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In the olfactory system, odor percepts retain their identity despite sub-
stantial variations in concentration, timing, and background. We study
a novel strategy for encoding intensity-invariant stimulus identity that
is based on representing relative rather than absolute values of stimulus
features. For example, in what is known as the primacy coding model,
odorant identities are represented by the conditions that some odorant re-
ceptors are activated more strongly than others. Because, in this scheme,
odorant identity depends only on the relative amplitudes of olfactory re-
ceptor responses, identity is invariant to changes in both intensity and
monotonic nonlinear transformations of its neuronal responses. Here we
show that sparse vectors representing odorant mixtures can be recovered
in a compressed sensing framework via elastic net loss minimization. In
the primacy model, this minimization is performed under the constraint
that some receptors respond to a given odorant more strongly than others.
Using duality transformation, we show that this constrained optimiza-
tion problem can be solved by a neural network whose Lyapunov func-
tion represents the dual Lagrangian and whose neural responses repre-
sent the Lagrange coefficients of primacy and other constraints. The con-
nectivity in such a dual network resembles known features of connectiv-
ity in olfactory circuits. We thus propose that networks in the piriform
cortex implement dual computations to compute odorant identity with
the sparse activities of individual neurons representing Lagrange coeffi-
cients. More generally, we propose that sparse neuronal firing rates may
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represent Lagrange multipliers, which we call the dual brain hypothesis.
We show such a formulation is well suited to solve problems with mul-
tiple interacting relative constraints.

1 Introduction

Sensory systems face the problem of identifying stimulus features that are
invariant to various transformations. The olfactory system, for example, has
to identify stimuli despite substantial variations in odorant concentration.
Computing concentration invariant odor identity is necessary to enable
a stable perception in chemical gradients and turbulent odorant plumes.
How can the olfactory system robustly represent odorant identity despite
variable stimulus intensity? The first step of olfactory processing involves
odorants binding to and activating a set of molecular sensors known as ol-
factory receptors (ORs). ORs are proteins expressed by olfactory sensory
neurons (OSNs) located in the nose. Most mammalian olfactory systems
contain about 1000 types of ORs, while humans rely on the responses of
only 350 (Firestein, 2001; Koulakov, Gelperin, & Rinberg, 2007; Zhang &
Firestein, 2002). Importantly, every OSN expresses only a single type of OR
chosen randomly out of the large ensemble. Odorant identity is then inter-
preted from the patterns of activation of OR and, by extension, OSNs.

Here we examine the hypothesis that stimulus identity is inferred based
on the relative amplitudes of OSN responses. In particular, we propose that
odorant identity can be determined using only the information that a subset
of receptors individually responds more strongly than all other receptors.
We call this type of representation the primacy model. The primacy model
is inspired by a recent experimental observation that odorant identity is rec-
ognized on the basis of inputs present within the first 100 milliseconds of
the animal’s sniff cycle (Wilson, Serrano, Koulakov, & Rinberg, 2017). We
will show that the coding scheme based on the primacy model yields odor-
ant representations that are independent of absolute odorant concentration.
We formulate this identity decoding scheme using a dual Lagrange-Karush-
Kuhn-Tucker problem and argue that this dual problem can be solved by
a neural network that we call a dual network. Dual networks that imple-
ment the primacy model share many features with real olfactory networks.
Our goal is therefore to derive the structure of olfactory circuits from first
principles, based on the primacy model.

2 Results

2.1 Representing Odorants by Sparse Vectors. Ethologically important
odorant stimuli are mixtures of monomolecular components. Such stim-
uli can be represented by a vector of concentrations �x. Each component of
this vector x j is equal to the concentration of an individual monomolecular
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component numbered by index j. The number of potential monomolecu-
lar components, which is equal to the dimensionality of vector �x, will be
denoted here by M. This number can be estimated to be around several
million, M ∼ 106, based on the count of potentially volatile molecules with
molecular weight less than 300 Dalton in the popular database PubChem
(Kim et al., 2016). However, ethological odorant mixtures do not contain
all of these molecules at the same time and are therefore represented by
sparse vectors �x. For the purposes of the olfactory system, sparseness of
the concentration vector is further increased by the system’s inability to de-
tect or recognize individual components. Indeed, psychophysical studies
suggest that the number of monomolecular components of the vector �x de-
tectable by a human observer K is close to 12 (Jinks & Laing, 1999). Overall,
we suggest that ethologically relevant odorants can be defined by highly di-
mensional (M ∼ 106), sparse concentration vectors �x with very few nonzero
elements (K ∼ 10).

Odorant mixtures then enter the olfactory system through the responses
of ORs �r. These responses, to the first approximation, can be represented
by a linear nonlinear function of the concentration vector �x. In the simplest
model, using receptors with only one binding site and no cooperativity, the
law of mass action yields (see the appendix)

ri = F(yi), (2.1)

yi =
∑

j

Ai jx j. (2.2)

Here index i = 1, . . . , N enumerates OR types. The total number of func-
tional OR types, N, varies between 350 in humans and 1100 in rodents. Ma-
trix element Ai j can be interpreted as the affinity of molecule type j to re-
ceptors of type i. F(y) = y/(1 + y) is the nonlinear function describing acti-
vation of a receptor (see the appendix).

The problem solved by the olfactory system can then be formulated as
follows: find the identity of the odorant stimulus x j given the set of re-
sponses of olfactory sensory neurons ri.

2.2 Sparse Olfactory Stimulus Recovery. In many concentration
regimes, it is reasonable to approximate the receptor response ri using only
its linear input yi. In this case, the problem solved by olfactory system (how
to find �x given �y ) can be reduced to solving the system of linear equations
(see equation 2.2). This problem is not entirely trivial because the number
of unknowns (components of �x, M ∼ 106) is substantially larger than the
number of equations (components of �y, N ∼ 103). Some help comes from
the fact that the vector of unknowns is sparse. The problem of recovering
a sparse vector from a system of linear equations has been addressed in
compressed sensing (Baraniuk, 2007; Donoho & Tanner, 2005, 2006). In this
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framework, vector �x can be found exactly, despite the fact that it contains
more components than equations. This is because the vector �x is sparse and
the number of nonzero components is small. To be able to find �x exactly, a
certain condition has to be met relating parameters M, N, and K. This condi-
tion can be understood by comparing the amounts of information contained
in the input and output space. One can accurately determine the unknowns
if the information capacity of �y exceeds that of �x. These two amounts can be
estimated by using the statistical physics definition of the amount of infor-
mation:

H = log �. (2.3)

Here H and � are the amount of information and the number of states a
variable can take, respectively. For example, a string of N binary numbers
contains H = N bits of information, which follows from equation 2.3 if the
number of possible values of the binary string is � = 2N. The number of val-
ues taken by the receptor response vector �y can then be estimated as �y ∼ 2N

