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ABSTRACT

The proliferation of Al-generated photorealistic faces—from GANs to diffusion
models have become indistinguishable from authentic images. This poses sig-
nificant privacy and security risks, enabling misinformation and identity fraud at
scale on social media and other platforms. To detect these Al-Generated faces
effectively, we propose a fundamentally new approach inspired by the intrinsic
stylistic discrepancies between authentic and synthetic images. Our key insight
is that even highly realistic Al-generated faces exhibit persistent differences in
style representations, which manifest as distinguishable patterns in the W4 Style
Space. We introduce a self-supervised style representation learning approach that
captures intrinsic differences between actual and synthetic faces. By first learning
the style distribution of authentic images, our method identifies deviations indica-
tive of Al generation without relying on explicit generative watermarks. This
enables strong generalization across unseen generators, including diffusion-based
models. Experiments show high detection accuracy (93%+) across multiple gen-
erative datasets and significant improvements in cross-domain settings.

1 INTRODUCTION

Al-generated faces are increasingly pervasive across the internet, appearing in social media as fake
profiles or manipulated depictions of real individuals, contributing to misinformation and identity
fraud. Detecting such synthetic faces is an escalating challenge as generative models continually
improve, reducing the presence of artifacts that traditional detection methods rely on.

Prior approaches have primarily focused on identifying transient watermarks in facial attributes,
such as inconsistencies in eyes, teeth, or lighting (Guo et al.|(2021)); Hu et al.| (2020); Mundra et al.
(2023); |Yang et al.| (2018)); Zhang et al.| (2019)), or its pixel/spectral features (Chai et al.| (2020);
Corvi et al.[(2022); (Gragnaniello et al.[ (2021); Liu et al.| (2022))). However, these strategies often
target surface-level artifacts that diminish as generators improve . Other methods adopt data-driven
strategies (Wang et al.|(2019); Tan et al.|(2023); Ju et al.| (2022)); [Porcile et al.[(2023)) to classify Al-
generated faces, which often struggle with generalization to images from out-of-distribution (OOD)
generators.

In this work, we introduce a novel approach that leverages the highly disentangled W+ Style Space
(Karras et al.[(2019)) to distinguish authentic and Al-generated faces based on style inconsistencies
in facial attributes. Our core insight is that while generators may perfect low-level artifacts, they
cannot fully replicate the compositional style patterns inherent to authentic facial images encoded
in the W+ space’s axis-aligned disentanglement. To enhance robustness and generalizability, we
employ self-supervised learning (SSL) to pre-train a model that faithfully learns the distribution of
real image styles. This enables our method to generalize effectively to OOD scenarios, addressing
key limitations of prior works.
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Figure 1: Comparison of Al-generated and real face distributions. (Top) GAN-generated (left) and
diffusion-generated (right) faces, illustrating different synthesis methods. (Bottom) PCA visualiza-
tion of real (blue) vs. synthetic (red) faces in pixel space (left) and StyleGAN’s W+ space (right),
showing improved separability in the style space.

2 PRELIMINARIES

2.1 STYLEGAN AND PSP ENCODER

StyleGANs (Karras et al.| (2019} 2018 2021))) are generative adversarial networks (GAN) that syn-
thesizes high-quality images by leveraging an intermediate latent space, denoted as WW+. Unlike
traditional GAN latent spaces, W+ consists of layer-wise style codes, allowing precise control over
different aspects of an image’s appearance. The W+ space provides a disentangled and expressive
representation, making it particularly useful for encoding fine-grained facial details. The pSp en-
coder (Richardson et al.[(2020)) is a pretrained style encoder that maps real images into the W+
space, enabling real-image inversion into the latent style space.

2.2  SELF-SUPERVISED LEARNING FOR LATENT REPRESENTATIONS

Self-supervised learning (SSL) has emerged as an effective paradigm for learning robust represen-
tations without labeled data. Approaches such as BEiT (Bao et al.| (2021)) and MAE (He et al.
(2021))) demonstrate the effectiveness of vision transformer based encoder-decoder (Dosovitskiy
et al.| (2020)) to reconstruct the original image through self-supervised learning, thereby learning
powerful representations. Inspired by these methods, we extend the idea of self supervised learn-
ing to StyleGAN’s latent space rather than raw pixels. By ensuring the encoder learns to structure
real-style distributions without supervision, our method captures the stylistic fingerprint of authentic
faces, which serves as a strong prior for distinguishing real and synthetic images.

