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Abstract

Preference optimization has emerged as an ef-
fective technique for aligning large language
models (LLMs) with human objectives. How-
ever, as training progresses, distribution shifts
can occur between newly generated model sam-
ples and the data used to train the reward model
(RM), reducing the RM’s effectiveness and con-
straining the policy model’s (PM) performance.
To address this challenge, we propose a self-
training technique called Mutual-Taught that
jointly improves both the PM and the RM with-
out relying on additional human supervision.
Our method is inspired by the Expectation-
Maximization (EM) algorithm. In the E-step,
we update the PM based on feedback from the
current RM, guiding the PM toward a better
approximation of the latent optimal preference
distribution. In the M-step, we update the RM
by constructing training data from the PM’s out-
puts before and after the E-step update, thereby
adapting the RM to the evolving policy distri-
bution. Experimental results show that this it-
erative process steadily improves both models.
Our 8B policy model, LLaMA3-8B-Instruct-
MT, achieves a length-controlled win rate of
52.0% on AlpacaEval-2. Meanwhile, our 8B
reward model, FsfairX-LLaMA3-RM-MT, at-
tains performance on par with GPT-40-2024-
08-06 on RewardBench.

1 Introduction

As large language models (LLMs) are fine-tuned to
align with human preferences using techniques like
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024),
distribution shifts may arise. Over time, the distri-
bution of outputs generated by the evolving model
may diverge from that of the data used to train the
reward model or the original preference dataset.
This misalignment can create a feedback loop: as
the model adapts, it may produce outputs that score
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Figure 1: An illustration of the Mutual-Taught intuition.
The top curve represents the evolving policy model dis-
tribution 7;, and the bottom curve shows the reward
model’s preference estimates r;. After the policy up-
date (E-step), the refined policy model 7; exhibits a
higher probability of generating high-reward responses
compared to the previous policy 7, as indicated by
the shaded region. These improvements, resulting from
the distribution shifts, are used to enhance the reward
model’s ability (M-step) to provide more reliable feed-
back in high-reward regions. Over successive E- and
M-steps, both the policy and reward models progres-
sively adapt, approaching their optimal distributions
(*, r*).

highly under the current reward model but fail to
genuinely capture human preferences, a scenario
often referred to as “reward hacking” (Gao et al.,
2023; Zheng et al., 2023b). Such distortions ulti-
mately undermine the reliability of alignment.

A straightforward solution is to continuously so-
licit new human annotations for recently generated
samples (Touvron et al., 2023). However, this ap-
proach is not scalable due to its substantial reliance
on human labor. Another strategy employs LLM-
as-a-Judge prompting (Yuan et al., 2024; Wu et al.,
2024a), where an LLM provides its own reward
signals. While iterative DPO techniques based on



this principle can refine both instruction-following
and judgment abilities, they typically require strong
base models or pre-training on judgment datasets
to establish effective judgment skills.

This paper explores whether it is possible to au-
tomatically improve both the policy and reward
models without external supervision. Our cen-
tral research question is: How can we automati-
cally generate high-quality feedback for LLM self-
training and effectively guide reward model opti-
mization? To address this challenge, we introduce
a self-training framework called Mutual-Taught,
grounded in the Expectation-Maximization (EM)
algorithm. In our framework, the E-step refines
the policy model by leveraging feedback from the
current reward model, thereby guiding it toward
the optimal latent preference distribution. In the M-
step, the reward model is updated using comparison
data derived from the policy’s outputs before and
after the E-step. These pseudo-preference pairs nat-
urally arise from the changing policy distribution
and obviate the need for external labels.

A key insight of our approach is that the distribu-
tion shifts arising from policy model updates can be
harnessed to produce the contrastive examples for
reward model improvement. Through this mutual
teaching process, both models continuously benefit
from each other’s evolving state. Empirical results
show that our Mutual-Taught framework consis-
tently outperforms previous methods, achieving ro-
bust self-improvement without human involvement.
Notably, the improved reward model generalizes
well and effectively guides optimization for a range
of policy models.

