2019; Thomason et al., 2019; Le et al., 2021b). Recent work
has addressed different challenges in visually-grounded dialogues, including multimodal integration
(Hori et al., 2019; Le et al., 2019; Li et al., 2021), cross-turn dependencies (Das et al., 2017b;
Schwartz et al., 2019; Le et al., 2021a), visual understanding (Le et al., 2020a), and data distribution
bias (Qi et al., 2020). Our work is more related to the challenge of visual object reasoning (Seo et al.,
2017; Kottur et al., 2018), but focused on a multi-turn tracking task over multiple turns of dialogue
context. The prior approaches are not well designed to track objects and maintain a recurring memory
or state of these objects from turn to turn. This challenge becomes more obvious when a dialogue
involves multiple objects of similar characters or appearance. We directly tackles this challenge as we
formulated a novel multimodal state tracking task and leveraged the research development from DST
in task-oriented dialogue systems. As shown in our experiments, baseline models that use attention
strategies similar to (Seo et al., 2017; Kottur et al., 2018) did not perform well in MM-DST.

A.3 MULTIMODAL DST

We noted a few studies have attempted to integrate some forms of state tracking in multimodal
dialogues. In (Mou et al., 2020), however, we are not convinced that a dialogue state tracking task
is a major focus, or correctly defined. In (Pang & Wang, 2020), we noted that some form of object
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tracking is introduced throughout dialogue turns. The tracking module is used to decide which
object the dialogue centers around. This method extends to multi-object tracking but the objects
are only limited within static images, and there is no recurring information state (object attributes)
maintained at each turn. Compared to our work, their tracking module only requires object identity
as a single-slot state from turn to turn. Almost concurrent to our work, we noted (Kottur et al., 2021)
which formally, though very briefly, focuses on multimodal DST. However, the work is limited to the
task-oriented domain, and each dialogue is only limited to a single goal-driven object in a synthetic
image. While this definition is useful in the task-oriented dialogue domain, it does not account for the
DST of multiple visual objects as defined in our work. Moreover, the scope of our work is towards
visually-grounded dialogues rather than in the task-oriented paradigm.

B DVD-DST DATASET DETAILS

Table 5: Dataset summary: statistics of related benchmarks are from (Budzianowski et al., 2018)

Split # Videos # Dialogues # Turns # Slots
DVD-DST-Train 9300 9295 92950 6
DVD-DST-Val 3327 3326 33260 6
DVD-DST-Test 1371 1371 13710 6
DVD-DST-All 13998 13992 139920 6
MultiWOZ (Budzianowski et al., 2018) N/A 8438 115424 25
CarAssistant (Eric et al., 2017) N/A 2425 12732 13
WOZ2 (Wen et al., 2017) N/A 600 4472 4
DSTC2 (Henderson et al., 2014a) N/A 1612 23354 8
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Figure 3: Synthetic visual objects in the CATER universe

For each of CATER videos from the extended split (Shamsian et al., 2020), we generated up to
10 turns for each CATER video. In total, DVD-DST contains more than 13k dialogues, resulting
in more 130k (human, system) utterance pairs and corresponding dialogue states. A comparison
of statistics of DVD-DST and prior DST benchmarks can be seen in Table 5. We observed that
DVD-DST contains a larger scale data than the related DST benchmark. Even though the number of
slots in DVD-DST is only 6, lower than prior state tracking datasets, our experiments indicate that
most current conventional DST models perform poorly on DVD-DST.

CATER universe. Figure 3 displays the configuration of visual objects in the CATER universe. In
total, there are 3 object sizes, 9 colors, 2 materials, and 5 shapes. These attributes are combined
randomly to synthesize objects in each CATER video. We directly adopted these attributes as slots
in dialogue states, and each dialogue utterance frequently refers to these objects by one or more
attributes. In total, there are 193 (size, color, material, shape) valid combinations, each of which
corresponds to an object class in our models.

Sample dialogues. Please refer to Figure 5, Table 12 and Table 13.