3 MOTIVATION

The W+ latent space of StyleGAN is widely used to encode facial attributes—such as pose, age, and
texture—along semantically meaningful axes, enabling precise feature modifications without unin-
tended changes to other aspects of the image (Harkonen et al.|(2020)). Given that W+ is designed
to disentangle facial properties, we hypothesize that its structured representation amplifies discrep-
ancies between real and Al-generated faces, making it a strong candidate for detecting synthetic
faces.

To validate this, we analyze the separability of real and synthetic images in W+ space. We used
50000 real images and 50000 synthetic images generated from both GAN and diffusion generators.
We use the PSP encoder (Richardson et al.| (2020)) to extract W+ style codes, apply PCA, and plot
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Figure 2: Two-stage framework for detecting Al-generated faces. Stage 1 (Top): A transformer-
based encoder-decoder learns self-supervised style representations by reconstructing StyleGAN’s
W latent codes from real faces, optimizing style consistency (Lstyte) and image fidelity (Limg).
Stage 2 (Bottom): A classifier head is fine-tuned on pretrained style embeddings to detect synthetic
faces by identifying deviations from authentic style distributions.

the first two principal components. As shown in Figure [T] these PCA projections of style codes
form distinct clusters for real and synthetic faces. In contrast, when we perform PCA on pixel-
space, the projections exhibit significant overlap. This shows that stylistic deviations introduced by
Al-generated content are inherently encoded in W+ style representations.

4 METHOD

Our framework follows a two-stage approach: (I) self-supervised pretraining to learn robust style
representations from real faces and (II) supervised fine-tuning for real/fake classification. This de-
coupled learning strategy allows the model to first internalize the stylistic “fingerprint” of authentic
images before adapting to discriminative features for synthetic image detection.

4.1 STYLE REPRESENTATION LEARNING

The objective of this stage is to learn a generalizable prior over the style distribution of real faces
using only unlabeled data. Given a dataset of real facial images:

Diea = {I;}Y.,, T € RHXWX3 (1)

we use the pretrained pSp encoder (Richardson et al.|(2020)) to project each image into the W+ style
space:
w =pSp(I), w € R¥*512 (2)

Here w represents the latent projection, where 18 corresponds to the number of style vectors across
different layers, and 512 is the latent space dimension. To learn meaningful style representations
from real images, we train a transformer-based encoder-decoder network, ¢ g and ¢ p, to reconstruct
the latent style codes w. Let w be the reconstructed style codes:

W = ¢p(pr(w)) 3)

The decoder output @ is then passed through a frozen StyleGAN generator G to synthesize a recon-
structed image:

~n
I

() @)

The model is trained using the following objectives:
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Style Consistency Loss: This loss ensures that the reconstructed style codes W = ¢p(dg(w))
remain close to the original style representation. It is formulated as:

Estyle = H'Lbfw”l (5)

Minimizing this loss encourages the encoder to capture fine-grained details of the style space and
ensures a faithful reconstruction.

Image Fidelity Loss: To further enforce the preservation of image-specific attributes, we pass the
reconstructed style codes through a frozen StyleGAN generator G to obtain the reconstructed image

I=@G (w). The reconstruction quality is enforced using:
Lime = [T = 1|1 (©)

The total loss function for pretraining is:

Lpretrain = Eslyle + Eimg @)

To ensure robust learning, both the pSp encoder and the StyleGAN generator remain frozen, allow-
ing the network to focus solely on capturing the structure of authentic styles.

4.2 DOWNSTREAM FINE-TUNING

In this stage, we leverage the pre-trained encoder ¢ g for real/fake classification. A classifier head 1
is added atop ¢ g, and the model is fine-tuned on a mixed dataset containing real and fake images:

Duix = {(Li,yi)}, v € {real, fake} (8)
where fake samples are sourced from both GAN- and diffusion-based generators. The model pre-
dicts:

§ =v(¢s(PSp(1))) ©)
Optimization is performed using cross-entropy loss:
Leg = =) ylog§ (10)

By leveraging the pre-trained encoder’s ability to encode real image styles, the model effectively
detects stylistic inconsistencies in synthetic images.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION

