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Analysis and Implementation of Rotation-invariant Neural 
Network Architectures for Feature Extraction* 

VINCENT RESS1, MARKUS BRAENDLE2 & NORBERT HAALA1 

When aligning images from different domains, such as thermal (IR) and human-visible light 
(RGB) images, classical feature extraction methods such as SIFT or SURF encounter severe 
limitations. While new techniques utilizing CNNs enable corresponding assignments, their 
inherent non-equivariance to rotations restricts possible areas of applications. Within our 
work adaptions to the network architecture and the trainings pipeline to achieve a rotation-
equivariant behaviour are discussed. The D2-Net, which is based on the VGG16 architecture 
and gains remarkable performance especially with regard to changes of the image domain, 
was used as reference. Through analyses on the HPatches dataset, significantly improved 
equivariance properties were achieved for all adaptation types investigated. 

1 Introduction 

While many applications in photogrammetry and computer vision would not have been feasible 
without classic feature extraction methods such as Scale-Invariant Feature Transform (SIFT) 
(LOWE 2004) or Speeded-Up Robust Features (SURF) (BAY et al. 2006), new methods based on 
neural networks are becoming increasingly important. For example, an increasing number of city 
councils are using thermal cameras to carry out aerial surveys to determine the heating 
requirements and to evaluate energy saving potentials of their local municipalities. Usually, these 
IR images are captured and co-registered in combination with images in the human visible range 
of light (RGB) to collect further 3D geodata such as building types or structures. To achieve high 
registration accuracies, it is helpful to extract and match features directly from both image 
domains. Since classic feature extraction methods reach their limits with these kind of tasks, new 
approaches are required. Comparable limitations can be seen when combining rendered images 
based on digital building models or Computer Aided Design (CAD) models with images of the 
real objects, as used in automated quality control, for example (GHIMIRE et al. 2021). SATTLER et 
al. (2018) were able to demonstrate that with a sufficient data basis, new approaches based on 
Convolutional Neural Networks (CNN)s outperform conventional feature extraction algorithms, 
especially in the case of changes in the image domain, image areas with low texture or larger 
differences in the perspective view (SATTLER et al. 2018).  
Due to the sharing of weights within ‘receptive fields’ CNNs are equivariant to translations of the 
image content. This is an important characteristic for applications in the field of pattern recognition 
or feature extraction, as it allows objects or interest points to be detected and matched regardless 
of their position in the image. However, since CNNs do not have a ‘natural’ equivariance to 

                                                 
1 Universität Stuttgart, Institut für Photogrammetrie und Geoinformatik, Geschwister-Scholl-Straße 24D, 

D-70174 Stuttgart, E-Mail: [vincent.ress, norbert.haala]@ifp.uni-stuttgart.de 
2 MBDA Deutschland GmbH, Hagenauer Forst 27, D-86529 Schrobenhausen,  

E-Mail: markus.braendle@mbda-systems.de 
*This work was supported by MBDA Deutschland GmbH  



V. Ress, M. Braendle & N. Haala 

13 

rotations, many applications require a predefined orientation of the images for a reliable extraction 
and description of keypoints or other features. Although diverse training methods and network 
architectures to achieve rotation equivariance have been developed and evaluated for tasks like 
pattern recognition and image segmentation, there is a lack of comparable assessments for deep 
architectures in the field of feature extraction. 
As our main contribution various methods that achieved promising results in the field of pattern 
recognition were implemented and evaluated within our work to increase the tolerance towards 
rotated input data for deep CNNs. With the aim of extracting rotationally equivariant features, 
adaptions of the training pipeline as well as changes in the network architecture were examined. 
The D2-Net (DUSMANU et al. 2019) architecture, which gains competitive performance especially 
in regard to changes of the image domain, was used as reference. 
In the following chapters the most promising methods analysed in this work are described (Chapter 
2), the implemented network adoptions and evaluation routines explained (Chapter 3) and the 
results of the examinations presented (Chapter 4). 

