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Abstract

Preference optimization has emerged as an ef-001
fective technique for aligning large language002
models (LLMs) with human objectives. How-003
ever, as training progresses, distribution shifts004
can occur between newly generated model sam-005
ples and the data used to train the reward model006
(RM), reducing the RM’s effectiveness and con-007
straining the policy model’s (PM) performance.008
To address this challenge, we propose a self-009
training technique called Mutual-Taught that010
jointly improves both the PM and the RM with-011
out relying on additional human supervision.012
Our method is inspired by the Expectation-013
Maximization (EM) algorithm. In the E-step,014
we update the PM based on feedback from the015
current RM, guiding the PM toward a better016
approximation of the latent optimal preference017
distribution. In the M-step, we update the RM018
by constructing training data from the PM’s out-019
puts before and after the E-step update, thereby020
adapting the RM to the evolving policy distri-021
bution. Experimental results show that this it-022
erative process steadily improves both models.023
Our 8B policy model, LLaMA3-8B-Instruct-024
MT, achieves a length-controlled win rate of025
52.0% on AlpacaEval-2. Meanwhile, our 8B026
reward model, FsfairX-LLaMA3-RM-MT, at-027
tains performance on par with GPT-4o-2024-028
08-06 on RewardBench.029

1 Introduction030

As large language models (LLMs) are fine-tuned to031

align with human preferences using techniques like032

Reinforcement Learning from Human Feedback033

(RLHF) (Ouyang et al., 2022) and Direct Prefer-034

ence Optimization (DPO) (Rafailov et al., 2024),035

distribution shifts may arise. Over time, the distri-036

bution of outputs generated by the evolving model037

may diverge from that of the data used to train the038

reward model or the original preference dataset.039

This misalignment can create a feedback loop: as040

the model adapts, it may produce outputs that score041
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Figure 1: An illustration of the Mutual-Taught intuition.
The top curve represents the evolving policy model dis-
tribution πi, and the bottom curve shows the reward
model’s preference estimates ri. After the policy up-
date (E-step), the refined policy model π1 exhibits a
higher probability of generating high-reward responses
compared to the previous policy π0, as indicated by
the shaded region. These improvements, resulting from
the distribution shifts, are used to enhance the reward
model’s ability (M-step) to provide more reliable feed-
back in high-reward regions. Over successive E- and
M-steps, both the policy and reward models progres-
sively adapt, approaching their optimal distributions
(π∗, r∗).

highly under the current reward model but fail to 042

genuinely capture human preferences, a scenario 043

often referred to as “reward hacking” (Gao et al., 044

2023; Zheng et al., 2023b). Such distortions ulti- 045

mately undermine the reliability of alignment. 046

A straightforward solution is to continuously so- 047

licit new human annotations for recently generated 048

samples (Touvron et al., 2023). However, this ap- 049

proach is not scalable due to its substantial reliance 050

on human labor. Another strategy employs LLM- 051

as-a-Judge prompting (Yuan et al., 2024; Wu et al., 052

2024a), where an LLM provides its own reward 053

signals. While iterative DPO techniques based on 054
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this principle can refine both instruction-following055