(for the purposes of our order-of-magnitude estimate, we assume here that
the elements of �y are binary). The number of possible combinations con-
tained in the concentration vector �x can be estimated as the number of ways
to place K nonzero elements into M bins—that is, �x ∼ CK

M ∼ MK. Similar
to the estimate for receptor responses, we assume here that concentrations
are binary. This assumption is reasonable if the number of distinguishable
concentrations for an element of �x is much less than the total number of el-
ements in �x, M. Thus, equation 2.2 can be solved exactly if the number of
combinations contained in vector �y is larger than the number of possible
states of the concentration vector �x, �y > �x, which, given our estimates,
yields the following condition:

N > K log M. (2.4)

This condition can be recognized as the necessary condition for sparse sig-
nal recovery using l1 norm minimization obtained by Donoho and Tanner
(2005, 2006). For K ∼ 10 and M ∼ 106 we obtain the following constraint for
the number of OR types necessary for the recovery of the sparse stimulus:
N > 200, which is satisfied for both humans (N ≈ 350) and mice (N ≈ 1100).
Thus, equation 2.2 can in principle be solved with the existing machinery
in the olfactory system. This means that with linear responses, the olfac-
tory system can reconstruct K ∼ 10 monomolecular components given the
responses of N ≈ 1100 ORs.

To determine �x given �y within compressed sensing, one can use sparse
signal recovery via minimization of the l1 norm (Baraniuk, 2007; Donoho &
Tanner, 2005, 2006):
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�x = arg min
�y=A�x
x j≥0

∑
j

x j. (2.5)

Here, because molecular concentrations �x are constrained to be nonnega-
tive, minimization of the l1 norm is equivalent to minimization of the sum
of the components of �x. Because the system is overcomplete, there are many
vectors �x for which yi = ∑

j Ai jx j is satisfied exactly. Minimization of the l1
norm ensures that the solution is sparse.

Solving the decoding problem using equation 2.5 is somewhat unrealis-
tic because receptor responses are nonlinear. Furthermore, the solution of
equation 2.5 is not concentration invariant. That is, doubling the mixture
concentration results in doubling of each component of the concentration
vector �x and, as a result, the doubling of the vector of receptor responses
�y = A�x. Solving equation 2.5 under the constraint of doubled vector �y re-
sults in a doubled reconstructed vector of concentrations �x. Our goal, how-
ever, is to build a representation that is concentration invariant and not to
be limited to regimes where receptor response is linear. More specifically,
we want a representation of an odor that is invariant to multiplication of the
concentration vector of that odor by a scalar. This means that we would like
to obtain a framework in which doubling receptor responses �y or the pres-
ence of nonlinearities, such as given by equation 2.1, does not affect the re-
constructed stimulus. Such a model would yield a concentration-invariant
odorant identity. Next, we show how a primacy-based decoding model can
implement such a computation.

2.3 Concentration Invariant Decoding Algorithm via Primacy. To
achieve an odorant representation that is invariant to both concentration
fluctuations and monotonic nonlinearities of receptor responses, we refor-
mulate the sparse recovery problem to use only relative constraints. Con-
ceptually, the relative constraints we introduce isolate a set of receptor
types, each of which responds more strongly than all other receptor types.
We call this strongly responding set of receptors the primacy set P, while
all other receptors are denoted by P̄. The primacy set is expected to include
p � 1000 receptor types. For these two sets we can state:

rP ≥ rP̄. (2.6)

Here, rP is the set of components of vector �r that belong to the primacy
group P of the given odorant. The expanded version of equation 2.6 is there-
fore ri ≥ r j for any i ∈ P and j ∈ P̄. Because the nonlinearity relating ri and
yi is monotonic, equation 2.6 results in the same constraint on components
of vector �y:

yP ≥ yP̄. (2.7)
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Figure 1: Using relative values of receptor responses can solve the problem of
recovering sparse concentration vector �x. (A) An example concentration vector
x alongside its reconstruction (blue) using only relative information that a group
of receptors P respond more strongly than the rest. (B) Correlation between the
reconstructed and true concentration vectors for different sparsity (K) values
and number of primary receptors (p). (C) Correlation between reconstruction
and stimulus with various levels of noise injected on input signal �y (blue) and
input neuron response �r (red).

Importantly, inequality 2.7 is invariant to changes in concentration because
concentration changes (�x → α�x ) multiply both sides of equation 2.7 by the
same factor. Also, the identities of the ORs forming the primacy set, P, are
unaffected by the nonlinearity relating r to y, so long as this nonlinearity is
monotonically increasing. Thus, reconstructions of �x using these inequali-
ties inherently have the desired invariances. We therefore reformulate the
sparse recovery problem, equation 2.5, as follows:

�x = arg min
yP≥yP̄
x j≥0

∑
j

x j. (2.8)

We implement this minimization and show that it converges to recon-
struct the stimulus vector �x in Figure 1. For this simulation and all
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subsequent simulations in this letter, we use N = 400 receptors and M =
1000 molecules. We generate affinities Ai j from a zero-mean gaussian dis-
tribution truncated at zero such that all affinities are nonnegative. In Fig-
ure 2 in the online supplement, we show that this assumption on the dis-
tribution of Ai j is unnecessary and that our algorithm works for uniform
or log-normally distributed Ai j matrices for a wide range of the number of
receptors N and molecules M.

The nonlinearity in responses of each receptor, equation 2.1, is likely to
be similar but not identical. The primacy model would not yield invari-
ant odorant representations when nonlinearities are highly variant for each
component of �y. In this case, large changes in concentration for certain odor-
ants would elicit a different perception, as sometimes seen in human per-
ception (Arctander, 1969).

Overall, using the relative rather than the absolute values of sensor re-
sponses to recover odorant identity results in invariance with respect to
stimulus intensity. Using relative responses of sensors has a long history
in neuroscience and includes color constancy (Foster, 2011), responses of
differentiating (on/off-center) cells in retina, edge detection in the visual
cortex (Rodieck, 1998), and relying on the relative responses of OSNs in the
olfactory bulb implemented by normalization (Cleland et al., 2011; Cleland,
Johnson, Leon, & Linster, 2007). Although we demonstrated this idea for the
particular example of primacy coding, we propose that this neural relativity
rule is used to produce perceptual invariance and invariant signal recovery
with respect to other stimulus transformations.

In addition to invariance to changes in concentration and monotonic
transformations of receptor signals, primacy codes are inherently robust
to noise. Not only are the strongest responding receptors the most reliable,
but many neighboring concentration vectors share the same primacy set.
Furthermore, neighboring primacy sets can produce similar reconstruc-
tions. The result is a code unaltered by even high levels of noise, as shown
in Figure 1.