C TRAINING DETAILS

We trained VDTN by jointly minimizing Ldst and Lbb/cnn. In practice, we applied label smoothing
(Szegedy et al., 2016) on state sequence labels to regularize the training. As the segment-level
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representations are stacked by the number of objects, we randomly selected only one vector per
masked segment to apply Lseg . We tested both L1 and L2 losses on Lbb/cnn. We trained all models
using the Adam optimizer (Kingma & Ba, 2015) with a warm-up learning rate period of 1 epoch and
the learning rate decays up to 160 epochs. Models are selected based on the average Ldst on the
validation set. All model parameters, except pretrained visual perception models, are initialized by a
uniform distribution (Glorot & Bengio, 2010). To standardize model sizes, we selected embedding
dimension d = 128 for all models, and experimented with both shallow (N = 1) and deep networks
(N = 3) (by stacking attention or RNN blocks), and 8 attention heads in Transformer backbones.

For fair comparison among baselines, all models use both object-level and segment-level feature
representations, encoded by the same method as Describe in Section 3.1. In TRADE, the video
representations are passed to an RNN encoder, and the output hidden states are concatenated to
the dialogue hidden states. Both are passed to the original pointer-based decoder. In UniConv and
NADAST, we stacked another Transformer attention layer to attend on video representations before the
original state-to-dialogue attention layer. We all baseline models, we replaced the original (domain,
slot) embeddings as (object class, slot) embeddings and kept the original model designs.

Note that in our visual perception model, we adopted the finetuned Faster R-CNN model used by
Shamsian et al. (2020). The model was finetuned to predict object bounding boxes and object classes.
The object classes are derived based on object appearance, based on the four attributes of size, color,
material, and shape. In total, there are 193 object classes. For segment embeddings, we adopted the
ResNeXt-101 model (Xie et al., 2017) finetuned on Kinetics dataset (Kay et al., 2017). For all models
(except for VDTN ablation analysis), we standardized Nobj = 10 and Nstride = 12 to sub-sample
object and segment-level embeddings.

D ADDITIONAL RESULTS

Ablation analysis by component predictions. From Table 6, we have the following observations:
(1) In ablation results by component predictions, we noted that models can generally detect object
identities well with F1 about 80%. However, when considering object and slot tuples, F1 reduces
to 48 − 60%, indicating the gaps are caused by slot value predictions. (2) By individual slots, we
noted “color” and “shape” slots are easier to track than “size” and “material” slots. We noted that in
the CATER universe, the latter two slots have lower visual variances (less possible values) than the
others. As a result, objects are more likely to share the same size or material and hence, discerning
objects by those slots and tracking them in dialogues become more challenging.

Table 6: Ablation results by component predictions of object identities, slots, and object states

Video
Features

Dialogue
State

Video
self-

supervision

Obj
Identity

F1

Obj
Slot
F1

Obj
State
F1

Size
F1

Color
F1

Material
F1

Shape
F1

Xbb B\time - 79.4% 64.2% 48.5% 55.9% 76.6% 41.4% 63.5%
Xbb +Xcnn B\time - 81.4% 66.9% 52.5% 58.0% 79.4% 39.5% 66.6%
Xbb B - 78.5% 63.6% 49.8% 56.5% 76.4% 38.8% 63.1%
Xbb +Xcnn B - 83.3% 69.4% 55.1% 56.7% 81.8% 47.0% 69.8%
Xbb B Lobj 82.2% 69.5% 56.2% 61.4% 81.0% 44.9% 69.9%
Xbb +Xcnn B Lobj 84.7% 72.0% 58.6% 59.7% 83.5% 52.3% 71.7%
Xbb +Xcnn B Lseg 84.5% 72.8% 60.4% 64.1% 84.2% 50.9% 71.9%

Table 7 and 8 display the ablation results by component predictions, using precision and recall metrics.
We still noted consistent observations as described in Section 4. Notably, we found that current
VDTN models are better in tuning the correct predictions (as shown by high precision metrics) but
still fail to select all components as a set (as shown by low recall metrics). This might be caused by
the upstream errors coming from the visual perception models, which may fail to visually perceive
all objects and their attributes.