and judgment abilities, they typically require strong056

base models or pre-training on judgment datasets057

to establish effective judgment skills.058

This paper explores whether it is possible to au-059

tomatically improve both the policy and reward060

models without external supervision. Our cen-061

tral research question is: How can we automati-062

cally generate high-quality feedback for LLM self-063

training and effectively guide reward model opti-064

mization? To address this challenge, we introduce065

a self-training framework called Mutual-Taught,066

grounded in the Expectation-Maximization (EM)067

algorithm. In our framework, the E-step refines068

the policy model by leveraging feedback from the069

current reward model, thereby guiding it toward070

the optimal latent preference distribution. In the M-071

step, the reward model is updated using comparison072

data derived from the policy’s outputs before and073

after the E-step. These pseudo-preference pairs nat-074

urally arise from the changing policy distribution075

and obviate the need for external labels.076

A key insight of our approach is that the distribu-077

tion shifts arising from policy model updates can be078

harnessed to produce the contrastive examples for079

reward model improvement. Through this mutual080

teaching process, both models continuously benefit081

from each other’s evolving state. Empirical results082

show that our Mutual-Taught framework consis-083

tently outperforms previous methods, achieving ro-084

bust self-improvement without human involvement.085

Notably, the improved reward model generalizes086

well and effectively guides optimization for a range087

of policy models.088

2 Related Work089

Offline preference optimization Reinforcement090

Learning from Human Feedback (RLHF) (Ouyang091

et al., 2022) has emerged as a pivotal approach of092

preference optimization. However, it depends on re-093

inforcement learning techniques such as Proximal094

Policy Optimization (PPO) (Schulman et al., 2017),095

which are challenging to implement and often un-096

stable during training. To simplify and stabilize097

the RLHF process, Direct Preference Optimiza-098

tion (DPO) (Rafailov et al., 2024) was proposed.099

DPO trains a policy model directly from human-100

annotated preference pairs using a simple classifi-101

cation loss derived from the Bradley-Terry model102

(Bradley and Terry, 1952). Besides DPO, various103

preference optimization objectives have been pro-104

posed to improve performance and simplify train- 105

ing, including SLiC-HF (Zhao et al., 2023), KTO 106

(Ethayarajh et al., 2024), RSO (Liu et al., 2023), 107

ORPO (Hong et al., 2024), and SimPO (Meng et al., 108

2024). However, the absence of an explicit reward 109

model in these methods limits their ability to adapt 110

to the evolving policy distribution and to generate 111

new preference pairs effectively. 112

Iterative preference optimization With an ex- 113

plicit reward model, the preference optimization 114

methods mentioned above can be applied repeat- 115

edly over multiple rounds. In each round, new data 116

is generated by the policy obtained from the previ- 117

ous round, annotated with a reward score and then 118

used to train a stronger policy. For example, Xu 119

et al. (2023) apply PCO and DPO to an iterative 120

manner by annotating new preferences with a fixed 121

reward model. ReSTEM (Singh et al., 2023) pro- 122

posed an Expectation-Maximization (EM) frame- 123

work, where in each round, the new policy is ob- 124

tained by minimizing the reward-weighted negative 125

log-likelihood loss on data generated by the old pol- 126

icy. SELM (Zhang et al., 2024b) and XPO (Xie 127

et al., 2024) augment the DPO objective with a 128

novel and principled exploration bonus, enabling 129

the algorithm to explore beyond the initial model 130

and human feedback data. SAIL (Ding et al., 2024) 131

generates preference data by combining initial of- 132

fline preferences with model-generated preferences, 133

where the model itself estimates the likelihood of 134

one response being preferred over another using 135

its learned policy. SPIN (Chen et al., 2024), DNO 136

(Rosset et al., 2024) and SPPO (Wu et al., 2024b) 137

leverage self-play mechanism to iteratively refine 138

the policy towards achieving Nash equilibrium by 139

optimizing general preferences. These approaches 140

often overlook distribution shifts, which can limit 141

the potential for policy improvement. 142

To address this issue, Ouyang et al. (2022) col- 143

lects preference data on the current best policy, 144

which is then annotated by humans and used to 145

train a new reward model, this process consumes 146

significant annotation resources. ReST-MCTS* 147

(Zhang et al., 2024a) uses the policy to perform 148

a modified Monte Carlo Tree Search to generate 149

solutions and evaluates them against the ground 150

truth for process reward model training. However, 151

its reliance on ground truth restricts the method’s 152

applicability to only a few specific domains. An- 153

other line of work uses the policy model to judge its 154

own responses in an LLM-as-a-Judge mechanism 155

2



(Zheng et al., 2023a), which eliminates the reward156

model and simultaneously updates the knowledge157

of the judge. Self-rewarding (Yuan et al., 2024)158

and Meta-rewarding (Wu et al., 2024a) language159

models generate responses to prompts using the160

current policy and then assign scores to each re-161

sponse themselves to create preference data for the162

next iteration of training.163

3 Preliminaries164

3.1 Reward Modeling165

In RLHF, a reward model r(y;x) is first trained to166

predict human preference scores for responses y167

given prompts x. The reward model is typically168

trained using human-annotated preference pairs169

(x, yw, yl), where yw is preferred over yl.170

Bradley-Terry reward model (Bradley and Terry,171

1952) is commonly used to model the probability172

that one response is preferred over another:173

P (yw ≻ yl | x) = σ(r(yw;x)− r(yl;x))

=
exp(r(yw;x))

exp(r(yw;x)) + exp(r(yl;x))
.

(1)174

The reward model is then trained by maximiz-175

ing the log-likelihood of observed preferences:176

logP (yw ≻ yl | x).177

3.2 Direct Preference Optimization (DPO)178

DPO (Rafailov et al., 2024) simplifies the training179

process by combining the two-step procedure of180

PPO (Schulman et al., 2017) into a single unified181

objective. Specifically, DPO conducts a closed-182

form solution for the reward function, yieding the183

following loss formulation:184

LDPO =

− log σ

(
β log

πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)
.

