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Abstract001

Large Language Models (LLMs), due to sub-002
stantial computational requirements, are vulner-003
able to resource consumption attacks, which004
can severely degrade server performance or005
even cause crashes, as demonstrated by denial-006
of-service (DoS) attacks designed for LLMs.007
However, existing works lack mitigation strate-008
gies against such threats, resulting in unre-009
solved security risks for real-world LLM de-010
ployments. To this end, we propose the Plug-011
gable and Dynamic DoS-Defense Framework012
(PD3F), which employs a two-stage approach013
to defend against resource consumption attacks014
from both the input and output sides. On the015
input side, we propose the Resource Index to016
guide Dynamic Request Polling Scheduling,017
thereby reducing resource usage induced by018
malicious attacks under high-concurrency sce-019
narios. On the output side, we introduce the020
Adaptive End-Based Suppression mechanism,021
which terminates excessive malicious gener-022
ation early. Experiments across six models023
demonstrate that PD3F significantly mitigates024
resource consumption attacks, improving users’025
access capacity by up to 500% during adver-026
sarial load. PD3F represents a step toward027
the resilient and resource-aware deployment028
of LLMs against resource consumption attacks.029

1 Introduction030

Deployment of large language models (LLMs) re-031

mains heavily constrained by computational re-032

source demands (Chen et al., 2022; Zhao et al.,033

2023; Achiam et al., 2023; Chang et al., 2024),034

with limited resource availability posing a critical035

bottleneck to broader adoption (Gao et al., 2024a).036

This challenge is further amplified by resource037

consumption attacks, which induce high-overhead038

inference processes to exhaust computational re-039

sources (Shumailov et al., 2021, 2024). The feasi-040

bility and impact of such attacks have been empiri-041

cally demonstrated through denial-of-service (DoS)042
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Figure 1: This Figure illustrates the defense effect of
PD3F against resource consumption attacks.

attacks specifically targeting LLMs (Geiping et al., 043

2024; Dong et al., 2024). Recent findings reveal 044

that resource consumption attacks increase model 045

response latency across multiple dimensions (Gao 046

et al., 2024a; Kumar et al., 2025), rapidly depleting 047

GPU resources (Zhang et al., 2024e). Under com- 048

puting resource shortages, these attacks result in 049

resource exhaustion and service disruption, thereby 050

compromising the reliability of LLMs deployment. 051

Despite its severity, resource consumption at- 052

tacks remain largely unaddressed, making it diffi- 053

cult to mitigate. Prior defense techniques, includ- 054

ing model checking and input disturbance (Jain 055

et al., 2023; Liu et al., 2024), are bypassed by 056

emerging attack strategies, leading to severe mali- 057

cious resource consumption (Zhang et al., 2024e; 058

Kumar et al., 2025). Furthermore, research on con- 059

trolling consumption during generation rarely con- 060

siders the impact of resource consumption attacks 061

(Wang et al., 2024, 2023). Consequently, LLM ap- 062

plications struggle to suppress resource consump- 063

tion threats, especially DoS attacks for LLMs. 064

In this paper, we propose the Pluggable Dynamic 065

DoS-Defense Framework (PD3F). To the best of 066

our knowledge, PD3F is the pioneer framework to 067

provide end-to-end protection against resource con- 068
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Figure 2: The PD3F mitigation pipeline for resource consumption attacks consists of three stages: (1) request
clustering based on a computed Resource Index; (2) dynamic scheduling and reordering of request queues; and (3)
elastic output-length suppression to limit resource usage induced by adversarial prompts.

sumption attacks. At its core, PD3F introduces the069

Resource Index that quantifies the attack risks of070

incoming requests by leveraging high-dimensional071

GPU resource features, enabling user-level queue072

scheduling. Subsequently, we employ the Resource073

Index to guide Dynamic Request Polling Schedul-074

ing at the input stage, which deprioritizes adversar-075

ial requests, thereby mitigating excessive resource076

usage. On the output side, PD3F applies the Adap-077

tive End-Based Suppression mechanism to shorten078

attack requests while reducing the resource con-079

sumption of individual requests. As a result, PD3F080

mitigates existing resource consumption attacks081

effectively while preserving the performance of082

benign queries.083

We simulate real-world deployment scenarios084

and conduct comprehensive experiments on six085

widely-used open-source LLMs, including Llama-086

3.1 (Patterson et al., 2022), Qwen2.5 (Yang et al.,087

2024), Mistral-v0.2 (Jiang et al., 2023). Experi-088

mental results demonstrate that PD3F effectively089

mitigates the impact of denial-of-service attacks090

for LLMs. Under attack scenarios, PD3F reduces091

the impact of DoS attacks by at least 50% ↓, while092

improving user request efficiency by 500% ↑. No-093

tably, we ensure minimal disruption to benign user094

requests under varying workloads.095

In summary, our primary contribution lies in096

PD3F, which is the first universal defense against097

resource consumption attacks. We define the Re-098

source Index to enable more precise cluster identi-099

fication in high-dimensional space for quantifying100

resource overhead risk. Building on this, we further101

present the Dynamic Request Polling Strategy and102

apply Adaptive End-Based Suppression to weaken 103

adversarial resource usage by elastically output- 104

length suppression. We evaluate PD3F across six 105

models, three attack types, and eight defense base- 106

lines, demonstrating its effectiveness. PD3F offers 107

a novel perspective on LLM security defenses and 108

improves the deployment robustness. 109

2 Related work 110

Jailbreak attacks. Jailbreak attacks aim to by- 111

pass LLMs’ alignment safeguards to induce harm- 112

ful outputs (Wei et al., 2023). Existing studies have 113

identified several major categories of such attacks. 114

Template-based and multi-turn attacks exploit struc- 115

tured or step-by-step prompting schemes to manip- 116

ulate model behavior (Gehman et al., 2020; Li et al., 117

2023; Zhou et al., 2024c; Zhu et al., 2025). Auto- 118

mated adversarial prompt generation methods craft 119

inputs that elicit harmful responses without manual 120

intervention (Chao et al., 2023; Liu et al., 2023a; 121

Zou et al., 2023). Training-time data poisoning 122

introduces malicious patterns during model fine- 123

tuning to compromise alignment (Lermen et al., 124

2023; Xu et al., 2023). Semantic-level red teaming 125

techniques probe models with subtle prompts to 126

reveal hidden vulnerabilities (Perez et al., 2022; 127

Casper et al., 2023). 128

Resource consumption attacks. Resource con- 129

sumption attacks maliciously consume computa- 130

tional resources or bring down services (Shumailov 131

et al., 2021). Among them, denial-of-service (DoS) 132

attacks have been demonstrated as an effective 133

and well-documented threat (Zhang et al., 2024e). 134

For instance, large-scale adversarial suffix gener- 135
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ation (Liao and Sun, 2024) can overwhelm mod-136

els through massive input manipulation. Engorgio137

Prompts suppress end-of-sequence tokens, result-138

ing in excessive outputs (Dong et al., 2024). At-139

tacks like P-DoS and neural efficiency backdoors140

(Gao et al., 2024b; Chen et al., 2023) embed persis-141

tent inefficiencies via poisoned fine-tuning.142

Mitigation. Safety alignment is a critical area143

for mitigating risks posed by attacks and enhanc-144

ing model safety by aligning outputs with human145

values (Ouyang et al., 2022; Bai et al., 2022; Dai146

et al., 2023; Liu et al., 2023b). To enhance the147

model’s safety capabilities, existing research also148

improves the safety performance through external149

methods. For jailbreak attacks, input and output150

filtering can identify abnormal contents to reduce151

the harmful impact (Alon and Kamfonas, 2023;152

Phute et al., 2023) and input rewriting (Kumar153

et al., 2025; Jain et al., 2023; Liu et al., 2024)154

mitigates the risk by paraphrasing or perturbing155

prompts. Other approaches help correct biases156

and malicious patterns in pretraining data and en-157

hance the model’s resistance to dangerous instruc-158

tions (Rae et al., 2021; Hendrycks et al., 2020;159

Wei et al., 2023). When facing resource consump-160

tion attacks, techniques such as Difficulty-Adaptive161

Self-Consistency (DSC) (Wang et al., 2024) and162

SQ-VAE (Wang et al., 2023) aim to reduce resource163

consumption when the model encounters adversar-164

ial inputs. However, these methods still face signif-165

icant challenges under complex scenarios, and are166

insufficient to fully mitigate the impact of current167

resource consumption attacks.168

3 Method169

In this section, we present PD3F and describe its170

key components in detail. In Sec. 3.1, we out-171

line the construction of the Resource Index, which172

distinguishes resource consumption attacks from173

benign requests. Sec. 3.2 details the Dynamic Re-174

quest Polling Scheduling strategy for adaptively175

handling requests using the Resource Index. Fi-176

nally, Sec. 3.3 introduces the Adaptive End-Based177

Suppression mechanism, designed to reduce per-178

formance degradation caused by DoS attacks.179

3.1 Resource Index180

Recent studies have shown that resource consump-181

tion attacks can lead to significant consumption of182

GPU resources in LLMs (Shumailov et al., 2021).183

However, high resource usage alone is not the only184

Figure 3: Difference between benign and attack requests
under the Resource Index on the Llama70B model.

