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Abstract

Structure-from-motion (SfM) is a well-studied problem
in the computer vision field and is of particular interest for
aerial imaging applications like mapping, terrain modeling,
crop monitoring, etc. With the current rapid growth in the
commercial UAV and small satellite markets, aerial SfM is
becoming even more important. In recent years, free and
open source software has enabled almost anyone to apply
SfM to their data at no cost. Existing free packages are
oriented toward processing unordered collections of pho-
tographs and are less efficient at processing ordered collec-
tions or video. They are also prone to failure with nearly
planar scenes that often arise in aerial photography. While
commercial solutions for aerial SfM exist, they are propri-
etary and expensive.

This paper presents a new open source software toolkit
named MAP-Tk that targets SfM for aerial video. It ex-
ploits temporal continuity and the aerial nature of the data
to speed up and improve feature tracking, loop closure, and
bundle adjustment. The system is highly configurable and
modular. Dynamic plugins provide state-of-the art algo-
rithms from other open source projects like OpenCV, VXL,
and Ceres Solver. This paper presents the modular system
design, user interface, novel algorithms exploiting aerial
video, and results on various aerial data sets.

1. Introduction

The modern problem of structure-from-motion (SfM)
in computer vision has its roots in aerial photogramme-
try, a field that has been active for over one hundred and
fifty years. Aerial photogrammetrists have manually used
triangulation and bundle adjustment to build 3D maps of
the world from photographs since the early days of pho-
tography from hot air balloons. Modern computer vision
has greatly automated and advanced SfM over the last few
decades by developing robust feature detection and match-
ing techniques [2, 9] to automatically find correspondences
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Figure 1. Aerial SfM: A UAV flies over a site and we wish to
precisely estimate the camera pose at each image or video frame,
a sparse 3D point cloud of observed landmarks, and optionally an
orthorectified mosaic of the imagery.

across images and to do so over increasingly large sets of
images [I, 4, 6]. Similarly, advances in non-linear opti-
mization [20, 7, 23] have made large scale sparse bundle
adjustment more feasible.

In the last decade, the introduction of large scale photo
sharing on the internet led to a trend in the computer vision
community of studying SfM problems involving web-scale
collections of unordered photographs. This body of work
led to the development of the Bundler [19] software pack-
age, which is widely used today for SfM because it is free
and open source. Also out of this movement came Visu-
alStM [24], another commonly used tool that makes SfM
easy to run with a GUI and is free for non-commercial use.

We foresee that SfM research will follow the trends in
data availability and soon make a return to its roots in
aerial photogrammetry. The current boom in low cost com-



mercial and consumer UAVs is about to make aerial video
more accessible than ever before. Likewise, upstart satellite
providers like Skybox [18], Planet Labs [14], and Urthe-
Cast [21] are paving the way for abundantly available im-
agery and video from space. SfM applied to aerial imagery
can produce mosaics and 3D measurements while also lo-
calizing the sensor flight path, as shown in Figure 1.

In this paper we discuss the design of a new open source
toolkit for SfM named MAP-Tk that is targeted specifi-
cally toward the challenges of aerial video. MAP-Tk is
the Motion-imagery Aerial Photogrammetry Toolkit. Un-
like prior open source SfM systems, our software is de-
signed to be highly modular and flexible at runtime using
a dynamic plug-in architecture described in Section 3. The
goal is to allow algorithmic components to be easily inter-
changed at run-time for adaptability and ease of experimen-
tation. The plugin framework also keeps required library
dependencies to a minimum while allowing advanced al-
gorithms from other toolkits like OpenCV [13], VXL [22],
and Ceres Solver [3] to be added at run-time. Like Visu-
alSfM, we provide a cross platform GUI application for vi-
sualization of the results. Unlike VisualSFM, our software,
including the GUI, is fully open source with a permissive
BSD licensed allowing for both commercial and academic
use without copyleft constraints. The software is available
now on GitHub' and community participation in its devel-
opment is encouraged.