(2)185

While DPO offers enhanced stability and ease of186

optimization, its offline nature and the absence of187

an explicit reward model limit its ability to adapt188

to the evolving policy distribution effectively.189

4 Mutual-Taught190

Conventional iterative preference learning often191

treats the reward model (RM) as a fixed oracle that192

perfectly encodes an “optimal” preference distri-193

bution. In practice, however, this assumption fails194

to hold as the policy model (PM) improves and195

its output distribution shifts (Touvron et al., 2023;196

Cheng et al., 2024). The static RM, trained under 197

outdated conditions, may no longer accurately re- 198

flect the evolving notion of optimality, resulting 199

in increasingly misaligned feedback that caps the 200

PM’s potential. 201

To address this challenge, we propose Mutual- 202

Taught, a self-training framework that jointly op- 203

timizes both the PM and the RM. By adopting an 204

Expectation-Maximization (EM)-inspired perspec- 205

tive, Mutual-Taught treats this latent optimal distri- 206

bution as a hidden variable whose properties must 207

be inferred and re-estimated over time. Through 208

iterative refinement—improving the PM to better 209

approximate the latent distribution (E-step) and 210

updating the RM to more accurately reflect this im- 211

proved approximation (M-step)—Mutual-Taught 212

co-evolves both models towards the latent optimal 213

distribution. This approach enhances preference 214

alignment without requiring human annotations. 215

4.1 Objective of Mutual-Taught 216

Consider a dataset D of prompts x ∈ X . For each 217

prompt x, we assume a latent “optimal” response 218

distribution Q∗(y | x), which is unobservable. Our 219

goal is twofold: to learn a policy model π(y | x) 220

that approximates Q∗(y | x), and to optimize a 221

reward model r(y;x) that evaluates responses in 222

alignment with Q∗(y | x). The joint optimization 223

objective can be expressed as: 224

π∗, r∗ = argmax
π,r

Ex∼D,y∼Q∗(·|x)[r(y;x)]. (3) 225

Since Q∗(y | x) is unknown, we adopt an EM- 226

inspired approach. In the E-step: Estimate the 227

latent distribution Q∗ based on the current model 228

parameters. In the M-step: Update the model pa- 229

rameters to better fit this estimate. In our setting, 230

the E-step corresponds to updating π so that πt 231

more closely approximates Q∗, and the M-step up- 232

dates r to align with this improved approximation. 233

E-step (Policy model update): With the cur- 234

rent RM rt−1 fixed, we update πt by maximizing 235

expected reward: 236

πt = argmax
π

Ex∼D, y∼π(·|x)[rt−1(y;x)]. (4) 237

Although πt may not precisely match Q∗, this up- 238

date moves πt closer to what the current RM con- 239

siders optimal, serving as a practical surrogate for 240

the latent distribution. 241

M-step (Reward model update): With πt fixed, 242

we update the RM rt so that it better reflects the 243
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Figure 2: Overview of the Mutual-Taught framework. The process alternates between policy model updates (E-step)
and reward model updates (M-step). In the E-step, the policy model is fine-tuned using feedback from the current
reward model to align the policy with the optimal preference distribution. In the M-step, the reward model is
updated through contrastive comparisons of policy model outputs before and after updates, allowing it to adapt to
the evolving policy without requiring additional human annotations.

Algorithm 1 Mutual-Taught

1: Input: Initial PM π0, initial RM r0, dataset D, number of iterations T .
2: Partition D into subsets D1, . . . ,DT ,DR.
3: for each iteration t = 1 . . . T do
4: E-step: Update πt by sampling responses from πt−1 for x ∼ Dt, evaluating them with rt−1, and

optimizing πt to increase expected rewards.
5: M-step: For each x ∼ DR, sample yt ∼ πt(x) (chosen) and yt−1 ∼ πt−1(x) (rejected). Create

preference pairs (x, yt, yt−1) and update rt.
6: end for
7: Output: Final PM πT and RM rT .

improved approximation to Q∗ provided by πt.244

Specifically, we consider pairs (yt, yt−1) of re-245

sponses drawn from πt and πt−1. Since πt has246

been optimized under rt−1, we treat responses from247

πt as “chosen” (closer to the latent optimum) and248

those from πt−1 as “rejected”, yielding a pseudo-249

labeled pairwise preference signal:250

rt = argmax
r

Ex∼D,yt∼πt(·|x),yt−1∼πt−1(·|x)