For pretraining, we use the FFHQ dataset (Matuzevicius| (2024)), which consists of 70,000 high-
quality real face images, enabling the model to learn a robust style prior of authentic human faces.
In the fine-tuning stage, we construct a balanced dataset of 3,000 real faces (from CelebA-HQ (Liu
et al.| (2015)) and 3,000 Al-generated faces. The synthetic images used in fine-tuning are sourced
from StyleGAN 1 (Karras et al.| (2018)) and Stable Diffusion 1 (Rombach et al.| (2021b)), ensur-
ing controlled learning. Also, our model is computationally lightweight and trained using a single
NVIDIA 4090 GPU. We trained the model for 800 epochs with a batch size of 8, followed by fine-
tuning for 100 epochs using the same batch size, using the Adam optimizer.

To evaluate out-of-distribution (OOD) generalization, we test the model on synthetic images gener-
ated by unseen models, which differ from those used during training:

* GAN-generated test set: 5,000 synthetic face images from StyleGAN 2 (Karras et al.
(2019)), StyleGAN 3 (Karras et al|(2021)), and EG3D (Lan et al.|(2023)), which were not
used in the training phase.

« Diffusion-generated test set: 5,000 synthetic face images from Stable Diffusion 2 (Rom-
bach et al.|(2021b))), DALL-E (Rombach et al.| (2021a))), Stable Diffusion XL (Podell et al.
(2023))), and MidJourney (Borji|(2022))), ensuring exposure to unseen synthesis techniques.

This evaluation strategy ensures that the model’s performance is assessed on distribution shifts rather
than memorization of specific generators used during training.
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Table 1: Performance comparison on validation (seen generators) and test (unseen generators)
datasets. We report AUC (%) and F1-scores (%).

Method Validation (GAN Generators) | Test (Diffusion Generators)
AUC% 1 F11 AUC% 1 F11

Corvi et al.[(2022) 82.81 74.2 66.20 60.5

Mundra et al.[(2023) 77.8 70.1 60.28 55.8

Porcile et al.|(2023) 85.74 78.5 84.50 79.2

Ours 95.27 93.4 93.76 91.70

Table 2: Ablation study on key components of our method. We report AUC (%) and F1-score (%)
on test datasets (unseen generators).

Method Validation (GAN Generators) | Test (Diffusion Generators)
AUC% 1t F11 AUC% T F171

Baseline (No Self-Supervision) 77.46 72.1 70.4 67.3

Only Self-Supervised Encoder 66.1 61.8 61.3 59.4

Full Model (Ours) 95.27 93.4 93.76 91.70

5.2 RESULTS AND BENCHMARK COMPARISONS

Table[T|compares our method with existing benchmarks on both test datasets. Our approach achieves
the highest AUC and F1-score, demonstrating superior performance.

Specifically, our model attains an AUC of 95.2% on the GAN test set and 93.7% on the more
challenging diffusion test set, significantly outperforming prior methods while maintaining strong
generalization. These results highlight the effectiveness of our style-based representation learning
for Al-generated face detection.

5.3 ABLATION STUDY

To understand the impact of each component in our method, we conduct an ablation study by system-
atically removing different modules. Table 2] presents the performance of our model under different
settings on the test dataset (unseen generators).

Baseline (No Self-Supervision). We remove self-supervised learning and train a simple classifier
using the StyleGAN encoder’s style codes. The performance drops significantly, confirming the
importance of self-supervised learning.

Only Self-Supervised Encoder. We exclude the pSp encoder and the StyleGAN decoder during
training and use only the self-supervised encoder-decoder trained with image reconstruction. During
fine-tuning we use only the trained self-supervised encoder for classification. This configuration
lacks the ability to leverage high-quality style embeddings from StyleGAN fully.

Full Model (Ours). The complete model, incorporating both the StyleGAN encoder-decoder and
self-supervised learning, achieves the best performance across all metrics, demonstrating that the
synergy of both components leads to stronger generalization to unseen generators.

6 CONCLUSION

In this work, we propose a novel deepfake detection framework that leverages self-supervised style
representation learning in the W+ latent space of StyleGAN. Moving forward, we aim to explore
adversarial robustness and cross-domain generalization, extending our framework to detect Al-
generated manipulations in real images. We hope our findings inspire future research in leveraging
self-supervised learning for more generalizable and interpretable detection of Al-generated images.
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