Section 4 explains how our system exploits the aerial na-
ture of the data and approximate planarity of the ground
through novel algorithms to speed up and improve feature
tracking and loop closure. It exploits the temporal conti-
nuity of video to significantly speed up sparse bundle ad-
justment (SBA) by processing the data in a temporal hier-
archy. The system can make use of GPS and IMU sensor
data when available, but can also operate in the absence of
other sensor data. While Bundler, VisualSfM, and similar
systems can process aerial video frames as if they were un-
ordered images, they do not exploit the temporal continu-
ity and redundancy of video; this makes them inefficient.
They also do not account for the often planer nature of aerial
scenes; this occasionally makes them fail.

The system has been tested on aerial data ranging from a
toy quadcopter video to military-collected aerial video (e.g.
FMYV and WAMI) to commercial satellite video from Sky-
box. Some of these results are discussed in Section 5.

2. Related Work

The primary SfM application addressed in the computer
vision research community in the last decade has been 3D
reconstruction from large-scale, crowd-sourced collections
of tourist photographs. This application motivated the im-
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plementation of Bundler [19], the first open source package
for end-to-end SfM on large image collections. Bundler was
developed by Dr. Noah Snavely for his PhD dissertation.
Bundler is a great application for unordered image collec-
tions, but it was not designed to be a configurable toolkit for
adaptation to other applications, like video. Furthermore,
the GPL license makes it less attractive for integration into
closed source systems. While Bundler is still commonly
used today, it is no longer actively being extended with new
algorithms.

Another popular SfM tool is VisualSFM [24] by Dr.
Changchang Wu. VisualSFM was also developed to sup-
port a PhD dissertation. Unlike Bundler, VisualSFM is not
fully open source. Instead, the main application is closed
source but “free for non-commercial use”. Some of the un-
derlying algorithms are also made available in open source
libraries, again with GPL licenses. The two main advan-
tages of VisualSFM over Bundler are that Visual SfM pro-
vides GPU acceleration for some algorithms and provides
a GUI-based application with visualization of the results.
VisualSFM is still targeted more at unordered image collec-
tions than aerial video. Yet the GUI does allow for some
customization of the pipeline to make it more relevant to
video. Like Bundler, VisualSfM is no longer actively devel-
oped.

OpenMVG [10] by Dr. Pierre Moulon, is yet another
open source SfM toolkit, again built initially to support
a PhD dissertation. OpenMVG uses the more permissive
MPL license. It provides implementations of several recent
algorithms in SfM but, like other packages, is aimed more
at unorganized photos than aerial video.

While these packages are general enough to process
aerial surveillance video, they are inefficient on video be-
cause they assume no order or consistency across the input
images. On the other hand, there has been work targeting
StM efficiency in video. Shum et al. [17] proposed a hierar-
chical approach using key frames, and in recent work Resch
et al. [15] presented numerous techniques aimed at opti-
mizing SfM for video. Other work, such as Schweighofer
and Pinz [16], addresses issues with SfM in planar scenes,
which are common in aerial video. However, source codes
for algorithms in these papers are not available. In contrast,
our system provides reusable source code for solving these
problems.

3. System Architecture

An important aspect of our software design is a highly
modular and configurable architecture to allow for run-time
switching between various algorithms at each stage of the
processing pipeline. Furthermore, the modular design is
needed to make it easy to plug in existing implementations
of algorithms such as the feature detectors and descriptors
available in open source libraries like OpenCV. Each of
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Figure 2. System architecture.

the key algorithms is interchangeable at run-time to pro-
vide various alternatives. The alternatives can be mixed and
matched in any way and may be implemented using differ-
ent third-party libraries. New algorithms can be plugged in
easily without any changes to the core library and tools.

