Under Review - Proceedings Track 1-15, 2025 Symmetry and Geometry in Neural Representations

Koopman Autoencoders Learn
Neural Representation Dynamics

Editors: List of editors’ names

Abstract

This paper explores a simple question: can we model the internal transformations of a
neural network using dynamical systems theory? We introduce Koopman autoencoders
to capture how neural representations evolve through network layers, treating these repre-
sentations as states in a dynamical system. Our approach learns a surrogate model that
predicts how neural representations transform from input to output, with two key advan-
tages. First, by way of lifting the original states via an autoencoder, it operates in a linear
space, making editing the dynamics straightforward. Second, it preserves the topologies of
the original representations by regularizing the autoencoding objective. We demonstrate
that these surrogate models naturally replicate the progressive topological simplification
observed in neural networks. As a practical application, we show how our approach enables
targeted class unlearning in the Yin-Yang and MNIST classification tasks.

Keywords: List of keywords

1. Introduction

Neural networks are defined by compositions. At each step, they transform their inputs,
increasing the complexity of the overall transformation applied to data. Remarkably, these
transformations have the effect of producing simple shapes at the output (Papyan et al.,
2020), when quantified by topology (Naitzat et al., 2020). In fact, the neural representations
(i.e., outputs of intermediate layers) of a network progressively simplify until a network
arrives at the final output. This progression, along with the compositional nature of these
networks, inspires an intuitive ‘path’ perspective (Lange et al., 2023). In other words, there
is a notion of ‘traveling’ some distance from the input to the output, along the path defined
by these neural representations. Our work further explores this path analogy by asking:

Can we discover a dynamics that generates this path? Can we edit these dynamics to
produce a different output than what was originally intended?

To elaborate on the significance of our second question: editing, updating, or unlearn-
ing specific knowledge contained within neural networks prevents expensive retraining or
removes harmful undesired outputs for model alignment (Yao et al., 2023; Gupta et al.,
2024). If these unwanted outputs lie at the end of our neural representation paths, then
editing the dynamics can help us ‘steer away’ from them, generating representations without
these outputs.

Our work relies on modern Koopman-based approaches (Koopman, 1931; Brunton et al.,
2022; Takeishi et al., 2017). We learn our dynamics in an observable space, different from
the original space, defined by the latent space of a predictive, Koopman autoencoder. In
observable space, our dynamics are defined by a linear operator, making the dynamics a
simple object to work with.

© 2025 .

Contributions. Our main contributions are as follows:

e We introduce Koopman autoencoder surrogates as a framework for interpolating and
editing the neural representations of a trained neural network. Our Koopman au-
toencoders generate realistic dynamics, producing intermediate outputs which follow
our established understanding of how neural representations topologically simplify as
they progress through the layers of a neural network.

e We develop an encoder isometry objective to supplement the optimization process of
Koopman autoencoders, preserving the original topology of neural representations in
observable space.

e We demonstrate how our Koopman autoencoders can be used to edit neural repre-
sentations in observable space, leading to fast, targeted class unlearning.

Overall, enabled by modern Koopman theory, our work develops a methodology to
interpolate the neural representations of deep networks.

2. Related Work

We provide a basic introduction to topology and Koopman theory in Appendix A.

Topology and dynamics. Our work is most closely aligned with literature that
highlights topological and geometric perspectives in deep learning. Primarily inspired by
Naitzat et al. (2020), we demonstrate how the shape of a data manifold can transform as
it is processed by the layers of a neural network (NN). As advanced by Lange et al. (2023),
we envision the outputs of each NN layer as forming a ‘path’, arising naturally from the
compositional structure of NNs. Additionally, we put to work an established dynamics
perspective in deep learning. With a spotlight on deep residual networks (ResNets) He
et al. (2016), there is growing evidence (Gai and Zhang, 2021; Li and Papyan, 2023) that
treats ResNet activations as traveling on a ‘conveyor belt’ to their final output. This
dynamics view plays nicely with the topological vantage, with Naitzat et al. (2020) positing
that “[network] depth plays the role of time,” in the sense that additional layers “afford
additional time to transform the data.”