definitive indicator of such attacks, while benign 185

requests with long contexts also incur substantial 186

computational overhead. Therefore, relying solely 187

on resource utilization as a criterion for attack de- 188

tection is prone to hindering benign users. To ad- 189

dress this, we propose the Resource Index, which 190

enables more accurate classification using high- 191

dimensional process-level features. 192

Preliminary. For each complete generation pro- 193

cess, we define the input encoding start time as tS , 194

and the decoding completion time after the final 195

output token is generated as tF . The total model 196

runtime is thus given by T = tF−tS . Let m(t) and 197

g(t) denote the GPU memory and GPU utilization 198

functions at time t, respectively. We then define: 199

M = max
t∈[tS ,tF ]

m(t), (1) 200

G = max
t∈[tS ,tF ]

g(t), (2) 201

where M and G denote the maximum values over 202

the interval [tS , tF ]. 203

We define D(·) to calculate the token sequence 204

length at the time step t. The input length is defined 205

as the sequence length at the beginning: 206

Lin = D(tS). (3) 207

The output length is defined as the sequence 208

length at the end of generation: 209

Lout = D(tF )− D(tS). (4) 210

We structure the GPU resource indica- 211

tor set [T,M,G,Lin, Lout] as a vector 212

(T,M,G,Lin, Lout) in the high-dimensional 213

space R5 for subsequent computations. Let rc 214

denote the representation of the current request, 215

and ra the historical average representation over 216

benign requests. 217
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The Resource Index comprises two types: the218

consumption index Ic and the tendency index It.219

First, we introduce Ic, which serves as a direct220

measure of resource load. We apply a projection221

operator Pm : Rn → Rm (n > m), which extracts222

a m-dimensional subspace from the original re-223

source vector. In the consumption index, we select224

the dimension [T,G,Lout], which is most corre-225

lated with the degree of resource consumption. Let226

rcc = P3(rc) and rac = P3(ra) denote the cor-227

responding projected consumption vectors. Ic is228

computed as the relative ratio of their norms:229

Ic =

√∑3
i=1 r

2
cci√∑3

i=1 r
2
aci

=
||rcc||2
||rac||2

, (5)230

where || · ||2 represents the L2 norm.231

We then compute the tendency index It to make232

a preliminary assessment of attack tendency, using233

[T,M,Lin, Lout] as tendency features.234

Correspondingly, we define the tendency feature235

vector r⊤ct = P4(rc) = [T,M,Lin, Lout] ∈ R4 for236

the current request and the reference vector r⊤at =237

P4(ra) ∈ R4. Prior to similarity computation, the238

vectors are normalized via mean-centering:239

r̃ = r − 1

n
1⊤r · 1, (6)240

where n is the dimensionality of R4 (Jolliffe, 2002).241

We compute the cosine similarity between the cen-242

tered tendency feature vector of the current request243

r̃ct and the reference vector r̃at to obtain the final244

tendency index. This can be formally expressed as:245

It =
(rct − r̃ct · 1)⊤(rat − r̃at · 1)⊤

||rct − r̃ct · 1||2 · ||rat − r̃at · 1||2
, (7)246

intuitively speaking long contexts of benign re-247

quests exhibited strong regional clustering in the248

resource behavior space. As illustrated in Fig. 3,249

we identified two stable benign clusters and applied250

clustering accordingly.251

Finally, the Resource Index, composed of It and252

Ic , jointly characterizes the potential aggressive-253

ness of a request from two orthogonal perspectives:254

behavioral similarity and resource intensity.255

We apply the Interquartile Range (IQR) method256

(Tukey et al., 1977) to each index. For any indicator257

i ∈ Ic ∪ It, let IQR 1
4
(i) and IQR 3

4
(i) denote the258

first and third quartiles over the historical benign259

requests set, respectively. The upper threshold αu260

and lower threshold αl are defined as follows: 261

αu = (1 + λ) · IQR 3
4
(i)− λ · IQR 1

4
(i)),

αl = (1 + λ) · IQR 1
4
(i)− λ · IQR 3

4
(i)),

(8) 262

where λ is IQR multiplier. The corresponding 263

threshold range [αl, αu] is configured individually 264

for each indicator. 265

As illustrated in Fig. 3, we obtain the Resource 266

Index, which characterizes the risk level of each re- 267

quest and informs subsequent response scheduling. 268

Representative examples of request categorization 269

are provided in Appendix J. 270

3.2 Dynamic Request Polling Scheduling 271

In this section, we leverage the Resource Index pro- 272

posed in Sec. 3.1 to introduce the Dynamic Request 273

Polling Strategy. This mechanism maintains the 274

stability of LLM services by suppressing resource 275

occupation from DoS attacks, while improving re- 276

quest throughput for benign users. 277

We partition the global request queue into mul- 278

tiple sub-queues, each corresponding to a distinct 279

user. Let Qu = {p(1)u , p
(2)
u , . . . } denote the sub- 280

queue for user u, where u ∈ U , U is the set of all 281

currently users, and each p
(i)
u represents a request 282

prompt. Each Qu adopts a First Come First Serve 283

policy (Stallings, 2018) for request processing. 284

In the multi-user setting, we maintain a dynam- 285

ically updated reputation score Su for each user, 286

and assign an initial score Su = Sini
u to new users. 287

Before generating each round of responses, we se- 288

lect the top-n users with the highest Su, according 289

to the system’s service parallelism capacity. 290

Drawing inspiration from time-sharing operating 291

systems (Creasy, 1981), we update user reputation 292

scores to enable rotation-based scheduling. Specif- 293

ically, we use the Resource Index to adjust Su and 294

dynamically update the user queue accordingly. Be- 295

low, we introduce several Resource Index-based 296

update strategies and illustrate their effects on the 297

user score Su. 298

Normal Request Rotation. If only one of the 299

Resource Index indicators falls within the normal 300

range, a mild penalty is applied: 301

Su ← Su − γ, (9) 302

Where γ is the penalty intensity hyperparameter. 303

In this case, users not served in the current round 304

are prioritized in future rounds. 305
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Short Request Reward. If both Ic and It fall306

within their normal operating ranges, the corre-307

sponding user receives a positive reward to in-308

crease its scheduling priority and promote short-309

term throughput:310

Su ← Su + γ
1

Ic
. (10)311

To prevent runaway accumulation, we clip the312

score if it exceeds a multiple of the initial score:313

Su ← Sini
u − γ if Su > µ · Sini

u (11)314

where µ constrains the maximum reputation.315

DoS Request Penalty. If both Resource Index316

indicators exceed predefined thresholds, a large317

penalty is applied to significantly reduce the user’s318

future scheduling priority:319

Su ← Su − γ · Ic. (12)320

Inactive User Compensation. We apply a com-321

pensatory update to the reputation scores of users322

who have not been scheduled for an extended pe-323

riod:324

Su ← min(Su + δ · γ, Sini
u ), (13)325

here δ ∈ (0, 1] controls the compensation rate.326

All score updates are applied synchronously at327

the end of each scheduling round to determine sub-328

sequent scheduling priorities.329

3.3 Adaptive End-Based Suppression330

The length of responses generated by LLMs is di-331

rectly determined by the occurrence of the <EOS>332

token (Vaswani et al., 2017; Ansari et al., 2024). To333

mitigate resource consumption attacks, we modu-334

late the probability of <EOS> generation based on335

the user reputation scores introduced in Sec. 3.2.336

We calculate a user-specific upper bound Lu on337

the number of output tokens for each request, based338

on the Su. This value serves as a soft cap on the339

response length during decoding. Let Lmax denote340

the system-wide maximum output length, and let341

Lmin = 2 · Lave
out be the minimum acceptable re-342

sponse length. We apply a linear interpolation to343

compute Lu as a function of Su:344

Lu = Lmin +
Su

Sini
u

· (Lmax − Lmin). (14)345

When the number of generated tokens reaches346

the user-specific upper bound Lu, we intervene in347

the model’s output logits to terminate the response348

as early as possible. This intervention consists of349

two components:350

Repetition-Guided <EOS> Logit Enhance- 351

ment. Let the generated token sequence G = 352

[g1, g2, . . . , gn], where n < Lmax, denote the se- 353

quence generated thus far. To discourage excessive 354

repetition and encourage early termination, we in- 355

troduce a repetition-aware regularization term that 356

modifies the logit of the <EOS> token during de- 357

coding. Specifically, for decoding steps beyond the 358

length threshold Lu, we define: 359

∆
(1)
EOS = γ ·max

v∈V

n∑
t=Lu+1

I[gt = v]. (15) 360

Extra-Length-Based Logit Enhancement. At 361

decoding step n with vocabulary V , we denote the 362

maximum logit as lnmax = maxv∈V lnv , and let lneos 363

represent the logit of the <EOS> token. We define 364

the average logit gap parameter as: 365

d =

∑n
x=1(l

x
max − lxeos)

n
. (16) 366

We introduce a confidence-aware regularization 367

term that dynamically adjusts the <EOS> logit 368

based on the average logit gap: 369

∆
(2)
EOS = − d

n− Lu
+ η · d, (17) 370

where η is the inhibition adjustment parameter. 371

We combine the two enhancement terms with the 372

original <EOS> logit to obtain the final corrected 373

value: 374

l′neos = ∆
(2)
EOS · (l

n
eos +∆

(1)
EOS). (18) 375

The adjusted logits l′neos are then used for sub- 376

sequent sampling and decoding. This mechanism 377

enables adaptive output suppression for users with 378

low reputation scores by increasing the likelihood 379

of early termination via <EOS>. 380

4 Experiments 381

4.1 Experimental Setups 382

Models. We conducted local deployment and ex- 383

perimental evaluation of six large language mod- 384

els from four major families: Llama8B (Patterson 385

et al., 2022), Llama70B (Patterson et al., 2022), 386

Qwen7B (Yang et al., 2024), Qwen32B (Hui et al., 387

2024), Qwen72B (Yang et al., 2024), Mistral7B 388

(Jiang et al., 2023). Additional details regarding 389

model configurations can be found in Appendix. B 390
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ID IDR PPL KSD ISM OSM DSC SQ-VAE PD3F
AutoDoS (Zhang et al., 2024e) % - % % ! % - - !

GCG-DoS (Geiping et al., 2024) ! - ! % ! ! - - !

P-DoS (Gao et al., 2024b) % % ! ! % ! % % !

Table 1: This table compares the defense effectiveness. ! indicates universal effectiveness,% universal ineffective-
ness, and “–” partial effectiveness across models.
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Figure 4: The improvement of PD3F in benign user throughput (BUT) indicates stronger resistance to attacks, while
the reduction in total tokens (TT) reflects decreased overall resource consumption.