Instead of minimizing the pure l1 norm to find sparse solutions, one can
minimize the elastic net functional:

�x = arg min
yP≥yP̄
x j≥0

∑
j

(
x j + ε

x2
j

2

)
(2.9)

Equation 2.9 is the same as the l1 norm minimization, equation 2.8, when
the parameter ε → 0. For small parameter ε, equation 2.9 yields sparse so-
lutions similar to equation 2.8. Problem 2.9, however allows for an easier
dual space formulation. We will therefore use the elastic net minimization,
equation 2.9, to recover olfactory stimuli in the rest of the letter with a suffi-
ciently small parameter ε such that the elastic net and l1 solutions are close.
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2.4 Number of Receptors Needed to Implement Primacy Coding.
Since we are using relative response information to decode the sensory in-
put, we have to amend our estimate (see equation 2.4) of the number of re-
ceptors necessary to fully recover a sparse stimulus. In the primacy model,
the amount of information in �y is reduced as we are concerned only with
the p strongest responding receptors. Therefore, the number of combina-
tions in �y is given by the binomial coefficient �y ∼ Cp

N ∼ Np. By keeping the
estimate for the number of combinations in �x the same, �x ∼ MK, and as-
suming that for reconstructing �x, the number of combinations of �y has to
exceed the number of combinations in �x, we easily arrive at the following
condition:

p > K
log M
log N

. (2.10)

For a typical mammal, such as mouse, in which the number of ORs is ap-
proximately N ≈ 1000, we obtain p > 2K. For humans, in which the number
of functional ORs is N ≈ 350, the primacy number (the size of the primacy
receptor set) required is somewhat higher, p > 2.4K. In both estimates, we
assumed that the number of molecule types available in the environment
is close to M ∼ 106. If one assumes that the number of discernable molec-
ular components in each mixture is K ∼ 12, as follows from human psy-
chophysics (Jinks & Laing, 1999), we obtain the primacy number p > 30,
which is substantially fewer than the total number of receptors in humans
N ≈ 350.

2.5 Hard Primacy Conditions. Problem 2.9 includes various inequality
constraints, including the primacy constraints (see equation 2.6) yP ≥ yP̄.
These conditions can be reformulated in a more convenient form. Indeed,
conditions 2.6 have no scale in them. Therefore, minimization of the l1 norm
or elastic net functional of �x connected to �y via a set of positive coefficients
A (�y = A�x ) results in the trivial solution �x = 0. To obtain a nonzero solution,
one has to introduce a finite scale into the conditions 2.6. A set of conditions
with the constrained magnitude is

yP ≥ γ , γ ≥ yP̄ (2.11)

where γ ≥ 0 is the scale parameter. The value of this parameter is arbitrary,
so we use γ = 1 in all simulations. In addition to providing a nonzero so-
lution, introduction of a scale parameter also reduces the number of con-
straints in equation 2.6 from p(N − p) to N. By introducing a sign variable
ui = +1 for i ∈ P and ui = −1 for i ∈ P̄, equation 2.11 can be rewritten as a
single set of conditions,



718 D. Kepple, H. Giaffar, D. Rinberg, and A. Koulakov

ui(yi − γ ) ≥ 0. (2.12)

Here yi = ∑
j Ai jx j where the affinity of receptor i to odorants j is given by

a set of nonnegative numbers Ai j. Problem 2.9 combined with constraints
2.12 represents our primal optimization problem. Constraints defined by
equation 2.12 will be called the hard primacy conditions.

2.6 Soft Primacy Conditions. As an alternative to equation 2.12, we
propose a simpler set of conditions:

yi − uiγ ≥ 0. (2.13)

These conditions operate differently for primary versus nonprimary recep-
tors. For the primary set, i ∈ P, they are equivalent to conditions in equa-
tion 2.12, that is, yi ≥ γ . Therefore, these inequalities ensure that the re-
sponses of primary receptors are larger than parameter γ . For nonprimary
receptors, these inequalities become yi ≥ −γ . Since yi = ∑

j Ai jx j and both
A and x are nonnegative, this inequality is always satisfied. Therefore, the
equation 2.13 conditions define the lower limit for the primary set of recep-
tors, but not for the nonprimary receptors. We therefore call inequalities in
equation 2.13 the soft primacy conditions.

Interestingly, however, the soft primacy conditions implicitly constrain
the nonprimary receptors as well. Although the equation conditions 2.13
for nonprimary receptors become trivial, that is, yi ≥ −γ , minimization of
vector �x minimizes the unconstrained elements of vector �y, or nonprimary
elements. In practice, we find that after minimizing the �1 norm of �x, non-
primary receptors obey yP̄ < γ , as required by the hard primacy conditions.
Thus, for practical purposes, the soft primacy conditions are equivalent to
the hard ones. As we showed before (Kepple, Rinberg, & Koulakov, 2016),
the hard primacy conditions result in dual networks with an interaction ma-
trix dependent on odor stimuli, vector ui, which is difficult to implement
biologically. Below, we show that the soft primacy conditions can be imple-
mented by a network with weights independent of the odorants presented.
Thus, the network implementation based on the soft primacy conditions is
more biologically plausible. We will therefore adopt the soft primacy condi-
tions for the remainder of this letter. The approximate equivalence between
soft and hard primacy conditions is illustrated in Figure 2. We therefore for-
mulate the following primal problem that can potentially be solved by the
olfactory system:

�x = arg min
yi−uiγ≥0

x j≥0

∑
j

(
x j + ε

x2
j

2

)
. (2.14)
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Figure 2: The solutions provided by soft and hard primacy conditions are sim-
ilar. (A) An example concentration vector �x alongside its hard primacy recon-
struction (blue) and the soft primacy reconstruction (orange). (B) The correlation
between the hard and soft primacy solutions for various sparsity K and primacy
number p.

2.7 Formulation of the Dual Problem. The primal problem (see equa-
tion 2.14) cannot be easily solved by a neural network. To implement a neu-
ral network solution, we use its dual formulation. To transform the primal
minimization problem (see equation 2.14) into its dual problem, we intro-
duce a cost function (Lagrangian) with two sets of Lagrange multipliers,
αi and β j. Each multiplier αi, with i = 1, .., N, enforces an individual soft
primacy constraint (see equation 2.13), yi − uiγ ≥ 0. Each β j enforces a con-
straint x j ≥ 0 for j = 1..M. The full Lagrangian for the elastic net minimiza-
tion problem, equation 2.14, is

L(�x, �α, �β ) =
∑

j

(x j + εx2
j/2) −

∑
i

αi

⎛
⎝∑

j

Ai jx j − uiγ

⎞
⎠ −

∑
j

β jx j.