Koopman-based approaches. At the heart of our method is a Koopman autoen-
coder (KAE). KAEs have been employed in machine learning problems to forecast physical
systems (Takeishi et al., 2017; Lusch et al., 2018; Azencot et al., 2020), disentangle latent
factors in sequential datasets (Berman et al., 2023), and generate time-series (Naiman et al.,
2024). Traditionally, Koopman approaches find application in control tasks due to their pre-
dictive nature. Generally, practical approaches (Budisié¢ et al., 2012; Brunton et al., 2022),
developed atop Koopman theory (Koopman, 1931), work within a latent space equipped
with linear dynamics allowing one to study, and potentially shape, these dynamics via linear
control and spectral tools. Our work is unique in proposing a KAE to interpolate between
and manipulate the topology of neural representations.

Representation metrics. Pertinent to our work are tools from representational sim-
ilarity analysis (RSA) literature. Notably, Kornblith et al. (2019) discusses the required
invariance properties of ‘dissimilarity’ when comparing representations between neural net-
work layers, with Williams et al. (2021) extending these ideas to develop proper metrics. In
maturing the ‘path’ analogy, our work follows Lange et al. (2023) by using tools from RSA

KooPMAN AUTOENCODERS LEARN NEURAL REPRESENTATION DYNAMICS

Original ResNet Observables

oo
[0}
=
Res Res Res A
<
(G

Classifier

Preprocessing Koopman Autoencoder

Figure 1: A summary of our framework presented in Section 3. We gather neural repre-
sentations from a trained, residual network and preprocess them to bring them
into the same space. Afterwards, we train a Koopman autoencoder on a pair
of the representations, resulting in predictive autoencoder with manipulable and
visualizable observable space.

to support our methodology. While our work does not require computing similarity metrics
across representations, it does reason about the dynamics between them, demanding similar
methodological care.

Model editing. As an application of our Koopman framework, we edit the linear
operator which governs our dynamics. To achieve this, we use the EMMET algorithm
Gupta et al. (2024), originally designed to update the weights in transformer blocks. As
human knowledge and facts update, the field of model editing is concerned with updating
large language models while avoiding expensive model retraining Yao et al. (2023). While
our work does not directly explore language models, we hypothesize that our framework
can be extended to include the relevant architectures.

3. Koopman Autoencoders as Surrogates

3.1. Architecture

Consider a trained neural network N'“ composed of L € Z* layers, where each layer f; is
indexed by i € {1,2,..., L}. The network is defined by successive compositions, giving rise
to the form

N =) = fro... fa0 fi(xo), (1)

where x¢ is an input. The output of f; is the i-th neural representation x; € R%+1, where
d;i+1 is the input dimension of the subsequent layer f;11. Inspired by Li and Papyan (2023),
we work with deep multi-layer perceptrons (MLPs) comprised of residual blocks, a form of
residual networks (ResNets). Figure 5 plots the top three principal components of neural
representations from each residual block, visualizing how the data transforms across the
layers of a residual network.

We evoke a dynamical systems perspective of these ResNets, treating the neural rep-
resentations {Xj,Xg,...,xz} of the trained network as the states generated by a complex,
nonlinear system. Within this context, we introduce a Koopman autoencoder, consisting of
an encoder ¢ : R%+1 — RP_ a decoder ¢! : R? — R%+1, and a linear operator K : p — p.
In concert, they operate as

x;=¢ toKog(x), Vi,je{1,2,....,.L}:i<j (2)

In Equation 2, ¢ embeds a neural representation into a (typically) higher-dimensional ob-
servable, after which K ‘advances’ the observable. Finally, ¢! returns the observable to
the state space. We implement ¢ and ¢~! as symmetric, but untied, MLPs and define K
as a learnable square matrix. Hence, the KAE produces dynamics in the observable space,
governed by the linear operator.

3.2. Objectives

The KAE is optimized with the objective functions

Erecon = Hx{i,j} - (ﬁil o ¢(X{iyj})H2 ’ ()
Linear = [|6(x;) = K 0 ¢(x)|?, (4)
Estate = ij _¢_1 OKO¢(Xi)||2’ ()
2 2|2
La = | Ixaa I = oG] (6)
resulting in a combined loss
£tota1 =)\lﬁrecon +)\2£linear +)\3£state + /\4£dist~ (7)

The {)\i}?zl act as weighting hyperparameters. Equation 3 encourages the KAE to recon-
struct states in the absence of any dynamics, promoting autoencoding. The linear prediction
loss (Eq. 4) ensures that the observables evolve linearly in the latent space, while the state
prediction loss (Eq. 5) aids end-to-end prediction accuracy when mapping back to the
state space. Finally, the encoder isometry (Eq. 6) encourages preservation of inter-point
distances even in the observable space. We discuss the significance of encoder isometry in
Section 4.1.

