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Abstract

This paper introduces INSTUPR , a novel un-
supervised passage reranking method based
on large language models (LLMs). Differ-
ent from existing approaches that rely on ex-
tensive training with query-document pairs or
retrieval-specific instructions, our method lever-
ages the instruction-following capabilities of
instruction-tuned LLMs for passage reranking
without any additional fine-tuning. To achieve
this, we introduce a soft score aggregation tech-
nique and employ pairwise reranking for un-
supervised passage reranking. Experiments
on the BEIR benchmark demonstrate that IN-
STUPR outperforms unsupervised baselines as
well as an instruction-tuned reranker, highlight-
ing its effectiveness and superiority.

1 Introduction

Information retrieval (IR) involves the retrieval of
relevant information from a large collection of data,
such as web pages or documents, in response to a
user’s query. Recently, deep learning methods like
dense passage retriever (DPR) (Karpukhin et al.,
2020) have gained significant interest due to their
superior performance compared to sparse retrieval
methods such as BM25. However, it is crucial for
initial retrievers to be lightweight to handle a large
set of retrieval targets. Therefore, passage rerank-
ing plays a crucial role in the process by following
the initial retrievers and ranking the retrieved pas-
sages based on their relevance to the query. This
enables the use of computationally intensive mod-
els, thereby enhancing retrieval accuracy.

Large language models (LLMs) have demon-
strated strong zero-shot capabilities across various
natural language tasks (Brown et al., 2020; Ko-
jima et al., 2022). Specifically, models fine-tuned
on natural language instructions have shown re-
markable performance in comprehending complex
instructions (Wei et al., 2021). Previous work has
explored the use of LLMs for passage reranking

by fine-tuning them on extensive retrieval super-
vision (Nogueira et al., 2020; Asai et al., 2022).
Another line of investigation involves unsupervised
passage reranking using LLMs (Sachan et al., 2022;
Sun et al., 2023). However, these unsupervised
methods often lack guidance in understanding the
relevance of retrieved passages.

This paper introduces INSTUPR , an instruction-
based unsupervised passage reranking method that
leverages the instruction-following capabilities of
LLMs for reranking without the need for labeled
relevance information and additional fine-tuning.
We employ an instruction-tuned LLM to gener-
ate a relevance score for each query-passage pair.
Additionally, we propose a soft relevance score ag-
gregation technique that combines the LLM’s pre-
dicted distribution over possible scores, resulting
in robust estimation. We evaluate our method on
common evaluation benchmarks, including TREC
DL19 (Craswell et al., 2020), DL20 (Craswell et al.,
2021), and BEIR (Thakur et al., 2021). Experi-
mental results demonstrate that our INSTUPR out-
performs unsupervised baselines like UPR and an
instruction-tuned reranker. Furthermore, our pro-
posed soft aggregation method significantly con-
tributes to these improvements.

Our contribution can be summarized as 3-fold:

* We propose INSTUPR , which leverages the
instruction-following capabilities of LLMs for
unsupervised passage reranking.

* We introduce soft relevance score aggregation
to enhance reranking performance.

* We propose both pointwise and pairwise
reranking schemes and demonstrate their ef-
fectiveness compared with unsupervised base-
lines and models specifically fine-tuned on
retrieval datasets.
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Figure 1: Illustration of our proposed INSTUPR framework, which includes pointwise reranking and pairwise

reranking modules for fine-grained estimation.

2 Related Work

Information Retrieval In recent years, deep
learning-based retrieval models have achieved re-
markable performance across various information
retrieval tasks. The dense passage retriever (DPR)
framework, which encodes documents and queries
into dense representations, has emerged as a popu-
lar approach for dense retrieval (Karpukhin et al.,
2020). With the advent of large language mod-
els (LLMs), numerous methods have leveraged
these models for dense retrieval. GTR (Ni et al.,
2022) utilizes LLM encoders for dense retrieval and
demonstrates performance improvements with in-
creased model size. Promptagator (Dai et al., 2023)
and InPars (Bonifacio et al., 2022) propose the
use of LLMs to generate synthetic query-document
pairs, which are then employed for training dense
retrievers. Our work is orthogonal to these methods,
as we focus on utilizing LLMs for second-stage
passage reranking.