(2.15)

In this equation, the Lagrange multipliers αi and β j represent the impor-
tance of different constraints. Because the cost function (see equation 2.15)
will be minimized with respect to �x, Lagrange multipliers are constrained
to have nonnegative values αi, β j ≥ 0 (Boyd & Vandenberghe, 2004). This
ensures that at the minimum of the cost function, the target conditions,
yi − uiγ ≥ 0 and x j ≥ 0, are satisfied. If, for example, one of the coefficients
β j were negative in equation 2.15, decreasing the corresponding x j below
zero may be found to be advantageous from the point of view of minimiz-
ing the cost function.

To derive the dual formulation of the primal optimization problem,
equation 2.14, we minimize the Lagrangian (see equation 2.15) with respect
to �x as if no constraints were present. We therefore find the optimal value
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of �x denoted here as �x∗. We then rewrite the Lagrangian with this optimal
value of �x, which depends only on �α and �β. The resulting function is called
the dual Lagrangian θ (�α, �β ):

∂L(�x, �α, �β )
∂�x

= 0 → x∗
j = 1

ε

(∑
i

αiAi j + β j − 1

)
, (2.16)

θ (�α, �β ) ≡ L(�x∗, �α, �β ) = − 1
2ε

∑
ik

αiGikαk − 1
ε

∑
i j

αiAi jβ j −

− 1
2ε

∑
j

(β2
j − 2β j )+γ

∑
i

αiui+1
ε

∑
i

αi

∑
j

Ai j.

(2.17)

Here Gik = ∑
j Ai jAk j is the Gram matrix (the matrix of pairwise scalar prod-

ucts) for rows of affinity matrix Â.
According to optimization theory (Boyd & Vandenberghe, 2004), the

dual Lagrangian θ (�α, �β ) is to be maximized to find the optimal values of
�α and �β. These values can then be used to find the solution of the primal
problem using equation 2.16. One can think of the dual Lagrangian, a func-
tion of the constraint multipliers �α and �β, as a lower bound for the primal
problem. Thus, we maximize the dual Lagrangian because we want to find
the greatest lower bound for our minimization problem. The dual problem
can therefore be formulated as

(�α∗, �β∗) = arg max
αi≥0
β j≥0

θ (�α, �β ). (2.18)

The dual problem is formulated in terms of Lagrange multipliers �α and
�β. This makes it different from the primal optimization problem, equa-
tion 2.14, which is formulated in terms of �x. The solution to the dual prob-
lem, however, is also the solution to the primal problem, since they are con-
nected via equation 2.16.

The reason the dual problem, equation 2.18, is sometimes preferred to
the primal problem, equation 2.14, is in the simplicity of its constraints. In
many cases, the constraints αi, β j ≥ 0 are easier to implement than the pri-
mal problem’s inequalities. The important observation that we make here
is that neural systems are well suited for implementing dual optimizations.
For example, it is especially easy to impose nonnegativity constraints be-
cause neural responses are described by firing rates that cannot fall below
zero. Motivated by this observation, we argue that the Lagrange multipli-
ers �α and �β could be represented by responses of different types of olfactory
neurons that solve the dual rather than the primal representation problem.
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Another motivation for linking neural activity with Lagrange multipli-
ers can be derived from the Karush-Kuhn-Tucker theorem (KKTT) (Boyd
& Vandenberghe, 2004; Kuhn & Tucker, 1951). According to KKTT, at the
maximum of a dual Lagrangian, such as equation 2.17, the Lagrangian con-
tributions in equation 2.15 vanish:

αi

⎛
⎝∑

j

Ai jx j − uiγ

⎞
⎠ = 0, (2.19)

β jx j = 0. (2.20)

These equations are valid for all values of i and j. The former equation im-
plies that either αi = 0, in which case

∑
j Ai jx j − uiγ can assume any non-

negative value (inactive constraint), or
∑

j Ai jx j − uiγ = 0, which allows αi

to be nonzero (active constraint). The Lagrange coefficients αi = 0 describe
constraints that have no impact on the solution of the optimization problem,
explaining why they are called inactive. This observation implies that many
αi are expected to be zero, making the vector of responses �α sparse. This
observation could provide a rationale to the observed sparsity of neural ac-
tivities in the olfactory system (Kay & Laurent, 1999; Koulakov & Rinberg,
2011; Rinberg, Koulakov, & Gelperin, 2006; Stettler & Axel, 2009) and be-
yond (DeWeese & Zador, 2006; Hromadka, DeWeese, & Zador, 2008; Lehky,
Sejnowski, & Desimone, 2005; Vinje & Gallant, 2000). A mapping between
the dual problem and neural responses could thus explain sparsity of neu-
ral responses as a corollary of KKTT.

2.8 Dual Networks. We now describe neural networks that can solve
the dual problem, equation 2.18. We associate vectors �α and �β with the
firing rates of two groups of neurons (cell types). The conditions αi ≥ 0
and β j ≥ 0 are then satisfied automatically as the firing rates of neurons
cannot be negative. We assume that the neurons are connected to a net-
work and the Lyapunov function of that network H(�α, �β ) is proportional to
the negative of the dual Lagrangian. We use the negative dual Lagrangian
in order to follow the convention of constructing networks that minimize
a Lyapunov function (whereas the dual Lagrangian is to be maximized).
For simplicity, we assume that the Lyapunov function of the network is
H(�α, �β ) = −εθ (�α, �β ). For the Lyapunov function, from equation 2.17, we
obtain

H(�α, �β ) = 1
2

∑
ik

αiGikαk +
∑

i j

αiAi jβ j +

+
∑

j

(β2
j /2 − β j ) − εγ

∑
i

αiui −
∑

i

αi

∑
j

Ai j (2.21)
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To be able to interpret equation 2.21 as a Lyapunov function, we have to pro-
pose a network whose dynamics minimizes it. To generate network equa-
tions for each neuron in the network, we define internal variables that can
be viewed as the total synaptic input current for each neuron. For αi and β j

neurons, these currents will be denoted ai and b j, respectively. Consider the
following equations for ai and b j:

ȧi + ai = −
∑

k

Wikαk −
∑

j

Ai jβ j + εγ ui +
∑

j

Ai j, (2.22)

ḃ j + b j = −
∑

i

αiAi j + 1, (2.23)

Wik = Gik − δik, (2.24)

αi = [ai]+, β j = [b j]+. (2.25)

Here and throughout this letter, we use ẋ ≡ dx/dt. Equation 2.22 de-
scribes inputs into neurons with firing rates αi connected to each other by
weights −Wik. Connectivity between α-neurons is symmetric. These cells
are also connected to β j neurons with synaptic weights—Ai j, the affin-
ity matrix. α-neurons receive an external excitatory drive equal to εγ ui +∑

j Ai j. Equation 2.23 describes β j neurons that are connected symmetri-
cally to α-neurons. For both cell types, their firing rates (αi and β j) are re-
lated to their inputs (ai and b j) by rectifying threshold-linear relationships
(ReLU), equation 2.25 ([x]+ = x for x ≥ 0 and [x]+ = 0 for x < 0). The circuit
diagram for the network described here is presented in Figure 3.

