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ABSTRACT

We present a new optimization method called GOC(Gradient Order Combination)
which a combination based on the products of Hessian matrices of different or-
ders and the gradient. the parameter r (the recipprocal of steplenth) is taken as
analysis target, we can regard the SD method as a first-order and the CBB method
as second-order. Whave developed third-order and even higher-order, which offer
faster convergence rates.

1 INTRODUCTION

In this paper, we consider the the unconstrained optimization problem with convex quadratic form

minf(x) =
1

2
xTAx− bTx (1)

where x ∈ Rn,b ∈ Rn,A ∈ Rn×n is a symmetric and positive definite matrix.

The common solution methods for solving Eq(1) are iterarive methods of the following form

xk+1 = xk − αk∇f(xk) (2)

f(xk+1) = f(xk − αk∇f(xk)) (3)

where αk is a steplenth,gradient descent method and its variants are the most common optimization
method.for GD method,if we minimizes Eq.(3) with exact line search,then we get

αSD
k =

∇fT
k ∇fk

∇fT
k A∇fk

=
gTk gk
gTk Agk

(4)

this method proposed by A.Cauchy (1847) is called steepest descent method,so αSD
k is also called

Cauchy step length. the method’s convergence rate is very sensitive to ill condition number and may
be very slow ,when the f(x) is quadratic xk will satisfy the

f(xk+1)− f(x∗)

f(xk)− f(x∗)
≤ (

λ1 − λn

λ1 + λn
)2 (5)

During the iteration process, the SD method exhibits a zigzag phenomena which was explained by
Akaike (1959) , J.BARZILAI & J.M.BORWEIN (1988) proposed a nonmonotone steplength which
certain quisi-Newton method, it has two choice for ak,respectively:

αBB1
k =

sTk−1sk−1

sTk−1yk−1
(6)

αBB2
k =

sTk−1yk−1

yTk−1yk−1
(7)
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where sk−1 = xk − xk−1 and yk−1 = gk − gk−1,the BB step can be seen Cauchy step with previ-
ous iteration. Barzilai and Borwein proved R-superlinear convergence rate in two dimension.Yuan
(2008) for general n dimensional convex quadratic case, the method is convergent too and has a
properties of R-linear rate of convergence. there are some optimization methods based on gradi-
ent, YH (2003) decrease the gradient norm , Yuan (2006) and YH (2005) design a alternate steps ,
in two dimension case, it could convergence 3 steps. Serafino;F.Riccio;G.Toraldo (2013) propose
SDA with a fixed stepsiz in sussesive steps. and SDC (R.De Asmundisdi SerafinoD (2014)) adding
Cauchy step comparing SDA. Sun C (2020) propose new step size based on Cauchy stepsize. Z
(2015) select random stepsize at some range.Raydan M (2002) introduce RSD which accelerates
convergence by introducing a relaxation parameter between 0 and 2 in the standard Cauchy method,
they also propose CBB method which is a combination of the SD and BB method ,the CBB algo-
rithm is much more efficient than BB method.In this paper, we construct a new descent method by
combining the gradient with products of the Hessian matrix of different orders.

2 ANALYSIS OF SD AND CBB METHODS

From Eq(4), we define a parameter rk as follows:

rk =
1

2αk
=

gTk Agk
2gTk gk

(8)

the initial point is x0 we set
xs0 = x0 − α0g0 (9)

It is evident that xs
0 is the result obtained after applying the steepest descent method.than we search

in the Ag0 direction and find the point xA1 , the vecotrs
−−→
x0x

s
0 and

−−−→
x0x

A
1 are perpendicular. than we

discover the symmetric points x1 in the direciton
−−−→
xA
1 x0,it is obvious |x1x

s
0| = |xs

0x
A
0 |,as shown

in Fig(1). In order to make the analysis more convenient and intuitive,considering a situation the
objective function is a simple n dimensions hyper-ellipsoid stimulating Eq(1)

f(x) =
n∑

i=1

a(i)x(i)2 (10)

r =

∑n
i=1 a

(i)3x(i)2∑n
i=1 a

(i)2x(i)2
=

∑n
i=1 a

(i)g(i)
2∑n

i=1 g
(i)2

(11)

where 0 < a(n) ≤ a(n−1) ≤ ...... ≤ a(1),g(i) = 2a(i)x(i), the initial point x0 =

[x
(1)
0 , x

(2)
0 , ......x

(n)
0 ]