Ablation analysis by turn positions. Table 9 reported the results of VDTN predictions of states
that are separated by the corresponding dialogue positions. The results are from the VDTN model
trained with both Ldst and Lseg. As expected, we observed a downward trend of results as the
turn position increases. Figure 4 shows that state accuracy reduces more dramatically (as shown by
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Table 7: Ablation results by individual object identity/slot/state

Video Features Dialogue
State

Video self-
supervision

Obj Identity
Recall

Obj Identity
Precision

Obj Slot
Recall

Obj Slot
Precision

Obj State
Recall

Obj State
Precision

Xbb B\time - 77.2% 81.8% 65.0% 63.4% 47.1% 50.0%
Xbb +Xcnn B\time - 75.1% 88.8% 63.1% 71.3% 48.5% 57.3%
Xbb B - 73.6% 84.1% 61.7% 65.7% 46.7% 53.4%
Xbb +Xcnn B - 78.2% 89.1% 66.2% 73.0% 51.7% 58.9%
Xbb B Lobj 76.4% 88.9% 67.4% 71.7% 52.2% 60.8%
Xbb +Xcnn B Lobj 80.1% 90.0% 69.1% 75.2% 55.4% 62.2%
Xbb +Xcnn B Lseg 80.5% 89.0% 70.2% 75.6% 57.6% 63.6%

Table 8: Ablation results by individual slot type

Video Features Dialogue
State

Video self-
supervision

Size
Recall

Size
Precision

Color
Recall

Color
Precision

Material
Recall

Material
Precision

Shape
Recall

Shape
Precision

Xbb B\time - 60.1% 52.2% 76.8% 76.4% 43.2% 39.7% 61.4% 65.6%
Xbb +Xcnn B\time - 52.0% 65.6% 76.2% 82.9% 34.8% 45.8% 65.5% 67.8%
Xbb B - 52.0% 61.9% 72.0% 81.2% 40.8% 37.1% 63.3% 63.0%
Xbb +Xcnn B - 49.4% 66.5% 79.2% 84.6% 45.0% 49.2% 68.9% 70.6%
Xbb B Lobj 59.6% 63.4% 79.3% 82.9% 43.8% 46.0% 66.6% 73.5%
Xbb +Xcnn B Lobj 54.1% 66.6% 82.4% 84.7% 48.8% 56.3% 69.3% 74.3%
Xbb +Xcnn B Lseg 60.9% 67.7% 83.2% 85.4% 48.6% 53.4% 67.9% 76.5%

“Joint Obj State Acc”) than the F1 metrics of component predictions. For instance, “Object Identity
F1” shows almost stable performance lines through dialogue turns. Interestingly, we noted that the
prediction performance of dialogue states with temporal slots only deteriorates dramatically after
turn 2 onward. We expected that VDTN is able to learn short-term dependencies ( 1-turn distance)
between temporal slots, but failed to deal with long-term dependencies (> 1-turn distance) between
temporal slots. In all metrics, we observed VDTN outperforms both RNN baseline and UniConv (Le
et al., 2020b), across all turn positions.

Table 9: Ablation results by dialogue turn positions

Turn
Position

Obj Identity
F1

Obj Slot
F1

Obj State
F1

Joint Obj
State Acc

Joint State
IoU@0.5

Joint State
IoU@0.7

1 88.8% 84.0% 82.4% 74.0% 40.5% 34.6%
2 86.9% 81.1% 77.2% 60.0% 37.5% 33.6%
3 84.9% 77.6% 71.0% 41.6% 22.8% 19.5%
4 84.2% 75.6% 66.5% 29.0% 15.2% 12.5%
5 84.0% 74.0% 63.1% 21.3% 11.3% 9.4%
6 84.3% 73.0% 60.2% 17.1% 9.6% 8.2%
7 83.9% 71.6% 57.1% 12.7% 6.1% 5.3%
8 84.1% 70.6% 54.9% 10.2% 4.7% 3.9%
9 84.0% 69.1% 51.8% 7.9% 3.6% 2.6%
10 84.1% 68.0% 49.5% 6.0% 2.3% 1.7%

Average 84.9% 74.5% 63.4% 28.0% 15.3% 13.1%

Impacts of dialogue context encoder. In Table 10a, we observed the benefits of using the Markov
process to decode dialogue states based on the dialogue states of the last turn Bt−1. This strategy
allow us to discard parts of dialogue history that is already represented by the state. We noted that the
optimal design is to use at least 1 last dialogue turn as the dialogue history. In a hypothetical scenario,
we applied the oracle Bt−1 during test time, and noted the performance is improved significantly.
This observation indicates the sensitivity of VDTN to a turn-wise auto-regressive decoding process.