It is straightforward to verify that these equations can be rewritten as a
gradient descent:

ȧi = −∂H(�α, �β )
∂αi

, (2.26)

ḃ j = −∂H(�α, �β )
∂β j

. (2.27)

Here H(�α, �β ) is the Lyapunov function given by equation 2.21. To show that
H(�α, �β ) is indeed a Lyapunov function, that is, a function that is not increas-
ing and bounded, we follow conventional methods. To prove monotonicity
of time evolution, we observe that

dH(�α, �β )
dt

=
∑

i

∂H(�α, �β )
∂αi

α̇i +
∑

j

∂H(�α, �β )
∂β j

β̇ j =

= −
∑

i

ȧiα̇i −
∑

j

ḃ jβ̇ j = −
∑

i

f ′(ai)ȧ2
i −

∑
j

f ′(b j )ḃ2
j ≤ 0.

(2.28)
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Figure 3: The dual network model described by equations 2.22 through 2.25.
(A) The structure of the network. α cells (light green) implement the dual rep-
resentation of the concentration vector. β cells (dark green) implement the non-
negativity constraints on the concentration vector. (B) Example firing rates of
alpha cells. (C) Example firing rates of beta cells. (D) Example of the firing rate
model’s reconstruction (orange) of the concentration vector compared with the
original concentration vector (black). (E) Correlation between the firing rate re-
construction of the concentration vector and the true concentration vector for a
range of stimulus and network parameters, K and p.

Here f (x) = [x]+, f ′(x) ≥ 0. Because, according to equation 2.28,
dH(�α, �β )/dt ≤ 0, and because equation 2.21 is bounded from below,
our network will minimize the Lyapunov function, equation 2.21. Due to
the physically imposed nonnegativity of firing rates, the variables in equa-
tion 2.25 will stay nonnegative throughout the course of this optimization,
automatically satisfying the inequalities needed to solve the dual problem.
We conclude therefore that our two-cell-type network can solve the dual
optimization problem, equation 2.17, and thereby compute accurately
molecular composition of a mixture in dual space.

2.9 Implementing the Primacy Variables ui. The purpose of the vari-
ables ui is to identify the set of primary variables yi, that is, the set of p com-
ponents of vector �y that are larger than all others. For primary/nonprimary
yi, variables ui are expected to be equal to +1/−1, respectively. To compute
these variables, we introduce a p-winners-take-it-all network that identifies
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p strongest inputs and suppresses the representations of the remainder of
inputs. This network contains a population of inhibitory neurons, g, which
are activated by the firing of p of the primacy neurons u. The equations
specifying the dynamics of such a network are

g = h

(∑
k

h(uk) − p

)
, (2.29)

ui = s (ri − T − cg). (2.30)

Here, h(x) is the Heaviside function, while s(x) is a hysteretic sign function.
The latter function is activated (changes activity from −1 to +1) when x > 0
and is deactivated at very low levels of input. Other parameters include c,
the strength of inhibition from neurons of type g, and T, a detection thresh-
old of the u neurons. Odorants that do not activate receptors above T will
not be perceived. Because the activities of each ui are controlled by its input
from receptor ri, u-cells with the strongest inputs (primary) win over the
cells with weaker inputs (nonprimary). This dynamic will select a certain
number of cells that have the strongest receptor input (see Figure 1 in the
online supplement).

We found that this network finds robust solutions if s(x) function, the ac-
tivation function for the u-cells in equation 2.29, is hysteretic, similar to pre-
vious studies (Sanders, Berends, Major, Goldman, & Lisman, 2013; Sanders
et al., 2014; Wilson et al., 2017). This is because activities of receptors are
often transient, and therefore the sustained activity of hysteretic neurons
following an initial activation makes representations stable until the end of
the sniff cycle. Such behavior ensures that primary cells identified early in a
sniff cycle remain primary even though receptor responses undergo adapta-
tion or are affected by other network dynamics. This behavior is consistent
with the presence of nonlinear voltage-dependent synaptic currents in the
piriform cortex (Poo & Isaacson, 2011).

2.10 Networks Implementing Primacy. Figure 3 displays the network
implementing the dual problem, equation 2.17. It contains five cell types,
each designated by a letter. Receptor neurons (y-cells) are connected to u-
cells via feedforward excitatory connections. u-cells then connect to g cells
and α neurons. g cells enforce the primacy conditions, and α neurons com-
pute the dual representations of the stimulus. α-neurons interact with each
other by structured inhibitory connections as indicated. They also form
inhibitory connections to β-neurons described by the affinity matrix Â.
In turn, β-neurons inhibit α-cells with the same strength. α-cells enforce
the soft primacy constraints, equation 2.13. β-cells represent Lagrange-
KKT coefficients that enforce nonnegativity of concentrations of individual
monomolecular components of the stimulus vector �x.
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Figure 4: Network diagram of the simplicial dual network.

Overall, we propose a network that can solve dual constrained optimiza-
tion problems with time-dependent firing rates. These networks capitalize
on the ease with which neural firing rates can implement the dual problem’s
nonnegativity conditions compared to much more complex conditions in
the primal problem. We therefore call these circuits dual networks.

2.11 Simplicial Dual Networks. In the previous network architecture
(see Figure 3), the dual variables ui receive inputs from the receptor neurons
yi via an identity weight matrix. This implies that the number of dual vari-
ables ui = ±1 is equal to the number of ORs. This assumption is not biologi-
cally justified and is unnecessary. Instead, we could amend our soft primacy
conditions, equation 2.3, to include weighted combinations of activities of
ORs, that is, yi → ∑

j Si jy j. In this case, the soft primacy conditions read:

∑
j

Si jy j − uiγ ≥ 0. (2.31)

The number of soft primacy conditions, indexed by i, is then arbitrary and
is not limited by the number of receptors. Matrix Si j determines the weights
with which each receptor contributes to a given condition. For example, if
Ŝ = Î, the identity matrix, the previous primacy conditions, equation 2.13,
are recovered. If Ŝ is a sparse matrix of zeros and ones, each primacy con-
dition will constrain the sum of various receptor responses as opposed to
individual receptor responses.