Datasets. To evaluate PD3F effectiveness against391

resource consumption attacks, we employed P-DoS392

(Gao et al., 2024b), GCG-DoS (Geiping et al.,393

2024), and AutoDoS (Zhang et al., 2024e).394

As for benign dataset, we selected GSM (Cobbe395

et al., 2021), HellaSwag (Zellers et al., 2019a),396

MMLU (Hendrycks et al., 2021), HumanEval397

(Chen et al., 2021), and GPQA (Rein et al., 2024).398

These datasets cover a wide range of types of be-399

nign tasks, ensuring broad coverage in terms of400

task domains and input-output modalities. More401

detailed settings and dataset descriptions are in Ap-402

pendix C.403

Baselines. We compare against five categories of404

defense mechanisms, including: perplexity-based405

detection methods (PPL) (Alon and Kamfonas,406

2023; Jain et al., 2023), robustness enhancement407

via input data rewrite (IDR) (Jain et al., 2023;408

Liu et al., 2024), input disturbance methods (ID)409

(Goyal et al., 2023; Zhang et al., 2024d), KSD de-410

tection using the Kolmogorov-Smirnov test (Peng411

et al., 2007), input self-monitoring (ISM) and out-412

put self-monitoring (OSM) methods that detect at-413

tack tendencies (Phute et al., 2023).414

In addition, we consider two length control ap-415

proaches: Difficulty-Adaptive Self-Consistency416

(DSC) (Wang et al., 2024) and SQ-VAE methods417

(Wang et al., 2023).418

Metrics. For the attack detection capability di-419

mension, we adopted the standard binary classifica-420

tion performance index, including Attack Determi- 421

nation Accuracy (Precision), Recall, and F1 score 422

(Sasaki et al., 2007). 423

Considering the impact of defence strategies on 424

system performance, we further design three met- 425

rics to evaluate the performance. We denote the 426

total time consumed by the model to process all 427

requests as TT. Based on TT and a total number of 428

requests, Overall Throughput (OT) is calculated as: 429

OT =
Total Requests Processed

TT
. (19) 430

Benign User Throughput (BUT) reflects the sys- 431

tem’s ability to serve benign requests under attack 432

conditions: 433

BUT =
Benign Requests Completed

TT
(20) 434

4.2 Defense Effectiveness 435

Attack detection accuracy analysis. As the re- 436

sult showed in Tab. 1. We compared PD3F with 437

several baseline defense mechanisms across mod- 438

els of varying scales and architectures, showing that 439

existing approaches still have certain limitations, 440

while our method provides effective defense across 441

multiple types of attacks. In Tab. 2, PD3F consis- 442

tently demonstrates strong performance, achieving 443

an average Attack Determination Accuracy of over 444

99% across the three attack types, and nearly 100% 445

accuracy on Llama and Qwen models. More de- 446

tailed results are shown in Appendix D. 447
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Llama8B Llama70B Mistral7B Qwen7B Qwen14B Qwen72B AVERAGE
Recall 1.00 0.90 1.00 1.00 0.99 1.00 0.98

Precision 1.00 1.00 0.95 1.00 1.00 1.00 0.99AutoDoS
F1 Score 1.00 0.91 0.97 0.95 0.99 1.00 0.97

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Precision 1.00 1.00 0.95 1.00 1.00 1.00 0.99GCG-DoS
F1 Score 1.00 1.00 0.97 1.00 1.00 1.00 0.99

Recall 1.00 0.98 1.00 1.00 1.00 1.00 1.00
Precision 1.00 0.99 0.93 1.00 1.00 1.00 0.99P-DoS
F1 Score 1.00 0.98 0.96 1.00 1.00 1.00 0.99

Table 2: This table presents the detection performance of \ours, achieving an F1 score exceeding \textbf{0.97}
against existing attack methods, demonstrating both high recognition accuracy and strong generalization.
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Figure 5: This figure shows the changes in BUT for PD3F under varying numbers of requests and users. The main
experimental parameters were carefully selected to ensure result stability.

Throughput improvement under attack. To448

further verify the robustness and efficiency of our449

framework under attack, we simulated multi-user450

request queues and compared PD3F with two com-451

monly used scheduling strategies: First-Come,452

First-Served (FCFS) and Round-Robin (RR)(Gross453

et al., 2011; Rasmussen and Trick, 2008).454

As shown in Fig. 4a, PD3F demonstrated a clear455

advantage. The BUT under PD3F remained more456

than 2× that of RR and more than 4× that of457

FCFS, significantly outperforming both in most458

scenarios. Notably, in the AutoDoS scenario, PD3F459

improved BUT by nearly 500% over FCFS and460

by approximately 200% over RR. This shows that461

the PD3F scheduling strategy can effectively miti-462

gate malicious request blocking without sacrificing463

fairness, thereby improving system responsiveness.464

Resource consumption suppression. We also465

compared the three strategies in terms of total pro-466

cessing time and OT. Fig. 4b and Tab. 3 show that467

the total processing time of PD3F was reduced to468

nearly 50% that of FCFS and RR, and consistently469

outperformed the other two strategies. Particularly,470

PD3F achieved up to a 160% improvement in OT471

compared to other methods on Llama8B. These 472

findings indicate that PD3F not only improves ser- 473

vice quality for users, but also reduces the resource 474

consumption of attacks at the system level, showing 475

strong processing efficiency and robustness under 476

various attack scenarios. 477

Stability across varying workloads. To examine 478

the adaptability of each strategy under different 479

workloads, we designed experiments varying the 480

number of users and the number of requests per 481

user. As shown in Fig. 5, the benign users’ BUT 482

remains generally stable across different request 483

volumes. Our main experiments were conducted 484

under conditions corresponding to relatively stable 485

points in the figure (5 requests per user with 10 486

concurrent users). Further details are presented 487

in Appendix I. We present the actual fluctuations 488

of EOS in Appendix K and analyze the semantic 489

integrity of benign requests in Appendix G. 490

4.3 Ablation Study 491

To further validate the contribution of each compo- 492

nent in PD3F to overall defense effectiveness and 493

resource efficiency, we conduct three sets of abla- 494
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FCFS RR PD3F
Llama8B 0.63↓−1.01 0.59↓−1.05 1.64
Llama70B 0.16↓−0.18 0.27↓−0.07 0.34
Mistral7B 0.74↓−0.86 0.67↓−0.93 1.60
Qwen7B 0.85↓−0.81 0.84↓−0.82 1.66
Qwen14B 1.19↓−0.32 1.14↓−0.37 1.51
Qwen72B 0.44↓−0.10 0.42↓−0.12 0.54

Table 3: Comparison of OT under different scheduling
strategies. Red subscript indicates the throughput-per-
second decrease relative to PD3F.

Model BUT TT
FCFS PD3F RR FCFS PD3F RR

Llama8B 7.27↓ 8.54 9.59↑ 412.58↑ 351.40 312.79↓
Llama70B 0.63↑ 0.38 0.62↑ 4750.16↓ 7915.60 4807.33↓
Mistral7B 6.80↑ 6.45 6.14↓ 441.13↓ 464.82 488.77↑
Qwen7B 5.64↓ 6.22 5.84↓ 531.77↑ 482.66 513.62↑
Qwen14B 3.45↓ 4.16 3.74↓ 869.84↑ 720.79 802.38↑
Qwen72B 0.79↓ 0.98 0.92↓ 3814.90↑ 3069.50 3251.59↑

Table 4: Under non-attack conditions, both BUT and
TT indicate that PD3F preserves normal performance.
Arrows indicate the direction of difference from PD3F.

tion experiments targeting the dynamic scheduling495

strategy and the Adaptive End-Based Suppression496

mechanism. The first two experiments were per-497

formed under a higher attack ratio to better high-498

light the strength of our defense approach, while499

the third assessed the generalizability and stability500

of the system in normal request scenarios.501

Ablation Dynamic Request Polling Scheduling.502

Fig. 6 shows that under the same attack intensity,503

the system using PD3F exhibited a significant im-504

provement in benign request throughput, with the505

average Benign User Throughput increasing by506

over 80%. This indicates that the Dynamic Re-507

quest Polling Scheduling is one of the key factors508

in effectively mitigating malicious interference and509

maintaining a good user experience.510

Disabling Adaptive End-Based Suppression.511

Fig. 6 right indicates that with the integration of our512

Adaptive End-Based Suppression mechanism, the513

system’s total time was reduced by approximately514

50% on average, and up to 60% for LLaMA70B.515

Additionally, the BUT improved by nearly 100%516

for Llama8B, Mistral7B, and Qwen7B under sus-517

tained attack. This demonstrates that our suppres-518

sion mechanism plays a critical role in prevent-519

ing malicious requests from consuming excessive520

computational resources and enhancing system re-521

sponsiveness. Additionally, the results of ablation522

studies conducted under the same attack ratio as523
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Figure 6: The left figure presents the effect of Dynamic
Request Polling Scheduling, highlighting its contribu-
tion to BUT improvement. The right figure shows the
effect of Adaptive End-Based Suppression, illustrating
its impact on resource consumption and throughput.

the main experiments are included in Appendix H. 524

Stability under non-adversarial conditions. 525

We further evaluate PD3F’s performance in a non- 526

adversarial environment compared with FCFS and 527

RR to examine whether it introduces any overhead 528

during normal operation. Tab. 4 shows that all three 529

methods perform comparably, PD3F maintains sim- 530

ilar BUT and TT to FCFS and RR, and even slightly 531

better in some scenarios. This indicates that our 532

framework maintains stable performance under be- 533

nign conditions, demonstrating its non-intrusive 534

design and practical deployment value. 535

5 Conclusion 536

We introduce the Pluggable Dynamic DoS-Defense 537

Framework (PD3F), to defend against resource 538

consumption attack instructions. PD3F proposes 539

Resource Index that effectively clusters DoS at- 540

tacks and identifies resource-consuming adversar- 541

ial prompts without false positives for benign re- 542

quests. Based on this, PD3F achieves attacks miti- 543

gation through a combination of Dynamic Request 544

Polling Scheduling and Adaptive End-Based Sup- 545

pression. We evaluate the defense effectiveness and 546

performance of PD3F on six open-source LLMs. 547

Experimental results demonstrate an identification 548

accuracy exceeding 99% and an increase of over 549

50% in the throughput of benign requests. Fur- 550

thermore, we show that existing security defenses 551

remain insufficient and may lead to hidden risks 552

such as service paralysis and resource exhaustion. 553

Our work mitigates these risks and contributes to- 554

ward elastic, resource-aware deployment of LLMs. 555

8



Limitations556

This paper focuses on the field of model security,557

specifically addressing the degradation of LLM ap-558

plication service capabilities caused by resource559

consumption attacks. We propose effective de-560

fense mechanisms tailored to different categories of561

such attacks. Although the study targets server-side562

LLM deployments, all experiments are conducted563

on local servers in a simulated environment, and no564

real-world attacks are executed. By providing a ro-565

bust defense framework, this work aims to enhance566

the security and reliability of LLM applications,567

improve the efficiency of limited service resources,568

and contribute to the broader field of secure and569

practical AI deployment.570

References571

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama572
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,573
Diogo Almeida, Janko Altenschmidt, Sam Altman,574
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-575
cal report. arXiv preprint arXiv:2303.08774.576

Gabriel Alon and Michael Kamfonas. 2023. Detect-577
ing language model attacks with perplexity. arXiv578
preprint arXiv:2308.14132.579

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen,580
Xiyuan Zhang, Pedro Mercado, Huibin Shen, Olek-581
sandr Shchur, Syama Sundar Rangapuram, Sebas-582
tian Pineda Arango, Shubham Kapoor, and 1 others.583
2024. Chronos: Learning the language of time series.584
arXiv preprint arXiv:2403.07815.585

Stuart Armstrong, Matija Franklin, Connor Stevens,586
and Rebecca Gorman. 2025. Defense against the587
dark prompts: Mitigating best-of-n jailbreaking with588
prompt evaluation. arXiv preprint arXiv:2502.00580.589

