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Abstract

This paper introduces INSTUPR , a novel un-001
supervised passage reranking method based002
on large language models (LLMs). Differ-003
ent from existing approaches that rely on ex-004
tensive training with query-document pairs or005
retrieval-specific instructions, our method lever-006
ages the instruction-following capabilities of007
instruction-tuned LLMs for passage reranking008
without any additional fine-tuning. To achieve009
this, we introduce a soft score aggregation tech-010
nique and employ pairwise reranking for un-011
supervised passage reranking. Experiments012
on the BEIR benchmark demonstrate that IN-013
STUPR outperforms unsupervised baselines as014
well as an instruction-tuned reranker, highlight-015
ing its effectiveness and superiority.016

1 Introduction017

Information retrieval (IR) involves the retrieval of018

relevant information from a large collection of data,019

such as web pages or documents, in response to a020

user’s query. Recently, deep learning methods like021

dense passage retriever (DPR) (Karpukhin et al.,022

2020) have gained significant interest due to their023

superior performance compared to sparse retrieval024

methods such as BM25. However, it is crucial for025

initial retrievers to be lightweight to handle a large026

set of retrieval targets. Therefore, passage rerank-027

ing plays a crucial role in the process by following028

the initial retrievers and ranking the retrieved pas-029

sages based on their relevance to the query. This030

enables the use of computationally intensive mod-031

els, thereby enhancing retrieval accuracy.032

Large language models (LLMs) have demon-033

strated strong zero-shot capabilities across various034

natural language tasks (Brown et al., 2020; Ko-035

jima et al., 2022). Specifically, models fine-tuned036

on natural language instructions have shown re-037

markable performance in comprehending complex038

instructions (Wei et al., 2021). Previous work has039

explored the use of LLMs for passage reranking040

by fine-tuning them on extensive retrieval super- 041

vision (Nogueira et al., 2020; Asai et al., 2022). 042

Another line of investigation involves unsupervised 043

passage reranking using LLMs (Sachan et al., 2022; 044

Sun et al., 2023). However, these unsupervised 045

methods often lack guidance in understanding the 046

relevance of retrieved passages. 047

This paper introduces INSTUPR , an instruction- 048

based unsupervised passage reranking method that 049

leverages the instruction-following capabilities of 050

LLMs for reranking without the need for labeled 051

relevance information and additional fine-tuning. 052

We employ an instruction-tuned LLM to gener- 053

ate a relevance score for each query-passage pair. 054

Additionally, we propose a soft relevance score ag- 055

gregation technique that combines the LLM’s pre- 056

dicted distribution over possible scores, resulting 057

in robust estimation. We evaluate our method on 058

common evaluation benchmarks, including TREC 059

DL19 (Craswell et al., 2020), DL20 (Craswell et al., 060

2021), and BEIR (Thakur et al., 2021). Experi- 061

mental results demonstrate that our INSTUPR out- 062

performs unsupervised baselines like UPR and an 063

instruction-tuned reranker. Furthermore, our pro- 064

posed soft aggregation method significantly con- 065

tributes to these improvements. 066

Our contribution can be summarized as 3-fold: 067

• We propose INSTUPR , which leverages the 068

instruction-following capabilities of LLMs for 069

unsupervised passage reranking. 070

• We introduce soft relevance score aggregation 071

to enhance reranking performance. 072

• We propose both pointwise and pairwise 073

reranking schemes and demonstrate their ef- 074

fectiveness compared with unsupervised base- 075

lines and models specifically fine-tuned on 076

retrieval datasets. 077
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Figure 1: Illustration of our proposed INSTUPR framework, which includes pointwise reranking and pairwise
reranking modules for fine-grained estimation.