Impacts of frame-level and segment-level sampling. As expected, Table 10b displays higher
performance with higher object limits Nobj , which increases the chance of detecting the right visual
objects in videos. We noted performance gains when sampling strides increase up to 24 frames.
However, in the extreme case, when sampling stride is 300 frames, the performance on temporal slots
reduce (as shown by “Joint State IoU@p”). This raises the issue to sample data more efficiently by
balancing between temporal sparsity in videos and state prediction performance. We also observed
that in a hypothetical scenario with a perfect object perception model, the performance improves
significantly, especially on the predictions of discrete slots, although less effect on temporal slots.
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Figure 4: Ablation results of VDTN and baselines by dialogue turn positions (x axis)

Table 10: Ablation results by encoding strategies: All models are trained only with Ldst.

(a) dialogue encoding by prior states and
dialogue sizes: ∗ denotes using oracle values.

Bt−1
Max
turns

Joint Obj
State Acc

Joint State
IoU@0.5

Joint State
IoU@0.7

X 10 22.5% 11.5% 10.1%
X 7 22.0% 11.8% 10.4%
X 1 24.8% 13.8% 11.8%
X 0 22.3% 12.3% 10.5%
- 10 18.5% 9.4% 8.6%
- 7 19.0% 9.5% 8.7%
- 1 7.8% 4.5% 4.1%
- 0 1.3% 0.7% 0.7%

X* 1 29.3% 18.6% 16.4%

(b) video encoding by number of objects and sampling
strides: ∗ denotes perfect object perception.

Nobj Nstride
Joint Object

State Acc
Joint State
IoU@0.5

Joint State
IoU@0.7

10 12 24.8% 13.8% 11.8%
7 12 18.0% 10.1% 9.0%
3 12 4.9% 2.9% 2.6%
0 12 1.5% 0.7% 0.7%
10 300 28.2% 6.0% 3.7%
10 24 27.8% 14.8% 12.6%
10 15 26.3% 14.4% 12.4%
10 12 24.8% 13.8% 11.8%

10* 12 29.2% 15.6% 13.4%

Impacts of object-level representation. Table 11 reported the results when only segment-level
features are used. We observed that both VDTN and RNN(V+D) are affected significantly, specifically
by 24% and 3.1% “Joint Obj State Acc” score respectively. Interestingly, we noted that RNN(V),
using only video inputs, are not affected by the removal of object-level features. These observations
indicate that current MM-DST requires object-level information. We expected that existing 3DCNN
models such as ResNeXt still fail to capture such level of granularity.

Table 11: Results with and without object representations

Xbb +Xcnn Xcnn only

Model Joint Obj
State Acc

Joint State
IoU@0.5

Joint State
IoU@0.7

Joint Obj
State Acc

Joint State
IoU@0.5

Joint State
IoU@0.7

VDTN 28.0% 15.3% 13.1% 4.0% 2.2% 2.0%
RNN(V) 1.0% 0.1% 0.1% 1.5% 0.4% 0.4%
RNN(V+D) 6.8% 2.6% 2.3% 3.7% 1.8% 1.6%

Qualitative analysis. Table 12 and 13 display 2 sample dialogues and state predictions. We
displayed the corresponding video screenshots for these dialogues in Figure 5. To cross-reference
between videos and dialogues, we displayed the bounding boxes and their object classes in video
screenshots. These object classes are indicated in ground-truth and decoded dialogue states in
dialogues. Overall, we noted that VDTN generated temporal slots of start and end time such that the
resulting periods better match the ground-truth temporal segments. VDTN also showed to maintain
the dialogue states better from turn to turn.
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Table 12: Example predictions from a sample dialogue (CATER video ID #002660)