Figure 2 shows a flow diagram of our modular SfM
pipeline. Rounded boxes illustrate the high-level compo-
nents of the system with large blue arrows showing the
flow of data between them. Blue components are those
currently implemented while green components are either
under development or on our roadmap. Data flow shown
by black arrows is currently available in a batch processing
mode through a combination of two command line interface
(CLI) tools. The maptk_track_features tool runs the
feature tracking algorithm on the video and writes feature
tracks to disk. The maptk_bundle_adjust_tracks
tool reads tracks to initialize camera poses and landmarks
(i.e. 3D points), optimize cameras and landmarks with
sparse bundle adjustment, and map the solution to geo-
coordinates using either ground control points or GPS meta-
data. Each CLI tool accepts a configuration file that controls
data input and output files as well as which algorithms to
run and what parameters to use for each algorithm. The
configuration file allows the selection and configuration of
sub-algorithms that may be nested several layers deep.

Although the command line is the primary interface, one
can also build custom applications by directly using the
provided C++ API. Language bindings for C and Python
are also under development. MAP-Tk provides a desktop
GUI application, shown in Figure 3, that allows users to
load imagery and SfM results and visualize the data in var-
ious ways. In upcoming releases, the GUI will also directly
run the algorithms. The APIs and executable (including the
GUI) are designed to be cross-platform to compile and run
on Windows, OS X, and various flavors of Linux.

The high-level algorithms shown in Figure 2 only scratch
the surface of the modular design. The system also sup-
ports nested abstract algorithms. Some implementations of
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Figure 4. Detailed system architecture.

the algorithm concepts in Figure 2 are written as functions
of other abstract components. To illustrate, Figure 4 takes
an expanded look at the Feature Tracker and Sparse Bun-
dle Adjustment components. A provided implementation of
Feature Tracker uses a detect-and-match approach. This im-
plementation contains abstract components for Feature De-
tection, Feature Description, Feature Correspondence, and
Loop Closure. Each of these sub-components has multi-
ple implementations that can be used interchangeably, and
some implementations of these sub-components may con-
tain further nested sub-components. For example, one Fea-
ture Correspondence algorithm uses homographies to con-
strain the matches and it relies on an abstract Homography
Estimation component. The same abstract Homography Es-
timation component and its implementations can be reused
elsewhere, such as in a Loop Closure algorithm that de-
pends on homographies. The choice of concrete algorithm
instantiation and its parameters can be the same or different
in each use.

When configuring a processing pipeline one can select
which Feature Detector to pair with which Feature Descrip-
tor and so on, or one can replace the entire Feature Tracker
algorithm with an alternate implementation at the top level.
In Figure 4, examples of some of the the concrete imple-
mentations of these abstract algorithms are shown as rect-
angular boxes. Blue boxes are implementations provided
now. Green boxes are examples of implementations that
could be added in the future. Blue arrows show the cur-
rent feed-forward data flow between the components. Red
arrows show optional feedback paths.

Observe that in Figure 4 several of the different imple-
mentations refer to third-party libraries like OpenCV, VXL,
or Ceres Solver. Rather than requiring dependency on a
large set of libraries to build, we use a dynamically loaded
plugin architecture. As shown in Figure 5, the main li-
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Figure 5. Library dependency diagram. The interfaces have only
hard dependency on Eigen and Boost through the main library.
Other libraries are optionally brought in at run-time via plugins.

brary depends only on Eigen (for linear algebra), a subset of
Boost libraries (system, filesystem, timer) and the C++ stan-
dard library. The interfaces then only require these minimal
dependencies to build. While the abstract algorithm inter-
faces are declared in the main library, their implementations
are provided by various plugins that are loaded by a plugin
manager at run-time. Each plugin may have additional de-
pendencies.

The advantages of the modular strategy are two-fold.
First, the user is not tied to any particular third-party li-
braries for algorithm implementations and can provide new
implementations as desired. Second, the algorithms are in-
terchangeable, so it becomes trivial to swap out various
components of the system with alternatives and compare
the results. Furthermore, our system provides the glue that
allows interchange between various third-party algorithms

that would otherwise use incompatible data structures. For
example, an OpenCV feature detector can be run on an im-
age loaded with VXL. Our abstract containers allow data to
be passed from algorithm to algorithm in the native third-
party data structures and only converted on demand. In par-
ticular this design allows construction of pipelines with a
mix of CPU and GPU algorithms such that data is trans-
ferred automatically between CPU and GPU memory but
only transferred when needed.