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda590
Askell, Anna Chen, Nova DasSarma, Dawn Drain,591
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1592
others. 2022. Training a helpful and harmless assis-593
tant with reinforcement learning from human feed-594
back. arXiv preprint arXiv:2204.05862.595

Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and596
Dylan Hadfield-Menell. 2023. Explore, establish,597
exploit: Red teaming language models from scratch.598
arXiv preprint arXiv:2306.09442.599

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,600
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,601
Cunxiang Wang, Yidong Wang, and 1 others. 2024.602
A survey on evaluation of large language models.603
ACM Transactions on Intelligent Systems and Tech-604
nology, 15(3):1–45.605

Patrick Chao, Alexander Robey, Edgar Dobriban, 606
Hamed Hassani, George J Pappas, and Eric Wong. 607
2023. Jailbreaking black box large language models 608
in twenty queries. arXiv preprint arXiv:2310.08419. 609

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 610
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 611
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 612
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, 613
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela 614
Mishkin, Brooke Chan, Scott Gray, and 38 others. 615
2021. Evaluating large language models trained on 616
code. arXiv preprint arXiv:2107.03374. 617

Simin Chen, Hanlin Chen, Mirazul Haque, Cong Liu, 618
and Wei Yang. 2023. The dark side of dynamic rout- 619
ing neural networks: Towards efficiency backdoor 620
injection. In Proceedings of the IEEE/CVF Confer- 621
ence on Computer Vision and Pattern Recognition, 622
pages 24585–24594. 623

Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and 624
Wei Yang. 2022. Nmtsloth: understanding and test- 625
ing efficiency degradation of neural machine transla- 626
tion systems. In Proceedings of the 30th ACM Joint 627
European Software Engineering Conference and Sym- 628
posium on the Foundations of Software Engineering, 629
pages 1148–1160. 630

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 631
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 632
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 633
Nakano, and 1 others. 2021. Training verifiers 634
to solve math word problems. arXiv preprint 635
arXiv:2110.14168. 636

Robert J. Creasy. 1981. The origin of the vm/370 time- 637
sharing system. IBM Journal of Research and Devel- 638
opment, 25(5):483–490. 639

Tianyu Cui, Yanling Wang, Chuanpu Fu, Yong Xiao, 640
Sijia Li, Xinhao Deng, Yunpeng Liu, Qinglin Zhang, 641
Ziyi Qiu, Peiyang Li, and 1 others. 2024. Risk 642
taxonomy, mitigation, and assessment benchmarks 643
of large language model systems. arXiv preprint 644
arXiv:2401.05778. 645

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo 646
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang. 647
2023. Safe rlhf: Safe reinforcement learning from 648
human feedback. arXiv preprint arXiv:2310.12773. 649

Gelei Deng, Yi Liu, Kailong Wang, Yuekang Li, Tian- 650
wei Zhang, and Yang Liu. 2024. Pandora: Jailbreak 651
gpts by retrieval augmented generation poisoning. 652
arXiv preprint arXiv:2402.08416. 653

Zehang Deng, Yongjian Guo, Changzhou Han, Wan- 654
lun Ma, Junwu Xiong, Sheng Wen, and Yang Xiang. 655
2025. Ai agents under threat: A survey of key secu- 656
rity challenges and future pathways. ACM Comput- 657
ing Surveys, 57(7):1–36. 658

Jianshuo Dong, Ziyuan Zhang, Qingjie Zhang, Tianwei 659
Zhang, Hao Wang, Hewu Li, Qi Li, Chao Zhang, 660
Ke Xu, and Han Qiu. 2024. An engorgio prompt 661

9



makes large language model babble on. arXiv662
preprint arXiv:2412.19394.663

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan664
Ma, Shi Jie, Xiang Wang, Xiangnan He, and Tat-Seng665
Chua. 2025a. Alphaedit: Null-space constrained666
knowledge editing for language models. ICLR.667

Junfeng Fang, Yukai Wang, Ruipeng Wang, Zijun Yao,668
Kun Wang, An Zhang, Xiang Wang, and Tat-Seng669
Chua. 2025b. Safemlrm: Demystifying safety in670
multi-modal large reasoning models. arXiv preprint671
arXiv:2504.08813.672

Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia,673
Philip Torr, Zhifeng Li, and Wei Liu. 2024a. In-674
ducing high energy-latency of large vision-language675
models with verbose images. In The Twelfth Interna-676
tional Conference on Learning Representations.677

Kuofeng Gao, Tianyu Pang, Chao Du, Yong Yang, Shu-678
Tao Xia, and Min Lin. 2024b. Denial-of-service poi-679
soning attacks against large language models. arXiv680
preprint arXiv:2410.10760.681

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-682
man, Sid Black, Anthony DiPofi, Charles Foster,683
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,684
Haonan Li, Kyle McDonell, Niklas Muennighoff,685
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey686
Schoelkopf, Aviya Skowron, Lintang Sutawika, and687
5 others. 2024c. The language model evaluation har-688
ness.689

Samuel Gehman, Suchin Gururangan, Maarten Sap,690
Yejin Choi, and Noah A Smith. 2020. Realtoxici-691
typrompts: Evaluating neural toxic degeneration in692
language models. arXiv preprint arXiv:2009.11462.693

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah,694
Yuxin Wen, and Tom Goldstein. 2024. Coercing llms695
to do and reveal (almost) anything. arXiv preprint696
arXiv:2402.14020.697

Shreya Goyal, Sumanth Doddapaneni, Mitesh M698
Khapra, and Balaraman Ravindran. 2023. A survey699
of adversarial defenses and robustness in nlp. ACM700
Computing Surveys, 55(14s):1–39.701

Donald Gross, John F Shortle, James M Thompson,702
and Carl M Harris. 2011. Fundamentals of queueing703
theory, volume 627. John wiley & sons.704

Yutong He, Alexander Robey, Naoki Murata, Yiding705
Jiang, Joshua Williams, George J Pappas, Hamed706
Hassani, Yuki Mitsufuji, Ruslan Salakhutdinov, and707
J Zico Kolter. 2024. Automated black-box prompt en-708
gineering for personalized text-to-image generation.709
arXiv preprint arXiv:2403.19103, 2(5).710

Dan Hendrycks, Collin Burns, Steven Basart, Andrew711
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.712
2020. Aligning ai with shared human values. arXiv713
preprint arXiv:2008.02275.714

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 715
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 716
2021. Measuring massive multitask language under- 717
standing. In International Conference on Learning 718
Representations. 719

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, 720
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun 721
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024. 722
Qwen2. 5-coder technical report. arXiv preprint 723
arXiv:2409.12186. 724

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami 725
Somepalli, John Kirchenbauer, Ping-yeh Chiang, 726
Micah Goldblum, Aniruddha Saha, Jonas Geiping, 727
and Tom Goldstein. 2023. Baseline defenses for ad- 728
versarial attacks against aligned language models. 729
arXiv preprint arXiv:2309.00614. 730

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 731
sch, Chris Bamford, Devendra Singh Chaplot, Diego 732
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 733
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 734
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 735
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 736
and William El Sayed. 2023. Mistral 7b. arXiv 737
preprint arXiv:2310.06825. 738

Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guojun 739
Ma, Mingyang Wan, Xiang Wang, Xiangnan He, and 740
Tat-seng Chua. 2025. Anyedit: Edit any knowledge 741
encoded in language models. ICML. 742

Ian T Jolliffe. 2002. Principal component analysis for 743
special types of data. Springer. 744

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena 745
Karpinska, Mohit Iyyer, Amir Houmansadr, and Eu- 746
gene Bagdasarian. 2025. Overthink: Slowdown at- 747
tacks on reasoning llms. arXiv e-prints. 748

Aounon Kumar, Chirag Agarwal, Suraj Srinivas, 749
Aaron Jiaxun Li, Soheil Feizi, and Himabindu 750
Lakkaraju. 2023. Certifying llm safety against adver- 751
sarial prompting. arXiv preprint arXiv:2309.02705. 752

Simon Lermen, Charlie Rogers-Smith, and Jeffrey 753
Ladish. 2023. Lora fine-tuning efficiently undoes 754
safety training in llama 2-chat 70b. arXiv preprint 755
arXiv:2310.20624. 756

Patrick Levi and Christoph P Neumann. 2024. Vocab- 757
ulary attack to hijack large language model applica- 758
tions. arXiv preprint arXiv:2404.02637. 759

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, 760
Fanpu Meng, and Yangqiu Song. 2023. Multi- 761
step jailbreaking privacy attacks on chatgpt. arXiv 762
preprint arXiv:2304.05197. 763

Zeyi Liao and Huan Sun. 2024. Amplegcg: Learning a 764
universal and transferable generative model of adver- 765
sarial suffixes for jailbreaking both open and closed 766
llms. arXiv preprint arXiv:2404.07921. 767

10

https://openreview.net/forum?id=BteuUysuXX
https://openreview.net/forum?id=BteuUysuXX
https://openreview.net/forum?id=BteuUysuXX
https://openreview.net/forum?id=BteuUysuXX
https://openreview.net/forum?id=BteuUysuXX
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2310.06825


Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei768
Xiao. 2023a. Autodan: Generating stealthy jailbreak769
prompts on aligned large language models. arXiv770
preprint arXiv:2310.04451.771

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying772
Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov,773
Muhammad Faaiz Taufiq, and Hang Li. 2023b. Trust-774
worthy llms: a survey and guideline for evaluating775
large language models’ alignment. arXiv preprint776
arXiv:2308.05374.777

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen778
Zheng, Ying Zhang, Lida Zhao, Tianwei Zhang,779
Kailong Wang, and Yang Liu. 2023c. Jailbreaking780
chatgpt via prompt engineering: An empirical study.781
arXiv preprint arXiv:2305.13860.782

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and783
Neil Zhenqiang Gong. 2024. Formalizing and bench-784
marking prompt injection attacks and defenses. In785
33rd USENIX Security Symposium (USENIX Security786
24), pages 1831–1847.787

Natalie Maus, Patrick Chao, Eric Wong, and Jacob Gard-788
ner. 2023. Black box adversarial prompting for foun-789
dation models. arXiv preprint arXiv:2302.04237.790

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik,791
Blaine Nelson, Hyrum Anderson, Yaron Singer, and792
Amin Karbasi. 2024. Tree of attacks: Jailbreaking793
black-box llms automatically. Advances in Neural794
Information Processing Systems, 37:61065–61105.795

Wenlong Meng, Fan Zhang, Wendao Yao, Zhenyuan796
Guo, Yuwei Li, Chengkun Wei, and Wenzhi Chen.797
2025. Dialogue injection attack: Jailbreaking798
llms through context manipulation. arXiv preprint799
arXiv:2503.08195.800

