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Abstract

We present a new adaptive algorithm to build multisource domain adaptation neural
networks ensembles. Since the standard convex combination ensembles cannot
succeed in this scenario, we present a learnable domain-weighted combination and
new learning guarantees based on the deep boosting algorithm. We introduce and
analyze a new algorithm, ADAME, for this scenario and show that it benefits from
favorable theoretical guarantees, is risk-averse and reduces the worst-case mismatch
between the inference and training distributions. We also report the results of
several experiments demonstrating its performance in the FMOW-WILDS dataset.

1 Introduction

Generalization in supervised machine learning dramatically deteriorates as a function of the diver-
gence between the training and test distributions. Transferring knowledge from multiple source
domains to a target domain is appealing but performance decays due to domain shift (Torralba and
Efros, 2011). In this paper, we are focusing on minimizing the impact of domain shift between
the source and target domains via multi-source domain adaptation (MSA) where the labeled data
may be collected from multiple sources with different distributions. The goal is to do well even
on the worst-case subpopulation (e.g., a standard model performing poorly on under-represented
demographics). We assume that the target domain can typically be viewed as a combination of the
source domains, that is a mixture of their joint distributions, or it may be close to such mixtures.
We focus on how the learner can adaptively combine relatively accurate predictors for each source
domain to derive an accurate ensemble predictor for any new mixture target domain.

MSA was first theoretically studied by Mansour et al. (2008) and subsequently by Hoffman et al.
(2018). Many methods have been proposed to address different challenges: distribution-weighted
combination via conditional probabilities (Cortes et al., 2020a), semi-supervised domain adapta-
tion (Saito et al., 2019) or multisource boosting (Cortes et al., 2021a). Recently, a common approach
to transfer the task knowledge to the unlabeled target domain is an auxiliary feature alignment
loss (Guo et al., 2018; Zhao et al., 2020).

Existing ensembling solutions have focused on combining domain-specific models via a distribution-
weighted combining rule (Hoffman et al., 2012; Cortes et al., 2020a) which benefited from favorable
theoretical guarantees (Hoffman et al., 2018). A successful approach to the combination of source
predictors is the so-called Q-ensembles (Cortes et al., 2021a). These are convex combinations
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Figure 1: Illustration of the algorithm’s incremental construction of a neural network.

weighted by a domain classifier Q, that is, Q(k|x) is the conditional probability of domain k given
input point x.

Our contributions are as follows. (1) We extend the idea of example-dependent distribution-weighted
Q-ensembles to a learnable gating mechanism. While a distribution-weighted combination with
a domain classifier is reported to perform well (Cortes et al., 2020b, 2021a), low accuracy due to
domain overlap can affect the performance of the domain-specific predictors; (2) We extend the work
in (Cortes et al., 2021a) and present tighter theoretical guarantees based on deep boosting (Kuznetsov
et al., 2014); (3) We generalize the idea of adaptively learning ensembles (i.e., ADANET by Cortes
et al. (2017b)) to the MSA case while maintaining the agnostic loss principle from (Cortes et al.,
2021a). This reduces the worst-case mismatch between the test and training distributions;

2 Our approach

2.1 Learning scenario

Let X denote the input space and Y = {−1,+1} the output space associated to binary classification.
We consider a scenario where the learner receives labeled samples from p source domains, each
defined by a distribution Dk over X × Y, k ∈ [p]. For any function f : X → R and distribution D
over X× Y, let L(D, f) be the expected loss of f , that is L(D, f) = E(x,y)∼D[`(f(x), y)], where `
is the binary loss `(f(x), y) = I(yf(x) ≤ 0).

For any k ∈ [p], let Hk denote a hypothesis set of functions mapping from X to [−1,+1], |Hk| = Nk.
The objective of the learner is to find a predictor f that is accurate for any target distribution Dλ that
is a mixture of the source distributions, where λ may be in a subset Λ of the simplex. Thus, Dλ can
be written as Dλ =

∑p
k=1 λkDk, with λ = (λ1, . . . , λp) ≥ 0 and

∑p
k=1 λk = 1.