3.3. Preprocessing Representations

Given we are working with neural representations, we draw from tools in RSA metrics
literature. Permitting intra-layer comparison, these metrics first require embedding neural

KooPMAN AUTOENCODERS LEARN NEURAL REPRESENTATION DYNAMICS

MLP Betti Numbers KAE Betti Numbers
104{ B8594 { 8633 7655

5153

2487

9 103 4
]
£
a 123
w
o 102 4
[so8
101 4 10 11
0 1 2 3 4 0 1 2 é 4 5 6 7 8 9 10
Layer Iteration
Iter. 0 Iter. 3 Iter. 6 Iter. 10
=, : - ¢
s‘}: eme oOF
° L]
L] L
K - v
r
oi 3T 4

0
o=
°
oS,
L

Figure 2: (Top left) The Sy Betti numbers of the neural representations from each residual
block of a residual MLP trained on MINIST. The Betti numbers are computed us-
ing the Vietoris-Rips complex at a filtration e = 0.166. (Top right) The average 8y
Betti numbers of intermediate outputs, projected into state space, for five KAEs
trained on the first and penultimate layer representations of the residual MLP.
The Betti numbers are computed using the Vietoris-Rips complex at a filtration
e = 0.14. (Bottom) Select intermediate outputs from an MNIST KAE, projected
into the state space. At each successive iteration, the topology is simplified until
it arrives at the penultimate layer representations.

representations in a common space R?. Only then is a distance metric defined. Lange et al.
(2023) detail the intricacies and variations in this class of approaches.

Our work is concerned solely with the initial embedding step. To avoid confusion with
‘embedding’ in the context of Koopman approaches, we refer to this as preprocessing. To
elaborate, we apply the following preprocessing to x;,x;, before they are fed into a KAE:

1. Mean-centering: X = x — E[x] (8)
2. Projection: X = XU.,, given ULV = svd(X) 9)
3. Normalizing: X = X/||X]| (10)

4. Procrustes alignment: X = XR,

(11)

where R € O(q) solves m}%n Ix —yR|F

Overall, we shift, project, and scale the representations before finding the best (rotational)
alignment, making the representations more suited for comparison. In addition to affording
us invariance properties, the preprocessing allows for learning a KAE on neural represen-
tations with originally non-uniform dimensions; i.e., outputs of differently-sized NN layers.
However, we do not include models with non-uniform dimensions in our experiments.

3.4. Parametrization

We parameterize the Koopman operator as
K = exp (G/k)", (12)

where G is another linear operator of the same shape and k determines the number of steps

that %X; is advanced in observable space. When coupled with dimensionality reduction,

this parameterization allows for a smooth k-step transformation of the neural activations,

enabling an explicit visualization of topological changes. The parameterization is not re-

strictive: we can obtain the final prediction by directly applying the k-powered matrix.
Figure 1 provides a visual summary of our methodology.

4. Experiments

We work with two residual MLPs, trained on the Yin-Yang (Kriener et al., 2022) and the
MNIST classification tasks (Lecun et al., 1998). Each of the MLPs consist of residual
blocks (see Appendix B for details). In all our experiments, we set X; as the first layer
neural representations and X; as the penultimate layer representations of the residual MLP.
Thus, when given X; as input, our KAEs are trained to predict X;.

Given the parameterization described in Section 3.4, our KAEs can predict £ — 1 in-
termediate representations in observable space, before finally predicting X;. Each of these
observable space predictions can be decoded into state space via the KAE decoder for analy-
sis. Ultimately, the output X; is fed into the final MLP layer, resulting in a class prediction.
So, our KAEs can act as surrogate models, handling the intermediate computations. The
classification accuracy provides a way to measure the surrogate quality of our KAE. Table
1 demonstrates that our KAEs are able to faithfully produce the penultimate layer repre-
sentations for both datasets. We provide more details of the KAE architecture and their
training in Appendix C.

4.1. Encoder Isometry

Typical implementations of KAEs (Takeishi et al., 2017; Lusch et al., 2018; Azencot et al.,
2020; Berman et al., 2023) do not consider encoder isometry. However, neural representa-
tions are topological objects; our isometry objective (Eq. 6) promotes the observables to
carry over the original shape of the representation.