In the simplest case, each row of the matrix Ŝ contains exactly s nonzero
values that are all equal to one. Condition 2.30 then enforces, for each
ui = +1, that a sum of s receptor responses is larger than γ . Thus, matrix
Ŝ generalizes primacy from relating the responses of individual receptors
to relating the responses of groups of receptors. We now explore the conse-
quences of such a generalization on the architecture of our dual network.
Because the subsets of s receptors form simplexes in the �y-space, we call this
network simplicial (see Figure 4).
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Since we changed the structure of our soft primacy conditions, equa-
tion 2.30, we must also update the information-theoretic argument for mix-
ture recovery, equation 2.10. Assume that matrix Ŝ contains q rows, that is,
the total number of simplexes is q. In this case, the primacy conditions imply
that p sums of receptor responses are larger than the q − p remaining sums.
The number of distinct configurations of receptor activities can therefore be
described by �y ∝ qp. Since �x ∝ MK, as before, we conclude that stimulus
recovery in the simplicial model is possible if

p ≥ K
log M
log q

. (2.32)

This condition is less restrictive than in the case of individual receptor-based
primacy (see equation 2.10). This is because the number of primacy condi-
tions q can substantially exceed the number of receptors N.

Including the generalized soft primacy conditions, equation 2.31, into
our approach is straightforward. Before, yi = ∑

k Aikxk and equation 2.13
lead to

∑
k Aikxk ≥ γ ui. Equation 2.30 states instead that

∑
jk Si jA jkxk ≥ γ ui.

To include the generalized condition into our approach, one should replace
the affinity matrix Aik with the new matrix Vik ≡ ∑

j Si jA jk throughout. We
thus obtain, instead of equation 2.21, the following equation for the dual
Lyapunov function of the network:

H(�α, �β ) = 1
2

∑
ik

αi�ikαk +
∑

i j

αiVi jβ j +

+
∑

j

(β2
j /2 − β j ) − εγ

∑
i

αiui −
∑

i

αi

∑
j

Vi j. (2.33)

Here �ik = ∑
j Vi jVk j is the interaction matrix between the coefficients α,

which is also a Gram matrix for the rows of matrix V̂ . The network that
minimizes function 2.32 can also be derived as before (see equations 2.22 to
2.25). For completeness, we list these equations here:

ȧi + ai = −
∑

k

Wikαk −
∑

j

Vi jβ j + εγ ui +
∑

j

Vi j, (2.34)

ḃ j + b j = −
∑

i

αiVi j + 1, (2.35)

Wik = �ik − δik, (2.36)

αi = [ai]+, β j = [b j]+. (2.37)

These equations can be obtained from equations 2.22 to 2.25 by replacing
Ĝ → �̂ and Â → V̂ .
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Equations for the primacy variables ui can be obtained from equa-
tion 2.37 by replacing ri with

∑
i Si jri.

2.12 Sparse Incomplete Representations in Simplicial Dual Networks.
The Lyapunov function (see equation 2.32) is a relatively simple function
on the activities of β-cells. This function could be explicitly optimized with
respect to β cell activity, resulting in a substantial simplification of the net-
work’s dynamics. Indeed, the optimal value of β j in equation 2.32 is

β∗
j =

[
1 −

∑
i

αiVi j

]
+

. (2.38)

Instead of integrating the time-dependent equations 2.34, we can evaluate
the instantaneous optimal β-cell membrane voltage b j = 1 − ∑

i αiVi j and
equation 2.38 to obtain β-cell firing rates. Variables given by equation 2.38
are not sparse. Indeed, when the values of α-cell responses are small, during
the early stages of network dynamics, β-cell firing rates would be close to
one. It would only be after some time that values of β∗

j approach zero. The
dense β-cell representation comes as a consequence of the KKT theorem. Be-
cause the concentration vector �x is sparse, �β, which enforces nonnegativity
on the zero components of �x, is dense. To obtain a more biologically plausi-
ble network, we introduce a variable β̄ j ≡ β j − 1 + ∑

i αiVi j, which provides
a sparse representation of the nonnegativity constraints. The optimal values
of this variable are

β̄∗
j = β∗

j − 1 +
∑

i

αiVi j =
[∑

i

αiVi j − 1

]
+

(2.39)

By comparing this equation with equation 2.16, we observe that each β̄∗
j

represents a component of the reconstructed concentration vector �x:

β̄∗
j = εx j. (2.40)

As such, β̄∗
j are expected to inherit the sparsity of the concentration vec-

tor. In previous work, we suggested by independent logic that granule
cells could function directly as the components of the concentration vec-
tor (Kepple et al., 2018; Koulakov & Rinberg, 2011). There, we proposed
that granule cells in the olfactory bulb form a sparse representation of com-
ponents in odor mixtures. In that work, we assumed that representations
were either temporarily or spatially incomplete. Therefore, we called it the
sparse incomplete representation (SIR) model. Here, we associate the vari-
ables β̄∗

j , which represent the concentration vector �x, with responses of the
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olfactory bulb’s granule cells, which are also found to be sparse
(Cazakoff, Lau, Crump, Demmer, & Shea, 2014). The dual network rely-
ing on responses β̄∗

j can therefore implement the previously proposed SIR
model (Kepple et al., 2018; Koulakov & Rinberg, 2011).

That β̄∗
j represent components of the reconstructed concentration vector

also has implications for later olfactory processing. In particular, as seen in
equations 2.39 and 2.40, the stimulus can be reconstructed by a relatively
simple operation on α cells. That is, α-cells alone form a full dual repre-
sentation of the stimulus; no information about the responses of β-cells is
required. α-cell representation contains a unique identifier for each odorant,
which is concentration invariant and can be used by other brain regions.

Network equations describing the dual SIR network are obtained by ex-
pressing the values of β j from equation 2.39 and plugging these values in
equations 2.33 through 2.36:

ȧi + ai = εγ ui −
∑

j

Vi jβ̄
∗
j , (2.41)

αi = [ai]+ (2.42)

β̄∗
j =

[∑
i

αiVi j − 1

]
+

. (2.43)

These equations describe a much simpler network than 2.33 through 2.36.
Indeed, as follows from equation 2.41, this new network lacks structured re-
current connectivity between α-cells (see Figure 5). Interestingly, connectiv-
ity between α- and β̄∗-cells is antisymmetric: the connectivity is described
by the same matrix V̂ = ŜÂ in both directions but has an opposite sign.

Equation 2.40 suggests that β̄∗-cells build representations of olfactory
mixtures, with activities of individual neurons encoding the concentrations
of individual mixture components. As we mentioned, a similar suggestion
was made for the activities of granule cell neurons of the olfactory bulb,
within the SIR model. We thus can identify β̄∗-cells in our model with gran-
ule cells of the olfactory bulb. In agreement with this suggestion, the num-
ber of granule cells (a few million) matches our estimate of the number of
monomolecular chemical compounds.