To come up with a predictor f , the learner seeks an ensemble of functions from the base classes Hk.
The natural solution of a convex combinations (i.e.,

∑
t αtht) would lead to a poor solution for some

distributions (Proposition 1 in Cortes et al. (2021b)). Instead, it is possible to consider a combination
of base predictors that takes into consideration the conditional probability of domain k given x, or
Q(k|x). In practice, Q(k|x) can be approximated by training a dedicated classifier that maps the
inputs X to the respective domain k ∈ [p]. In this case, the model becomes a domain-weighted
ensemble where the learning process makes each base predictor domain-independent (Cortes et al.,
2020b, 2021b).

In this paper, we propose to extend the Q-ensemble mechanism with a function g that combines the
discriminative effect of Q(k|·) and the performance of hk across domains, ∀k′ ∈ [p], such that k 6= k′.
Function g aims at mitigating two issues: (1) facilitate the combination of multiple sources in the
base predictors and use transfer learning; (2) alleviate the detrimental effect of Q(k|·) to the stability
of the α’s when the loss of the discriminators for a domain k is zero, and the α for cross-domain
influence would be forced to be really large.

In the general case, this function g can be seen as a gating mechanism defining the problem as a
mixture of experts (MoE) framework where each expert is trained with a base predictor of a domain.
This function g is learned during training to serve as a gating function for a multi-source adaptation
ensemble model. In this context, we consider the following form for the ensembles of base predictors:

∀x ∈ X, f(x) =

p∑
l=1

g(l, x)

Nl∑
r=1

αl,rhl,r(x), (1)
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where g(l, x) refers to the gating function for domain l given x, hl,r ∈ Hl
r and αl,r ≥ 0,∑p

l=1

∑Nl

r=1 αl,r = 1. For any k ∈ [p], define the family Jk as follows: Jk =
{
g(k, ·)h : h ∈

Hk, g ∈ G
}

and Hk =
{⋃Nk

r=1 H
k
r

}
. Then, the family of ensemble functions F that we consider can

be defined as F = conv(
⋃p
k=1 Jk).

2.2 Learning guarantees

For any λ ∈ ∆, let Dλ be the distribution defined by Dλ =
∑p
k=1 λkD̂k, where D̂k is the empirical

distribution associated to an i.i.d. sample Sk drawn from Dk. Dλ is distinct from the distribution
associated to Dλ. We denote by Sk = ((xk,1, yk,1), . . . , (xk,mk

, yk,mk
)) ∈

(
X× Y

)mk the labeled
sample of size mk received from source k, which is drawn i.i.d. from Dk.

Theorem 1. Fix ρ > 0. Then, for any δ > 0, with probability at least 1−δ over the draw of a sample
S = (S1, . . . , Sp) ∼ Dm1

1 ⊗ · · · ⊗D
mp
p , the following inequality holds for all ensemble functions

f =
∑T
t=1 αtg(kt, ·)ht ∈ F and all λ ∈ ∆:

L(Dλ, f) ≤Lρ(Dλ, f) +

p∑
k=1

λk
8

ρ

(
Rmk

(G) +

p∑
l=1

Nl∑
r=1

αl,rRmk
(Hl

r)

)
+

2

ρ

p∑
k=1

√
λ2
k

mk
logNp

+ C(ρ,Np, λk,mk, δ/p). (2)

where Np =
∑p
l=1Nl and C(ρ,Np, λk,mk, δ/p) = Õ

(
1
ρ

√∑p
k=1

λ2
k

mk
logNp

)
.

The bound of the theorem can be generalized to hold uniformly for all ρ ∈ (0, 1], at the price of
an additional term of the form

√
log log2(2/ρ)/mk using standard techniques (Koltchinskii and

Panchenko, 2002).

The proof of Theorem 1 can be found in Appendix A. This is the result of applying the deep boosting
learning bounds (Kuznetsov et al., 2014) to our framework using the set of p multidomain ensembles
in function class Jk, k ∈ [p], as the sub-families composing the base classifier set. The learning
bounds in Eq. 2 represent an improvement to the guarantees presented by Cortes et al. (2021b). Our
algorithm benefits from the mixture weight assigned to each sub-family, instead of depending on the
worst-case domain Rademacher complexity in Eq. 5 of Theorem 1 in (Cortes et al., 2021b).