2 Related Work and Selected Approaches 

While a large number of publications presented rotation-equivariant network architectures or 
network layers such as Group equivariant Convolution Neural Networks (G-CNN) (COHEN & 

WELLING 2016), Harmonic Networks (H-Net) (WORALL et al. 2017) or Rotation Equivariant 
Vector Field Networks (RotEqNet) (Marcos et al. 2017), the evaluations were mostly targeted for 
problems in the field of pattern recognition or image segmentation. The presence of various fully-
connected layers in the provided network architectures impedes the seamless transferability of the 
results to feature extraction tasks. The authors, MARCOS et al. (2017) conducted the analysis of 
correct assignment rates in comparison to the SIFT extractor on the Notre Dame dataset (WINDER 

& BROWN 2007), extracting descriptors through a shallow Siamese network. Approaches such as 
LF-Net (ONO et al. 2018) are estimating a dense orientation map within the network to use the 
additional orientation information for the keypoint selection. This architecture increases the 
tolerance towards rotated input images, but requires a rotation augmented training of the network. 
Furthermore, none of the related publications carried out the impact of equivariant network layers 
on the inference times. The following section introduces the most promising approaches for the 
development of rotation-equivariant network architectures. 

2.1 Vector Field Networks (RotEqNet) 

The idea of Vector Field Networks is based on the masking and rotation of the filter kernels learned 
during the training process and their application to the input data. To reduce the memory 
requirements during the forward pass through the network, the resulting feature maps from the 
rotation are combined into 2D vector fields through orientation pooling. The magnitude of the 
vector resulting from a pixel position is determined by the largest response of the filter at that 
location (compared across all feature maps of a filter kernel), and the direction is determined by 
the associated rotation angle. In the subsequent layers, two filter kernels are trained for the x- and 
y-coordinates of the vectors during the training process. Since the rotation of the filter kernels 



44. Wissenschaftlich-Technische Jahrestagung der DGPF in Remagen – Publikationen der DGPF, Band 32, 2024 

14 

occurs at discrete angles predetermined in the network design, it is not an exact method for 
achieving rotation equivariance. The investigation of the RotEqNet was extended within this thesis 
as it exhibited the lowest classification error on the rotated MNIST dataset (LECUN et al. 1998) 
compared to the other network adaptations. (MARCOS et al. 2017) 

2.2 Harmonic Networks (H-Net) 
The Harmonics Networks published by WORALL et al. (2017) are using so called ‘kernel 
constraints’ to constrain the shape of the filter kernels within the layers to the circular harmonics 
(cf. Eq. 1) 

𝑊௠ሺ𝑟,ϕ;𝑅,βሻ ൌ 𝑅ሺ𝑟ሻ𝑒௜ሺ௠மାஒሻ 

Equation 1: Circular Harmonics within the complex plane 

The coefficients 𝑟 and ϕ are representing the image coordinates in polar form, m ∈ Z is called 
rotation order, 𝑅:𝑅 ↣ 𝑅ା defines the shape of the respective filter and is called the radial profile 
and β ∈ ሾ0,2πሻ represents the phase offset. During the training, the radial profile R(r) and the phase 
offset β will be optimized. The cross-correlation (⋆) of an image 𝐹଴  ≔ 𝐹ሺ𝑟,𝜑ሻ and the cross-
correlation of the identically origin-rotated image 𝐹ఏ  ≔  𝐹൫𝑟,𝜋ఏሾ𝜙ሿ൯ with W୫ ≔ W୫ሺr,ϕ; R,βሻ 
is described by the relation presented in Equation 2.  

ൣ𝑊௠ ⋆ 𝐹஘൧ ൌ 𝑒௜௠஘ሾ𝑊௠ ⋆ 𝐹଴ሿ  

Equation 2: Relation of the cross-correlation of the images 𝐹଴ and 𝐹ఏ 

In this context, it becomes apparent that the equivariance behaviour is depending on the rotation 
order 𝑚, and theoretically, full equivariance can be achieved when 𝑚 ൌ 1. The equivariance 
behaviour of a layer results from a linear combination of the equivariance properties of the 
corresponding filter kernels (WORALL et al. 2017). 