3 Discussion

Here we propose a novel model for intensity-invariant encoding of olfac-
tory stimuli. According to the primacy model, an odor can be identified
from the identities of the p strongest responding ORs. Importantly, this
does not mean that our model uses only p receptors to identify the stim-
ulus. Instead, weakly responding receptors are still informative of which
odors are not present. Because the primacy model relies only on the relative
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Figure 5: (A) The structure of the dual network implementing SIR model. α-
cells (light green) implement the dual representation of the concentration vec-
tor. β̄∗-cells (dark green) represent the reconstruction of the concentration vec-
tor. (B) Example firing rates of α-cells. (C) Example of the sparse firing rates of
β̄∗-cells. (D) Comparison of the simplicial SIR model’s reconstruction (orange)
and the concentration vector. (E) Correlation between simplicial SIR model’s re-
construction of the concentration vector and the true concentration vector for a
range of stimulus and network parameters, K and p.

rather than absolute strengths of receptor responses, the recovered stimu-
lus is independent of the absolute molecular concentrations of the stimulus.
Although we demonstrated this idea for the particular example of primacy
coding in olfaction, we suggest that this principle could be used to pro-
duce intensity-invariant signal recovery for more complex conditions and
in other modalities.

We formulated a solution of the olfactory decoding problem from first
principles, using optimization theory with inspiration from compressed
sensing. Since, within the primacy model, the constraints for inferring a
stimulus use relative relationships between the responses of sensors (ORs),
we attempted to formulate the problem using a Lagrangian approach to
optimize under inequality constraints. Our solution thus involves mini-
mizing a Lagrangian cost function containing two sets of Lagrange coef-
ficients, �α and �β. Lagrange coefficients describe the importance of indi-
vidual constraints—which constraints were actually used in a particular
inference problem. The first set of Lagrange coefficients, �α, described the
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importance of individual primacy conditions, while the second set, �β, de-
scribed nonnegativity constraints imposed on individual molecular con-
centrations. Solving the sparse optimization problem under inequality con-
straints is often performed in the dual representation via optimizing the
dual Lagrangian. Dual optimization is performed in the dual space—using
only the Lagrange coefficients and not the primal variables (i.e., values of
molecular concentrations).

The driving observation that we make in this study is that neural systems
are well suited for implementing dual optimizations. The nonnegativity of
Lagrange coefficients is especially easy to enforce in neural responses de-
scribed by firing rates that cannot physically fall below zero. Furthermore,
a well-known theorem in optimization theory states that the Lagrange co-
efficient acting on an unused constraint is zero. For a dual neural network,
we showed that this can result in sparse neural activity. These observations
led us to propose the dual brain theory—that firing rates of individual neu-
rons represent the Lagrange coefficients for a set of conditions of varying
complexity.

It has been known for a while that recurrent neural nets can minimize
cost functions of firing rates, known as Lyapunov functions (Hertz, Krogh,
& Palmer, 1991). Mapping a dual Lagrangian onto a Lyapunov function of a
recurrent neural network shows that this network solves the dual problem.
Using this approach, we found the structure of the neural network whose
Lyapunov function matches the dual Lagrangian for the problem of olfac-
tory stimulus recovery.

Although we presented a conceptual model in which our initial ap-
proach was to implement a mathematical concept rather than to describe
the biology of the olfactory system, we found that some features of our net-
work bear resemblance to the real olfactory networks. In the dual network,
the sets of Lagrange multipliers �α and �β are represented by the firing rates
of two cell types, α and β cells. The firing rates of β cells represent indi-
vidual molecular components of the olfactory stimulus mixture. In our pre-
vious work, we proposed that granule cells form a representation of odor-
ant components (Kepple et al., 2018; Koulakov & Rinberg, 2011). Since in
this study, β cells perform a similar function, we argued that the β cells of
our network (more precisely, β̄∗ neurons, equation 2.39) are analogous to
the granule cells in the real olfactory bulb. The number of β cells in our
network is equal to the number of potential molecular components in the
environment. It is encouraging that the number of granule cells (several
million) (Shepherd, 1972) is also similar to the number of potential volatile
monomolecular compounds present in PubChem (Kim et al., 2016).

Because of the downstream position of α neurons from receptor input �y
and their excitatory effect on putative granule cells β, we suggest that α cells
could reside in the piriform cortex, which is known to feed back to the olfac-
tory bulb. The inhibition from putative granule cells β to putative cortical
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cells α is then possible through an indirect pathway, via inhibition of mi-
tral cells projecting to the piriform cortex. For this reason, we suggest that
receptor input instead travels through the distinct tufted cell channel. As a
result, we place u cells in the anterior olfactory nucleus (AON), which re-
ceives most projections from tufted cells (Haberly & Price, 1977). Due to the
ab initio nature of our approach, the mapping of our dual network onto the
real biological network needs further refinement. Overall, we suggest that
within the dual network approach, each neuronal cell type can be associated
with a set of Lagrange coefficients implementing individual constraints.

In our study, we presented networks that are capable of inferring
concentration-invariant odorant representations by performing a sparse
norm minimization (l1 norm or elastic net). We proposed therefore that ORs
implement compression of the odorant concentration vector and relied on
elements of compressed sensing in olfactory decoding. Several recent stud-
ies have argued that a decoding algorithm in the olfactory system may
use compressed sensing (Grabska-Barwinska et al., 2017; Krishnamurthy,
Hermundstad, Mora, Walczak, & Balasubramanian, 2017; Tootoonian &
Lengyel, 2014; Zhang & Sharpee, 2016). These studies usually assume a lin-
ear encoding scheme similar to equation 2.2 and a decoding mechanism
based on a sparse norm minimization. Some of these studies place the rep-
resentation of individual concentration components into the piriform cor-
tex or, equivalently, insect mushroom body (Tootoonian & Lengyel, 2014;
Zhang & Sharpee, 2016). Similarly, a study of Grabska-Barwinska et al.
(2017) suggests a Bayesian inference-based approach that relies on repre-
senting odors in the activity of cortical cells.

A significant distinction of our study from the previous approaches is
that we assume that the activity of cortical neurons (α cells) is representa-
tive of, but distinct from, the vector of molecular concentrations. Thus, the
vector of molecular concentrations can be decoded uniquely from the ac-
tivities of α cells, but activities of individual neurons cannot be interpreted
as molecular concentrations. In this regard, our model is similar to the re-
cent study by Krishnamurthy et al. (2017). We place the vector of molecular
concentrations into the olfactory bulb (β cells; see Figure 6). In doing so,
we propose that the information of molecular composition of the odorant
mixture is retained within the olfactory bulb, while cortical neurons con-
tain a dual representation of the mixture that is synthetic (i.e., constructed
rather than reconstructed). Thus, in our model, the activity of cortical cells
displays similar statistics in case of both mixtures and monomolecular stim-
uli. The reconstruction of the stimulus into monomolecular components is
performed by the granule cells in the olfactory bulb (β cells) that receive
inputs from the cortex (α cells; see Figure 6). The purpose of this recon-
struction is to check whether the synthetic cortical representation is consis-
tent with any possible mixture of monomolecular compounds. In a separate
work, we suggest that this reconstruction could be useful during olfactory
learning (Kepple et al., 2018).
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Figure 6: Possible mapping of our simplicial dual network implementing the
primacy model to the known olfactory circuitry. The neurons of our network
are depicted with circles, and the corresponding brain region we suggest for the
neurons are shown in the surrounding box. The suggested analogy with specific
cell types is given outside each circle. AON, PC, and OSNs stand for anterior
olfactory nucleus, piriform cortex, and olfactory sensory neurons, respectively.