4. Algorithms

In addition to the modular software architecture, the sys-
tem also provides algorithms for SfM that are specialized
for aerial video. This section will cover two such algo-
rithms. The first algorithm describes an approach to feature
tracking and loop closure in aerial video that exploits tem-
poral continuity and the often-planar nature of the ground.
The second algorithm describes a method for taking advan-
tage of temporal continuity to speed up bundle adjustment.

4.1. Feature Tracking and Loop Closure

Feature tracking is the process of detecting salient points
in one frame and finding the location of the same features
when they appear in other frames. In one implementation,
the system relies on common feature detection and match-
ing algorithms from other libraries like OpenCV to provide
this core capability. Feature tracking is a noisy process
in practice. While many features are correctly tracked, a
non-trivial amount of features are also mismatched. Fur-
thermore, not all of the correct tracks belong to stationary
features. Moving foreground objects will generate outlier



tracks that are not geometrically consistent with the model
of a moving camera observing a static scene. These invalid
and outlier tracks can create big problems for SfM if not
properly filtered out. The usual approach to dealing with
these outlier tracks is to estimate the fundamental matrix [5]
(or essential matrix [11] for calibrated cameras) between
the pair of images and use the fundamental matrix as a con-
straint to remove geometrically invalid matches.

Our approach uses a homography constraint instead
of the fundamental matrix. The homography is a much
stronger constraint, but is only valid for planar scenes or for
fixed cameras that may rotate but do not translate. In aerial
video, the frame-to-frame motion is usually small enough,
and/or the ground is planar enough that this constraint holds
reasonably well over nearby video frames. In fact, for ad-
jacent frames of video, the fundamental matrix becomes
very unstable for small camera motions and a homogra-
phy is much more robust. Since we assume temporal con-
tinuity of the video, we can track features from frame-to-
frame through the video using this homography constraint.
Frame-to-frame tracking has the advantage of being O(n)
in the number of frames rather than consider all pairs of
images, which is O(n?). Of course, only tracking features
between adjacent frames of video is fragile and prone to
failure if there is a single bad frame. It also does not ac-
count for features that become occluded or exit the field of
view, but then are observed again at a later time. Normally,
when a feature goes out of sight and then reappears, the
track is broken and a new track forms. In some cases we
can stitch these disjoint tracks of the same feature back to-
gether through the process of loop closure. Loop closure
can significantly reduce drift in the SfM solution.

There are two types of loop closure currently integrated
into MAP-Tk: local loop closure and homography-guided
loop closure. Local loop closure is used to link tracks over a
small number of bad frames with corrupted, noisy, or miss-
ing pixels. Homography-guided loop closure is used to link
tracks that have left the field of view due to camera motion
and then later returned. These two loop closure approaches
are complementary and can be used together for best results.

Our local loop closure approach estimates homographies
between adjacent frames as is done in video stabilization.
Occasionally a bad frame (or sequence of bad frames)
causes frame-to-frame feature tracking to fail, which splits
the video results into a series of stabilized “shots”. The
algorithm monitors the number of tracks maintained from
frame-to-frame. When the fraction of tracked feature drops
dramatically the current shot ends. When the the number of
successful tracks returns to previous good levels, a new shot
starts. After a new shot has started, the algorithm performs
additional feature matching between the current good frame
and good frames at the end of the last shot to try to recover
lost tracks.

Figure 6. Loop closure. Homographies stabilize frames into com-
mon coordinates. Tracks in red frames should be matched against
the blue frames to link duplicate tracks and close loops.