To demonstrate, we train 3 KAE variants with different penalization strengths (\y =
{0,1073,1}) on the encoder isometry objective. The KAEs are trained to predict (and
reconstruct) the penultimate layer representations of a residual MLP. Figure 3A displays
the top three principal components of the penultimate layer representations in observable
space. Figure 3B presents the Betti curves of these same models, demonstrating that
the most strongly penalized encoder (red) exhibits the closest topological similarity to the
original model (black). These results indicate that increasing A4 leads to more topologically
faithful representations in observable space. As a result, we expect that topological edits in
the observable space will also be reflected in the state space.

KooPMAN AUTOENCODERS LEARN NEURAL REPRESENTATION DYNAMICS

Original
B
—— Original
— A=1
a A=10"3 @
— A=0
Filtration Filtration

Figure 3: (A) Each scatter plot displays 2 x 10% points projected onto the top three prin-
cipal components (PCs) derived from representations in the penultimate layer.
The leftmost plot shows PCs from the original MLP representations, while the
remaining show PCs computed after embedding the representations into observ-
able space via different KAEs. All PCs are aligned via the orthogonal Procrustes
problem. (B) Betti curves, for §y and (i, across a filtration threshold of ¢ = 4
for the penultimate layer representations of the original model (black) and the
observable space representations via different KAEs.

4.2. Simplifying Topology

Given the parameterization described in Section 3.4, our KAEs can interpolate between
x; and X; to produce intermediate representations. Remarkably, we demonstrate that the
dynamics within our observable space naturally produce intermediate representations sim-
ilar to those from the original MLP. To support this claim, we decode the observables into
state space and quantify their topology. In Figure 2A, on the left, we present the 5y Betti
numbers of the neural representations from each block of a residual MLP trained to clas-
sify MNIST. As established in Naitzat et al. (2020), and evidenced by our plot, successive
network layers generate increasingly simple topologies. In comparison, we also plot the
8o Betti numbers of the decoded, intermediate outputs of five KAEs. Despite having no
knowledge of the MLP’s intermediate representations and their topologies, our KAEs still
naturally simplify in topology at every step. As a visual aid, Figure 2B plots the top three
principal components of selected iterations from one of the KAEs.

The dynamics learnt by the KAEs produce a trajectory of neural representations with
sound topologies, in line with what is found within a residual MLP. When paired with di-
mensionality reduction techniques, they provide an approximate visualization of how data
is being transformed within a neural network. We hypothesize that the KAE dynamics can
be made more faithful to the original residual network by regularizing the KAE’s inter-

mediate representations; for example, the KAE could be trained to predict all the neural
representations from a residual network.

Table 1: Classification accuracy results showing original performance and post-editing ac-
curacy degradation across target classes

Dataser MLP Top-1 KAE Topr-1 (SD) TARGET CLASS EpITED Acc. (SD)
Class 0 (Yin) 98.78 (1.18) — 85.01 (1.90)
Yin-Yang 99.31 98.75 (0.15) Class 1 (Yang) 98.27 (0.21) — 78.88 (8.53)
Class 2 (Dots) 99.97 (0.05) — 62.52 (1.35)
Class 1 99.23 (0.04) — 0.0 (0.0)
MNIST 99.03 98.53 (0.04) Class 4 98.29 (0.08) — 0.0 (0.0)
Class 7 98.01 (0.18) — 0.0 (0.0)

4.3. Application: Model Editing

The penultimate layer representations of well-trained classification models experience neural
collapse (NC) (Papyan et al., 2020), effectively ‘clustering’ outputs, as seen at the bottom
of Figure 2. In our case, the encoder isometry helps preserve this NC topology in observable
space. As a result, identifying a class of ‘undesired’ outputs in the penultimate layer is a
straightforward task. Further, the dynamics that generate the outputs in observable space
are governed by a linear operator. Hence, finding the undesired inputs, corresponding to
the unwanted outputs, is a matter of applying the inverse operator X~!. To summarize, in
observable space, we can quickly identify the unwanted outputs in a neural representation
(due to NC) along with their corresponding inputs (by applying the inverse linear operator).
Then, with the aid of a model editing algorithm, such as EMMET (Gupta et al., 2024), we
can learn an edited linear operator which generates an updated representation—sans the
unwanted outputs. If the edited linear operator can maintain the rest of the topology, we
can unlearn a specific class without affecting the model’s performance on the other classes.
We elaborate on our methodology in Appendix D.