[logPr(yt ≻ yt−1 | x)] .
(5)251

This update encourages rt to assign higher prefer-252

ence probabilities to responses that are closer to the253

latent optimal distribution as approximated by πt.254

4.2 Algorithmic Overview255

Algorithm 1 summarizes our Mutual-Taught ap-256

proach. In classical EM, we iteratively refine both257

a variational approximation of latent variables and258

the model parameters. Analogously, we treat Q∗ as259

the latent variable and πt as an evolving surrogate.260

By refining πt in the E-step and adjusting rt in the261

M-step, both models progressively align with the 262

latent optimal distribution Q∗. 263

By reframing preference optimization as la- 264

tent variable estimation, Mutual-Taught replaces 265

the static, fixed-oracle RM paradigm with a dy- 266

namic, co-evolving interplay between the PM and 267

RM. This synergy leverages EM-like reasoning to 268

achieve improved preference alignment without ad- 269

ditional human annotations. 270

5 Experiments 271

5.1 Experimental Setup 272

Base model and dataset We use LLaMA3-8B- 273

Instruct (Dubey et al., 2024) as our base pol- 274

icy model and FsfairX-LLaMA3-RM-v0.1 (Xiong 275

et al., 2024) as the base reward model, which is 276

one of the top models on RewardBench (Lambert 277

et al., 2024) and provides open-source code, facili- 278

tating iterative training. Following previous work, 279

we use the UltraFeedback dataset (Cui et al., 2024) 280

with approximately 60,000 prompts from diverse 281

sources. To prevent overfitting during fine-tuning, 282
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we divide the dataset into three parts: two parts for283