2 Related Work

Offline preference optimization Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) has emerged as a pivotal approach of
preference optimization. However, it depends on re-
inforcement learning techniques such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017),
which are challenging to implement and often un-
stable during training. To simplify and stabilize
the RLHF process, Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024) was proposed.
DPO trains a policy model directly from human-
annotated preference pairs using a simple classifi-
cation loss derived from the Bradley-Terry model
(Bradley and Terry, 1952). Besides DPO, various
preference optimization objectives have been pro-

posed to improve performance and simplify train-
ing, including SLiC-HF (Zhao et al., 2023), KTO
(Ethayarajh et al., 2024), RSO (Liu et al., 2023),
ORPO (Hong et al., 2024), and SimPO (Meng et al.,
2024). However, the absence of an explicit reward
model in these methods limits their ability to adapt
to the evolving policy distribution and to generate
new preference pairs effectively.

Iterative preference optimization With an ex-
plicit reward model, the preference optimization
methods mentioned above can be applied repeat-
edly over multiple rounds. In each round, new data
is generated by the policy obtained from the previ-
ous round, annotated with a reward score and then
used to train a stronger policy. For example, Xu
et al. (2023) apply PCO and DPO to an iterative
manner by annotating new preferences with a fixed
reward model. ReST®M (Singh et al., 2023) pro-
posed an Expectation-Maximization (EM) frame-
work, where in each round, the new policy is ob-
tained by minimizing the reward-weighted negative
log-likelihood loss on data generated by the old pol-
icy. SELM (Zhang et al., 2024b) and XPO (Xie
et al., 2024) augment the DPO objective with a
novel and principled exploration bonus, enabling
the algorithm to explore beyond the initial model
and human feedback data. SAIL (Ding et al., 2024)
generates preference data by combining initial of-
fline preferences with model-generated preferences,
where the model itself estimates the likelihood of
one response being preferred over another using
its learned policy. SPIN (Chen et al., 2024), DNO
(Rosset et al., 2024) and SPPO (Wu et al., 2024b)
leverage self-play mechanism to iteratively refine
the policy towards achieving Nash equilibrium by
optimizing general preferences. These approaches
often overlook distribution shifts, which can limit
the potential for policy improvement.

To address this issue, Ouyang et al. (2022) col-
lects preference data on the current best policy,
which is then annotated by humans and used to
train a new reward model, this process consumes
significant annotation resources. ReST-MCTS*
(Zhang et al., 2024a) uses the policy to perform
a modified Monte Carlo Tree Search to generate
solutions and evaluates them against the ground
truth for process reward model training. However,
its reliance on ground truth restricts the method’s
applicability to only a few specific domains. An-
other line of work uses the policy model to judge its
own responses in an LLM-as-a-Judge mechanism



(Zheng et al., 2023a), which eliminates the reward
model and simultaneously updates the knowledge
of the judge. Self-rewarding (Yuan et al., 2024)
and Meta-rewarding (Wu et al., 2024a) language
models generate responses to prompts using the
current policy and then assign scores to each re-
sponse themselves to create preference data for the
next iteration of training.

3 Preliminaries

3.1 Reward Modeling

In RLHEF, a reward model r(y; x) is first trained to
predict human preference scores for responses y
given prompts x. The reward model is typically
trained using human-annotated preference pairs
(x, Yw, Y1), where y,, is preferred over y;.

Bradley-Terry reward model (Bradley and Terry,
1952) is commonly used to model the probability
that one response is preferred over another:

P(yw =y | z) = o(r(yw; ) — r(yi52))
_ exp(r(Yw; T)) (1
exp(r(yw; x)) + exp(r(yi; x))

The reward model is then trained by maximiz-
ing the log-likelihood of observed preferences:
log P(yw = yi | @).

3.2 Direct Preference Optimization (DPO)

DPO (Rafailov et al., 2024) simplifies the training
process by combining the two-step procedure of
PPO (Schulman et al., 2017) into a single unified
objective. Specifically, DPO conducts a closed-
form solution for the reward function, yieding the
following loss formulation:

Lpro =

o (Yyw | @
—loga(ﬁlog%—ﬁlo

o ol |x)>. (2)

et (Y1 | )

While DPO offers enhanced stability and ease of
optimization, its offline nature and the absence of
an explicit reward model limit its ability to adapt
to the evolving policy distribution effectively.