#1

HUMAN: after the cube ’s second rotation , how many other things perform the same sequence of activities as the brown thing ?
Gold: STAR=102, END=138, (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)
RNN+Attn: STAR=73, END=73, (OBJ165, COLOR, brown)
UniConv: STAR=73, END=145, (OBJ142, SHAPE, cube), (OBJ165, COLOR, brown)
VDTN: STAR=97, END=145, (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)

#2

SYSTEM: 3
HUMAN: what about up until now ?
Gold: STAR=102, END=300, (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)
RNN+Attn: STAR=1, END=300, (OBJ165, COLOR, brown)
UniConv: STAR=145, END=300, (OBJ142, SHAPE, cube), (OBJ165, COLOR, brown)
VDTN: STAR=97, END=300, (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)

#3

SYSTEM: 0
HUMAN: throughout the whole video, do the large cone and the earlier mentioned brown thing perform the same set of activities

?’
Gold: STAR=1, END=300, (OBJ0, SIZE, large), (OBJ0, SHAPE, cone), (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)
RNN+Attn: STAR=1, END=300, (OBJ165, COLOR, brown)
UniConv: STAR=1, END=300, (OBJ142, SHAPE, cube), (OBJ165, COLOR, brown) (OBJ165, SHAPE, cone)
VDTN: STAR=1, END=300, (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)

#4

SYSTEM: FALSE
HUMAN: during the earlier mentioned block ’s last rotation , what is the earlier mentioned brown thing doing ?
Gold: STAR=175, END=200, (OBJ0, SIZE, large), (OBJ0, SHAPE, cone), (OBJ21, SHAPE, cube), (OBJ165, COLOR,

brown)
RNN+Attn: STAR=1, END=300, (OBJ165, COLOR, brown)
UniConv: STAR=265, END=300, (OBJ142, SHAPE, cube), (OBJ165, COLOR, brown) (OBJ165, SHAPE, cone)
VDTN: STAR=241, END=265, (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)

#5

SYSTEM: no action
HUMAN: considering that object, after its slide is there a flying small yellow thing ?’
Gold: STAR=291, END=300, (OBJ0, SIZE, large), (OBJ0, SHAPE, cone), (OBJ21, SHAPE, cube), (OBJ165, COLOR,

brown)
RNN+Attn: STAR=1, END=300, (OBJ165, COLOR, brown)
UniConv: STAR=277, END=300, (OBJ142, SHAPE, cube), (OBJ165, COLOR, brown) (OBJ165, SHAPE, cone)
VDTN: STAR=288, END=300, (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)

#6

SYSTEM: FALSE
HUMAN: during the purple thing ’s second rotation , what number of big metal things are on the right side of the earlier mentioned

brown thing ?
Gold: STAR=80, END=102, (OBJ0, SIZE, large), (OBJ0, SHAPE, cone), (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube),

(OBJ165, COLOR, brown)
RNN+Attn: STAR=1, END=300, (OBJ21, COLOR, purple), (OBJ165, COLOR, brown)
UniConv: STAR=277, END=300, (OBJ142, SHAPE, cube), (OBJ165, COLOR, brown) (OBJ165, SHAPE, cone)
VDTN: STAR=73, END=97, (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)

#7

SYSTEM: 1
HUMAN: what about left of it ?’
Gold: STAR=80, END=102, (OBJ0, SIZE, large), (OBJ0, SHAPE, cone), (OBJ21, COLOR, purple), (OBJ21, MATERIAL,

metal), (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)
RNN+Attn: STAR=1, END=300, (OBJ21, COLOR, purple), (OBJ165, COLOR, brown)
UniConv: STAR=73, END=97, (OBJ21, COLOR, purple), (OBJ142, SHAPE, cube), (OBJ165, COLOR, brown) (OBJ165,

SHAPE, cone)
VDTN: STAR=73, END=97, (OBJ21, SIZE, large), (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube), (OBJ143, MATERIAL,

metal), (OBJ165, COLOR, brown)