Passage Reranking Passage reranking typi-
cally serves as a second-stage component fol-
lowing large-scale retrieval.  Several studies
have proposed deep reranking models that en-
code query-document pairs to predict relevance
scores (Nogueira and Cho, 2019). Nogueira et al.
(2020) introduced a generation-based method for
passage reranking by fine-tuning LLMs on MS-
MARCO(Bajaj et al., 2016), a large-scale retrieval
dataset with relevance annotations. Their model,
MonoTS5, generates the word true for relevant
pairs and false for irrelevant pairs. Similarly, our
method also adopts a generation-based approach.
The main difference is that our method does not
require relevance annotations nor fine-tuning; in-
stead, we leverage the instruction-following capa-
bilities of LLMs to enable unsupervised estimation.
TART (Asai et al., 2022) fine-tunes LLMs on exten-
sive retrieval supervision from various tasks with

instructions. Our method differs from TART in
that we do not require any retrieval supervision and
employ a generation-based approach in an unsuper-
vised fashion.

Another research line is unsupervised passage
reranking with LLMs, which eliminates the need
for retrieval supervision. UPR (Sachan et al., 2022)
is the pioneering attempt at unsupervised passage
reranking, proposing to rerank passages by esti-
mating the conditional likelihood of generating the
query given the passage using LLMs. UPR has
shown promising results, but it employs an indirect
measure that may not be optimal for measuring
the relevance of retrieved passages. In contrast,
our INSTUPR leverages the instruction-following
capabilities of LLMs while requiring no retrieval
supervision. Through extensive experiments, we
demonstrate that INSTUPR outperforms UPR on
most datasets, highlighting its effectiveness. Con-
current to our work, Sun et al. (2023) and Ma et al.
(2023) both proposed to perform listwise passage
reranking by prompting ChatGPT, which is a black-
box commercial system '. Our work focuses on
pointwise and pairwise reranking, and employs
an open-sourced LLM with well-documented data
sources to facilitate scientific understanding of our
method.

3 Our Method

The task of passage reranking involves assign-
ing a relevance score to each document in a set
of retrieved candidates given a query. Formally,
given a query ¢ and a set of retrieved passages
D =dj,ds,- - ,dg, areranker aims to assign a rel-
evance score to each query-passage pair as s(q, d;).
These relevance scores are then used to rerank the
passage candidates. Figure 1 illustrates the pro-
posed reranking framework.

"https://chat.openai.com/



3.1 INSTUPR: Instruction-based
Unsupervised Passage Reranking

Our method, INSTUPR, leverages the instruction-
following capabilities of LLMs to enhance the per-
formance of passage reranking. We prompt the
LLMs with task-specific instructions that instruct
them to directly generate a relevance score for each
query-passage pair (¢, d;) and rerank the passage
candidates based on their relevance scores. In this
paper, we instruct the LLMs to predict a relevance
score from 1 to 5 using the Likert scale. For pars-
ing convenience, we instruct the LLMs to generate
only a single token from the options, which in our
case are 1,2, 3,4, 5. An example of the instruction
template is shown in Figure 2a.

3.2 Soft Relevance Score Aggregation

Generating a single token as the relevance score in-
troduces several issues (Liu et al., 2023). First, it re-
sults in discrete scores that lead to many ties, which
is suboptimal for reranking. Second, we observe
that the generated scores tend to be very similar
for the same task, such as the LLM frequently out-
putting a score of 3 for the majority of the passages.
To address these issues, we propose Soft Relevance
Score Aggregation. Instead of using the generated
token directly, we compute a weighted sum of the
options using their probabilities as weights. Specif-
ically, the soft relevance score of a query-passage
pair s1(q, d;) can be calculated as:

5
s1(q,di) =Y n-p(n|q,d),
n=1

where p(n | g, d;) is the probability of predicting a
score of n by the LLM. This score can also be inter-
preted as the expected value of the score predicted
by the LLM.

3.3 Pairwise Reranking

Pairwise reranking has been demonstrated to out-
perform pointwise reranking while being more
computationally expensive (Nogueira et al., 2019;
Pradeep et al., 2021). Given a query g and two
passages d; and d;, we instruct the LLM to select
the passage that is more relevant to the query and
assign the probability of selecting each passage as
the score. The final score of a passage d;, denoted
as s2(q, d;), is then re-estimated as the sum of its
scores against all other passage candidates:

32(q7di) - Zp(l | Q7di7dj)7
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Rate the relevance of the query and the context with a
score from 1 to 5, where 1 means “completely
irrelevant” and 5 means “completely relevant”.

Query: {query}

Context: {context}

Score:

3 l

(a) Instrcution for pointwise reranking.

Which context is more relevant to the query (A or B)?
Query: {query}

Context A: {contextA}

Context B: {contextB}

(A l

(b) Instruction for pairwise reranking.

Figure 2: The instruction templates for reranking in
INSTUPR.

where p(i | ¢, d;, d;) is the probability predicted by
the LLM of d; being more relevant to the query ¢
than d;. It is important to note that the ordering of
passages affects the scores, i.e., p(i | q,d;, d;) #
p(i | q,d;,d;). Therefore, we evaluate all (k? — k)
pairs to obtain the pairwise rankings for robustness.
An instruction template is shown in Figure 2b.