2 Related Work078

Information Retrieval In recent years, deep079

learning-based retrieval models have achieved re-080

markable performance across various information081

retrieval tasks. The dense passage retriever (DPR)082

framework, which encodes documents and queries083

into dense representations, has emerged as a popu-084

lar approach for dense retrieval (Karpukhin et al.,085

2020). With the advent of large language mod-086

els (LLMs), numerous methods have leveraged087

these models for dense retrieval. GTR (Ni et al.,088

2022) utilizes LLM encoders for dense retrieval and089

demonstrates performance improvements with in-090

creased model size. Promptagator (Dai et al., 2023)091

and InPars (Bonifacio et al., 2022) propose the092

use of LLMs to generate synthetic query-document093

pairs, which are then employed for training dense094

retrievers. Our work is orthogonal to these methods,095

as we focus on utilizing LLMs for second-stage096

passage reranking.097

Passage Reranking Passage reranking typi-098

cally serves as a second-stage component fol-099

lowing large-scale retrieval. Several studies100

have proposed deep reranking models that en-101

code query-document pairs to predict relevance102

scores (Nogueira and Cho, 2019). Nogueira et al.103

(2020) introduced a generation-based method for104

passage reranking by fine-tuning LLMs on MS-105

MARCO(Bajaj et al., 2016), a large-scale retrieval106

dataset with relevance annotations. Their model,107

MonoT5, generates the word true for relevant108

pairs and false for irrelevant pairs. Similarly, our109

method also adopts a generation-based approach.110

The main difference is that our method does not111

require relevance annotations nor fine-tuning; in-112

stead, we leverage the instruction-following capa-113

bilities of LLMs to enable unsupervised estimation.114

TART (Asai et al., 2022) fine-tunes LLMs on exten-115

sive retrieval supervision from various tasks with116

instructions. Our method differs from TART in 117

that we do not require any retrieval supervision and 118

employ a generation-based approach in an unsuper- 119

vised fashion. 120

Another research line is unsupervised passage 121

reranking with LLMs, which eliminates the need 122

for retrieval supervision. UPR (Sachan et al., 2022) 123

is the pioneering attempt at unsupervised passage 124

reranking, proposing to rerank passages by esti- 125

mating the conditional likelihood of generating the 126

query given the passage using LLMs. UPR has 127

shown promising results, but it employs an indirect 128

measure that may not be optimal for measuring 129

the relevance of retrieved passages. In contrast, 130

our INSTUPR leverages the instruction-following 131

capabilities of LLMs while requiring no retrieval 132

supervision. Through extensive experiments, we 133

demonstrate that INSTUPR outperforms UPR on 134

most datasets, highlighting its effectiveness. Con- 135

current to our work, Sun et al. (2023) and Ma et al. 136

(2023) both proposed to perform listwise passage 137

reranking by prompting ChatGPT, which is a black- 138

box commercial system 1. Our work focuses on 139

pointwise and pairwise reranking, and employs 140

an open-sourced LLM with well-documented data 141

sources to facilitate scientific understanding of our 142

method. 143

3 Our Method 144

The task of passage reranking involves assign- 145

ing a relevance score to each document in a set 146

of retrieved candidates given a query. Formally, 147

given a query q and a set of retrieved passages 148

D = d1, d2, · · · , dk, a reranker aims to assign a rel- 149

evance score to each query-passage pair as s(q, di). 150

These relevance scores are then used to rerank the 151

passage candidates. Figure 1 illustrates the pro- 152

posed reranking framework. 153

1https://chat.openai.com/

2



3.1 INSTUPR: Instruction-based154

Unsupervised Passage Reranking155

Our method, INSTUPR, leverages the instruction-156

following capabilities of LLMs to enhance the per-157

formance of passage reranking. We prompt the158

LLMs with task-specific instructions that instruct159

them to directly generate a relevance score for each160

query-passage pair (q, di) and rerank the passage161

candidates based on their relevance scores. In this162

paper, we instruct the LLMs to predict a relevance163

score from 1 to 5 using the Likert scale. For pars-164

ing convenience, we instruct the LLMs to generate165

only a single token from the options, which in our166

case are 1, 2, 3, 4, 5. An example of the instruction167

template is shown in Figure 2a.168

3.2 Soft Relevance Score Aggregation169

Generating a single token as the relevance score in-170

troduces several issues (Liu et al., 2023). First, it re-171