policy model iteration and one for reward model284

iteration. In each iteration, we generate K = 5285

responses per prompt with a temperature of 0.8 and286

top-p = 0.95. Duplicate generations are removed.287

Evaluation benchmarks Since Mutual-Taught288

aims to automatically improve both the policy289

model and the reward model, we evaluate the290

performance of each component separately. Pol-291

icy model instruction following: We utilize two292

widely recognized automatic evaluation bench-293

marks where GPT-4 acts as the judge: AlpacaEval-294

2 (Li et al., 2023) and Arena-Hard (Li et al., 2024).295

Each benchmark targets different aspects of model296

performance. AlpacaEval-2 assesses chat capabili-297

ties using 805 instructions spanning a wide range of298

prompts, evaluated through length-controlled (LC)299

win rate and raw win rate (WR) metrics. Arena-300

Hard presents more challenging tasks, includ-301

ing 500 well-defined technical problem-solving302

queries. Reward model judgment accuracy: We303

assess the reward model’s accuracy using Reward-304

Bench (Lambert et al., 2024), which measures per-305

formance across four different categories: Chat,306

Chat-Hard, Safety, and Reasoning.307

Baselines We compare our approach against the308

following baseline models and methods:309

• Base policy model and base reward model:310

We use LLaMA3-8B-Instruct, an instruction-311

following LLM developed by Meta, as our312

base policy model. For the reward model, we313

employ FsfairX-LLaMA3-RM-v0.1, a high-314

performing reward model fine-tuned from315

LLaMA3-8B-Instruct.316

• Offline preference optimization methods: We317

implement DPO (Rafailov et al., 2024),318

IPO (Gheshlaghi Azar et al., 2024) and319

SimPO (Meng et al., 2024). Preference pairs320

are derived from multiple responses generated321

by the base policy model, with scores pro-322

vided by the base reward model.323

• Iterative preference optimization methods:324

We implement SPPO (Wu et al., 2024b) and325

Meta-rewarding (Wu et al., 2024a). Since326

these methods do not update the reward model,327

we use all three portions of the dataset for pol-328

icy training, performing three iterations.329

To ensure a fair comparison, the sampling set-330

tings used in the above experiments align with331

those applied in the Mutual-Taught. Further imple- 332

mentation details for these baselines can be found 333

in Appendix A. 334

Implementation details We conduct Mutual- 335

Taught between the policy and reward models for 336

two iterations. In each iteration, both models are 337

trained for one epoch using a cosine learning rate 338

schedule with a warmup ratio of 0.1. For each pol- 339

icy model iteration, we initialize the model from 340

the previous round and generate responses using 341

the current policy. Preference data is then derived 342

using the reward model at the current iteration. 343

The policy model is optimized via DPO with a 344

beta of 0.01, a batch size of 128, a maximum se- 345

quence length of 2,048 tokens, and a learning rate 346

of 7× 10−7. To mitigate the risk of overfitting on 347

the same prompts across iterations, each reward 348

model iteration started from the base reward model. 349

The reward model is trained on preference pairs 350

consisting of chosen and rejected responses sam- 351

pled from the current and preceding policy models. 352

We use a batch size of 512, a maximum sequence 353

length of 2,048 tokens, and an empirically set learn- 354

ing rate of 2×10−6. All experiments are conducted 355

on 8 NVIDIA A100 GPUs. Further details are pro- 356

vided in Appendix A. 357

5.2 Main Results 358

Iterative performance improvement on policy 359

model We first report the performance of Mutual- 360

Taught and baseline methods on the instruction- 361

following benchmarks AlpacaEval-2 and Arena- 362

Hard in Table 1. For AlpacaEval-2 and Arena- 363

Hard, Mutual-Taught delivers substantial improve- 364

ments to the LLaMA-3-8B-Instruct model, achiev- 365

ing a 28.9 points increase in length-controlled (LC) 366

win rate and a 16.9 points increase in win rate, 367

respectively. Notably, the proposed method pro- 368

vides consistent improvements in each iteration, 369

validating the robustness of our approach. Com- 370

pared to other baselines, our method demonstrates 371

clear superiority on AlpacaEval-2 and Arena-Hard. 372

Additionally, when comparing iterative preference 373

optimization methods, we observe that methods 374

using a reward model for preference feedback (e.g., 375

SPPO and Mutual-Taught) perform significantly 376

better than methods relying on LLM-as-a-judge 377

feedback (e.g., Meta-rewarding). This indicates 378

that a reward model, fine-tuned through supervised 379

training, offers stronger initial judgment capabili- 380

ties than the policy model itself and provides more 381
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Model AlpacaEval-2 Arena-Hard
LC Win Rate Win Rate Avg. Len Win Rate Avg. Len

Base Policy Model
LLaMA-3-8B-Instruct 23.1 23.1 1899 20.6 585

Offline Preference Optimization Methods
SimPO 47.9 46.3 1934 32.5 552
IPO 43.7 42.1 1899 34.5 569
DPO 44.7 42.7 1945 33.1 557

Iterative Preference Optimization Methods
Meta-rewarding Iter1 34.2 32.6 1893 27.7 531
Meta-rewarding Iter2 36.4 34.5 1876 27.0 530
Meta-rewarding Iter3 37.5 (↑ 14.4) 35.2 1868 27.9 (↑ 7.3) 530
SPPO Iter1 39.4 39.5 2021 30.6 570
SPPO Iter2 41.0 44.4 2396 34.4 653
SPPO Iter3 46.4 (↑ 23.3) 48.5 2128 33.6 (↑ 13.0) 542
DPO Iter1 33.6 33.8 1989 30.3 559
DPO Iter2 43.4 42.3 1961 33.3 587
DPO Iter3 47.2 (↑ 24.1) 48.7 1930 34.7 (↑ 14.1) 571

Our Methods
Mutual-Taught Iter1 37.1 36.5 1957 33.5 553
Mutual-Taught Iter2 52.0 (↑ 28.9) 56.0 2214 37.5 (↑ 16.9) 692

Table 1: Overall results of our proposed Mutual-Taught method with LLaMA-3-8B-Instruct as the policy model,
compared against various baseline methods on AlpacaEval-2 and Arena-Hard. The improvement is calculated
relative to LLaMA-3-8B-Instruct. Text in bold indicates the best performance.

Model Chat Chat Hard Safety Reasoning Average
GPT-4o-2024-08-06 96.10 76.10 88.10 86.60 86.70
FsfairX-LLaMA3-RM-v0.1 99.40 65.10 87.80 86.40 84.70
Mutual-Taught Iter1 98.32 62.61 84.86 96.60 85.60
Mutual-Taught Iter2 98.32 65.90 87.26 95.69 86.80

Table 2: Out-of-distribution (OOD) evaluation results of the reward models on RewardBench.

effective guidance throughout the iterative process.382

It is noteworthy that our method employs only383

two-thirds of the available datasets for updating384

the policy model, reserving the remaining third385

for updating the reward model. Despite using less386

data for policy model iterations compared to other387

iterative training baselines, we achieve significantly388

better performance on AlpacaEval-2 and Arena-389

Hard. This outcome highlights the importance of390

synchronously updating both the policy and reward391

models during the iterative training process. We392

believe that enhancing the reward model can yield393

greater benefits than simply increasing the amount394

of data used to train the policy model.395

Iterative performance improvement on reward396

model To assess the effectiveness of Mutual-397

Taught in improving the reward model, we evaluate398

the reward models obtained during the iterative399

process from two perspectives:400

In-distribution (ID): This test evaluates whether401

the reward model (RM) improves in selecting op-402

0% 25% 50% 75% 100%
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vs  

Iter1

Iter2
vs  

Base
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vs  

Base
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Figure 3: In-distribution (ID) evaluation results of the
reward models. We compare the reward models at dif-
ferent iterations and show the win, tie, lose rates.