#8

SYSTEM: 0
HUMAN: before this time window, how many other objects undertake the same types of actions as the earlier mentioned cone ?’
Gold: STAR=1, END=80, (OBJ0, SIZE, large), (OBJ0, SHAPE, cone), (OBJ21, COLOR, purple), (OBJ21, MATERIAL,

metal), (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown)
RNN+Attn: STAR=1, END=300, (OBJ21, COLOR, purple), (OBJ165, COLOR, brown)
UniConv: STAR=1, END=73, (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube), (OBJ165, COLOR, brown) (OBJ165, SHAPE,

cone)
VDTN: STAR=1, END=73, (OBJ21, SIZE, large), (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube), (OBJ143, MATERIAL,

metal), (OBJ165, COLOR, brown)

#9

SYSTEM: 2
HUMAN: among them, there is a cone . throughout the whole video, is there any other thing that has the same types of actions as

it ?’
Gold: STAR=1, END=300, (OBJ0, SIZE, large), (OBJ0, SHAPE, cone), (OBJ21, COLOR, purple), (OBJ21, MATERIAL,

metal), (OBJ21, SHAPE, cube), (OBJ96, SHAPE, cone), (OBJ165, COLOR, brown)
RNN+Attn: STAR=1, END=300, (OBJ21, COLOR, purple), (OBJ165, COLOR, brown)
UniConv: STAR=1, END=300, (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube), (OBJ96, COLOR, blue), (OBJ165, COLOR,

brown) (OBJ165, SHAPE, cone)
VDTN: STAR=1, END=300, (OBJ21, SIZE, large), (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube), (OBJ143, MATERIAL,

metal), (OBJ165, COLOR, brown)

#10

SYSTEM: FALSE
HUMAN: until the end of the blue shiny thing ’s last flight , does the earlier mentioned brown object fly as frequently as the

cylinder rotates ?
Gold: STAR=1, END=228, (OBJ0, SIZE, large), (OBJ0, COLOR, blue), (OBJ0, MATERIAL, metal), (OBJ0, SHAPE, cone),

(OBJ21, COLOR, purple), (OBJ21, MATERIAL, metal), (OBJ21, SHAPE, cube), (OBJ96, SHAPE, cone), (OBJ143,
SHAPE, cylinder), (OBJ165, COLOR, brown)

RNN+Attn: STAR=1, END=300, (OBJ21, COLOR, purple), (OBJ96, COLOR, blue), (OBJ143, SHAPE, cylinder), (OBJ165,
COLOR, brown)

UniConv: STAR=1, END=300, (OBJ21, COLOR, purple), (OBJ96, COLOR, blue), (OBJ143, SHAPE, cylinder), (OBJ165,
COLOR, brown)

VDTN: STAR=1, END=241, (OBJ21, SIZE, large), (OBJ21, COLOR, purple), (OBJ21, SHAPE, cube), (OBJ143, MATERIAL,
metal), (OBJ165, COLOR, brown)
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Table 13: Example predictions from a sample dialogue (CATER video ID #001441)

#1

HUMAN: during the red block ’s rotation, how many matte things are to the left of the green object ?
Gold: STAR=143, END=163, (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR, green)
RNN+Attn: STAR=37, END=109, (OBJ57, SHAPE, cube), (OBJ82, COLOR, green), (OBJ91, COLOR, red)
UniConv: STAR=73, END=109, (OBJ57, MATERIAL, rubber), (OBJ82, COLOR, green), (OBJ91, COLOR, red)
VDTN: STAR=73, END=109, (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR, green)

#2

SYSTEM: 2
HUMAN: how about in front of it ?
Gold: STAR=143, END=163, (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR, green)
RNN+Attn: STAR=37, END=25, (OBJ82, COLOR, green), (OBJ91, COLOR, red)
UniConv: STAR=73, END=109, (OBJ57, MATERIAL, rubber), (OBJ82, COLOR, green), (OBJ91, COLOR, red)
VDTN: STAR=73, END=109, (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR, green)

#3

SYSTEM: 0
HUMAN: before this time window, how many moving things are there ?
Gold: STAR=1, END=143, (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR, green)
RNN+Attn: STAR=1, END=1, (OBJ82, COLOR, green), (OBJ91, COLOR, red)
UniConv: STAR=1, END=73, (OBJ57, COLOR, red), (OBJ57, MATERIAL, rubber), (OBJ82, COLOR, green), (OBJ91,