Our homography-guided loop closure algorithm ad-
dresses the long-term loop closure problem and is also re-
lated to aerial video stabilization. This algorithm is built
on the assumption that aerial video views a roughly pla-
nar ground and homographies can be used to register the
frames to a common plane over a long time period. This
assumption does not hold for all aerial video, but generally
holds when the distance of the camera to the ground is large
compare to the height of objects off the ground. The algo-
rithm uses the estimated homographies from feature track-
ing to predict pairs of frames to be matched for loop clo-
sure. In video stabilization, one estimates the sequence of
homographies that can map all frames into a common coor-
dinate system. As shown in Figure 6, we can identify when
the sensor has returned to looking at a part of the scene it
has seen before by looking at frame boundary intersection
in this registered space. In the figure, tracks in red frames
should be matched against the blue frames to link duplicate
tracks and close loops. The homographies will contain drift
over time, but our results show that, for aerial video, the
homographies are accurate enough to identify approximate
frames (or frame ranges) to search for loop closure. This
approach is very simple and can run online with minimal
overhead added to normal frame-to-frame tracking. In prac-
tice, our implementation is accelerated further by selecting
a key frame whenever the camera motion is such that frame
overlaps with the last key frame drops below a threshold.
In loop closure, we then only need to match against the se-
lected key frames.

4.2. Hierarchical Sparse Bundle Adjustment

Given a set of images and feature tracks, there are multi-
ple ways to formulate a SfM strategy. By strategy we mean
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Figure 7. Temporally hierarchical structure-from-motion using key
frames to reduce the size of the bundle adjustment problem.

determining how to initialize the model parameters, which
parameters to optimize, how to exploit sparsity, and poten-
tially how to factor the problem into smaller sub-problems.

Our SfM strategy is to use a temporally hierarchical ap-
proach related to the work of Shum et al. [17]. The ap-
proach is diagrammed in Figure 7 for the case of three lev-
els, but as few as two levels may be sufficient. We first
subsample the video frames temporally to produce a much
smaller sub-problem with less redundancy between frames.
If the key frames are selected appropriately, a sparse bun-
dle adjustment on this sub-problem will produce cameras
and landmarks with a similar solution for those structures to
that of the original problem. After completing the key frame
bundle adjustment, a second fill-in stage can efficiently add
back in cameras that were skipped by interpolating their
parameters from neighboring key frame cameras and op-
timizing each added camera independently while keeping
the landmark locations fixed. The fill-in SfM can conclude
with a final bundle adjustment of all cameras, but the so-
lution is usually good enough that a final SBA step is not
needed. Applying SBA with this hierarchical strategy can
reduce bundle adjustment times by orders of magnitude.

The appropriate selection of key frames is an important
factor in achieving speed-up while still retaining a correct
and accurate solution. Our initial experiments have used a
fixed sampling rate (e.g. every nth frame). This strategy
work wells on videos with smooth and constant speed cam-
era motion. However, the best key frame rate depends on
many factors including video frame rate and the speed of
the platform motion. A fixed sampling rate does not work
well for more erratically moving cameras. In that case an
algorithm would be needed to dynamically adjust the sam-
pling rate based on feature tracking statistics.

5. Experimental Results

We have evaluated our system on various types of aerial
video. These include publicly released aerial video, military
aerial video, commercial satellite video, and hobbyist quad-
copter video. The video type ranges from FMV (high frame
rate, HD or less resolution) to WAMI (very high resolution,
lower frame rate). Each video has different flight parame-
ters, but fixed stare point missions (e.g. site monitoring) are
the most common in our data and best suited for SfM. The
following is a list of the data sets evaluated. Results and
discussion on the first three of these datasets are provided

in following subsections.

e CLIF 2007 [8] — public WAMI data from AFRL; only
one of six cameras is used; orbiting flight, fixed stare
point outside of image bounds

e MAMI-I - WAMI-like data from AFRL (not publicly
available); orbiting flight; stare point in image

e VIRAT Video Dataset [ 12] — public FM V-like data; or-
biting flight; stare point in image

e Operational FMV — orbiting flight; stare point in image

e Skybox — satellite video from Skybox/Google; mostly
linear platform motion (earth orbit), stare point in im-
age.

e Toy Quadcopter — Low altitude video from a toy quad-
copter in a backyard; erratic flight

The CLIF 2007 data nicely complements the VIRAT and
MAMI datasets and together they cover two different ex-
tremes that are likely to be encountered in aerial video SfM.
The CLIF data, when limited to just one camera, has the
properties of a fast roaming mode of operation. The field of
view is continuously sweeping across the ground. Tracked
features come into the field of view, move quickly across the
image with large frame-to-frame motion, and then exit the
field of view typically within about 10 frames of video. The
orbiting pattern in CLIF results in the field of view sweep-
ing back over the same locations hundreds of frames later,
providing a good test bed for long-term loop closure ap-
proaches.