from Eqs.(9) and (10),we have

xs0 = x0 −
∇f(x0)
2r0

(12)

xs
0
(i) = x

(i)
0 (1− a(i)

r0
) (13)

we define v0 = Ag0 , l0 = ∥x0x
s
0∥ , lA0 = ∥x0x

A
0 ∥, θ0 is the angle between g0 and v0 we have

cosθ0 =
gT0 v0

∥g0∥∥v0∥
= r0[

∑n
i=1 a

(i)2x
(i)
0

2

∑n
i=1 a

(i)4x
(i)
0

2 ]
1
2 (14)

∥v0∥
∥g0∥

= 2[

∑n
i=1 a

(i)2x
(i)
0

2

∑n
i=1 a

(i)4x
(i)
0

2 ]
1
2 (15)

lA0 = l0/cosθ0 =
(
∑n

i=1 a
(i)4x

(i)
0

2
)

1
2

r20
(16)

2
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Figure 1: SD and CBB

we have

xA
0

(i)
= x0

(i)[1− (
a(i)

r0
)2] (17)

because x1 is a symmetric points of xA
0 about xs

0, so x1 = 2xs
0 − xA

0

x
(i)
1 = x

(i)
0 (1− a(i)

r0
)2 = x

(i)
0 µ

(i)
0

2
(18)

It is evident that x1 is the result obtained after applying the CBB method which is equivalent to
using SD method with the same steplenth in two consecutive iterations. From the above analysis
and Figure(1), we can see that the CBB update direction is symmetric to the Ag direction with the
current gradient as the axis.

3 GOC METHOD

We consider a sequence of m consecutive identical step sizes as the update point,assuming the cur-
rent point is xk,we can obtain the values of r for the three points xk,xs

k, and xk+1 as follows:

rk =

∑n
i=1 a

(i)g
(i)
k

2

∑n
i=1 g

(i)
k

2 (19)

rsk =

∑n
i=1 a

(i)g
(i)
k

2
µ
(i)
k

2

∑n
i=1 g

(i)
k

2
µ
(i)
k

2 =

∑n
i=1 a

(i)g
(i)
k

2
[rk − a(i)]2∑n

i=1 g
(i)
k

2
[rk − a(i)]2

(20)

rk+1 =

∑n
i=1 a

(i)g
(i)
k

2
µ
(i)
k

4m

∑n
i=1 g

(i)
k

2
µ
(i)
k

4m =

∑n
i=1 a

(i)g
(i)
k

2
[rk − a(i)]4m∑n

i=1 g
(i)
k

2
[rk − a(i)]4m

(21)

we will analyses several situations for diffrent initial values and the effect of r.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1.if the current point xk lies in the larger eigenvalue direction, the gradient value of the lager
eigenvector is biger also, the larger eigenvalue component account for a greater proportion,so rk
tend to a(1),the value of a(i) direction near the rk will fall sharply ,rk+m and rsk will move to a(n)

direction .in this case,µ(i)4m < µ(i)2,rk+1 < rsk.from Figure(2a),the bigger m value is and the
relatively smaller the µ value and the faster the decrease rate of different eigenvalue direction.

2.if the current point xk have a huge value at the minimize eigenvector direction compared
to other eigenvector directions,rk tend to a(n),the great majority of a(i) direction value are much
larger than r value. so µ(i) is far larger than 1 especially in the direction of large eigenvale. from
Figure(2b), the bigger m value is and the relatively bigger the µ value , there has a sharp rise in the
bigger eigenvalue direction.

3. considering more general cases, the distribution of the current point xk component are ran-
dom, the rk is random value between a(1) and a(n) correspondingly.those eigenvetor direction value
agree with rk will decrease more quickly. rk+1 and rsk will become larger and smaller according to
rk.if the rk value is in the middle area of eigenvalues. from Figure(2c), the larger µ value signify
faster decreas rate like Figure(2a).