4 Mutual-Taught

Conventional iterative preference learning often
treats the reward model (RM) as a fixed oracle that
perfectly encodes an “optimal” preference distri-
bution. In practice, however, this assumption fails
to hold as the policy model (PM) improves and
its output distribution shifts (Touvron et al., 2023;

Cheng et al., 2024). The static RM, trained under
outdated conditions, may no longer accurately re-
flect the evolving notion of optimality, resulting
in increasingly misaligned feedback that caps the
PM’s potential.

To address this challenge, we propose Mutual-
Taught, a self-training framework that jointly op-
timizes both the PM and the RM. By adopting an
Expectation-Maximization (EM)-inspired perspec-
tive, Mutual-Taught treats this latent optimal distri-
bution as a hidden variable whose properties must
be inferred and re-estimated over time. Through
iterative refinement—improving the PM to better
approximate the latent distribution (E-step) and
updating the RM to more accurately reflect this im-
proved approximation (M-step)—Mutual-Taught
co-evolves both models towards the latent optimal
distribution. This approach enhances preference
alignment without requiring human annotations.

4.1 Objective of Mutual-Taught

Consider a dataset D of prompts z € X. For each
prompt z, we assume a latent “optimal” response
distribution Q*(y | =), which is unobservable. Our
goal is twofold: to learn a policy model 7(y | x)
that approximates Q*(y | x), and to optimize a
reward model r(y; x) that evaluates responses in
alignment with Q*(y | ). The joint optimization
objective can be expressed as:

7wt r* = arg max Eyopy~q* (o) [Ty 2)].  (3)

Since Q*(y | ) is unknown, we adopt an EM-
inspired approach. In the E-step: Estimate the
latent distribution QQ* based on the current model
parameters. In the M-step: Update the model pa-
rameters to better fit this estimate. In our setting,
the E-step corresponds to updating 7 so that 7,
more closely approximates Q*, and the M-step up-
dates r to align with this improved approximation.

E-step (Policy model update): With the cur-
rent RM r;_; fixed, we update 7; by maximizing
expected reward:

Ty = arg mngxND,yNﬂ(.p) [re1(ysz)]. 4

Although 7; may not precisely match Q*, this up-
date moves 7; closer to what the current RM con-
siders optimal, serving as a practical surrogate for
the latent distribution.

M-step (Reward model update): With 7, fixed,
we update the RM 7; so that it better reflects the
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Figure 2: Overview of the Mutual-Taught framework. The process alternates between policy model updates (E-step)
and reward model updates (M-step). In the E-step, the policy model is fine-tuned using feedback from the current
reward model to align the policy with the optimal preference distribution. In the M-step, the reward model is
updated through contrastive comparisons of policy model outputs before and after updates, allowing it to adapt to
the evolving policy without requiring additional human annotations.

Algorithm 1 Mutual-Taught

. Partition D into subsets D1, ..., Dy, Dpg.
: for each iterationt =1...7 do

B LNy =

optimizing ; to increase expected rewards.

bd

preference pairs (x, y;, y;—1) and update 7.
end for
: Output: Final PM 77 and RM rp.

A

: Input: Initial PM g, initial RM rq, dataset D, number of iterations 7.

E-step: Update 7; by sampling responses from 71 for  ~ D, evaluating them with r;_1, and

M-step: For each z ~ Dp, sample y; ~ m;(x) (chosen) and y;—1 ~ m;—1(z) (rejected). Create

improved approximation to Q* provided by .
Specifically, we consider pairs (y;,y:—1) of re-
sponses drawn from 7 and m;_;. Since m; has
been optimized under r;_1, we treat responses from
7 as “chosen” (closer to the latent optimum) and
those from m;_; as “rejected”, yielding a pseudo-
labeled pairwise preference signal:

71 = A max Bondynm(lo)anromar () o
log Pr(y: = yi—1 | )] .-

This update encourages r; to assign higher prefer-
ence probabilities to responses that are closer to the
latent optimal distribution as approximated by 7.