The VIRAT, MAMI-I, and operational FMV data have
very different properties. The stare point is fixed near the
center of the field of view and the frame rate is relatively
high. The results is that feature points move slowly across
the image and stay in the field of view for hundreds of
frames. The stare point in the center of the field of view
makes long-term loop closure less critical on this data.

Skybox video also has a relatively fixed stare point, but
the camera path is closer to linear and the field of view is
very narrow. Conversely, video from the toy quadcopter
has a wide field of view and very erratic camera motion and
camera orientation.

Unless otherwise noted, our experiments use the SURF
feature detector/descriptor and FLANN matching from
OpenCV. The matching is augmented with a homography
filter and loop closure is guided by homographies as in
Sec. 4.1. Links to configuration files for public data sets are
provided on the MAP-Tk Github site for reproducibility.

5.1. CLIF 2007

We evaluated the homography-guided loop closure on
CLIF 2007 [8] imagery and found it to be quite success-
ful. A single camera from CLIF 2007 provides a good test
bed for loop closure because the camera sweeps across the
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Figure 8. Homography-guided frame registration on CLIF 2007
data. Top: mosaic images. Bottom: frame outlines. After one
complete orbit visual structures are still in approximate alignment.

ground in large arcs and revisits the same location several
times.

Figure 8 shows examples of homography registration of
the CLIF data into a common plane: the coordinate system
of the first frame. The top row shows mosaic images gen-
erated from registering the imagery; the bottom row shows
the borders of each individual video frames in the warped
space. It is clear that there is only small drift after one com-
plete orbit. For example, roadways spanning the boundary
between the Ist and 200th frame line up well, but not per-
fectly. Drift accumulates further in the second orbit, but still
by amounts smaller than the frame size. Therefore, we can
use the overlap of the warped image boundaries to predict
when to do loop closure. In our current implementation, en-
abling homography-guided loop closure adds about 7% to
feature tracking time on the CLIF 2007 data. In CLIF 2007,
this loop closure fires frequently after the first orbit because
the second orbit follows a very similar path to the first and
almost every frame presents a loop closure opportunity.

Figure 9 shows the results of bundle adjustment both
with and without homography-guided loop closure. The im-
pact is considerable. Without loop closure there is drift be-
tween orbits; cameras and 3D points each spiral out of their
respective horizontal planes. With loop closure the camera’s
path and 3D point cloud are each more consistent and nearly
lay in common planes, as expected. Furthermore, the recon-
structed 3D point cloud is much closer to the ground plane
at Z=0 (represented by a horizontal gray line in Figure 9
side views). Finally, with homography-guided loop closure
enabled, SBA converged in 111 iterations rather than 257 it-
erations without loop closure. Thus, SBA with loop closure
is about twice as fast. We should also note that the aver-
age projection error, measured as root mean square error
(RMSE), is slightly higher (1.02 pixels) with loop closure
than without (0.85 pixels). Error increase is due to observa-
tion of loop closed 3D points in more frames on average.

With homography loop
closure

Figure 9. Results of SBA without loop closure (left) and with
homography-guided loop closure (right). Cameras are shown as
red frustums; 3D points are in black; ground plane at Z=0 shown
as a gray line.