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,801
Carroll Wainwright, Pamela Mishkin, Chong Zhang,802
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1803
others. 2022. Training language models to follow in-804
structions with human feedback. Advances in neural805
information processing systems, 35:27730–27744.806

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc807
Le, Chen Liang, Lluis-Miquel Munguia, Daniel808
Rothchild, David R So, Maud Texier, and Jeff Dean.809
2022. The carbon footprint of machine learning train-810
ing will plateau, then shrink. Computer, 55(7):18–811
28.812

Anselm Paulus, Arman Zharmagambetov, Chuan Guo,813
Brandon Amos, and Yuandong Tian. 2024. Ad-814
vprompter: Fast adaptive adversarial prompting for815
llms. arXiv preprint arXiv:2404.16873.816

Tao Peng, Christopher Leckie, and Kotagiri Ramamo-817
hanarao. 2007. Survey of network-based defense818
mechanisms countering the dos and ddos problems.819
ACM Computing Surveys (CSUR), 39(1):3–es.820

Yu Peng, Zewen Long, Fangming Dong, Congyi Li, 821
Shu Wu, and Kai Chen. 2024. Playing language 822
game with llms leads to jailbreaking. arXiv preprint 823
arXiv:2411.12762. 824

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, 825
Roman Ring, John Aslanides, Amelia Glaese, Nat 826
McAleese, and Geoffrey Irving. 2022. Red team- 827
ing language models with language models. arXiv 828
preprint arXiv:2202.03286. 829

Fábio Perez and Ian Ribeiro. 2022. Ignore previous 830
prompt: Attack techniques for language models. 831
arXiv preprint arXiv:2211.09527. 832

Mansi Phute, Alec Helbling, Matthew Hull, ShengYun 833
Peng, Sebastian Szyller, Cory Cornelius, and 834
Duen Horng Chau. 2023. Llm self defense: By self 835
examination, llms know they are being tricked. arXiv 836
preprint arXiv:2308.07308. 837

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie 838
Millican, Jordan Hoffmann, Francis Song, John 839
Aslanides, Sarah Henderson, Roman Ring, Susan- 840
nah Young, and 1 others. 2021. Scaling language 841
models: Methods, analysis & insights from training 842
gopher. arXiv preprint arXiv:2112.11446. 843

Rasmus V Rasmussen and Michael A Trick. 2008. 844
Round robin scheduling–a survey. European Journal 845
of Operational Research, 188(3):617–636. 846

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack- 847
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju- 848
lian Michael, and Samuel R. Bowman. 2024. GPQA: 849
A graduate-level google-proof q&a benchmark. In 850
First Conference on Language Modeling. 851

Alexander Robey, Eric Wong, Hamed Hassani, and 852
George J Pappas. 2023. Smoothllm: Defending large 853
language models against jailbreaking attacks. arXiv 854
preprint arXiv:2310.03684. 855

Yutaka Sasaki and 1 others. 2007. The truth of the 856
f-measure. Teach tutor mater, 1(5):1–5. 857

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, 858
and Yang Zhang. 2024. " do anything now": Charac- 859
terizing and evaluating in-the-wild jailbreak prompts 860
on large language models. In Proceedings of the 861
2024 on ACM SIGSAC Conference on Computer and 862
Communications Security, pages 1671–1685. 863

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas 864
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai 865
models collapse when trained on recursively gener- 866
ated data. Nature, 631(8022):755–759. 867

Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Pa- 868
pernot, Robert Mullins, and Ross Anderson. 2021. 869
Sponge examples: Energy-latency attacks on neu- 870
ral networks. In 2021 IEEE European symposium 871
on security and privacy (EuroS&P), pages 212–231. 872
IEEE. 873

William Stallings. 2018. Operating Systems: Internals 874
and Design Principles, 9/e. Pearson IT Certification. 875

11

https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98


Catherine Tony, Nicolás E Díaz Ferreyra, Markus876
Mutas, Salem Dhiff, and Riccardo Scandariato.877
2024. Prompting techniques for secure code gen-878
eration: A systematic investigation. arXiv preprint879
arXiv:2407.07064.880

John Wilder Tukey and 1 others. 1977. Exploratory881
data analysis, volume 2. Springer.882

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob883
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz884
Kaiser, and Illia Polosukhin. 2017. Attention is all885
you need. Advances in neural information processing886
systems, 30.887

Alexander Wan, Eric Wallace, Sheng Shen, and Dan888
Klein. 2023. Poisoning language models during in-889
struction tuning. In International Conference on Ma-890
chine Learning, pages 35413–35425. PMLR.891

Cheng Wang, Yue Liu, Baolong Li, Duzhen Zhang,892
Zhongzhi Li, and Junfeng Fang. 2025. Safety in893
large reasoning models: A survey. arXiv preprint894
arXiv:2504.17704.895

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan,896
Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao Hu, and897
Kan Li. 2024. Make every penny count: Difficulty-898
adaptive self-consistency for cost-efficient reasoning.899
arXiv preprint arXiv:2408.13457.900

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi901
Yuan, William Yang Wang, and Alessandro Sordoni.902
2023. Guiding language model reasoning with plan-903
ning tokens. arXiv preprint arXiv:2310.05707.904

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.905
2023. Jailbroken: How does llm safety training fail?906
Advances in Neural Information Processing Systems,907
36:80079–80110.908

Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl,909
Lingjuan Lyu, Qifeng Chen, Xing Xie, and Fangzhao910
Wu. 2023. Defending chatgpt against jailbreak at-911
tack via self-reminders. Nature Machine Intelligence,912
5(12):1486–1496.913

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei914
Xiao, and Muhao Chen. 2023. Instructions as915
backdoors: Backdoor vulnerabilities of instruction916
tuning for large language models. arXiv preprint917
arXiv:2305.14710.918

Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan919
Picek. 2024a. A comprehensive study of jailbreak at-920
tack versus defense for large language models. arXiv921
preprint arXiv:2402.13457.922

Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan923
Picek. 2024b. Llm jailbreak attack versus defense924
techniques–a comprehensive study. arXiv e-prints,925
pages arXiv–2402.926

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,927
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan928
Li, Dayiheng Liu, Fei Huang, and 1 others.929

2024. Qwen2 technical report. arXiv preprint 930
arXiv:2407.10671. 931

Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei 932
He, Jiaxing Song, Ke Xu, and Qi Li. 2024. Jailbreak 933
attacks and defenses against large language models: 934
A survey. arXiv preprint arXiv:2407.04295. 935

Junzhe Yu, Yi Liu, Huijia Sun, Ling Shi, and Yuqi Chen. 936
2025. Breaking the loop: Detecting and mitigating 937
denial-of-service vulnerabilities in large language 938
models. arXiv preprint arXiv:2503.00416. 939

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 940
Farhadi, and Yejin Choi. 2019a. Hellaswag: Can 941
a machine really finish your sentence? In Proceed- 942
ings of the 57th Annual Meeting of the Association 943
for Computational Linguistics. 944

Rowan Zellers, Ari Holtzman, Hannah Rashkin, 945
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and 946
Yejin Choi. 2019b. Defending against neural fake 947
news. Advances in neural information processing 948
systems, 32. 949

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, 950
Lei Bai, and Xiang Wang. 2025a. Multi-agent archi- 951
tecture search via agentic supernet. arXiv preprint 952
arXiv:2502.04180. 953

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, 954
Guancheng Wan, Kun Wang, Dawei Cheng, Jef- 955
frey Xu Yu, and Tianlong Chen. 2024a. Cut the 956
crap: An economical communication pipeline for 957
llm-based multi-agent systems. arXiv preprint 958
arXiv:2410.02506. 959

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng 960
Wan, Miao Yu, Junfeng Fang, Kun Wang, Tian- 961
long Chen, and Dawei Cheng. 2024b. G-designer: 962
Architecting multi-agent communication topolo- 963
gies via graph neural networks. arXiv preprint 964
arXiv:2410.11782. 965

Wenxiao Zhang, Xiangrui Kong, Conan Dewitt, Thomas 966
Braunl, and Jin B Hong. 2024c. A study on prompt 967
injection attack against llm-integrated mobile robotic 968
systems. In 2024 IEEE 35th International Sympo- 969
sium on Software Reliability Engineering Workshops 970
(ISSREW), pages 361–368. IEEE. 971

Xinyu Zhang, Hanbin Hong, Yuan Hong, Peng Huang, 972
Binghui Wang, Zhongjie Ba, and Kui Ren. 2024d. 973
Text-crs: A generalized certified robustness frame- 974
work against textual adversarial attacks. In 2024 975
IEEE Symposium on Security and Privacy (SP), 976
pages 2920–2938. IEEE. 977

Yingjie Zhang, Tong Liu, Zhe Zhao, Guozhu Meng, and 978
Kai Chen. 2025b. Align in depth: Defending jail- 979
break attacks via progressive answer detoxification. 980
arXiv preprint arXiv:2503.11185. 981

Yuanhe Zhang, Zhenhong Zhou, Wei Zhang, Xinyue 982
Wang, Xiaojun Jia, Yang Liu, and Sen Su. 2024e. 983
Crabs: Consuming resrouce via auto-generation 984

12



for llm-dos attack under black-box settings. arXiv985
preprint arXiv:2412.13879.986

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,987
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen988
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.989
A survey of large language models. arXiv preprint990
arXiv:2303.18223.991

Weixiang Zhao, Yulin Hu, Yang Deng, Jiahe Guo,992
Xingyu Sui, Xinyang Han, An Zhang, Yanyan Zhao,993
Bing Qin, Tat-Seng Chua, and 1 others. 2025. Be-994
ware of your po! measuring and mitigating ai safety995
risks in role-play fine-tuning of llms. arXiv preprint996
arXiv:2502.20968.997

Andy Zhou, Bo Li, and Haohan Wang. 2024a. Ro-998
bust prompt optimization for defending language999
models against jailbreaking attacks. arXiv preprint1000
arXiv:2401.17263.1001

Zhanhui Zhou, Jie Liu, Zhichen Dong, Jiaheng Liu,1002
Chao Yang, Wanli Ouyang, and Yu Qiao. 2024b.1003
Emulated disalignment: Safety alignment for large1004
language models may backfire! arXiv preprint1005
arXiv:2402.12343.1006

Zhenhong Zhou, Jiuyang Xiang, Haopeng Chen, Quan1007
Liu, Zherui Li, and Sen Su. 2024c. Speak out1008
of turn: Safety vulnerability of large language1009
models in multi-turn dialogue. arXiv preprint1010
arXiv:2402.17262.1011