4.2 Algorithmic Overview

Algorithm 1 summarizes our Mutual-Taught ap-
proach. In classical EM, we iteratively refine both
a variational approximation of latent variables and
the model parameters. Analogously, we treat Q* as
the latent variable and m; as an evolving surrogate.
By refining 7; in the E-step and adjusting 7; in the

M-step, both models progressively align with the
latent optimal distribution Q*.

By reframing preference optimization as la-
tent variable estimation, Mutual-Taught replaces
the static, fixed-oracle RM paradigm with a dy-
namic, co-evolving interplay between the PM and
RM. This synergy leverages EM-like reasoning to
achieve improved preference alignment without ad-
ditional human annotations.

5 Experiments

5.1 Experimental Setup

Base model and dataset We use LLaMA3-8B-
Instruct (Dubey et al., 2024) as our base pol-
icy model and FsfairX-LLaMA3-RM-v0.1 (Xiong
et al., 2024) as the base reward model, which is
one of the top models on RewardBench (Lambert
et al., 2024) and provides open-source code, facili-
tating iterative training. Following previous work,
we use the UltraFeedback dataset (Cui et al., 2024)
with approximately 60,000 prompts from diverse
sources. To prevent overfitting during fine-tuning,



we divide the dataset into three parts: two parts for
policy model iteration and one for reward model
iteration. In each iteration, we generate K = 5
responses per prompt with a temperature of 0.8 and
top-p = 0.95. Duplicate generations are removed.

Evaluation benchmarks Since Mutual-Taught
aims to automatically improve both the policy
model and the reward model, we evaluate the
performance of each component separately. Pol-
icy model instruction following: We utilize two
widely recognized automatic evaluation bench-
marks where GPT-4 acts as the judge: AlpacaEval-
2 (Li et al., 2023) and Arena-Hard (Li et al., 2024).
Each benchmark targets different aspects of model
performance. AlpacaEval-2 assesses chat capabili-
ties using 805 instructions spanning a wide range of
prompts, evaluated through length-controlled (LC)
win rate and raw win rate (WR) metrics. Arena-
Hard presents more challenging tasks, includ-
ing 500 well-defined technical problem-solving
queries. Reward model judgment accuracy: We
assess the reward model’s accuracy using Reward-
Bench (Lambert et al., 2024), which measures per-
formance across four different categories: Chat,
Chat-Hard, Safety, and Reasoning.

Baselines We compare our approach against the
following baseline models and methods:

* Base policy model and base reward model:
We use LLaMA3-8B-Instruct, an instruction-
following LLM developed by Meta, as our
base policy model. For the reward model, we
employ FsfairX-LLaMA3-RM-v0.1, a high-
performing reward model fine-tuned from
LLaMA3-8B-Instruct.

» Offline preference optimization methods: We
implement DPO (Rafailov et al., 2024),
IPO (Gheshlaghi Azar et al., 2024) and
SimPO (Meng et al., 2024). Preference pairs
are derived from multiple responses generated
by the base policy model, with scores pro-
vided by the base reward model.

e Iterative preference optimization methods:
We implement SPPO (Wu et al., 2024b) and
Meta-rewarding (Wu et al., 2024a). Since
these methods do not update the reward model,
we use all three portions of the dataset for pol-
icy training, performing three iterations.

To ensure a fair comparison, the sampling set-
tings used in the above experiments align with

those applied in the Mutual-Taught. Further imple-
mentation details for these baselines can be found
in Appendix A.

Implementation details We conduct Mutual-
Taught between the policy and reward models for
two iterations. In each iteration, both models are
trained for one epoch using a cosine learning rate
schedule with a warmup ratio of 0.1. For each pol-
icy model iteration, we initialize the model from
the previous round and generate responses using
the current policy. Preference data is then derived
using the reward model at the current iteration.
The policy model is optimized via DPO with a
beta of 0.01, a batch size of 128, a maximum se-
quence length of 2,048 tokens, and a learning rate
of 7 x 10~". To mitigate the risk of overfitting on
the same prompts across iterations, each reward
model iteration started from the base reward model.
The reward model is trained on preference pairs
consisting of chosen and rejected responses sam-
pled from the current and preceding policy models.
We use a batch size of 512, a maximum sequence
length of 2,048 tokens, and an empirically set learn-
ing rate of 2 x 1075, All experiments are conducted
on 8 NVIDIA A100 GPUs. Further details are pro-
vided in Appendix A.