2.3 Ensemble learning

ADAME seeks to find a function f =
∑T
t=1 αtg(kt, ·)ht ∈ F that directly minimizes the data-

dependent generalization bound of Theorem 1. For the k-th domain, the following objective function
for an ensemble f is defined for any αl,j ≥ 0:

Fk(α) =
1

mk

mk∑
i=1

Φ

(
−yk,i

p∑
l=1

Nl∑
r=1

αl,rg(l, xk,i)hr,l

)
+

p∑
l=1

Nl∑
r=1

(β1Rl,r + β2) (3)

where Φ is a convex, increasing and differentiable function such as the logistic function, and
Rl,r = Rmk

(Hl
r) is the regularization term dependent on the Rademacher complexity of a base

predictor r in domain l.

Given the agnostic loss (Mohri et al., 2019) of a predictor f leads to the following objective function:

F (α) = max
λ∈Λ

p∑
k=1

λkFk(α). (4)

We will consider the case where the set Λ coincides with the full simplex, that is Λ = ∆. F can then
be expressed more simply as F = maxpk=1 Fk. Since a convex function composed with an affine
function is convex and a sum of convex functions is convex, F is convex as the maximum of a set of
convex functions.

3



2.4 Domain-weighted ensemble learning

Model g(k, ·) is trained using model distillation from the statically learned domain-weight Q(k|·).
For domain k ∈ [p] and input x ∈ X, model g with weights w ∈ Rd is defined as:

g(k, x) =
exp gk(x)∑p
j=0 exp gj(x)

,

where gk(x) is the linear output for input x and domain k. The loss function for ensemble output f is
defined as `(f(x), y):

w∗ = argmin
w∈Rd

p∑
k=1

mk∑
i=1

γ`(f(xk,i), yk,i) + (1− γ)DKL(Q(k|xk,i), g(k, xk,i)), (5)

where γ is a hyperparameter for the linear combination, DKL is the Kullback-Leibler Divergence
loss between the softened probability distributions of Q(k|x) acting as the teacher model and the
g(k, x) functioning as a student model with a temperature scaling hyperparameter τ .

2.5 Algorithm

ADAME(S = S1, . . . , Sp)

1 α0 ← 0
2 for t← 1 to T do
3 ft−1 ←

∑p
l=1 g(l, ·)

∑Nl
j=1 αt−1,l,jhl,j

4 k ← argmaxk∈[p] Fk(αt−1)

5 h, h′ ← WEAKLEARNER
(
S, ft−1

)
6 if minα F (α, h) ≤ minα F (α, h′) then
7 α∗ ← argminα F (α, h)
8 h∗ ← h
9 else α∗ ← argminα F (α, h′)

10 h∗ ← h′

11 if F (αt−1 + α∗) < F (αt−1) then
12 ft−1 ← ft + α∗kh

∗
k

13 else return ft−1

14 w∗ ← Eq. 5
15 return fT

Figure 2: Pseudocode of the ADAME algorithm simpli-
fied for two base predictors h and h′.

The algorithm is described in Figure 2. The
problem consists in alternating the optimization
of the objective function F in Eq. 4 to find the
α’s (line 4) and Eq. 5 (line 14) to optimize w∗.

Since F is defined over a very large space of
base functions, the first part of ADAME consists
of applying coordinate descent to Eq. 4. The
WEAKLEARNER function generates a number
of candidate models from Hk. For simplicity,
the algorithm in Figure 2 generates 2 candidates
(h and h′, line 5) for which we are going to
select the most optimal given Eq. 4 and the com-
plexity from the theoretical guarantees in Eq. 2
(see line 11). The algorithm continues adding
candidates until the complexity of a new candi-
date is larger that its improvement on the overall
model. This adaptive process guarantees that
the model is only going to be extended with new
candidates within the learning bounds of The-
orem 1. This is equivalent to minimizing the
following objective function over α and {h, h′}:

F (α, h) =
1

mk

mk∑
i=1

Φ (−yk,ift−1(xk,i)− yk,iαh(xk,i)) +

p∑
l=1

Nl∑
r=1

(β1Rl,r + β2)

The candidate generator in WEAKLEARNER produces base predictors trained with data from all
domains that are adapted to a particular domain via standard transfer learning (Zhuang et al., 2019).