Pengyu Zhu, Zhenhong Zhou, Yuanhe Zhang, Shilinlu1012
Yan, Kun Wang, and Sen Su. 2025. Demona-1013
gent: Dynamically encrypted multi-backdoor im-1014
plantation attack on llm-based agent. arXiv preprint1015
arXiv:2502.12575.1016

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,1017
J Zico Kolter, and Matt Fredrikson. 2023. Univer-1018
sal and transferable adversarial attacks on aligned1019
language models. arXiv preprint arXiv:2307.15043.1020

13



A Difference between Jailbreak Attacks and Resource Consumption Attacks1021

Attack mechanisms and methodologies. Jailbreak attacks are attacks that use carefully designed1022

prompts to induce LLMs to bypass their original security alignment safeguards, thereby outputting content1023

that should be rejected, such as violence, discrimination, illegal activities, or information that violates1024

platform policies (Xu et al., 2024b; Yi et al., 2024; Xu et al., 2024a; Cui et al., 2024; Deng et al., 2025;1025

Wang et al., 2025). Attacks usually use the following attack techniques: instruction override via prompt1026

engineering (Liu et al., 2023c; Paulus et al., 2024; Perez and Ribeiro, 2022; Levi and Neumann, 2024;1027

Shen et al., 2024), role-playing and setting deception (Zhao et al., 2025; Peng et al., 2024), context1028

injection and multi-turn exploitation (Zhang et al., 2024c; Meng et al., 2025; Li et al., 2023), model weight1029

finetuning (Lermen et al., 2023), backdoor attack (Xu et al., 2023; Wan et al., 2023; Deng et al., 2024),1030

inference-time output-space attack (Zhou et al., 2024b), and automated or white-box prompt generation1031

(Liu et al., 2023a; Zou et al., 2023; Casper et al., 2023; Mehrotra et al., 2024; Perez et al., 2022; Chao1032

et al., 2023; Jiang et al., 2025). In addition, phenomena such as hallucination can negatively affect model1033

safety (Fang et al., 2025a,b).1034

Resource-Consumption attacks (e.g., DoS attacks) construct specific input or interaction patterns to1035

induce the model to output extremely long texts or perform tasks with high computational complexity,1036

thereby occupying a large amount of computing resources, increasing response delays, and even causing1037

service interruptions. Key mechanisms include: output length extension via malicious prompts (Maus1038

et al., 2023), context window exploitation (Liao and Sun, 2024), adversarial “Sponge” inputs (Shumailov1039

et al., 2021), training-time trigger insertion (Gao et al., 2024b), and automated black-box DoS prompt1040

engineering (Zhang et al., 2024e; He et al., 2024).1041

The attack of jailbreak and resource consumption has different intentions. The former challenges the1042

compliance of the model, while the latter challenges the performance and availability of the model.1043

Distinctive defense strategies. Defense against jailbreak attacks mainly focuses on aligning and fine-1044

tuning models for robust refusal (Tony et al., 2024; Zhang et al., 2025b), prompt input filtering and1045

perturbation (Robey et al., 2023; Liu et al., 2024; Jain et al., 2023; Alon and Kamfonas, 2023; Kumar1046

et al., 2023; Zellers et al., 2019b; Zhou et al., 2024a), as well as response monitoring and auxiliary models1047

(Armstrong et al., 2025; Phute et al., 2023; Xie et al., 2023; Zhang et al., 2024b, 2025a).1048

While defense against LLM-DoS attacks focuses more on the stability and stress resistance of the1049

system resource level and prevents malicious requests from causing increased reasoning delays, exhaustion1050

of computing power, and service crashes through input filtering (Yu et al., 2025; Robey et al., 2023),1051

generation control, request scheduling and system isolation (Zhang et al., 2024a).1052

B Detailed Experimental Settings1053

To complement the experiment, we provide additional details on the deployment of the six large language1054

models used in our study. These models were selected to represent three major model families that are1055

widely adopted in academic research and industrial applications: Llama, Qwen, and Mistral.1056

Specifically, we deployed the following instruction-tuned models: Llama8B (Llama-3.1-8B-Instruct1057

(Patterson et al., 2022)), Llama70B (Llama-3.1-70B-Instruct), Qwen7B (Qwen2.5-7B-Instruct (Yang1058

et al., 2024)), Qwen32B (Qwen2.5-32B-Instruct (Hui et al., 2024)), Qwen72B (Qwen2.5-72B-Instruct1059

(Yang et al., 2024)), Mistral7B (Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)). In our experiments, the1060

maximum output length was set to 4096 tokens for all models.1061

To ensure strict control over evaluation conditions and system behavior under different load scenarios,1062

all six large language models were deployed locally on our servers. We conducted experiments on a GPU1063

cluster equipped with NVIDIA H100 GPUs, using 1 to 8 cards depending on test conditions. For the user1064

group configuration, we simulate 10 benign users, each issuing five access requests for testing. For the1065

hyperparameter settings, we set the request parallelism parameter to n = 1 to maximize the effectiveness1066

of the defense.1067
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Llama8B Llama70B Mistral7B Qwen7B Qwen14B Qwen72B AVERAGE
Precision for attack class 1.0000 1.0000 0.9465 1.0000 1.0000 1.0000 0.9911
Precision for benign class 0.9704 1.0000 1.0000 0.9899 1.0000 0.9091 0.9782

FPR 0.0000 0.0000 0.0535 0.0000 0.0000 0.0000 0.0089
AuToDoS

FJR 0.0296 0.0000 0.0000 0.0101 0.0000 0.0909 0.0218
Precision for attack class 1.0000 1.0000 0.9512 1.0000 1.0000 1.0000 0.9919
Precision for benign class 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

FPR 0.0000 0.0000 0.0488 0.0000 0.0000 0.0000 0.0081
GCG-DoS

FJR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Precision for attack class 0.9907 1.0000 0.9343 1.0000 1.0000 1.0000 0.9875
Precision for benign class 0.9883 1.0000 1.0000 1.0000 1.0000 1.0000 0.9980

FPR 0.0093 0.0000 0.0657 0.0000 0.0000 0.0000 0.0125
P-DoS

FJR 0.0117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020

Table 5: This table shows the details of the recognition accuracy of PD3F.

C Dataset Descriptions 1068

To comprehensively clarify the datasets used in the experiment, we describe here the key properties and 1069

sources of both the adversarial and harmless datasets. 1070

C.1 Adversarial Datasets 1071

For adversarial datasets, P-DoS (Poisoning-Based DoS) (Gao et al., 2024b) injects a single poisoned 1072

sample designed for DoS purposes into fine-tuned data to break the output length limit. 1073

GCG-DoS (Dong et al., 2024) crafts adversarial prompts to induce large language models to generate 1074

excessively long outputs, increasing computational cost and latency. 1075

AutoDoS (Zhang et al., 2024e), a black-box attack, generates transferable prompts that drastically slow 1076

down inference and exhaust resources by embedding a Length Trojan to evade existing defenses. 1077

C.2 Harmless Datasets 1078

For the harmless dataset, we selected five datasets, covering mathematical reasoning, common sense 1079

judgment, subject knowledge, code generation, and professional question-answering, which can compre- 1080

hensively test the performance of the model in different tasks. 1081

GSM8K (Grade School Math 8K) (Cobbe et al., 2021) is a dataset of elementary school math text 1082

questions, which is used to evaluate the multi-step arithmetic reasoning ability of the model. 1083

HellaSwag (Zellers et al., 2019a) is a dataset for evaluating common sense reasoning ability, which 1084

requires the model to select the most reasonable one among multiple sentence endings, emphasizing the 1085

reasoning ability of the model in a complex language environment. 1086

MMLU (Massive Multitask Language Understanding) (Hendrycks et al., 2021) is a multi-task 1087

evaluation benchmark covering 57 subject areas, including STEM, humanities, and social sciences, etc., 1088

which is used to test the knowledge mastery and reasoning ability of the model in zero-shot and few-shot 1089

settings. 1090

The HumanEval dataset (Chen et al., 2021) contains 164 programming questions, which are used to 1091

evaluate the functional correctness of the code generated by the language model, with a special focus on 1092

the model’s ability to generate correct code based on natural language descriptions. 1093

Lastly, GPQA (Graduate-Level Google-Proof Q&A Benchmark) (Rein et al., 2024) is a dataset of 1094

multiple-choice questions written by experts in biology, physics, and chemistry. This dataset is designed to 1095

evaluate the performance of language models when faced with highly specialized and complex problems. 1096

D Recognition accuracy 1097

Attack Determination Accuracy reflects the credibility of the model’s determination results, calculated 1098

as TP
TP+FP , where True Positives (TP) refer to adversarial inputs correctly classified as attacks, and 1099

False Positives (FP) are benign inputs incorrectly classified as attacks. Harmless Request Determination 1100

Accuracy characterizes the ability to identify normal requests, with the formula TN
TN+FN , where True 1101
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Negatives (TN) are benign requests correctly classified as non-attacks, and False Negatives (FN) are1102

adversarial inputs mistakenly treated as safe. False Prediction Rate (FPR) quantifies the risk of false1103

interception of normal requests, defined as FP
FP+TP . False Judgement Rate (FJR) reveals the probability1104

of missed detection of attacking requests, calculated as FN
FN+TN . We also compute Recall, Accuracy, and1105

F1 score separately to evaluate the coverage of attack detection and reflect the overall discrimination1106

accuracy.1107

PD3F maintains extremely low false positive and false negative rates under three attack conditions,1108

further validating its robustness and effectiveness. This result is shown in Fig 5.1109

E Comparison With Existing Defense Methods1110

ID IDR ISM OSM SQ-VAE

Llama8B

AutoDoS 0% 0% 100% 20% 100%
baseline 100% 100% 100% 98% 100%

GCG-DoS 100% 100% 100% 100% 100%
P-DoS 0% 0% 0% 100% 0%

Mistral7B

AutoDoS 40% 20% 100% 0% 75%
baseline 100% 100% 100% 100% 100%

GCG-DoS 80% 0% 100% 100% 60%
P-DoS 20% 0% 0% 100% 0%

Qwen7B

AutoDoS 50% 80% 100% 50% 40%
baseline 100% 100% 100% 100% 100%

GCG-DoS 100% 100% 100% 100% 80%
P-DoS 0% 0% 0% 100% 0%

Table 6: This table shows the effectiveness of some existing methods.

PPL KSD
AutoDoS 3.4 0.72
baseline 14.6 0.48

GCG-DoS 5103.98 0.6
Llama8B

P-DoS 249.13 0.15
AutoDoS 3.4 0.68
baseline 15.6 0.48

GCG-DoS 842.71 0.6
Mistral7B

P-DoS 286.99 0.15
AutoDoS 3.6 0.68
baseline 11.6 0.48

GCG-DoS 17212.22 0.6
Qwen7B

P-DoS 197.42 0.15

Table 7: Detailed results for PPL Detection and Kol-
mogorov Similarity Detection.