Table 1 reports our model editing efforts for two datasets, with starkly different results,
highlighting the importance of the neural collapse property. For the Yin-Yang dataset, we
use the most strongly regularized KAE (see Figure 3). Despite performing sufficient class
separation, the neural representation of the original MLP (and the KAEs) do not exhibit
neural collapse; there is a large within-class variance in the penultimate layer. On the other
hand, the representations of the MLP (and our KAEs) trained on MNIST exhibit strong
neural collapse (see Figure 2). As a result, model editing is successful on the MNIST dataset
but performs poorly on the Yin-Yang dataset. In Figure 4, we show the top three principal
components of the penultimate representations before and after the linear operator is edited.
Here, we edit the operator to remove class 4 (violet) by redirecting it to the class 9 (light
blue) cluster, effectively merging the two classes. As a result, the KAE surrogate unlearns
class 4. We found that the modified representations do not affect the performance of the
KAE decoder and the subsequent MLP classifier on the remaining classes.

KooPMAN AUTOENCODERS LEARN NEURAL REPRESENTATION DYNAMICS

» &
£ -

.

ok $ %

Before Edit ‘ After Edit

Figure 4: 10* points projected on the top three principal components of the neural repre-
sentations produced by the Koopman operator in observable space before editing
(left) and after editing (right). The KAE is trained on the first and penultimate-
layer representations of a MNIST classifier. The operator is edited to forget class
4 (violet) by merging the outputs of that class with those of class 9 (light blue).
The result of the merge is visible on the top right corner.

5. Limitations and Future Work

Tying together topology and dynamical systems, our work introduces Koopman autoen-
coders as surrogate models, which learn the dynamics underlying a deep network’s neural
representations. By parameterizing the linear operator, we interpolate an arbitrary number
of steps between neural representations. And, our experiments validate that the gener-
ated interpolation follows the established notion of progressively simplifying topology. We
also demonstrate how linear dynamics in observable space can enable editing the neural
representations, leading to class unlearning. For future work, several directions emerge:

¢ Representation regularization: Currently, our approach is limited to interpolating
between two neural representations. How do we regularize the dynamics to interpolate
through all the intermediate representations of a model?

e Operator interpretability: Given that a Koopman operator governs our dynamics,
does spectral analysis of the operator offer insights into the original model’s mecha-
nism?

e Observable space shaping: Since we have the freedom to shape how neural repre-
sentations look in observable space, are there other favorable topologies that enable
certain goals (e.g., disentanglement, interpretability, unlearning)?

e Architecture extensions: Extending our approach to models with different ar-
chitectures (e.g., convolutional layers, transformer blocks, etc.) could enable more
sophisticated model editing applications beyond classification tasks. Can we extend
our framework to unlearn concepts in language models?

In conclusion, our work demonstrates how Koopman theory can provide a practical
framework for working with neural representations, opening new avenues for analyzing
deep networks through the lens of dynamical systems.

References

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting
sequential data using consistent koopman autoencoders. In International Conference on
Machine Learning, pages 475-485. PMLR, 2020.

Nimrod Berman, Ilan Naiman, and Omri Azencot. Multifactor sequential disentanglement
via structured koopman autoencoders. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023.

Steven L. Brunton, Marko Budisi¢, Eurika Kaiser, and J. Nathan Kutz. Modern koopman
theory for dynamical systems. SIAM Review, 64(2):229-340, 2022.

Marko Budisi¢, Ryan Mohr, and Igor Mezié. Applied koopmanism. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 22(4), 2012.

Kuo Gai and Shihua Zhang. A mathematical principle of deep learning: Learn the geodesic
curve in the wasserstein space. arXiv preprint arXiv:2102.09235, 2021.

Akshat Gupta, Dev Sajnani, and Gopala Anumanchipalli. A unified framework for model
editing. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Findings
of the Association for Computational Linguistics: EMNLP 2024, pages 15403-15418,
Miami, Florida, USA, November 2024. Association for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770-778, 2016.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings
of the National Academy of Sciences, 17(5):315-318, 1931.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
neural network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 3519-3529. PMLR, 09-15
Jun 2019.

Laura Kriener, Julian Goltz, and Mihai A. Petrovici. The yin-yang dataset. In Neuro-
Inspired Computational Elements Conference, NICE 2022, page 107-111. ACM, 2022.