5.2. MAMI-I

In evaluating our hierarchical SBA approach, it was ex-
pected that a final full bundle adjustment at the original
temporal scale would not be needed due to the amount of
redundancy between adjacent frames. Our experiments on
MAMI-I data found this hypothesis to be correct when the
camera down-sampling rate was small enough. With the
appropriate sub-sampling of both cameras and points, we
were able to achieve one to two orders of magnitude speed
improvements over standard batch SBA. One relevant ex-
periment used 4494 frames of MAMI-I video starting with
GPS/INS initialization and with 44949 feature tracks, each
more than 50 frames long. Naively running batch SBA on
this size problem took 28 iterations and 150291 seconds
(41hr 44min 50 sec) to converge to a final root mean square
error (RMSE) of 1.229 pixels. For comparison, hierarchical
bundle adjustment was configured to start with every 50th
frame (91 frames in total) and then fill in 3 frames at each
level. The initial SBA on 91 frames took 32 iterations, but
only 22 seconds. The second SBA on 361 frames took only
2 iterations and 18 seconds. The third SBA on 1441 frames
took only 2 iterations and 428 seconds (7min 8sec). The fi-
nal SBA on all 4494 frames took only 2 iterations and 10444
seconds (2hr 54min 4sec). The combined hierarchical SBA
result is an order of magnitude faster than the baseline SBA
result with a RMSE of 1.302 pixels — only 6% higher than
the baseline. Results are visually identical. However, the
RMSE for the 4494 frames before the last SBA was already
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Figure 10. Hierarchical Sparse Bundle Adjustment on MAMI-I (sequences 152%*). Feature tracks are selected that span at least 50 frames.
From left to right: 1. SBA run on every 50th frame (91 cameras total); 2. interpolate to provide every 5th frame, (991 cameras total); 3.
SBA on interpolated cameras produces almost no change in cameras; 4. Interpolated all missing cameras and final SBA, almost no change.

1.307 pixels. This means the final, SBA took nearly 3 hours
to squeeze out the last 0.4% of RMSE. If we skip the final
SBA step, the hierarchical approach is two orders of mag-
nitude faster than the baseline. Figure 10 shows a similar
hierarchical result on MAMI-I data.

5.3. VIRAT Aerial Public Data Set

The VIRAT aerial video public data set [12] has similar
properties to operational FMV making it a good surrogate
for algorithmic development in environments, like univer-
sities, where ITAR or classified data is not allowed. The
limitations of the VIRAT data are that it is interlaced with
lower resolution (480i), the camera motion is sometimes er-
ratic, and the encoded metadata stream is unreliable. We ran
MAP-Tk on clip 09172008flight1tape3_2 from the dataset.
We ignored the metadata and applied deinterlacing as a pre-
processing step. Figure 11 shows the results of MAP-Tk on
621 frames sampled from 09172008flight1tape3_2 at 2Hz.
This result required 12.6 minutes for feature tracking and
5.6 minutes for SfM. The final root mean square reprojec-
tion error is 1.3 pixels.

6. Conclusions

We have presented MAP-Tk, a new open source toolkit
for structure from motion on aerial video. The software
design is highly modular and plugin-based to allow recon-
figuration and experimentation with various different algo-
rithmic components. Included in the toolkit is a set of
algorithms specifically targeted at making structure-from-
motion more efficient and reliable for aerial video. The
algorithms exploit the temporal continuity of the data and
planarity of the ground. We have evaluated the software on
a range of different types of aerial video and demonstrated
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Figure 11. Result on video 09172008flight1tape3_2 from the VI-
RAT public data set [12]. Cameras and points shown from three
principal directions as well as projected into an image.

improvements in accuracy and speed.

We are continuing to develop MAP-Tk and plan to make
the algorithms more automated and adaptable to variations
in the data. For example, we will select key frames for hi-
erarchical bundle adjustment in a way that is automatically
driven by feature tracking statistics. We will also improve
the GUI and C/Python interfaces for the software as well
as adapt the pipeline to run in a multi-threaded streaming
mode. Most importantly, we are building a community of
users and contributors around this new open source frame-
work. We hope that as the developer community grows,
this software will provide an easy framework for evaluation
of new algorithms and comparison to existing algorithms
within the context of a complete SfM pipeline. At the same
time, the permissive license and various system APIs it will
provide an easy transition path for SfM research into prac-
tical applications.