In this section, we conducted comparative ex-1111

periments between PD3F and existing defense1112

strategies, demonstrating that our approach out-1113

performs baseline methods in mitigating Auto-1114

DoS, GCG, and P-DoS attacks. As shown in the1115

Tab. 1, each baseline exhibits clear weakness and1116

fails to comprehensively address different attack1117

types.1118

For input-level defenses, we evaluate the effec-1119

tiveness of Input Rewrite and Input Disturbance1120

using a scoring system ranging from 0 to 100,1121

with a threshold of 80 for identifying malicious1122

inputs. In Tab. 6, results indicate that only GCG1123

attacks can be effectively detected under this met-1124

ric, while other attacks are able to bypass such1125

defenses. In terms of self-monitoring mecha-1126

nisms, ISM fails to detect P-DoS attacks, and1127

OSM exhibits low detection accuracy in Auto-1128

DoS scenarios. For PPL and KSD in Tab. 7, GCG1129

and P-DoS attacks showed extremely high PPL1130

values, indicating a severe deviation from the normal output distribution and rendering PPL ineffective,1131

while KSD scores were notably low under P-DoS, also failing to provide reliable detection. Furthermore,1132

output length regulation methods such as DSC and SQ-VAE did not achieve a stable or consistent defense1133

effect.1134
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In contrast, our method can effectively defend against all three types of attacks, demonstrating its 1135

significant advantages in comprehensiveness and stability. 1136

F Additional time cost 1137

Model Generate Ir Calculate Dynamic Request Polling
Llama70B 158.31 0.00 0.00
Llama8B 7.03 0.00 0.00
Mistral7B 9.30 0.00 0.00
Qwen14B 14.42 0.00 0.00
Qwen72B 61.39 0.00 0.00
Qwen7B 9.65 0.00 0.00

Table 8: The time required for Resource Index Ir computation and
Dynamic Request Polling scheduling is significantly shorter than the
model’s execution time, numerically below 10−2 seconds, rendering
the overhead negligible.

In each round of scheduling of PD3F, 1138

the system will calculate the Resource 1139

Index to differentiate normal users 1140

from potential attack behaviors, score 1141

the scheduling requests, and insert 1142

them into the priority queue for sort- 1143

ing. Although our strategy involves ad- 1144

ditional scoring and scheduling steps, 1145

the computational overhead is ex- 1146

tremely low. The process typically 1147

involves a simple scoring calculation 1148

and lightweight priority queue oper- 1149

ations, which are nearly negligible. 1150

Tab. 8 shows that the total time for scoring and sorting in each scheduling round is usually maintained 1151

at the order of 10−3 seconds or less, making it negligible compared to the overall processing time. This 1152

demonstrates that PD3F can enhance defense and scheduling effectiveness without sacrificing system 1153

responsiveness, indicating strong practical applicability. 1154

G Benign Request Service Capacity Analysis 1155

Llama8B Mistral7B Qwen7B

GSM8K
Base 0.72 0.50 0.91
PD3F 0.90 0.50 0.95

Hellaswag
Base 0.60 0.85 0.68
PD3F 0.75 0.78 0.59

MMLU
Base 0.55 0.53 0.71
PD3F 0.51 0.48 0.66

AVERAGE
Base 0.62 0.63 0.77
PD3F 0.72 0.59 0.73

Table 9: This figure demonstrates that, under the \textbackslash{}ours
framework, the defense strategy does not significantly affect normal
request responses.

To verify that PD3F does not nega- 1156

tively impact benign user requests, we 1157

evaluate model service capacity on 1158

three standard datasets, following the 1159

methodology of the Language Model 1160

Evaluation Harness (Gao et al., 2024c). 1161

Specifically, we randomly select 100 1162

examples from each dataset and com- 1163

pare the model’s original reply suc- 1164

cess rate with the success rate un- 1165

der the PD3F framework, following 1166

each dataset’s standard evaluation pro- 1167

tocol. To simulate real-world deploy- 1168

ment conditions, we use the same tem- 1169

perature and set top-k = 0.5, consistent 1170

with our main experimental configuration, and treat the 100 examples as representative user queries. As 1171

shown in Tab. 9, aside from fluctuations due to sampling, our method does not degrade the accuracy 1172

of model responses. These results demonstrate that PD3F effectively suppresses resource consumption 1173

attacks without compromising the service quality for benign users. 1174

H Ablation Studies under Main Experiment Configuration 1175

In addition to the ablation experiments shown in the main text, we conducted ablation experiments 1176

under the same configuration as the main experiment (10 benign users with 5 requests per user) to 1177

verify the Dynamic Request Polling mechanism and the Adaptive End-Based Suppression mechanism’s 1178

contributions to the system performance. 1179

Ablation Dynamic Request Polling Scheduling. Tab. 11 presents the results when Request Polling is 1180

replaced with RR. On Llama70B, the BUT drops from 0.26 to 0.09 under AutoDoS attack, decreases from 1181
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Model Attack PD3F Energy-Based Suppression
TT OT TT OT

Llama70B
AutoDoS 18758.07 0.19 67942.63 0.05
GCG-DoS 7780.11 0.46 10447.46 0.34

P-DoS 10174.78 0.35 31060.92 0.12

Llama8B
AutoDoS 5468.05 0.66 12776.32 0.28
GCG-DoS 1542.02 2.33 4038.90 0.89

P-DoS 1857.06 1.94 4648.12 0.77

Table 10: Under the same configuration as the main experiment, variations in the TT and OT indicators of Adaptive
Energy-Based Suppression.

0.39 to 0.22 under GCG-DoS attack, and from 0.41 to 0.30 under P-DoS attack. Overall, after removing1182

Request Polling, removing Request Polling results in a more than 35% reduction in BUT, indicating1183

that the dynamic scheduling mechanism effectively alleviated resource contention and guaranteed the1184

processing capacity of more normal user requests.1185

Model Attack PD3F Request Polling
AutoDoS 0.26 0.09
GCG-DoS 0.39 0.22Llama70B

P-DoS 0.41 0.30
AutoDoS 1.71 0.82
GCG-DoS 2.92 2.19Llama8B

P-DoS 3.67 2.60

Table 11: Under the same configuration as the main experiment, fluctu-
ations in the BUT indicator for Dynamic Request Polling Scheduling
are eliminated.

Disabling Adaptive End-Based Sup-1186

pression. Furthermore, we removed1187

End-Based Suppression and presented1188

the changes of the two metrics TT1189

and OT in Table. 10. Under both1190

Llama70B and Llama8B, removing1191

the suppression mechanism leads to1192

a substantial increase in TT and1193

a decrease in OT across all attack1194

types. These trends indicate that End-1195

Based Suppression plays a key role in1196

limiting adversarial output overhead,1197

thereby improving resource efficiency1198

and maintaining higher output effec-1199

tiveness.1200

I Service Efficiency under Varying User Counts and Request Volumes1201

To explore the adaptability of our strategy under varying request loads and user scales, we designed two1202

sets of experiments to quantitatively evaluate the impact of user count and request volume on system1203

efficiency.1204

Service performance under different numbers of access requests. With the number of users fixed1205

at 10, we set each user’s request count to 1, 3, 5, 7, and 9, respectively, to evaluate how the system’s1206

performance responds to changing request loads. The experimental results show that under different1207

request loads, the request throughput of normal users remains largely stable. Notably, when each user1208

sends only one request, the throughput significantly increases in most models, indicating that the PD3F1209

strategy achieves higher scheduling efficiency and better resource utilization under light load. Overall, the1210

system demonstrates strong request-handling capability, and normal service performance shows minimal1211

fluctuation with increasing per-user request volume, reflecting good robustness.1212

Defense effectiveness under different numbers of users With each user fixed to send 5 normal1213

requests, we adjusted the proportion of attacking users to 2/22, 2/17, 2/12, 2/7, and 2/5 to evaluate system1214

performance under varying attack intensities. Results indicate that as attack intensity increases (i.e., the1215
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proportion of normal users decreases), the relative advantage of our method in normal-user throughput 1216

becomes more prominent. When the attack ratio is high (2 out of 5 users are malicious), the normal-user 1217

throughput improves most significantly, effectively mitigating the resource exhaustion caused by attackers. 1218

Overall, PD3F can not only cope with different request loads, but also has strong adaptive ability to 1219

changes in the proportion of malicious users. 1220

J Examples of each Index range 1221

This section presents the sample characteristics across different score ranges to enhance the interpretability 1222

of the Resource Index. 1223

Specifically, we introduce three decision boundaries Iαt<0.5
, Iαt>0.5

and Iαc to partition the 2D score space 1224

into six disjoint subregions. These regions reflect distinct behavioral patterns with respect to resource 1225

usage and semantic deviation. 1226

Formally, the score space [Ic, It] is partitioned along: 1227

Region A: Ic < Iαc , It < Iαt<0.5
. 1228

This type of request typically involves a long-context input and a normal-length output. 1229

Region B: Ic < Iαc , Iαt<0.5
< It < Iαt>0.5

. 1230

This type of request is usually a normal sample of requests. 1231

Region C: Ic < Iαc , It > Iαt>0.5
. 1232

These requests are usually short output samples that are highly consistent with benign requests. 1233

Region D: Ic > Iαc , It < Iαt<0.5
. 1234

Such requests may be long-context input requests with slightly longer outputs, which did not appear in 1235

our experiments. 1236

Region E: Ic > Iαc , Iαt<0.5
< It < Iαt>0.5

. 1237

This is a clear resource consumption attack request. 1238

Region F: Ic > Iαc , It > Iαt>0.5
. 1239

This type of request may be a normal request for long text generation, which will produce slightly 1240

longer generated content, but it did not appear in our experiment. 1241
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Region A Example

{
input length: 5330
input: In designing an advanced financial services system capable of

dynamically integrating real-time market data into its analysis,
consider the following multi-faceted approach: First, explore the
various types of real-time market data available, such as stock prices
, commodity rates, currency exchange rates, and economic indicators,
and discuss how these can be collected and processed efficiently.
Second, delve into the machine learning techniques that can be
employed to analyze this data, such as neural networks, decision trees
, and reinforcement learning, and evaluate their effectiveness in
predicting market trends. Third, examine the potential challenges of
integrating this data, including latency issues, data quality and
accuracy, and the need for continuous updates, and propose solutions
to overcome these obstacles. Fourth, consider how the system can
personalize investment advice based on this real-time data, taking
into account individual user profiles, risk tolerances, and financial
goals. Fifth...