timal responses after each iteration. Specifically, 403

we assess the RM’s performance using the itera- 404

tion data employed during RM training. For each 405

evaluation prompt, the policy model (after two it- 406

erations) generates five candidate responses. The 407

base RM, along with the RMs from the first and 408
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second iterations, then selects the best response409

from these candidates. To measure performance410

differences between the RMs, GPT-4 serves as a411

judgment model, conducting pairwise comparisons412

of the responses selected by the different RMs. As413

shown in Figure 3, the resulting RM achieves a414

progressively higher win rate against the base RM415

as iterations advance. This highlights that the RM’s416

ability to identify high-quality responses improves417

with each iteration, contributing to the enhance-418

ment of the policy model in subsequent iterations.419

Out-of-distribution (OOD): We further evaluate420

the RM’s generalization ability under OOD condi-421

tions using RewardBench. As shown in Table 2, the422

RM achieves consistent improvements after each it-423

eration, with an average score increase of 2.1 points424

after two iterations, approaching the performance425

of GPT-4o-2024-08-06. Notably, the most signifi-426

cant contribution to the improvement comes from427

the enhancement in reasoning capabilities, with428

FsfairX-iter-2 achieving a 9.29 points increase in429

reasoning compared to the base RM. We attribute430

this to the strong reasoning ability of LLaMA3-8B-431

Instruct, which provides high-quality feedback on432

reasoning prompts to guide the RM effectively.433

5.3 Ablation Study434

Our main hypothesis is that the updated policy dis-435

tribution is, on average, superior to the previous436

policy distribution. This improvement enables the437

reward model to learn a better preference distri-438

bution from the current data. To understand the439

underlying reasons for the effectiveness of Mutual-440

Taught, we conduct an ablation study focusing on441

two aspects: the impact of updating the reward442

model on policy iteration, and the effect of data443

synthesis strategies on reward model iteration. As444

illustrated in Figure 4, if the reward model is not445

updated, the overall iterative training degenerates446

into iterative DPO, leading to a significant decline447

in the policy model’s performance after iteration.448

This observation underscores the effectiveness of449

Mutual-Taught in optimizing the reward model by450

leveraging comparisons between the policy model’s451

outputs before and after updates.452

In our implementation, to prevent excessive453

knowledge forgetting during the optimization of the454

reward model’s distribution, each iteration of RM455

training incorporates two types of data: D (PM):456

Data generated by the current policy model (self-457

training data). D (PMnew, PMold): Contrastive data458

comparing outputs from the new and old policy459
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Figure 4: The impact of different reward model data syn-
thesis strategies on the performance of Mutual-Taught.

models. Both data types are unseen by the reward 460

model, and using either type alone could indepen- 461

dently improve RM performance. Notably, using 462

only D (PM) is akin to self-training for the RM. 463

To investigate the impact of each data type on RM 464

performance and the overall iterative process, we 465

conduct experiments by replacing the training data 466

with only a single data type at each RM iteration. 467

As shown in Figure 4, the policy model’s per- 468

formance declines in both data-type ablation sce- 469

narios. Specifically, when only self-training data is 470

used, the policy model’s performance drops by 5.32 471

points, though the RM performance does not show 472

a significant decline. When using only policy com- 473

parison data, the RM performance declines slightly, 474

but the policy model’s performance is relatively 475

less affected. We hypothesize that self-training 476

data tends to reflect the original distribution of the 477

RM, which helps prevent catastrophic forgetting 478

but struggles to model better preference distribu- 479

tions, making it less effective in guiding the policy 480

model for the next iteration. In contrast, using 481

comparison data between the updated and previ- 482

ous policy models aligns more closely with the 483

iterative optimization goal, allowing the RM to ap- 484

proach a better preference distribution and provide 485

more effective feedback for the next policy model 486

update. The combination of both data types in 487

Mutual-Taught achieves a balance between prevent- 488

ing knowledge forgetting and modeling improved 489

preference distributions, leading to better iterative 490

performance than using either data type alone. 491

5.4 Further Analysis 492

Generalization of the iterated reward model 493

A critical aspect of our approach is whether an 494

iterated reward model (RM), trained using out- 495
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puts from a specific policy model (LLaMA3-8B-496