COLOR, red)
VDTN: STAR=1, END=73, (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR, green)

#4

SYSTEM: 5
HUMAN: among them, there is a purple thing . during the whole video, how many other things with the same sequence activities

performed by it ?
Gold: STAR=1, END=168, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR,

green)
RNN+Attn: STAR=1, END=169, (OBJ82, COLOR, green), (OBJ91, COLOR, red)
UniConv: STAR=1, END=169, (OBJ57, COLOR, red), (OBJ57, MATERIAL, rubber), (OBJ82, COLOR, green), (OBJ91,

COLOR, red), (OBJ152, COLOR, purple)
VDTN: STAR=1, END=169, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR,

green)

#5

SYSTEM: 1
HUMAN: how about up until now ?
Gold: STAR=1, END=247, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR,

green)
RNN+Attn: STAR=1, END=253, (OBJ82, COLOR, green), (OBJ91, COLOR, red)
UniConv: STAR=1, END=253, (OBJ57, COLOR, red), (OBJ57, MATERIAL, rubber), (OBJ82, COLOR, green), (OBJ91,

COLOR, red), (OBJ152, COLOR, purple)
VDTN: STAR=1, END=253, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR,

green)

#6

SYSTEM: 0
HUMAN: during the earlier mentioned purple thing ’s flight , is there a flying green object ?
Gold: STAR=45, END=69, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR,

green)
RNN+Attn: STAR=1, END=241, (OBJ82, COLOR, green), (OBJ91, COLOR, red)
UniConv: STAR=73, END=97, (OBJ57, COLOR, red), (OBJ57, MATERIAL, rubber), (OBJ82, COLOR, green), (OBJ91,

COLOR, red), (OBJ152, COLOR, purple)
VDTN: STAR=73, END=97, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ82, COLOR,

green)

#7

SYSTEM: FALSE
HUMAN: during the yellow thing ’s second rotation , does the cylinder rotate more frequently than the aforementioned purple

object flies ?
Gold: STAR=74, END=98, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ61, COLOR,

yellow), (OBJ82, COLOR, green), (OBJ82, SHAPE, cylinder)
RNN+Attn: STAR=1, END=241, (OBJ61, COLOR, yellow), (OBJ82, COLOR, green), (OBJ82, SHAPE, cylinder), (OBJ91,

COLOR, red)
UniConv: STAR=73, END=97, (OBJ57, COLOR, red), (OBJ57, MATERIAL, rubber), (OBJ82, COLOR, green), (OBJ91,

COLOR, red), (OBJ152, COLOR, purple)
VDTN: STAR=73, END=97, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ61, COLOR,

yellow), (OBJ82, COLOR, green)

#8

SYSTEM: TRUE
HUMAN: during the aforementioned cube ’s rotation , what types of actions does the cone left of the aforementioned yellow

object undertake ?
Gold: STAR=143, END=163, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ61, COLOR,

yellow), (OBJ72, SHAPE, cone), (OBJ82, COLOR, green), (OBJ82, SHAPE, cylinder)
RNN+Attn: STAR=1, END=193, (OBJ20, COLOR, purple), (OBJ20, SHAPE, cone), (OBJ57, COLOR, red), (OBJ61, COLOR,

yellow), (OBJ82, COLOR, green), (OBJ82, SHAPE, cylinder), (OBJ91, COLOR, red)
UniConv: STAR=73, END=97, (OBJ57, MATERIAL, rubber), (OBJ72, SHAPE, cone), (OBJ82, COLOR, green), (OBJ82,

SHAPE, cylinder), (OBJ91, COLOR, red), (OBJ152, COLOR, purple)
VDTN: STAR=73, END=97, (OBJ20, COLOR, purple), (OBJ20, SHAPE, cone), (OBJ57, COLOR, red), (OBJ57, SHAPE,

cube), (OBJ61, COLOR, yellow), (OBJ82, COLOR, green)