Richard D Lange, Devin Kwok, Jordan Kyle Matelsky, Xinyue Wang, David Rolnick, and
Konrad Kording. Deep networks as paths on the manifold of neural representations.
In Timothy Doster, Tegan Emerson, Henry Kvinge, Nina Miolane, Mathilde Papillon,
Bastian Rieck, and Sophia Sanborn, editors, Proceedings of 2nd Annual Workshop on
Topology, Algebra, and Geometry in Machine Learning (TAG-ML), volume 221 of Pro-
ceedings of Machine Learning Research, pages 102-133. PMLR, 28 Jul 2023.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

10

KoOOPMAN AUTOENCODERS LEARN NEURAL REPRESENTATION DYNAMICS

Jianing Li and Vardan Papyan. Residual alignment: uncovering the mechanisms of residual
networks. Advances in Neural Information Processing Systems, 36:57660-57712, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Ilan Naiman, N. Benjamin Erichson, Pu Ren, Michael W. Mahoney, and Omri Azencot.
Generative modeling of regular and irregular time series data via koopman vaes. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks.
Journal of Machine Learning Research, 21(184):1-40, 2020.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during
the terminal phase of deep learning training. Proceedings of the National Academy of
Sciences, 117(40):24652-24663, 2020.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant
subspaces for dynamic mode decomposition. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Alex H Williams, Erin Kunz, Simon Kornblith, and Scott Linderman. Generalized shape
metrics on neural representations. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 4738-4750. Curran Associates, Inc., 2021.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun
Chen, and Ningyu Zhang. Editing large language models: Problems, methods, and
opportunities. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore,
2023. Association for Computational Linguistics.

11

Appendix A. Preliminaries

A.1. Topology

Our concrete measure of an object’s topology refers to its Betti numbers. For a k-dimensional
manifold, one can compute k Betti numbers, defining its topological signature. The zero-th
Betti number, 5y, of a manifold refers to the number of unconnected components. The
k-th Betti number, for k£ > 1, quantifies the number of k-dimensional holes in the manifold.
This manifests in the popular, though counterintuitive, quip that ‘a donut is topologically
equivalent to a coffee mug.” Both objects have one connected component, a single 1-D hole,
and zero 2-D holes, giving them the Betti number sequence g = {1,1,0}.

When working with discrete manifolds, such as neural representations from a network,
quantifying topology relies on persistence homology. Very simply, the approach computes k-
dimensional simplices (e.g., points, lines, triangles, tetrahedra, etc.) of an object at varying
scales, which determine an object’s homologies. These homologies are closely related to the
Betti numbers; by tracking these homology groups across scales, one can make claims about
an object’s topology. We rely on the Vietoris-Rips (VR) complex, a particular method
of computing the simplices, which in turn informs the Betti numbers. The VR complex
requires a distance metric (in our case Euclidean) and a scale parameter e. For a more
detailed background on algebraic topology we refer to Naitzat et al. (2020).

A.2. Koopman theory

In a typical discrete dynamical system, we observe measurements of a state x, € M C RN
at time ¢ € Z™, which evolve under a mapping 7 : M — M, such that

Xp1 = T (Xp)- (13)

When 7T is nonlinear, these systems are often analyzed using linear approximations near
fixed points, often to control the underlying nonlinear system.

Koopman operator theory suggests an alternative global linearization of the dynamics
by finding a map in the observable space, ¢p(x) : M — F C C. In this space, the linear
map K : F — F, which evolves the observables, is defined as the Koopman operator. If we
assume our observables as vectors, we obtain the form

P(xk+1) = K o d(xx), (14)

where ¢ “lifts” our original system states into the observable space resulting in a system
that evolves under a linear operator. The forecast can be obtained in the state space by
applying an inverse operation ¢! : F — M to the result of the forward dynamic. Brunton
et al. (2022) provide a fuller view of modern applications of Koopman theory, along with
its rich history in machine learning.