Instruct), can effectively generalize to guide the497

optimization of other models. To investigate this,498

we take the RM obtained after two iterations and499

apply it to train an entirely different policy model,500

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), with a501

single round of DPO training on the UltraFeedback502

dataset.503

Model AlpacaEval-2
LC Win Rate Win Rate

Mistral-7B-Instruct-v0.2 19.39 15.75
w/ RM-Base 41.96 42.77
w/ RM-Iter1 44.81 43.29
w/ RM-Iter2 45.73 50.02

Table 3: Results from using reward models at different
iterations in the main experiment to guide DPO training
of Mistral-7B-Instruct-v0.2.

As shown in Table 3, using the RM after two504

Mutual-Taught iterations increases the model’s per-505

formance on AlpacaEval-2 by up to 3.77 points506

over the base RM. This indicates that the iterated507

RM, trained exclusively on outputs from LLaMA3-508

8B-Instruct, can still effectively capture generaliz-509

able preference signals. These improved preference510

representations, in turn, enable the RM to guide and511

enhance the optimization of other models.512

Compatibility with different preference objec-513

tives In the main experiments, we primarily used514

DPO to optimize the policy model during the E-515

step. We also explored integrating Mutual Taught516

with different preference optimization objectives,517

specifically SimPO and IPO.518

Model AlpacaEval-2
LC Win Rate Win Rate Avg. Len

SimPO 47.94 46.25 1934
IPO 43.72 42.11 1899
SimPO-MT 49.78 49.61 2147
IPO-MT 50.73 50.29 2029

Table 4: Experimental results with different prefer-
ence optimization objectives in Mutual-Taught E-step.
SimPO-MT and IPO-MT represent iterative training
with SimPO and IPO, respectively.

As shown in Table 4, Mutual-Taught consistently519

provides significant improvements in preference520

optimization across both scenarios, highlighting its521

strong compatibility with various preference learn-522

ing objectives. The pairwise win rates, measured523

by FsfairX-LLaMA3-RM-v0.1 (Xiong et al., 2024),524

SimPO-Iter2

IPO SimPO
IPO-Iter2

SimPO-Iter1

IPO-Iter1

SimPO-Iter2

IPO

SimPO

IPO-Iter2

SimPO-Iter1

IPO-Iter1

50.00 52.04 53.57 55.28 55.61 71.44

47.96 50.00 44.23 43.33 67.17 70.10

46.43 55.77 50.00 56.74 65.10 63.09

44.72 56.67 43.26 50.00 52.92 56.82

44.39 32.83 34.90 47.08 50.00 52.14

28.56 29.90 36.91 43.18 47.86 50.00
30

35

40

45

50

55

60

65

70

Figure 5: Pairwise evaluation of models with different
preference optimization objectives in the Mutual-Taught
framework on Alpaca-Eval 2 using FsfairX-LLaMA3-
RM-v0.1.

are presented in Figure 5. In all preference opti- 525

mization objectives, updated models consistently 526

outperformed previous ones. However, SimPO sur- 527

passed IPO in the final iteration. Interestingly, IPO 528

performed better than SimPO on standard bench- 529

marks evaluated by GPT-4 against ground-truth an- 530

swers. We attribute SimPO’s final iteration advan- 531

tage to its tendency to generate longer sequences, 532

exploiting the length bias in FsfairX-LLaMA3-RM- 533

v0.1, which favors longer outputs. 534

6 Conclusion 535

This paper introduces Mutual-Taught, an approach 536

to automatically improve policy and reward mod- 537

els without relying on external supervision signals. 538

The method follows an expectation-maximization 539

(EM)-based iterative process, where in each iter- 540

ation, the policy model is improved using prefer- 541

ence feedback from the reward model to provide 542

better observations for training the reward model. 543

Then, comparisons between the policy model’s ob- 544

servations before and after updates are leveraged 545

to optimize the reward model’s distribution. We 546

demonstrated that this iterative process can contin- 547

uously enhance both the policy and reward models. 548

The resulting policy model achieves significant im- 549

provements over existing methods, such as DPO, 550

SPPO, and Meta-rewarding, across multiple bench- 551

marks, including AlpacaEval-2 and Arena-Hard. 552

Moreover, the iterated reward model achieves per- 553

formance comparable to GPT-4o-2024-08-06 on 554

RewardBench. 555

8



Limitations556

While Mutual-Taught demonstrates promising re-557

sults, it relies on the assumption that the policy558

model’s improvements can be effectively captured559

and utilized by the reward model through self-560

generated data. In scenarios where the policy561

model does not improve significantly across itera-562

tions, the effectiveness of this method may be lim-563

ited. Additionally, the approach requires careful564

tuning of hyperparameters to balance the updates565

between the policy and reward models.566

Ethics Statement567

All experiments in this study were conducted using568

publicly available datasets that do not contain any569

private information. Our work does not involve570

the analysis or utilization of identity characteristics,571

and we do not engage in any form of gender or572

racial discrimination.573
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A Experiments Details 748