#9

SYSTEM: flying
HUMAN: throughout the whole video, is there anything else that performs the same set of activities as the earlier mentioned

yellow thing ?
Gold: STAR=1, END=247, (OBJ20, COLOR, purple), (OBJ57, COLOR, red), (OBJ57, SHAPE, cube), (OBJ61, COLOR,

yellow), (OBJ72, SHAPE, cone), (OBJ82, COLOR, green), (OBJ82, SHAPE, cylinder)
RNN+Attn: STAR=1, END=241, (OBJ20, COLOR, purple), (OBJ20, SHAPE, cone), (OBJ57, COLOR, red), (OBJ61, COLOR,

yellow), (OBJ82, COLOR, green), (OBJ82, SHAPE, cylinder), (OBJ91, COLOR, red)
UniConv: STAR=1, END=253, (OBJ57, MATERIAL, rubber), (OBJ57, SHAPE, cube), (OBJ72, SHAPE, cone), (OBJ82,

COLOR, green), (OBJ82, SHAPE, cylinder), (OBJ91, COLOR, red), (OBJ152, COLOR, purple)
VDTN: STAR=1, END=253, (OBJ20, COLOR, purple), (OBJ20, SHAPE, cone), (OBJ57, COLOR, red), (OBJ57, SHAPE,

cube), (OBJ61, COLOR, yellow), (OBJ82, COLOR, green)
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(a) Video #002660 (b) Video #001441

Figure 5: Example screenshots of CATER videos for dialogues in Table 12 (Video #002660) and 13
(Video #001441). We showed example bounding boxes and their object classes in each video.

E FURTHER DISCUSSION

Synthetic datasets result in overestimation of real performance and don’t translate to real-
world usability. We agree that the current state accuracy seems to be quite low at about 28%.
However, we want to highlight that state accuracy used in this paper is a very strict metric, which
only considers a prediction as correct if it completely matches the ground truth. In DVD, assuming
the average 10 objects per video with the set of attributes as in Figure 3 (+ ‘none’ value in each slot),
we can roughly equate the multimodal DST as a 7200-class classification task, each class is a distinct
set of objects, each with all possible attribute combinations. Combined with the cascading error from
object perception models, we think the current reported results are reasonable.

Moreover, we want to highlight that the reported performance of baselines reasonably matches their
own capacities in unimodal DST. We can consider Object State F1 as the performance on single-
object state and it can closely correlate with the joint state accuracy in unimodal DST (remember that
unimodal DST such as MultiWOZ (Budzianowski et al., 2018) is only limited to a single object/entity
per dialogue). As seen in Table 1, the Object State F1 results of TRADE (Wu et al., 2019), UniConv
(Le et al., 2020b), and NADST (Le et al., 2020c) are between 46-50%. This performance range
is indeed not very far off from the performance of these baseline models in unimodal DST in the
MultiWOZ benchmark (Budzianowski et al., 2018).

MM-DST in practical applications e.g. with videos of humans. While we introduced MM-DST
task and VDTN as a new baseline, we noted that the existing results are limited to the synthetic
benchmark. For instance, in the real world, there would be many identical objects with the same
(size, color, material, shape) tuples, which would make the current formulation of dialogue states
difficult. In such object-driven conversations, we would recommend a dialogue agent not focus on all
possible objects in each video frame, but only on a “focus group” of objects. These objects, required
to be semantically different, are topical subjects of the conversations.

Say we want to scale to a new domain e.g. videos of humans, the first challenge from the current
study is the recognition of human objects, which often have higher visual complexity than moving
objects as in DVD. We also noted that it is impossible to define all human object classes as in CATER
object classes, each of which is unique by its own appearance. To overcome this limitation, we would
want to explore multimodal DST with the research of human object tracking, e.g. (Fernando et al.,
2018), and consider human object identities uniquely defined per video. Another limitation is the
definition of slots to track in each human object. While this requires careful considerations, for both
practical and ethical reasons, we noted several potential papers that investigate human attributes in
dialogues such as human emotions (Wang et al., 2021). Along these lines, we are excited to see
interesting adaptations of multimodal dialogue states grounded on videos of humans.
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