In formally linking the neurons of our dual network to biological neu-
ronal cell types, we are able to make specific predictions about connectivity
in the olfactory system. In particular, our theory suggests that feedback
and feedforward connections between the bulb and cortex are dependent.
Thus, the feedback connection matrix from cortex (ŜÂ; see Figure 6) is a
product of feedforward connectivity (Ŝ) and granule-to-mitral-cell connec-
tivity (Â). We also suggest that granule cells represent the olfactory sys-
tem’s reconstruction of the stimulus, consequently predicting that more
complex stimuli (mixtures) should evoke more complex activity in granule
cells than monomolecular odorants. More generally, using our dual brain
theory to connect the activity of specific cell types to a class of Lagrange
coefficients enables one to determine connectivity on both mesoscopic and
single-neuron scales.

Biologically it is known that OSN responses to an odor are roughly expo-
nentially distributed. This fact has been used to motivate maximum entropy
models of olfactory coding (Stevens, 2016). For these models, the exponen-
tial distribution of OSN firing rates is important as it provides a maximal
entropy code under certain assumptions. For our primacy-based model,
however, there is very little constraint on the distribution of firing rates.
Indeed, we show that we can construct the affinity matrix A with elements
that have gaussian, log-normal, or even uniform distributions (see Figure 2
in the online supplement). This finding results from the primacy model’s
invariance to any uniform, monotonic nonlinearity relating r to y.

Our model uses relative rather than absolute responses of ORs to
solve the decoding problem. This allowed us to encode the stimulus in a
concertation-invariant manner, even if the responses of receptors are non-
linear. One mechanism for concentration invariance that has been proposed
previously is based on normalization of bulbar output (Banerjee et al., 2015;
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Cleland et al., 2011, 2007; Kato, Gillet, Peters, Isaacson, & Komiyama, 2013;
Miyamichi et al., 2013; Olsen, Bhandawat, & Wilson, 2010). This mechanism
uses global inhibition to change the gain of receptor responses. The primacy
model proposed here is distinct from the normalization model, although
they share similar circuit features, such as broadly projecting inhibitory el-
ements. Although we also implement inhibition to achieve concentration
invariance, we place the inhibitory circuits in cortex with the goal of iden-
tifying the strongest responding receptors. Our mechanism may therefore
account for fast odor-guided decisions that are dependent on receptors with
high affinity to odorants. We thus propose that normalization and primacy
models may operate in series on different levels of olfactory system.

Tootoonian and Lengyel (2014) have proposed that the maximum a pos-
teriori (MAP) solution to the inference problem of recovering a sparse N-
dimensional odor vector �x can be achieved in a low-dimensional measure-
ment space, reflecting the known biology of olfactory processing. In their
study, the compressed sensing problem was formulated as an l1 norm min-
imization of the odor concentration vector �x subject to the linear equal-
ity encoding constraint �y = Â�x and solved by considering the problem in
dual space. The resulting generalized energy function for their network
reflects the equality constraints, and, as such, their proposed network im-
plementation differs significantly from our solution. Our networks rely on
Karush-Kuhn-Tucker-type inequality conditions that implement primacy.
Our formulation of the decoding problem is therefore distinct from the
work of Tootoonian and Lengyel. In particular, our formulation allows de-
coding an odorant composition even if the encoding problem is nonlin-
ear (see equation 2.6 and the following discussion). In addition, due to
our inclusion of inequality constraints and the Karush-Kuhn-Tucker the-
orem, the responses of neurons in our dual network are expected to be
sparse.

Two features of dual networks are worth mentioning. First, according
to the Karush-Kuhn-Tucker theorem (KKTT), dual Lagrangians are opti-
mized under the constraint of the nonnegativity of Lagrange coefficients.
Neuronal responses can naturally enforce these constraints because they
are described by firing rates that cannot fall below zero. Thus, dual neu-
ral networks could be viewed as analog computers that convert complex
conditions, such as those imposed by primacy theory, into nonnegativity
constraints. The latter constraints can be relatively easily implemented by
neuronal firing rates. Second, due to KKTT (Boyd & Vandenberghe, 2004),
a large number of the Lagrange coefficients are likely to be zero. This ob-
servation is consistent with the observed sparsity of neuronal responses in
olfaction (Kay & Laurent, 1999; Koulakov & Rinberg, 2011; Rinberg et al.,
2006; Stettler & Axel, 2009) and beyond (DeWeese & Zador, 2006; Hromadka
et al., 2008; Lehky et al., 2005; Vinje & Gallant, 2000), further strength-
ening the possible association between neuronal responses and Lagrange
coefficients. We therefore propose that neural networks may implement
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optimization of dual Lagrangians with the responses of individual neu-
rons representing Lagrange multipliers corresponding to a set of individual
constraints.

Appendix: Derivation of Equations 2.1 and 2.2

Consider the mass-action law for an OR number i binding odorant number
j. For the number of receptor molecules bound by the odorant, Ri j, we have

dRi j/dt = −γi jRi j + αi jx jR∗
i . (A.1)

Here αi j and γi j are binding and unbinding rates, and the number of avail-
able (unbound) receptors, R∗

i , is given by

R∗
i = Ri0 −

∑
j

Ri j. (A.2)

Here Ri0 is the total number of OR molecules of type i exposed to odor-
ant binding. Because in the equilibrium dRi j/dt = 0 and Ri j = αi jx jR∗

i /γi j ≡
Ai jx jR∗

i , the total number of unbound receptors can be found from

R∗
i = Ri0 − R∗

i

∑
j

Ai jx j.

We thus obtain R∗
i = Ri0/(1 + ∑

j Ai jx j ) and the number of active receptors

Ri =
∑

j

Ri j = Ri0

∑
j

Ai jx j/

⎛
⎝1 +

∑
j

Ai jx j

⎞
⎠ .

Assuming that the activity of the cell reflects its relative OR activation, we
obtain

ri ≡ Ri/Ri0 = yi/(1 + yi) (A.3)

with yi = ∑
j Ai jx j.
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