In our experiments, we use the Alignment Hand- 749

book framework (Tunstall et al.) for policy model 750

iteration and the RLHF-Reward-Modeling 1 frame- 751

work for reward model iteration. 752

Mutual-Taught training We follow SimPO 753

(Meng et al., 2024) to set the policy sampling and 754

training parameters. Specifically, for policy sam- 755

pling: temperature is set to 0.8, K = 5, and top-p 756

to 0.95. For policy training: learning rate is set 757

to 7 × 10−7, batch size to 128, and warmup ra- 758

tio to 0.1. These settings remain consistent across 759

both iterations. For reward model iteration, we use 760

the default parameter settings from RLHF-Reward- 761

Modeling. In both iterations, we use the same 762

settings: learning rate of 2 × 10−6, batch size of 763

512, and weight decay of 0.001. Reward model 764

1RLHF-Reward-Modeling at https://github.com/
RLHFlow/RLHF-Reward-Modeling
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training data is constructed by sampling from the765

policy distributions before and after updates, with766

a temperature of 0.8 and top-p of 0.95.767

Baselines In Offline Preference Optimization768

Methods, we maintain the same sampling and769

training parameters as Mutual-Taught. For Iter-770

ative Preference Optimization Methods, in iterative771

DPO, we observed performance degradation in the772

final iteration with a larger learning rate, so we773

lowered it to 5× 10−7. For SPPO, we use the de-774

fault training parameters provided by the method.775

For Meta-rewarding, we first built Evaluation Fine-776

Tuning (EFT) data from the Open Assistant (Köpf777

et al., 2024) dataset to boost the initial judgment778

ability of the model before self-training iterations.779

During the construction of EFT data, we prompt780

GPT-4o to generate judgments with high quality in-781

stead of the SFT baseline in Yuan et al. (2024). Dur-782

ing self-training iterations, we use prompts from783

the UltraFeedback dataset instead of those gener-784

ated by LLaMA2-70B-Chat to align with Mutual-785

Taught.786

Length-control To prevent length explosion, we787

implement a length-control mechanism for select-788

ing preference data. For each prompt, we first se-789

lect responses with above-average reward scores,790

then choose the shortest one as the chosen response.791

The response with the lowest score is selected792

as the rejected one. This length control mecha-793

nism is applied to all experiments except for Meta-794

Rewarding, where we use the length control mech-795

anism proposed by the original method.796

B Performance of Mutual-Taught With797

Additional Iterations798

To evaluate the impact of additional iterations on799

model performance, we conduct a second round of800

Mutual-Taught training using the same dataset as801

in the main experiments. To mitigate overfitting,802

we regenerate higher-quality preference data based803

on the models from the first round and reinitialize804

both the policy model and the reward model from805

their respective base states. All experimental hy-806

perparameters remain consistent with those used807

in the main experiments. The experimental results808

are summarized in Table 5.809

It is evident that after the second round of it-810

erations, both the policy model and the reward811

model exhibit consistent improvements compared812

to the first round. Notably, the final reward model813

Iteration
AlpacaEval-2
LC Win Rate

Arena-Hard
Win Rate

RewardBench
Avg Score

Round 1 Iter1 37.1 33.5 85.6
Round 1 Iter2 52.0 37.5 86.8
Round 2 Iter1 39.5 34.8 86.0
Round 2 Iter2 53.1 39.0 88.0

Table 5: Performance metrics across two rounds of
Mutual-Taught iterations. Text in bold indicates the best
performance.

achieves a superior performance on RewardBench, 814

surpassing GPT-4o-2024-08-06. This demonstrates 815

that Mutual-Taught remains effective even with 816

additional iterations. More specifically, while the 817

starting models in both rounds are identical, the 818

preference data in the second round is derived from 819

models refined during the first round. These higher- 820

quality outputs serve as a stronger foundation for 821

the E-step (policy updates) and M-step (reward 822

model updates), enabling more effective alignment 823

and yielding improved results. 824
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