5.2 Main Results

Iterative performance improvement on policy
model We first report the performance of Mutual-
Taught and baseline methods on the instruction-
following benchmarks AlpacaEval-2 and Arena-
Hard in Table 1. For AlpacaEval-2 and Arena-
Hard, Mutual-Taught delivers substantial improve-
ments to the LLaMA-3-8B-Instruct model, achiev-
ing a 28.9 points increase in length-controlled (LC)
win rate and a 16.9 points increase in win rate,
respectively. Notably, the proposed method pro-
vides consistent improvements in each iteration,
validating the robustness of our approach. Com-
pared to other baselines, our method demonstrates
clear superiority on AlpacaEval-2 and Arena-Hard.
Additionally, when comparing iterative preference
optimization methods, we observe that methods
using a reward model for preference feedback (e.g.,
SPPO and Mutual-Taught) perform significantly
better than methods relying on LLM-as-a-judge
feedback (e.g., Meta-rewarding). This indicates
that a reward model, fine-tuned through supervised
training, offers stronger initial judgment capabili-
ties than the policy model itself and provides more



AlpacaEval-2

Arena-Hard

Model LC Win Rate Win Rate Avg. Len  Win Rate  Avg. Len
Base Policy Model
LLaMA-3-8B-Instruct 23.1 23.1 1899 20.6 585
Offline Preference Optimization Methods
SimPO 479 46.3 1934 325 552
1PO 43.7 42.1 1899 34.5 569
DPO 44.7 42.7 1945 33.1 557
Iterative Preference Optimization Methods
Meta-rewarding Iterl 342 32.6 1893 27.7 531
Meta-rewarding Iter2 36.4 34.5 1876 27.0 530
Meta-rewarding Iter3 ~ 37.5 (1 14.4) 35.2 1868 27.9 (1 7.3) 530
SPPO Iterl 39.4 39.5 2021 30.6 570
SPPO Iter2 41.0 44.4 2396 344 653
SPPO Iter3 46.4 (1 23.3) 48.5 2128 33.6 (1 13.0) 542
DPO Iterl 33.6 33.8 1989 30.3 559
DPO Iter2 43.4 42.3 1961 333 587
DPO Iter3 472 (1 24.1) 48.7 1930 34.7 (1 14.1) 571
Our Methods
Mutual-Taught Iterl 37.1 36.5 1957 335 553
Mutual-Taught Iter2 52.0 (1 28.9) 56.0 2214 37.5 (1 16.9) 692

Table 1: Overall results of our proposed Mutual-Taught method with LLaMA-3-8B-Instruct as the policy model,
compared against various baseline methods on AlpacaEval-2 and Arena-Hard. The improvement is calculated
relative to LLaMA-3-8B-Instruct. Text in bold indicates the best performance.

Model Chat Chat Hard Safety Reasoning Average
GPT-40-2024-08-06 96.10 76.10 88.10 86.60 86.70
FsfairX-LLaMA3-RM-v0.1  99.40 65.10 87.80 86.40 84.70
Mutual-Taught Iter1 98.32 62.61 84.86 96.60 85.60
Mutual-Taught Iter2 98.32 65.90 87.26 95.69 86.80

Table 2: Out-of-distribution (OOD) evaluation results of the reward models on RewardBench.

effective guidance throughout the iterative process.

It is noteworthy that our method employs only
two-thirds of the available datasets for updating
the policy model, reserving the remaining third
for updating the reward model. Despite using less
data for policy model iterations compared to other
iterative training baselines, we achieve significantly
better performance on AlpacaEval-2 and Arena-
Hard. This outcome highlights the importance of
synchronously updating both the policy and reward
models during the iterative training process. We
believe that enhancing the reward model can yield
greater benefits than simply increasing the amount
of data used to train the policy model.