3 Experiments

In this Section, we present results for the FMOW-WILDS dataset (Christie et al., 2017; Koh
et al., 2020). The "Baseline" figures are taken from the WILDS paper. For the ADANET and
ADAME(G+Q) figures, we used ensembles of NFNets-F0 (Brock et al., 2021) that were pretrained
on ImageNet, then finetuned on the FMoW training set, then further finetuned to adapt to each
geographic region to produce 5 per-region ensembles with 5 NFNet-F0s each. The g model used for
ADAME(G+Q) is also an NFNet-F0 (details in Appendix B). Table 1 reports average and worst-
region accuracies (%) under time shifts in FMOW-WILDS. Models are trained on data before 2013
and tested on held-out location coordinates from in-distribution (ID) or out-of-distribution (OOD) test
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sets. ID results correspond to the train-to-train setting. Parentheses show standard deviation across 3
replicates. In Appendix C we present an extensive set of results for different datasets (e.g., MNIST
and sentiment analysis).

Table 1: Average and worst-region accuracies (%) for FMOW-WILDS.

Algorithm Validation (ID) Validation (OOD) Test (ID) Test (OOD)

Average
Baseline 61.2 (0.52) 59.5 (0.37) 59.7 (0.65) 53.0 (0.55)
ADANET 72.67 (0.43) 64.47 (0.35) 72.84 (0.61) 57.64 (0.46)
ADAME(G+Q) 73.04 (0.46) 65.02 (0.51) 72.97 (0.21) 58.19 (0.47)

Worst
Baseline 59.2 (0.69) 48.9 (0.62) 58.3 (0.92) 32.3 (1.25)
ADANET 67.71 (0.38) 52.80 (0.29) 65.68 (0.65) 39.79 (0.80)
ADAME(G+Q) 68.39 (0.52) 53.18 (0.39) 66.41 (0.51) 40.46 (0.76)

4 Conclusions

We presented ADAME, an algorithm that provides a principled solution for adaptive structural
learning of neural network ensembles for multiple source adaptation (MSA). This is an increasingly
common and important learning problem due to the possibilities to improve the performance of the
worst-case subdomains. Our solution extends the idea of adaptive ensembles to MSA by introducing
a learnable distribution-weighted ensemble function (g). We presented tighter theoretical guarantees
based on deep boosting so that the complexity of the ensemble doesn’t depend on the complexity
of the worst cross domain model. Our experimental results on the FMOW-WILDS dataset further
demonstrate the effectiveness of our solution.
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A Proof of Theorem 1

Theorem 1. Fix ρ > 0. Then, for any δ > 0, with probability at least 1−δ over the draw of a sample
S = (S1, . . . , Sp) ∼ Dm1

1 ⊗ · · · ⊗D
mp
p , the following inequality holds for all ensemble functions

f =
∑T
t=1 αtg(kt, ·)ht ∈ F and all λ ∈ ∆:

L(Dλ, f) ≤Lρ(Dλ, f) +

p∑
k=1

λk
8

ρ

(
Rmk

(G) +

p∑
l=1

Nl∑
r=1

αl,rRmk
(Hl

r)

)
+

2

ρ

p∑
k=1

√
λ2
k

mk
logNp

+ C(ρ,Np, λk,mk, δ/p). (2)

where Np =
∑p
l=1Nl and C(ρ,Np, λk,mk, δ/p) = Õ

(
1
ρ

√∑p
k=1

λ2
k

mk
logNp

)
.

Proof. Assuming a single domain denoted by k and l, being k, l ∈ [p], let Fl be a hypothesis set
admitting a decomposition Fl =

⋃Nl

r=1 G
l
r for some Nl > 1. Fix ρ > 0, then for any δ > 0, with

probability at least 1− δ over the draw of a sample Sk of size mk from Dmk , the following inequality
holds for all fl =

∑Nl

r=1 αr · gr ∈ Fl (Cortes et al., 2014, 2017a):

L(Dk, f) ≤ Lρ(D̂k, f) +
4

ρ

Nl∑
r=1

αl,rRmk
(Jlr) +

2

ρ

√
logNl
mk

+ C(ρ,Nl,mk, δ).

Fix λ ∈ ∆, for any k ∈ [p], all ensembles f =
∑T
t=1 αtg(kt, ·)ht ∈ F:

L(Dk, f) ≤ Lρ(D̂k, f) +
4

ρ

p∑
l=1

Nl∑
r=1

αl,rRmk
(Jlr) +

2

ρ

√
logNp
mk

+ C(ρ,Np,mk, δ),

where Np =
∑p
l=1Nl.