Appendix B. Dataset and model details
B.1. Yin-Yang task

The Yin-Yang dataset (Kriener et al., 2022) is a task with two-dimensional inputs consist-
ing of three classes, allowing for easy visualization of the model’s decision boundary and

12

KooPMAN AUTOENCODERS LEARN NEURAL REPRESENTATION DYNAMICS

topology. For our experiments, we use a residual MLP architecture
Residual MLP : R? — Linear(2 — 10, ReLU) — 4x [ResBlock(10, ReLU)] — Linear(10 — 2)

We generate a training dataset of 5 x 10% samples, with roughly equal distribution
among the three classes. For the test dataset, we generate another set of 5 x 10% samples
with a different seed. The network is trained to a test accuracy of 99.31% using SGD with
momentum (set to 0.9) for 500 epochs. We use a batch size of 512 samples, a weight decay
set to 5 x 107*, and a cyclic learning rate peaking at 10~!. Figure 5 shows the neural
activations for each output layer from the Yin-Yang dataset.

Figure 5: The top three principal components of the neural representations from the first
layer (LO) and all residual blocks (L1-5) of a multi-layer perceptron (MLP) with
a ResNet-style architecture. Each plot contains 2 x 10? points and undergoes the
preprocessing steps outlined in Section 3.3 before PCA for plotting. The model is
trained on the Yin-Yang dataset (Kriener et al., 2022), a three-way classification
task.

B.2. MNIST task

b .
-~ ° 2 . » " g
N re,
¥ R
i
L3 L4

Figure 6: The top three principal components of the neural representations from the first
layer (LO) and all residual blocks (L1-4) of a residual multi-layer perceptron
(MLP). Each plot consists of 2 x 10% points and undergoes the preprocessing
steps outlined in Section 3.3 before PCA. The model is trained on the MNIST
digits task.

13

For the MNIST task Lecun et al. (1998), we train a residual MLP with four blocks to a
test accuracy of 99.03% using SGD with momentum (set to 0.9)

Residual MLP : R? — Linear(2 — 784, ReLU) — 4x [ResBlock(784, ReLU)] — Linear(784 — 2)

The model is trained for 30 epochs on a batch size of 128 samples, a weight decay set to
5 x 107%, and a cyclic learning rate peaking at 10~!. Similar to Figure 5, we show the
neural activations from each output layer of the MNIST model in Figure 6.

Appendix C. Koopman autoencoder details

We use the AdamW optimizer (Loshchilov and Hutter, 2019) to train our KAEs. Table 2
outlines the architecture of the Koopman autoencoders used in both tasks.

Table 2: KAE architecture

COMPONENT YIN-YANG MNIST
batch xR batch xR7®4

Encoder Linear(10 — 30) — LeakyReLU Linear(784 — 1000) — LeakyReLU
Linear(30 — 20) Linear(1000 — 800)

Koopman Matrix batch xR0 batch xR8%
Linear(20 — 20) Linear (800 — 800)
batch xR’ batch xR800

Decoder Linear(20 — 30) — LeakyReLU Linear(800 — 1000) — LeakyReLU
Linear(30 — 10) Linear(1000 — 784)

Table 3 presents the hyperparameter choices.

Table 3: KAE hyperparameter details

DATASET BATCH OBS. DIM. EPOCHS Aecon Alin Astate Adist LEARN. RATE WEIGHT DECAY

Yin-Yang 1024 20 1000 1 1 1 1 1x 101! 5x 1074
MNIST 512 800 100 1 1 1 1073 5x 1073 5x 1074

14

KoOOPMAN AUTOENCODERS LEARN NEURAL REPRESENTATION DYNAMICS

Appendix D. Model Editing

We outline the steps of our model editing approach in Algorithm 1.

Algorithm 1: Model Editing with Koopman Autoencoders

Input: trained KAE {¢, K, ¢!}, representations {x;,x;}, target class c
Output: Updated output representations X;

1. Identify unwanted outputs

(a) Zgel < {¢(x;) | x; belongs to class c}

(b) Zyeep < {#(x5) | x; not in class c}
2. Compute corresponding inputs

(2) Xmem < K710 Zge
(b) Xikeep + {Xi | x; not in Xmem }

3. Select alternative outputs

(a) Zpew < alt_output(X,)
4. FEdit operator

(a) L < EMMET(K, {Xmem, Znew}> { Xkeeps Zkeep })
5. Update representations

(a) Xj < Lox;

15

	Introduction
	Related Work
	Koopman Autoencoders as Surrogates
	Architecture
	Objectives
	Preprocessing Representations
	Parametrization

	Experiments
	Encoder Isometry
	Simplifying Topology
	Application: Model Editing

	Limitations and Future Work
	Preliminaries
	Topology
	Koopman theory

	Dataset and model details
	Yin-Yang task
	MNIST task

	Koopman autoencoder details
	Model Editing