Iterative performance improvement on reward
model To assess the effectiveness of Mutual-
Taught in improving the reward model, we evaluate
the reward models obtained during the iterative
process from two perspectives:

In-distribution (ID): This test evaluates whether
the reward model (RM) improves in selecting op-

B Win Tie Lose
Iter2
Vs 35.5% 7.49
Iterl
Iter2
Vs 20.5% 12.2%
Base
Iterl
Vs 27.6% 11.7%
Base
0% 25% 50% 75% 100%

Figure 3: In-distribution (ID) evaluation results of the
reward models. We compare the reward models at dif-
ferent iterations and show the win, tie, lose rates.

timal responses after each iteration. Specifically,
we assess the RM’s performance using the itera-
tion data employed during RM training. For each
evaluation prompt, the policy model (after two it-
erations) generates five candidate responses. The
base RM, along with the RMs from the first and



second iterations, then selects the best response
from these candidates. To measure performance
differences between the RMs, GPT-4 serves as a
judgment model, conducting pairwise comparisons
of the responses selected by the different RMs. As
shown in Figure 3, the resulting RM achieves a
progressively higher win rate against the base RM
as iterations advance. This highlights that the RM’s
ability to identify high-quality responses improves
with each iteration, contributing to the enhance-
ment of the policy model in subsequent iterations.
Out-of-distribution (OOD): We further evaluate
the RM’s generalization ability under OOD condi-
tions using RewardBench. As shown in Table 2, the
RM achieves consistent improvements after each it-
eration, with an average score increase of 2.1 points
after two iterations, approaching the performance
of GPT-40-2024-08-06. Notably, the most signifi-
cant contribution to the improvement comes from
the enhancement in reasoning capabilities, with
FsfairX-iter-2 achieving a 9.29 points increase in
reasoning compared to the base RM. We attribute
this to the strong reasoning ability of LLaMA3-8B-
Instruct, which provides high-quality feedback on
reasoning prompts to guide the RM effectively.

5.3 Ablation Study

Our main hypothesis is that the updated policy dis-
tribution is, on average, superior to the previous
policy distribution. This improvement enables the
reward model to learn a better preference distri-
bution from the current data. To understand the
underlying reasons for the effectiveness of Mutual-
Taught, we conduct an ablation study focusing on
two aspects: the impact of updating the reward
model on policy iteration, and the effect of data
synthesis strategies on reward model iteration. As
illustrated in Figure 4, if the reward model is not
updated, the overall iterative training degenerates
into iterative DPO, leading to a significant decline
in the policy model’s performance after iteration.
This observation underscores the effectiveness of
Mutual-Taught in optimizing the reward model by
leveraging comparisons between the policy model’s
outputs before and after updates.

In our implementation, to prevent excessive
knowledge forgetting during the optimization of the
reward model’s distribution, each iteration of RM
training incorporates two types of data: D (PM):
Data generated by the current policy model (self-
training data). D (PMyew, PMglq): Contrastive data
comparing outputs from the new and old policy

60 90
4470 86.79 85.08
< 554 . 84.30 L g5
& 5112
2 501 48.43 Lo £
5 3
s 45.87 458 P
< 454 75 &
5} O
g z
£ 401 70 2
— 35 4 k65
30 T T T T 60
Iterative Mutual Policy Self
DPO Taught Contrast Training

Figure 4: The impact of different reward model data syn-
thesis strategies on the performance of Mutual-Taught.

models. Both data types are unseen by the reward
model, and using either type alone could indepen-
dently improve RM performance. Notably, using
only D (PM) is akin to self-training for the RM.
To investigate the impact of each data type on RM
performance and the overall iterative process, we
conduct experiments by replacing the training data
with only a single data type at each RM iteration.
As shown in Figure 4, the policy model’s per-
formance declines in both data-type ablation sce-
narios. Specifically, when only self-training data is
used, the policy model’s performance drops by 5.32
points, though the RM performance does not show
a significant decline. When using only policy com-
parison data, the RM performance declines slightly,
but the policy model’s performance is relatively
less affected. We hypothesize that self-training
data tends to reflect the original distribution of the
RM, which helps prevent catastrophic forgetting
but struggles to model better preference distribu-
tions, making it less effective in guiding the policy
model for the next iteration. In contrast, using
comparison data between the updated and previ-
ous policy models aligns more closely with the
iterative optimization goal, allowing the RM to ap-
proach a better preference distribution and provide
more effective feedback for the next policy model
update. The combination of both data types in
Mutual-Taught achieves a balance between prevent-
ing knowledge forgetting and modeling improved
preference distributions, leading to better iterative
performance than using either data type alone.