By the union bound, the following inequalities hold simultaneously for all k ∈ [p]:

L(Dk, f) ≤ Lρ(D̂k, f) +
4

ρ

p∑
l=1

Nl∑
r=1

αl,rRmk
(Jlr) +

2

ρ

√
logNp
mk

+ C(ρ,Np,mk, δ/p),

Multiplying each by λk and summing them up yields:

L(Dλ, f) ≤Lρ(Dλ, f) +

p∑
k=1

λk
4

ρ

p∑
l=1

Nl∑
r=1

αl,rRmk
(Jlr) +

2

ρ

p∑
k=1

√
λ2
k

mk
logNp

+ C(ρ,Np, λk,mk, δ/p).

The Rademacher complexity of a product of two (or more) families of functions relates to the sum of
the Rademacher complexity of each family (see Lemma 1 and (Cortes et al., 2016)). The Rademacher
complexity of the family of functions JH,G is Rmk

(Jlr) = 2(Rmk
(Hl

r) + Rmk
(G)) which finalizes

the proof.

Lemma 1. Let F1 and F2 be two families of functions mapping X to [−1,+1]. Let F = {f1f2 : f1 ∈
F1, f2 ∈ F2}. Then the empirical Rademacher complexities of F for any sample S of size m are
bounded:

R̂S(F) ≤ 2(R̂S(F1) + R̂S(F2))
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B FMoW-WILDS Experiments

Here we describe how the FMoW-WILDS models were trained. First, we loaded an NFNets-F0
(Brock et al., 2021) pretrained from ImageNet from Github1, and zero-initialized the head weights.
Next, we trained the head weights, then fine-tuned all weights on the training set of all domains
using 5 random seeds to produce 5 different checkpoints. During this training process, we used
CutMix, MixUp, random brightness, random contrast, random flip, and 90-degree rotations for image
augmentation. For each checkpoint, we then further fine-tuned on each domain using the same image
augmentation but with stochastic-depth dropout rate of 0.5. The Q-model is also an NFNet, but
trained from random initialization to predict the domain id, using the same image augmentation
and stochastic-depth dropout using 5 random seeds. Since we have five checkpoints, this gives us
5 domain-specific models per domain, which we ensemble together, giving us 5 domain-specific
ensembles. Finally, we use the Q-model to ensemble the 5 domain-specific ensembles to produce the
final ADAME(G+Q) ensemble.

B.1 Hyperparameters for finetuning FMoW(all)

• Model architecture: NFNets-F0 (pretrained from ImageNet)

• Base learning rate: 1e-3

• Batch size: 128

• Use batch norm: True

• Learning rate schedule: Linear warmup for 600 steps, then decay by 0.995 every 600 steps.

• Stochastic depth dropout rate: 0.1

• Num steps: 120, 000

B.2 Hyperparameters for finetuning FMoW(per-region)

• Model architecture: NFNets-F0 (pretrained from FMoW (all))

• Base learning rate: 1e-5

• Batch size: 64

• Use batch norm: True

• Learning rate schedule: Linear warmup for 400 steps, then decay by 0.96 every 300 steps.

• Stochastic depth dropout rate: 0.5

• Num steps: 60, 000

B.3 Hyperparameters for finetuning FMoW(Q)

• Model architecture: NFNets-F0 (random init)

• Base learning rate: 2e-4

• Batch size: 128

• Use batch norm: False

• Learning rate schedule: Linear warmup for 600 steps, then decay by 0.96 every 600 steps.

• Stochastic depth dropout rate: 0.1

• Num steps: 60, 000

1https://github.com/deepmind/deepmind-research/tree/master/nfnets#
pre-trained-weights
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Table 2: Test errors for multiple benchmarks.

Algorithm Error-1 Error-2 Error-3 Error-Uniform Error-Agnostic

Sentiment Analysis

ADABOOST-1 0.326 ± 0.019 0.300 ± 0.008 0.360 ± 0.017 0.329 ± 0.017 0.360 ± 0.019
ADABOOST-2 0.354 ± 0.020 0.266 ± 0.009 0.336 ± 0.023 0.318 ± 0.019 0.357 ± 0.019
ADABOOST-3 0.402 ± 0.015 0.334 ± 0.008 0.258 ± 0.015 0.331 ± 0.016 0.402 ± 0.018
ADABOOST-all 0.354 ± 0.020 0.325 ± 0.011 0.313 ± 0.022 0.324 ± 0.021 0.354 ± 0.016
DMSA 0.332 ± 0.021 0.308 ± 0.017 0.314 ± 0.015 0.318 ± 0.019 0.332 ± 0.021
MULTIBOOST 0.332 ± 0.027 0.288 ± 0.018 0.284 ± 0.027 0.301 ± 0.027 0.332 ± 0.024
ADAME(G+Q) 0.291 ± 0.014 0.278 ± 0.020 0.246 ± 0.017 0.2662 ± 0.012 0.296 ± 0.012