4 Experiments

4.1 Setup

To evaluate the effectiveness of our proposed
INSTUPR, we conduct experiments on TREC
DL19 (Craswell et al., 2020), DL20 (Craswell
etal., 2021), and BEIR (Thakur et al., 2021), which
consists of various tasks for zero-shot retrieval
and reranking. Following previous work, we em-
ploy BM25 as the base retrieval method and re-
trieve the top-100 passages for reranking (Rosa
et al., 2022). For our experiments, we utilize
flan-t5-x1 (Chung et al., 2022) as our LLM to en-
sure that it has not been pretrained on our specific
datasets. We report NDCG @10, which is the stan-
dard metric for evaluating retrieval performance.
Additional details can be found in Appendix A.

4.2 Baseline Systems

e TART-Rerank (Asai et al., 2022) is a state-
of-the-art reranker that is fine-tuned on a col-
lection of retrieval datasets with instructions.

* MonoT5-3B (Nogueira and Cho, 2019) is a
reranker that is fine-tuned on MS MARCO for
predicting whether the passage is relevant to
the query.

* UPR (Sachan et al., 2022) is an unsupervised
reranking method that reranks passages by



Supervised Unsupervised
BM25 | TART-Rerank MonoT5-3B | UPR  INSTUPR,uin¢  INSTUPR s,
S| DbL19 50.58 67.43 71.83 54.51 61.61 70.53
& | DL20 47.96 59.19 68.89 55.91 61.88 68.55
TREC-COVID 5947 74.20 80.71 | 69.25 73.04 81.33
BioASQ 5225 56.20 57.50 | 56.59 55.17 59.25
NFCorpus 32.18 33.70 38.97 33.78 35.24 37.10
FiQA 23.61 35.70 45.99 37.19 39.76 41.24
Signal-1M 33.04 28.38 32.55 31.78 32.58 31.26
« | TREC-News 39.52 42.63 4849 | 36.06 46.12 50.37
2 | Robust04 40.70 50.63 5671 | 44.40 54.03 60.23
Touche-2020 4422 28.33 3241 21.07 28.98 34.22
DBPedia 31.80 42.53 4445 30.72 42.43 43.53
SCIDOCS 14.90 17.34 19.00 15.88 18.97 20.68
Climate-FEVER  16.51 27.21 27.33 18.25 26.18 25.81
SciFact 64.76 75.19 76.57 73.09 71.28 74.96
| Average (BEIR)  38.01 |  42.67 46.65 | 39.01 43.66 46.63

Table 1: Reranking performance (NDCG@ 10) of both supervised and unsupervised methods (%); the best scores

are in bold, and the second best scores are underlined.

their conditional probabilities of generating
the query. We use flan-t5-x1 for UPR for a
fair comparison.

DL19 DL20 BEIR
INSTUPR 0int 61.61 61.88 43.66
- soft aggregation 57.08 58.13 37.13
- Likert scale 5827 57.46 38.36

Table 2: Results of ablation study (%).

4.3 Main Results

The experimental results are presented in Table 1.
In comparison to the unsupervised baseline UPR,
our INSTUPR 4+ outperforms UPR in 12 out of
the 14 tasks, exhibiting an average relative improve-
ment of over 10%. Furthermore, INSTUPR 41,
outperforms TART-Rerank in 8 tasks, despite not
being trained with any retrieval supervision. It high-
lights the effectiveness of our proposed instruction-
based reranking method, which directly leverages
the instruction-following capabilities of LLMs.
With the inclusion of our proposed unsupervised
pairwise reranking (INSTUPR ,,4;), we achieve
the best performance in 5 tasks and the second-
best performance in 6 tasks. Remarkably, IN-
STUPR 4 achieves comparable performance
to the state-of-the-art reranker MonoT5-3B while
being an unsupervised method, demonstrating its
practical value for real-world applications.

4.4 Ablation Study

To validate the effectiveness of individual compo-
nents, we conduct an ablation study presented in
Table 2. Removing the soft score aggregation com-
ponent leads to significant degradation in all tasks,
highlighting the importance of our proposed soft
score aggregation for robust estimation. We also
examine the impact of removing the Likert scale
and directly asking the LLM whether the passage is
relevant to the query, using the probability of gen-
erating “yes” as the relevance score. The results
demonstrate a substantial drop after removing the
Likert-based scores, showing the effectiveness of
our proposed scoring method.