5.4 Further Analysis

Generalization of the iterated reward model
A critical aspect of our approach is whether an
iterated reward model (RM), trained using out-



puts from a specific policy model (LLaMA3-8B-
Instruct), can effectively generalize to guide the
optimization of other models. To investigate this,
we take the RM obtained after two iterations and
apply it to train an entirely different policy model,
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), with a
single round of DPO training on the UltraFeedback
dataset.

Model AlpacaEval-2

LC Win Rate Win Rate
Mistral-7B-Instruct-v0.2 19.39 15.75
w/ RM-Base 41.96 42.77
w/ RM-Iterl 44.81 43.29
w/ RM-Iter2 45.73 50.02

Table 3: Results from using reward models at different
iterations in the main experiment to guide DPO training
of Mistral-7B-Instruct-v0.2.

As shown in Table 3, using the RM after two
Mutual-Taught iterations increases the model’s per-
formance on AlpacaEval-2 by up to 3.77 points
over the base RM. This indicates that the iterated
RM, trained exclusively on outputs from LLaMA3-
8B-Instruct, can still effectively capture generaliz-
able preference signals. These improved preference
representations, in turn, enable the RM to guide and
enhance the optimization of other models.

Compatibility with different preference objec-
tives In the main experiments, we primarily used
DPO to optimize the policy model during the E-
step. We also explored integrating Mutual Taught
with different preference optimization objectives,
specifically SimPO and IPO.

Model AlpacaEval-2

LC Win Rate Win Rate Avg. Len
SimPO 47.94 46.25 1934
PO 43.72 42.11 1899
SimPO-MT 49.78 49.61 2147
IPO-MT 50.73 50.29 2029

Table 4: Experimental results with different prefer-
ence optimization objectives in Mutual-Taught E-step.
SimPO-MT and IPO-MT represent iterative training
with SimPO and IPO, respectively.

As shown in Table 4, Mutual-Taught consistently
provides significant improvements in preference
optimization across both scenarios, highlighting its
strong compatibility with various preference learn-
ing objectives. The pairwise win rates, measured
by FsfairX-LLaMA3-RM-v0.1 (Xiong et al., 2024),

SimPO-Iter2 53.57 55.28

70.10

SimPO 50.00 56.74

TPO-Tter2

SimPO-Iter] | 44.39

IPO-Iter] ~ 28.56 36.91 43.18

1) S, e

Figure 5: Pairwise evaluation of models with different
preference optimization objectives in the Mutual-Taught
framework on Alpaca-Eval 2 using FsfairX-LLaMA3-
RM-vO0.1.

are presented in Figure 5. In all preference opti-
mization objectives, updated models consistently
outperformed previous ones. However, SimPO sur-
passed IPO in the final iteration. Interestingly, IPO
performed better than SimPO on standard bench-
marks evaluated by GPT-4 against ground-truth an-
swers. We attribute SimPO’s final iteration advan-
tage to its tendency to generate longer sequences,
exploiting the length bias in FsfairX-LLaMA3-RM-
v0.1, which favors longer outputs.

6 Conclusion

This paper introduces Mutual-Taught, an approach
to automatically improve policy and reward mod-
els without relying on external supervision signals.
The method follows an expectation-maximization
(EM)-based iterative process, where in each iter-
ation, the policy model is improved using prefer-
ence feedback from the reward model to provide
better observations for training the reward model.
Then, comparisons between the policy model’s ob-
servations before and after updates are leveraged
to optimize the reward model’s distribution. We
demonstrated that this iterative process can contin-
uously enhance both the policy and reward models.
The resulting policy model achieves significant im-
provements over existing methods, such as DPO,
SPPO, and Meta-rewarding, across multiple bench-
marks, including AlpacaEval-2 and Arena-Hard.
Moreover, the iterated reward model achieves per-
formance comparable to GPT-40-2024-08-06 on
RewardBench.