3 Modifications to the Selected Approaches (Methods) 

All adjustments to the training pipeline and network architecture presented in this chapter are based 
on the D2-Net reference architecture and pipeline published by DUSMANU et al. (2019) For the 
introduction of H-Net layers, the E2CNN framework (WEILER & CESA 2021) was applied, which 
facilitates the representation of complex filters in the polar plane through the use of ‘irregular 
representations’. The implementation of the RotEqNet layers is mainly based on the published 
source code of the authors (MARCOS et al. 2017) and has been adapted accordingly. 
The methods presented in the following sub-chapters are divided into adaptations to the trainings 
pipeline such as data augmentation, and adaptations to the network architecture through the 
introduction of H-Net and RotEqNet layers. In the subsequent tests, all three methods were 
analysed separately. 

3.1 Training and Network Adaptions 
The adaptations to the training pipeline were implemented through a rotation-augmented training. 
For this purpose, the training data was rotated around the principal point of the image by discrete 
angles of 5° up to ±180°. To improve the training performance and create uniformly sized input 
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data, matching areas of the provided high-resolution images of the dataset were cropped before the 
hand-over to the encoder of the D2-Net. 
To achieve an equivariant network architecture, the layers of the D2-Net where substituted by 
layers of the H-Net and the RotEqNet. In a first step the equivariance of the untrained adapted 
network architectures was analysed by measurements of the mean feature map distance of the last 
layer of the encoder. For this purpose, a non-rotated image and multiple by steps of five-degrees 
rotated images were passed through the randomly initialized network. The resulting feature maps 
were re-transformed and the mean distance of the corresponding feature vectors from the feature 
map of the rotated to the feature map of the unrotated image was calculated. Through parameter 
studies such as adjusting kernel sizes, changing pooling methods or modifying the activation 
functions the feature map distance was minimized and the equivariance behaviour optimized. 
As a compromise between the number of operations and the proportion of masked weights, the 
size of the filter kernels of the network architecture adopted by RotEqNet-Layer was increased to 
5×5 pixels. Based on the results of the parameter studies the vector fields were layerwise 
transformed back to scalar feature maps by discarding the information of the orientation. 
For the network architecture adopted by layer of the H-Net the rotation order 𝑚 of the 
corresponding filter kernels was based on the results of WEILER & CESA (2021) limited to 𝑚 ∈
ሾ0,1ሿ. The use of higher rotation orders increases the computational effort and memory 
consumption without significantly improving the equivariance behaviour of the network. To 
compensate the lower number of training weights caused by the restriction to circular harmonics, 
the number of input and output channels per layer were doubled in comparison to the original D2-
Net architecture. Similar to the RotEqNet layers, the best equivariance properties were achieved 
in the parameter studies by a layerwise back-transformation from complex to scalar feature maps. 
The weights of the adopted network architectures were tuned with randomly selected data of the 
MegaDepth dataset (LI & SNAVELY 2018) which consists of 150k tourist images of landmarks 
worldwide (Fig. 1). The camera poses and the depth information of the images – required for the 
loss assessment - were calculated using the COLMAP Structure-from-Motion pipeline 
(SCHOENBERGER & FRAHM 2016). 

3.2 Evaluation 
The equivariance of the trained models was evaluated on rotated images of the MegaDepth dataset 
(Fig. 1) (LI & SNAVELY 2018). The extracted descriptors of the rotated image were matched with 
the descriptors of a non-rotated reference image and the corresponding keypoints and the 
associated keypoints were transformed back to the reference. Subsequently the mean matching 
accuracy (MMA) with respect to the angle of rotation was calculated. The MMA describes the 
ratio of correctly matched feature points to the number of all (nearest neighbour) matched feature 
points and is a robust measure for the quality of a feature extraction method and the uniqueness of 
the resulting feature descriptors. A point is considered as correctly matched, if the Euclidian 
distance from a projected point of a transformed image to a matched point of a reference image is 
below a certain threshold (radius). 



44. Wissenschaftlich-Technische Jahrestagung der DGPF in Remagen – Publikationen der DGPF, Band 32, 2024 

16 

 

 

Fig. 1: Rotated sample images of the MegaDepth dataset 

The evaluation of the general extraction performance was based on the HPatches benchmark. The 
benchmark dataset consists of 116 reference images modified by multiple photometric and 
perspective transformations (Fig. 2). Through the introduction of restricted random 
transformations (noise) different grades of difficulty are achieved. The CNNs to be analysed were 
used to extract feature points and descriptors. The known transformations from the reference 
images to the modified images were used to calculate the MMA of the matched feature points. 
During the final evaluation, the results are differentiated depending on the underlying type of 
transformation (photometric/perspective) (BALNTAS et al. 2017). 
In addition to the analysis on the benchmark, the relative mean inference times in comparison to 
the reference architecture were determined. 