Based on the analysis above, r value will seesaw between larger eigenvalue area and smaller eigen-
value area generally.the component of small eigenvalue determine the convergence rate and is hard
to reduce .for SD method,r will stabilize in two certain value which means to be relatively fixed
decrase rate. Comparing the SD method ,the CBB method’s r value have more wider range change
, and have higher descent rate in the direction of small eigenvalue also. Randan and Svaiter have
proven that the sequence xk generate by CBB method converages Q-linerarly in the norm with
convergence factor 1− θ = λmax−λmin

λmax

(a) r=9000 (b) r=1500 (c) r=5000

Figure 2: x ∈ [0.1, 10000], µ = 1− x
r

It can be seen that if we analyze from the perspective of eigenvalue, we will find that the SD method
is first-order, while the CBB method is second-order.and we can develop methods of higher order.

Assuming it is of order m, we have

x
(i)
1 = x

(i)
0 (1− a(i)

r0
)m = x

(i)
0

n∑
i=1

Ck
m(−µ

(i)
0 )k (22)

where µ
(i)
0 = a(i)

r0

We konw that applying the Hessian-free method to a vector v is equivalent to multiply v by A ,If the
vector is the gradient, then each application of the Hessian-free method is equivalent to multiplying

each component of the eigenvector by its corresponding eigenvalue. so µ
(i)
0

k
is equivalent to ap-

plying the Hessian-free method k times.so by combining different numbers of Hessian-free method
iterations, we can achieve Eq(22). if we take m to be 3. then we have

x
(i)
1 = x

(i)
0 (1− a(i)

r0
)3 = x

(i)
0 (1− 3µ

(i)
0 + 3µ

(i)
0

2
− µ

(i)
0

3
) (23)

We transform the above equation into another form as follow

x1 = x0 − 3
g0
r0

+ 3
Ag0
r20

− A2g0
r30

(24)

4
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(a) x takes a fixed value 10000

(b) x takes a radom value from 0 to 10000

Figure 3: BB is the blue line,CBB is the orange line, GOC is the green line.
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From the above equation, it can be seen that if we calculate Ag0 and A2g0, we can obtain the final
updated value. We first compute the gradient at the current point g0,and then move along the current
negative gradient with a step size of d to reach the point x1

0.At x1
0,we compute gradient g10 and the

value of r0 .By calculating g0−g10 ,we obtain dAg0. Next, we move along the direction of the gradient
g10 with a step size of d to reach the point x2

0,and compute the gradient g20 ,By calculatingg0 − g20 ,we
obtain d2A2g0.In this way, we obtain all the values in Eq(24), thereby obtaining the updated value
x1. From the above, it can be seen that by updating once in the negative gradient direction and once
in the positive gradient direction with a fixed step size d, we can calculate the final updated point.

Algorithm 1 Gradient Order Combination Algorithm

Require: f(x): objective funtion; x0: initial solution; d: step size; ε: objective gradient norm value
Ensure: optimal x∗

initial x0

while (|f(xk|) > ε) do
compute xk gradient gk;
compute x1

k = xk − dgk;
compute x1

k gradient g1k and rk;

compute Agk =
gk−g1

k

d ;
compute x2

k = x1
k + dg1k;

compute x2
k gradient g2k;

compute A2gk =
gk−g2

k

d2 ;

compute xk+1 = xk − 3gk
rk

+ 3A2gk
r2k

− A3gk
r3k

end while

4 NUMERICAL EXPERIMENTS

Considering an example as follow

f(x) =
100000∑
i=1

a(i)x(i)2 (25)

the sequence a(i) is arithmetic progression and 0.001 ≤ a(i) ≤ 10000,x(i)
0 is a fixed value of

10000.the stopping parameter ϵ = 10−5.we perform 5000 iterations caculation by menas of three
method(BB CBB GOC).for demonstration on the figure, the norm value is processed with logarithm
in order to limit big changing range of data. The number of times that BB satisfies the stopping
condition is 4930,the CBB method is 3194,The GOC method is 1864.as shown in Figure(3a) we set
x
(i)
0 = 10000 ∗ rd, rd is randomly generated in (0,1),The maximum value of x(i)

0 is 9999.9531,and
the minimum value of x(i)

0 is 0.0423.The number of times that CBB method satisfies the stopping
condition is 3515,The GOC method is 2163,and the BB method could not satisfy the stop condi-
tion.as shown in Figure(3b)

5 CONCLUSION

We conducted an in-depth analysis of the SD method and the CBB method from the perspective
of optimal step size. We found that they can be regarded as methods of different orders within the
same pattern. Based on this, we designed a higher-order method, which demonstrates a faster rate
of descent.
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