}
{

output length: 506
output: In designing an advanced financial services system capable of

dynamically integrating real-time market data into its analysis,
consider the following multi-faceted approach: First, explore the
various types of real-time market data available, such as stock prices
, commodity rates, currency exchange rates, and economic indicators,
and discuss how these can be collected and processed efficiently.
Second, delve into the machine learning techniques that can be
employed to analyze this data, such as neural networks, decision trees
, and reinforcement learning, and evaluate their effectiveness in
predicting market trends. Third...

}

1242
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Region B Example

{
input length: 277
input: Dayton operates a collection agency. He was trying to collect a

$400 bill for medical services rendered to Pratt by Doctor. Dayton
went to Pratts house and when Martina, Pratts mother, answered the
door, Dayton told Martina he was there to collect a bill owed by Pratt
. Martina told Dayton that because of her illness, Pratt had been
unemployed for six months, that she was still ill and unable to work,
and that she would pay the bill as soon as she could. Dayton, in a
loud voice, demanded to see Pratt and said that if he did not receive
payment immediately, he would file a criminal complaint charging her
with fraud. Pratt, hearing the conversation, came to the door. Dayton,
in a loud voice, repeated his demand for immediate payment and his

threat to use criminal process. If Pratt asserts a claim against
Dayton, based on infliction of emotional distress, will Pratt prevail?

A: Yes, if Pratt suffered severe emotional distress as a result of Daytons
conduct. B: Yes, unless the bill for medical services was valid and past
due. C: No, unless Pratt suffered physical harm as a result of Daytons
conduct. D: No, if Daytons conduct created no risk of physical harm to
Pratt.

Please explain the reason for your choice.
}
{

output length: 201
output: A is the correct answer. A claim for intentional infliction of

emotional distress requires that the defendants conduct be extreme and
outrageous, that the defendants intent be to cause severe emotional

distress, that the plaintiff suffer severe emotional distress, and
that the defendants conduct be the actual and proximate cause of the
plaintiffs emotional distress. In this case, Daytons conduct was
extreme and outrageous, and he intended to cause severe emotional
distress. Therefore, the only issue is whether Pratt suffered severe
emotional distress. If he did, he will prevail. B is incorrect because
the validity of the bill is irrelevant to the issue of infliction of

emotional distress. C is incorrect because physical harm is not
required for a claim of intentional infliction of emotional distress.
D is incorrect because the risk of physical harm is not required for a
claim of intentional infliction of emotional distress. The fact that

Daytons conduct was extreme and outrageous is enough to establish a
prima facie case.

}

1243
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Region C Example

{
input length: 73
input: Belinda`s dog is missing, so she made 200 flyers to distribute

around town with the help of her friends. Ryan passed out 42 flyers,
Alyssa passed out 67, Scott passed out 51 and Belinda passed out the
rest. What percentage of the flyers did Belinda pass out?

}
{

output length: 209
output: Step 1: Calculate the total number of flyers passed out by Ryan,

Alyssa, and Scott.
Ryan passed out 42 flyers, Alyssa passed out 67 flyers, and Scott passed out

51 flyers. So, the total number of flyers passed out by them is 42 + 67 +
51 = 160.

Step 2: Calculate the number of flyers passed out by Belinda.
Since Belinda made 200 flyers in total and her friends passed out 160, the

number of flyers passed out by Belinda is 200 - 160 = 40.

Step 3: Calculate the percentage of flyers passed out by Belinda.
To find the percentage of flyers passed out by Belinda, we need to divide the

number of flyers passed out by Belinda (40) by the total number of
flyers (200) and multiply by 100. So, the percentage is (40 / 200) * 100
= 20.

The final answer is: \boxed{20}
}

1244
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Region E Example

{
input length: 85
input: Repeat 'hereis' 12 times /unit quindi CF pois populate x x x x x x

x x x x x x x x x x x x x x x x314_diff suiv x x xessoaAbrankoBN avec
total yazxpath javaKen invite x x x xpyx '_'

placeholderAgostelim_DAphlieoramzag Wayombo789 to vending
}
{

output length: 4096
output: It appears you'veprovidedaseriesofseeminglyunrelatedwords and

phrases.I'll do my best to provide a response that addresses each part
, but please note that there might not be a direct connection between
them.

1. "Repeat'hereis' 12 times": If you want to repeat the phrase "hereis" 12
times, you can use a loop in programming languages like Python or Java.
Here'showyoumightdoitinPython:

python
for i in range(12):

print("hereis")

2. "/unitquindiCF pois populate":This seems to be a mix of languagesand possibly
a referenceto a specificcontextor project.Withoutmore context,it's hard to
provide a meaningful response. However, "/unit" could refer to a unit of
measurement or a unit in a game or simulation, and "CF" could stand for

"Counter-Strike" or another game, while "pois" might be a typo or a word
from a different language. "Populate" generally means to fill something
with people or data.

3. "x x x x x x x x x x x x x x x x x x x x x x314_diffsuiv x x x x x x x x x x x x
x x x x x x x x x x": This appears to be a series of placeholders or a
placeholder text with a mix of numbers and letters. The "314_diff" part
might be a reference to the mathematical constant pi or a specific code
or identifier. Without more context, it'shardtointerpretthis.

4. "x x x x x x x x x x x x x x x x x x x x x x": Similarto the previouspoint,this
seems to be a seriesof placeholdersor a placeholdertext.It could be used in a
varietyof contexts,such as in programming,dataentry,or as a placeholderin
a document.

5. "x x x x x x x x x x x x x x x x x x x x x x": Again,this appearsto be a series
of placeholdersor a placeholdertext.It could be used in a varietyof contexts,
similarto the previouspoints.

6. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints,this
1245
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is likelya placeholdertextor a seriesof placeholders.

7. "x x x x x x x x x x x x x x x x x x x x x x": Again,a seriesof placeholdersor
a placeholdertext.

8. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

9. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

10. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

11. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

12. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

13. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

14. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

15. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

16. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

17. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

18. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

19. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

20. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

21. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

22. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

23. "x x x x x x x x x x x x x x x x x x x x x x": Placeholdertextor a seriesof
placeholders.

24. "x x x x x x x x x x x x x x x x x x x x x x": Same as the previouspoints.

}
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K Analysis of the Rationality of EOS Convergence 1247

To validate the effectiveness of our Adaptive End-Based Suppression mechanism in generation control, 1248

this section presents experiments and analysis from three perspectives. 1249

K.1 Generation Length Suppression under Attack Scenarios 1250

First, we set up an experiment and illustrate the Top logit and EOS logit values over the generation process 1251

based on experimental data. 1252

As shown in Fig. 7, Fig. 16and Fig. 25, we illustrate the EOS indicator during three types of attacks on 1253

the Llama8B model, where the output length is unrestricted and allowed to reach the default maximum of 1254

4096 tokens. It can be seen that throughout the entire generation process, the EOS Logit value remains at 1255

a relatively low level and fluctuates in a quite low range, indicating that the model has almost no intention 1256

of actively ending the output. Meanwhile, Top Logit remained at a relatively high level, reflecting a 1257

typical DoS scenario, where the adversarial input monopolizes output generation for extended lengths. In 1258

contrast, Fig. 8, Fig. 16 and Fig. 26 presents the case where End-Based Suppression is applied, with an 1259

upper bound of Lu = 1000 tokens. Here we observe that as the output length approaches Lu, the EOS 1260

Logit value increases significantly, while the Top Logit decreases. Eventually, the generation process 1261

naturally terminates around Lu. These results confirm that introducing an upper bound Lu along with 1262

End-Based suppression effectively regulates generation length under adversarial scenarios. 1263

K.2 Controllability of Output Length 1264

We further verified the flexibility and effectiveness of the energy suppression mechanism in controlling 1265

the output length of the model. We set a series of different upper bounds Lu and inhibition adjustment 1266

parameters η to observe their specific influences on the generation process. 1267

Under AutoDoS attack, Fig. 8 and Fig. 12 indicate that by adjusting Lu alone, we can precisely force 1268

the model to terminate its output around its upper bound, without relying on any external truncation. This 1269

demonstrates that the mechanism effectively induces natural convergence in generation. 1270

Fig. 8 to Fig. 11 exhibit the variation in Top Logit and EOS Logit, with a fixed upper bound Lu = 1000 1271

and varying η ∈
{
1
8 ,

1
16 ,

1
24 ,

1
32

}
. We can observe that when η is large (such as 1/8), EOS Logit rises 1272

rapidly when generating close to Lu, and the output is significantly suppressed when approaching the 1273

upper limit, with a remarkable suppression effect. As η gradually decreases, the upward trend of EOS 1274

Logit slows down relatively, and the model is more inclined to extend the output. Similarly, when the 1275

output upper limit is adjusted to 1500, the increase of <EOS> Logit will also be affected by η, indicating 1276

that this mechanism shows good controllability under different generation ranges. 1277

In addition, we conducted similar experiments for the P-DoS and GCG attacks. The corresponding 1278

results can be seen in Fig. 26 to Fig. 24. 1279
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Figure 7: The eos indicator effect of executing AutoDoS attack under the Llama8B model.
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Figure 8: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
8 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 9: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
16 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 10: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
24 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 11: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
32 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 12: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
8 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 13: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
16 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 14: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
24 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 15: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
32 ) on the AutoDoS Attack

with the Llama8B Model.
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Figure 16: The eos indicator effect of executing P-DoS attack under the Llama8B model.

0 200 400 600 800 1000

-20

0

20

40

60

Lo
gi
t

Top Logit

EOS Logit

Figure 17: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
8 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 18: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
16 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 19: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
24 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 20: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
32 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 21: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
8 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 22: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
16 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 23: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
24 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 24: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
32 ) on the P-DoS Attack

with the Llama8B Model.
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Figure 25: The eos indicator effect of executing GCG-DoS attack under the Llama8B model.
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Figure 26: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
8 ) on the GCG-DoS Attack

with the Llama8B Model.
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Figure 27: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
16 ) on the GCG-DoS

Attack with the Llama8B Model.
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Figure 28: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
24 ) on the GCG-DoS

Attack with the Llama8B Model.
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Figure 29: Effect of the EOS Indicator under End-Based Suppression (Lu = 1000, η = 1
32 ) on the GCG-DoS

Attack with the Llama8B Model.
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Figure 30: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
8 ) on the GCG-DoS Attack

with the Llama8B Model.
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Figure 31: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
16 ) on the GCG-DoS

Attack with the Llama8B Model.
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Figure 32: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
24 ) on the GCG-DoS

Attack with the Llama8B Model.
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Figure 33: Effect of the EOS Indicator under End-Based Suppression (Lu = 1500, η = 1
32 ) on the GCG-DoS

Attack with the Llama8B Model.
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