Limitations

While Mutual-Taught demonstrates promising re-
sults, it relies on the assumption that the policy
model’s improvements can be effectively captured
and utilized by the reward model through self-
generated data. In scenarios where the policy
model does not improve significantly across itera-
tions, the effectiveness of this method may be lim-
ited. Additionally, the approach requires careful
tuning of hyperparameters to balance the updates
between the policy and reward models.

Ethics Statement

All experiments in this study were conducted using
publicly available datasets that do not contain any
private information. Our work does not involve
the analysis or utilization of identity characteristics,
and we do not engage in any form of gender or
racial discrimination.
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A Experiments Details

In our experiments, we use the Alignment Hand-
book framework (Tunstall et al.) for policy model
iteration and the RLHF-Reward-Modeling ! frame-
work for reward model iteration.

Mutual-Taught training We follow SimPO
(Meng et al., 2024) to set the policy sampling and
training parameters. Specifically, for policy sam-
pling: temperature is set to 0.8, K = 5, and top-p
to 0.95. For policy training: learning rate is set
to 7 x 1077, batch size to 128, and warmup ra-
tio to 0.1. These settings remain consistent across
both iterations. For reward model iteration, we use
the default parameter settings from RLHF-Reward-
Modeling. In both iterations, we use the same
settings: learning rate of 2 x 1075, batch size of
512, and weight decay of 0.001. Reward model

1RLHF—Revvard—Modf:ling at https://github.com/
RLHFlow/RLHF-Reward-Modeling
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training data is constructed by sampling from the
policy distributions before and after updates, with
a temperature of 0.8 and top-p of 0.95.

Baselines In Offline Preference Optimization
Methods, we maintain the same sampling and
training parameters as Mutual-Taught. For Iter-
ative Preference Optimization Methods, in iterative
DPO, we observed performance degradation in the
final iteration with a larger learning rate, so we
lowered it to 5 x 10~7. For SPPO, we use the de-
fault training parameters provided by the method.
For Meta-rewarding, we first built Evaluation Fine-
Tuning (EFT) data from the Open Assistant (Kopf
et al., 2024) dataset to boost the initial judgment
ability of the model before self-training iterations.
During the construction of EFT data, we prompt
GPT-40 to generate judgments with high quality in-
stead of the SFT baseline in Yuan et al. (2024). Dur-
ing self-training iterations, we use prompts from
the UltraFeedback dataset instead of those gener-
ated by LLaMA2-70B-Chat to align with Mutual-
Taught.

Length-control To prevent length explosion, we
implement a length-control mechanism for select-
ing preference data. For each prompt, we first se-
lect responses with above-average reward scores,
then choose the shortest one as the chosen response.
The response with the lowest score is selected
as the rejected one. This length control mecha-
nism is applied to all experiments except for Meta-
Rewarding, where we use the length control mech-
anism proposed by the original method.

B Performance of Mutual-Taught With
Additional Iterations

To evaluate the impact of additional iterations on
model performance, we conduct a second round of
Mutual-Taught training using the same dataset as
in the main experiments. To mitigate overfitting,
we regenerate higher-quality preference data based
on the models from the first round and reinitialize
both the policy model and the reward model from
their respective base states. All experimental hy-
perparameters remain consistent with those used
in the main experiments. The experimental results
are summarized in Table 5.

It is evident that after the second round of it-
erations, both the policy model and the reward
model exhibit consistent improvements compared
to the first round. Notably, the final reward model
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. AlpacaEval-2 Arena-Hard RewardBench
Iteration

LC Win Rate  Win Rate Avg Score
Round 1 Iterl 37.1 335 85.6
Round 1 Iter2 52.0 375 86.8
Round 2 Iterl 39.5 34.8 86.0
Round 2 Iter2 53.1 39.0 88.0

Table 5: Performance metrics across two rounds of
Mutual-Taught iterations. Text in bold indicates the best
performance.

achieves a superior performance on RewardBench,
surpassing GPT-40-2024-08-06. This demonstrates
that Mutual-Taught remains effective even with
additional iterations. More specifically, while the
starting models in both rounds are identical, the
preference data in the second round is derived from
models refined during the first round. These higher-
quality outputs serve as a stronger foundation for
the E-step (policy updates) and M-step (reward
model updates), enabling more effective alignment
and yielding improved results.
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