sults in discrete scores that lead to many ties, which172

is suboptimal for reranking. Second, we observe173

that the generated scores tend to be very similar174

for the same task, such as the LLM frequently out-175

putting a score of 3 for the majority of the passages.176

To address these issues, we propose Soft Relevance177

Score Aggregation. Instead of using the generated178

token directly, we compute a weighted sum of the179

options using their probabilities as weights. Specif-180

ically, the soft relevance score of a query-passage181

pair s1(q, di) can be calculated as:182

s1(q, di) =
5∑

n=1

n · p(n | q, di),183

where p(n | q, di) is the probability of predicting a184

score of n by the LLM. This score can also be inter-185

preted as the expected value of the score predicted186

by the LLM.187

3.3 Pairwise Reranking188

Pairwise reranking has been demonstrated to out-189

perform pointwise reranking while being more190

computationally expensive (Nogueira et al., 2019;191

Pradeep et al., 2021). Given a query q and two192

passages di and dj , we instruct the LLM to select193

the passage that is more relevant to the query and194

assign the probability of selecting each passage as195

the score. The final score of a passage di, denoted196

as s2(q, di), is then re-estimated as the sum of its197

scores against all other passage candidates:198

s2(q, di) =
∑
i ̸=j

p(i | q, di, dj),199

Rate the relevance of the query and the context with a 

score from 1 to 5, where 1 means “completely 

irrelevant” and 5 means “completely relevant”.

Query: {query}

Context: {context}

Score: 

3

(a) Instrcution for pointwise reranking.

Which context is more relevant to the query (A or B)?

Query: {query}

Context A: {contextA}

Context B: {contextB}

A

(b) Instruction for pairwise reranking.

Figure 2: The instruction templates for reranking in
INSTUPR.

where p(i | q, di, dj) is the probability predicted by 200

the LLM of di being more relevant to the query q 201

than dj . It is important to note that the ordering of 202

passages affects the scores, i.e., p(i | q, di, dj) ̸= 203

p(i | q, dj , di). Therefore, we evaluate all (k2 − k) 204

pairs to obtain the pairwise rankings for robustness. 205

An instruction template is shown in Figure 2b. 206

4 Experiments 207

4.1 Setup 208

To evaluate the effectiveness of our proposed 209

INSTUPR, we conduct experiments on TREC 210

DL19 (Craswell et al., 2020), DL20 (Craswell 211

et al., 2021), and BEIR (Thakur et al., 2021), which 212

consists of various tasks for zero-shot retrieval 213

and reranking. Following previous work, we em- 214

ploy BM25 as the base retrieval method and re- 215

trieve the top-100 passages for reranking (Rosa 216

et al., 2022). For our experiments, we utilize 217

flan-t5-xl (Chung et al., 2022) as our LLM to en- 218

sure that it has not been pretrained on our specific 219

datasets. We report NDCG@10, which is the stan- 220

dard metric for evaluating retrieval performance. 221

Additional details can be found in Appendix A. 222

4.2 Baseline Systems 223

• TART-Rerank (Asai et al., 2022) is a state- 224

of-the-art reranker that is fine-tuned on a col- 225

lection of retrieval datasets with instructions. 226

• MonoT5-3B (Nogueira and Cho, 2019) is a 227

reranker that is fine-tuned on MS MARCO for 228

predicting whether the passage is relevant to 229

the query. 230

• UPR (Sachan et al., 2022) is an unsupervised 231

reranking method that reranks passages by 232
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Supervised Unsupervised
BM25 TART-Rerank MonoT5-3B UPR INSTUPRpoint INSTUPR+pair

T
R

E
C DL19 50.58 67.43 71.83 54.51 61.61 70.53

DL20 47.96 59.19 68.89 55.91 61.88 68.55

B
E

IR

TREC-COVID 59.47 74.20 80.71 69.25 73.04 81.33
BioASQ 52.25 56.20 57.50 56.59 55.17 59.25
NFCorpus 32.18 33.70 38.97 33.78 35.24 37.10
FiQA 23.61 35.70 45.99 37.19 39.76 41.24
Signal-1M 33.04 28.38 32.55 31.78 32.58 31.26
TREC-News 39.52 42.63 48.49 36.06 46.12 50.37
Robust04 40.70 50.63 56.71 44.40 54.03 60.23
Touche-2020 44.22 28.33 32.41 21.07 28.98 34.22
DBPedia 31.80 42.53 44.45 30.72 42.43 43.53
SCIDOCS 14.90 17.34 19.00 15.88 18.97 20.68
Climate-FEVER 16.51 27.21 27.33 18.25 26.18 25.81
SciFact 64.76 75.19 76.57 73.09 71.28 74.96

Average (BEIR) 38.01 42.67 46.65 39.01 43.66 46.63

Table 1: Reranking performance (NDCG@10) of both supervised and unsupervised methods (%); the best scores
are in bold, and the second best scores are underlined.

their conditional probabilities of generating233

the query. We use flan-t5-xl for UPR for a234

fair comparison.235

DL19 DL20 BEIR

INSTUPRpoint 61.61 61.88 43.66
- soft aggregation 57.08 58.13 37.13
- Likert scale 58.27 57.46 38.36

Table 2: Results of ablation study (%).