 

Fig. 2:  Sample images of the HPatches dataset 
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4 Results 

Fig. 3 demonstrates the impact of the adapted network and training structure on the equivariance 
behaviour of the D2-Net architecture. The graph clearly illustrates that all approaches show a 
remarkable improvement in handling rotated input data. Among them, the H-Net layer (green line) 
adaptation achieves the best results, exhibiting a matching accuracy that remains nearly consistent 
regardless of the angle of rotation. The augmented trained D2-Net (dashed blue line) model tends 
to form local minima especially at low thresholds in the angular ranges of 90° and 270°. The 
introduction of RotEqNet-Layer (red line) leads to local maxima for the angles of 90°, 180° and 
270°, with the determined MMA dropping by up to 30 percentage points in the angular ranges in 
between. 
 

  

Fig. 3:  Representation of the Mean Matching Accuracy (MMA) (radial axis) as a function of the angle of 
rotation (angle) for the analysed approaches 

For the CNNs evaluated on the HPatches benchmark the resulting MMAs (y-axis) are visualized 
for the thresholds from 1 pixel to 10 pixels (x-axis) (Fig. 4). The best overall result (Overall) on 
the HPatches benchmark is achieved by the augmented trained D2-Net architecture. While 
particularly with regard to perspective transformations (Fig. 4 – Viewpoint) the results of the 
reference architecture are surpassed, for photometric transformations (Fig. 4 – Illumination) only 
small improvements for thresholds below 4 pixels are noticeable. By using equivariant H-Net 
layers, comparable MMAs are achieved up to a threshold of 4 pixels to the reference architecture. 
However, these drop significantly for larger thresholds below those of the D2-Net. By far the 
lowest overall performance of all types of adaptation considered is obtained by the introduction of 
RotEqNet layers. 
The measured values shown in Table 1 illustrate that the modification of the D2-Net architecture 
with H-Net layers raises inference times by 280%, while the adaptation with RotEqNet layers 
results in 3000% increased inference times. 
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Fig. 4:  Results of the HPatches benchmark analysis 

Table 1: Measurements of the trained net weights and the relative inference times 

 D2-Net D2-Net_Aug HNet_Channel RotEqNet_FS5 
no. of weights 7.6M 7.6M 6.8M 21.2M 
rel. inference times [%] 100 102 277 3021 

5 Discussion and Conclusion 

The surprisingly poor overall performance of the RotEqNet layers on the HPatches benchmark can 
be explained by the masking and interpolation method used by the authors for the rotation of the 
filter kernels. The resulting proportion of non-masked weights depends on the filter size defined 
in the design and, for the small filter sizes used, leads to strongly limited development potential of 
the filter weights. The high inference times are caused by additional convolution operations for the 
rotated filter kernels. Modifying the masking and interpolation methods employed by the authors 
could potentially enhance overall performance on the HPatches benchmark for smaller kernel 
sizes. However, such adjustments are unlikely to positively impact computational efficiency. 
The results of adaptations by the H-Net layers are in line with expectations from previous 
publications, both in terms of equivariance behaviour and general feature extraction properties. 
The difference in overall performance on the HPatches dataset can be explained by the "kernel 
constraint" and the associated limited development possibilities of the filter kernels. 
The augmented network outperforms the reference network by a few percentage points, especially 
for higher accuracy requirements with thresholds from 2 pixels to 6 pixels. This suggests a high 
percentage of unused weights in the reference architecture that are ‘activated’ by the augmentation, 
thus preserving the range of different filter kernels specialized for the task. However, well-founded 
statements in this regard can only be made on the basis of further analyses of the filter structures. 
In summary, the equivariance behaviour of the reference architecture could be significantly 
improved on the basis of all types of adaptation presented, allowing a robust tie point matching 
based on CNN-based approaches also on rotated imagery. Especially the training on shallow 
network architectures and on small datasets may lead to improved performance by the introduction 
of equivariant layer types such as H-Net or RotEqNet. These results will be surpassed by the 
augmented trained network architectures, if sufficiently large datasets are available for training.  
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