5 Conclusion

In this paper, we propose INSTUPR, an instruction-
based unsupervised passage reranking method. We
leverage the instruction-following capabilities of
LLMs for passage reranking and propose soft score
aggregation and pairwise reranking to further im-
prove the performance. Experimental results show
that INSTUPRoutperforms previous unsupervised
methods and achieves comparable performance to
the state-of-the-art method, demonstrating the great
potential of leveraging LL.Ms for information re-
trieval tasks. We hope our work can draw attention
to exploring the application of LLMs to informa-
tion retrieval studies. Future work could explore
how the scale of LLMs affects reranking perfor-
mance and efficient pairwise reranking techniques.



Limitations

While our proposed method demonstrates impres-
sive performance, it is important to acknowledge
certain limitations. First, the pairwise reranking ap-
proach we employ incurs high computational costs,
making it challenging to scale up to scenarios in-
volving hundreds of passage candidates. Future
research could focus on exploring more efficient
pairwise reranking techniques to address this lim-
itation. Second, our experiments are conducted
using a single large language model (LLM), and it
is possible that different LLMs may exhibit vary-
ing behaviors and performances. To address this,
further investigation is needed to assess the gener-
alization capabilities across diverse LLMs.

Ethics Statement

In this study, we utilize an instruction-following
LLM that has been pre-trained on extensive text
data and subsequent fine-tuning with instructions.
It is important to recognize that LLMs have the
potential to exhibit biased and offensive behavior,
which can impact the quality and veracity of the
reranking results. Careful attention should be given
to mitigating bias and ensuring ethical considera-
tions are taken into account when deploying such
models in real-world applications.

References

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2022. Task-aware retrieval
with instructions. arXiv preprint arXiv:2211.09260.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. Ms marco: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and
Rodrigo Nogueira. 2022. Inpars: Unsupervised
dataset generation for information retrieval. In Pro-
ceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 2387-2392.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2021. Overview of the trec 2020
deep learning track. corr abs/2102.07662 (2021).
arXiv preprint arXiv:2102.07662.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview
of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820.

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith Hall,
and Ming-Wei Chang. 2023. Promptagator: Few-
shot dense retrieval from 8 examples. In The Eleventh
International Conference on Learning Representa-
tions.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In ICML 2022
Workshop on Knowledge Retrieval and Language
Models.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. Gpteval:
Nlg evaluation using gpt-4 with better human align-
ment. arXiv preprint arXiv:2303.16634.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and
Jimmy Lin. 2023. Zero-shot listwise document
reranking with a large language model. arXiv
preprint arXiv:2305.02156.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
98449855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.


https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://openreview.net/forum?id=gmL46YMpu2J
https://openreview.net/forum?id=gmL46YMpu2J
https://openreview.net/forum?id=gmL46YMpu2J
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2022.emnlp-main.669

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708-718, Online. Association
for Computational Linguistics.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert. arXiv preprint arXiv:1910.14424.

Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin.
2021. The expando-mono-duo design pattern for
text ranking with pretrained sequence-to-sequence
models. arXiv preprint arXiv:2101.05667.

Guilherme Moraes Rosa, Luiz Bonifacio, Vitor
Jeronymo, Hugo Abonizio, Marzieh Fadaee, Roberto
Lotufo, and Rodrigo Nogueira. 2022. No parameter
left behind: How distillation and model size affect
zero-shot retrieval. arXiv preprint arXiv:2206.02873.

Devendra Sachan, Mike Lewis, Mandar Joshi, Armen
Aghajanyan, Wen-tau Yih, Joelle Pineau, and Luke
Zettlemoyer. 2022. Improving passage retrieval with
zero-shot question generation. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3781-3797, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie
Ren, Dawei Yin, and Zhaochun Ren. 2023. Is
chatgpt good at search? investigating large lan-
guage models as re-ranking agent. arXiv preprint
arXiv:2304.09542.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2021. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

A Additional Details

A.1 Dataset

For fair comparisons, we exclude the datasets Natu-
ralQuestions, HotpotQA, Quora, and FEVER from
BEIR as they are part of either our LLM’s training
set or the baselines’ training set. Additionally, we
exclude CQADupStack due to its evaluation com-
plexity and its large number of queries. Also, we
exclude Arguana since it is a passage-level retrieval
task.

A.2 Implementation Details

For pairwise reranking, given the top-k retrieval
results, we evaluate (k? — k) pairs to obtain the
pairwise scores. To reduce computations, we re-
duce k from 100 to 40 for smaller datasets and 15
for larger datasets. All experiments are conducted
on 2xNVIDIA V100 GPUs. Future work could ex-
plore efficient pairwise reranking algorithms, such
as applying sorting algorithms to pairwise rerank-
ing.
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