4.3 Main Results236

The experimental results are presented in Table 1.237

In comparison to the unsupervised baseline UPR,238

our INSTUPRpoint outperforms UPR in 12 out of239

the 14 tasks, exhibiting an average relative improve-240

ment of over 10%. Furthermore, INSTUPRpoint241

outperforms TART-Rerank in 8 tasks, despite not242

being trained with any retrieval supervision. It high-243

lights the effectiveness of our proposed instruction-244

based reranking method, which directly leverages245

the instruction-following capabilities of LLMs.246

With the inclusion of our proposed unsupervised247

pairwise reranking (INSTUPR+pair), we achieve248

the best performance in 5 tasks and the second-249

best performance in 6 tasks. Remarkably, IN-250

STUPR+pair achieves comparable performance251

to the state-of-the-art reranker MonoT5-3B while252

being an unsupervised method, demonstrating its253

practical value for real-world applications.254

4.4 Ablation Study 255

To validate the effectiveness of individual compo- 256

nents, we conduct an ablation study presented in 257

Table 2. Removing the soft score aggregation com- 258

ponent leads to significant degradation in all tasks, 259

highlighting the importance of our proposed soft 260

score aggregation for robust estimation. We also 261

examine the impact of removing the Likert scale 262

and directly asking the LLM whether the passage is 263

relevant to the query, using the probability of gen- 264

erating “yes” as the relevance score. The results 265

demonstrate a substantial drop after removing the 266

Likert-based scores, showing the effectiveness of 267

our proposed scoring method. 268

5 Conclusion 269

In this paper, we propose INSTUPR, an instruction- 270

based unsupervised passage reranking method. We 271

leverage the instruction-following capabilities of 272

LLMs for passage reranking and propose soft score 273

aggregation and pairwise reranking to further im- 274

prove the performance. Experimental results show 275

that INSTUPRoutperforms previous unsupervised 276

methods and achieves comparable performance to 277

the state-of-the-art method, demonstrating the great 278

potential of leveraging LLMs for information re- 279

trieval tasks. We hope our work can draw attention 280

to exploring the application of LLMs to informa- 281

tion retrieval studies. Future work could explore 282

how the scale of LLMs affects reranking perfor- 283

mance and efficient pairwise reranking techniques. 284
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Limitations285

While our proposed method demonstrates impres-286

sive performance, it is important to acknowledge287

certain limitations. First, the pairwise reranking ap-288

proach we employ incurs high computational costs,289

making it challenging to scale up to scenarios in-290

volving hundreds of passage candidates. Future291

research could focus on exploring more efficient292

pairwise reranking techniques to address this lim-293

itation. Second, our experiments are conducted294

using a single large language model (LLM), and it295

is possible that different LLMs may exhibit vary-296

ing behaviors and performances. To address this,297

further investigation is needed to assess the gener-298

alization capabilities across diverse LLMs.299

Ethics Statement300

In this study, we utilize an instruction-following301

LLM that has been pre-trained on extensive text302

data and subsequent fine-tuning with instructions.303

It is important to recognize that LLMs have the304

potential to exhibit biased and offensive behavior,305

which can impact the quality and veracity of the306

reranking results. Careful attention should be given307

to mitigating bias and ensuring ethical considera-308

tions are taken into account when deploying such309

models in real-world applications.310
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A Additional Details432

A.1 Dataset433

For fair comparisons, we exclude the datasets Natu-434

ralQuestions, HotpotQA, Quora, and FEVER from435

BEIR as they are part of either our LLM’s training436

set or the baselines’ training set. Additionally, we437

exclude CQADupStack due to its evaluation com-438

plexity and its large number of queries. Also, we439

exclude Arguana since it is a passage-level retrieval440

task.441

A.2 Implementation Details 442

For pairwise reranking, given the top-k retrieval 443

results, we evaluate (k2 − k) pairs to obtain the 444

pairwise scores. To reduce computations, we re- 445

duce k from 100 to 40 for smaller datasets and 15 446

for larger datasets. All experiments are conducted 447

on 2xNVIDIA V100 GPUs. Future work could ex- 448

plore efficient pairwise reranking algorithms, such 449

as applying sorting algorithms to pairwise rerank- 450

ing. 451
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