Digits Recognition (4 vs. 9)

ADABOOST-1 0.044 ± 0.007 0.615 ± 0.012 0.476 ± 0.022 0.379 ± 0.008 0.615 ± 0.012
ADABOOST-2 0.455 ± 0.014 0.299 ± 0.011 0.504 ± 0.015 0.420 ± 0.011 0.504 ± 0.015
ADABOOST-3 0.549 ± 0.034 0.488 ± 0.015 0.300 ± 0.013 0.446 ± 0.013 0.549 ± 0.034
ADABOOST-all 0.060 ± 0.009 0.374 ± 0.015 0.353 ± 0.012 0.262 ± 0.009 0.374 ± 0.015
DMSA 0.069 ± 0.005 0.351 ± 0.012 0.310 ± 0.011 0.243 ± 0.009 0.351 ± 0.015
MULTIBOOST 0.096 ± 0.008 0.283 ± 0.028 0.246 ± 0.014 0.209 ± 0.013 0.284 ± 0.027
ADAME(G+Q) 0.008 ± 0.003 0.064 ± 0.007 0.036 ± 0.005 0.036 ± 0.002 0.064 ± 0.007

Digits Recognition (1 vs. 7)

ADABOOST-1 0.005 ± 0.002 0.613 ± 0.007 0.519 ± 0.012 0.379 ± 0.004 0.613 ± 0.007
ADABOOST-2 0.431 ± 0.022 0.252 ± 0.009 0.479 ± 0.012 0.387 ± 0.010 0.479 ± 0.012
ADABOOST-3 0.680 ± 0.031 0.490 ± 0.014 0.244 ± 0.012 0.474 ± 0.013 0.680 ± 0.031
ADABOOST-all 0.014 ± 0.003 0.286 ± 0.010 0.306 ± 0.012 0.202 ± 0.005 0.306 ± 0.011
DMSA 0.012 ± 0.003 0.288 ± 0.017 0.286 ± 0.015 0.195 ± 0.013 0.288 ± 0.017
MULTIBOOST 0.026 ± 0.004 0.261 ± 0.013 0.257 ± 0.015 0.181 ± 0.005 0.261 ± 0.011
ADAME(G+Q) 0.003 ± 0.002 0.082 ± 0.005 0.015 ± 0.004 0.033 ± 0.002 0.083 ± 0.005

Objects Recognition (Fashion-MNIST)

ADABOOST-1 0.015 ± 0.003 0.251 ± 0.026 0.602 ± 0.028 0.288 ± 0.017 0.602 ± 0.028
ADABOOST-2 0.435 ± 0.007 0.015 ± 0.002 0.169 ± 0.012 0.173 ± 0.003 0.435 ± 0.007
ADABOOST-3 0.311 ± 0.018 0.097 ± 0.005 0.014 ± 0.002 0.140 ± 0.006 0.311 ± 0.018
ADABOOST-all 0.036 ± 0.004 0.020 ± 0.002 0.025 ± 0.003 0.027 ± 0.002 0.036 ± 0.004
DMSA 0.033 ± 0.008 0.015 ± 0.002 0.022 ± 0.003 0.023 ± 0.007 0.033 ± 0.009
MULTIBOOST 0.028 ± 0.003 0.015 ± 0.003 0.022 ± 0.002 0.021 ± 0.001 0.028 ± 0.003
ADAME(G+Q) 0.006 ± 0.002 0.001 ± 0.001 0.001 ± 0.001 0.003 ± 0.001 0.006 ± 0.002

C Additional Benchmarks

In this section, we present experimental results for the ADAME(G+Q) algorithm on several other
multiple-source datasets (see Table 2). Note that the previous study (including AdaBoost, DMSA,
and MultiBoost) is restricted to learning an ensemble of decision stump, which ADAME learns an
ensemble of neural networks. For Sentiment Analysis, ADAME uses multi-head self-attention for
the base models, the Q-model, and the G-model. For Digits Recognition and Objects Recognition,
ADAME uses a feed-forward CNN for the base models, the Q-model, and the G-model.
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