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

(14]
[15]

[16]

(17]

S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski.
Building rome in a day. In IEEE International Conference
on Computer Vision (ICCV), pages 72-79. IEEE, 2009. 1

H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. In European Conference on Computer Vision
(ECCV), pages 404—417. Springer, 2006. 1

Ceres Solver — C++ sparse nonlinear least squares solver.
http://code.google.com/p/ceres-solver/. 2

J. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Ragu-
ram, C. Wu, Y. Jen, E. Dunn, B. Clipp, S. Lazebnik, et al.
Building rome on a cloudless day. European Conference on
Computer Vision (ECCV), pages 368-381, 2010. 1

R. Hartley and A. Zisserman. Multiple view geometry in
computer vision, volume 2. Cambridge Univ Press, 2000.
5

J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm. Re-
constructing the world* in six days *(as captured by the ya-
hoo 100 million image dataset). In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015. 1

Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I. Kweon.
Pushing the envelope of modern methods for bundle adjust-
ment. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1474-1481.
IEEE, 2010. 1

A. F. R. Laboratories.  Columbus large image format
(clif) 2007 dataset. https://www.sdms.afrl.af.mil/index.php?
collection=clif2007. 6

D. G. Lowe. Object recognition from local scale-invariant
features. In IEEE International Conference on Computer Vi-
sion (ICCV), volume 2, pages 1150-1157. Ieee, 1999. 1

P. Moulon, P. Monasse, R. Marlet, and Others. OpenMVG —
an open multiple view geometry library. https://github.com/
openMVG/openMVG. 2

D. Nistér. An efficient solution to the five-point relative pose
problem. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(6):756-770, 2004. 5

S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T.
Lee, S. Mukherjee, J. Aggarwal, H. Lee, L. Davis, et al.
A large-scale benchmark dataset for event recognition in
surveillance video. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3153-3160, 2011. 6, 8

OpenCV — open source libraries for computer vision. http:
/lopencv.org/. 2

Planet Labs. https://www.planet.com/. 2

B. Resch, H. P. A. Lensch, O. Wang, M. Pollefeys, and
A. Sorkine-Hornung. Scalable structure from motion for
densely sampled videos. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2015. 2

G. Schweighofer and A. Pinz. Robust pose estimation from
a planar target. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 28(12):2024-2030, 2006. 2

H. Shum, Q. Ke, and Z. Zhang. Efficient bundle adjust-
ment with virtual key frames: A hierarchical approach to

(18]
(19]

(20]

(21]
(22]
(23]

(24]

multi-frame structure from motion. In /EEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2. IEEE, 1999. 2, 6

Skybox Imaging. http://www.skyboximaging.com/. 2

N. Snavely and Others. Bundler - structure from mo-
tion (sfm) for unordered image collections. http://www.cs.
cornell.edu/~snavely/bundler/. 1,2

B. Triggs, P. E. Mclauchlan, R. I. Hartley, and A. W. Fitzgib-
bon. Bundle Adjustment — A Modern Synthesis, volume
1883. January 2000. 1

UrtheCast. https://www.urthecast.com/. 2

VXL — C++ vision libraries. http://vxl.sourceforge.net/. 2
C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore
bundle adjustment. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3057-3064. IEEE, 2011. 1

C. Wu and Others. Visualsfm - a visual structure from motion
system. http://homes.cs.washington.edu/~ccwu/vsfm/. 1, 2


http://code.google.com/p/ceres-solver/
https://www.sdms.afrl.af.mil/index.php?collection=clif2007
https://www.sdms.afrl.af.mil/index.php?collection=clif2007
https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG
http://opencv.org/
http://opencv.org/
https://www.planet.com/
http://www.skyboximaging.com/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
https://www.urthecast.com/
http://vxl.sourceforge.net/
http://homes.cs.washington.edu/~ccwu/vsfm/

