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Abstract
We introduce Pallatom, an innovative protein
generation model capable of producing protein
structures with all-atom coordinates. Pallatom
directly learns and models the joint distribution
P (structure, seq) by focusing on P (all-atom), ef-
fectively addressing the interdependence between
sequence and structure in protein generation. To
achieve this, we propose a novel network archi-
tecture specifically designed for all-atom protein
generation. Our model employs a dual-track
framework that tokenizes proteins into residue-
level and atomic-level representations, integrating
them through a multi-layer decoding process with
“traversing” representations and recycling mech-
anism. We also introduce the atom14 represen-
tation method, which unifies the description of
unknown side-chain coordinates, ensuring high
fidelity between the generated all-atom confor-
mation and its physical structure. Experimental
results demonstrate that Pallatom excels in key
metrics of protein design, including designabil-
ity, diversity, and novelty, showing significant im-
provements across the board. Our model not only
enhances the accuracy of protein generation but
also exhibits excellent sampling efficiency, paving
the way for future applications in larger and more
complex systems.

1. Introduction
The theoretical foundation of protein modeling has been
built upon two key conditional probability distributions:
P (structure | seq) and P (seq | backbone). The for-
mer, P (structure | seq), corresponds to the all-atom pro-
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tein structure prediction task, which involves determin-
ing the three-dimensional structure of a protein given its
amino acid sequence (Abramson et al., 2024; Jumper et al.,
2021; Lin et al., 2023; Baek et al., 2023). The latter,
P (seq | backbone), underpins the fixed-backbone design
task, where the goal is to identify a sequence that will fold
into a given protein backbone structure (Dauparas et al.,
2022; Hsu et al., 2022). In summary, these probability dis-
tributions has successfully advanced the field of protein
engineering.

With the advancement of deep learning in protein science,
two distinct approaches for protein design have emerged.
One approach is the protein hallucination (Anishchenko
et al., 2021), which explores the landscape of a P (structure |
seq) model using Monte Carlo or gradient-based optimiza-
tion techniques. This method yields valid protein structures,
but requires an additional P (seq) model, such as protein lan-
guage models (Rives et al., 2021), to correct or redesign the
sequence. Essentially, this approach can be viewed as op-
timization process of P (structure | seq) · P (seq). Another
approach attempts to explore the P (backbone) distribution.
a series of protein generation models based on SE(3) invari-
ance or equivariance networks (Jing et al., 2020; Satorras
et al., 2021) have recently emerged, these method rely on an
additional P (seq | backbone) process to determine the pro-
tein sequence. This optimization strategy can be regarded
as P (backbone) · P (seq | backbone).

This step-wise design process has limitation in approximat-
ing the joint distribution through marginal distributions. The
P (structure | seq) · P (seq) strategy faces challenges when
sampling in the high-dimensional sequence space, while the
P (backbone) · P (seq | backbone) strategy fails to account
for explicit side-chain interactions and is bottlenecked by
the capability of the fixed-backbone design model.

The ultimate goal of protein generation is to directly ob-
tain a sequence along with its corresponding structure, i.e.,
to develop a model capable of describing the joint distribu-
tion P (structure, seq) or P (backbone, seq). Recently, some
studies have started to adopt co-generation approaches, such
as model based on co-diffusion (Campbell et al., 2024) or
co-design (Ren et al., 2024). While these methods primar-
ily rely on SE(3) networks, they still separately model the
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backbone and sequence, without considering side-chain con-
formations and leading to an insufficient description of the
structure. Protpardelle (Chu et al., 2024), an all-atom protein
diffusion model, similarly adopts co-generation approaches
with an explicit all-atom representation, taking a step fur-
ther in the field. However, the experimental results indicate
that the generated sequence fails to accurately encode the
intended fold, necessitating an additional round of sequence
redesign and side-chain refinement.

In this study, we introduce a novel approach for all-atom
protein generation called Pallatom. Our extensive experi-
ments show that by learning P (all-atom), high-quality all-
atom proteins can be successfully generated, eliminating
the need to learn marginal probabilities separately. To ad-
dress the first critical challenge of representing side-chain
coordinates for unknown amino acids in protein genera-
tion, we introduce atom14, a novel all-atom representation
framework. This approach employs virtual atoms across all
amino acid types, effectively preventing sequence informa-
tion leakage while maintaining structural integrity. Inspired
by AlphaFold3 (AF3) (Abramson et al., 2024), we propose
a dual-track representation framework that encodes protein
structures through concurrent residue-level and atom-level
tokenization schemes. Central to this framework is the
AtomDecoder unit, which seamlessly integrates and updates
features across multiple representation spaces while simul-
taneously executing coordinate prediction and differentiable
recycling process within a unified computational architec-
ture. The fundamental insight underlying Pallatom is the
recognition that protein all-atom coordinates intrinsically en-
capsulate both structural and sequential information within
their spatial configuration. Directly learning P (all-atom)
opens a new path for co-generative modeling of structure
and sequence.

Our contributions are summarized as follows:

• We explore the atom14 representation to achieve a
unified description of unknown amino acid side-chain
coordinates in generative tasks.

• We develop a network architecture for all-atom pro-
tein generation tasks, which effectively represents both
protein backbones and sidechains.

• We use our framework to develop Pallatom, a state-of-
the-art all-atom protein generative model.

2. Preliminaries
2.1. All-atom modeling and representation

Recent advances in protein structure prediction have estab-
lished diverse methodologies for all-atom representation.
AlphaFold2 (AF2) (Jumper et al., 2021) pioneered a frame-
based approach, modeling atomic coordinates through SE(3)

transformations of backbone and side-chain frames. Build-
ing upon this foundation, AF3 introduces an innovative
point cloud representation that directly encodes all-atom 3D
coordinates in Cartesian space. However, these representa-
tions are fundamentally inadequate for protein generation
tasks due to a critical limitation: the complete absence of
sequence information at the initialization stage prevents de-
termination of the system’s total atomic cardinality. To over-
come these limitations, Protpardelle introduces the atom73
representation, which implements a quantum-inspired su-
perposition framework. This approach stores coordinate
information for all 20 possible side-chain configurations
relative to aligned backbone atoms, enabling probabilistic
representation of unknown amino acid types. The superpo-
sition collapses to a definitive state upon sequence determi-
nation, effectively resolving the initial uncertainty in atomic
configuration.

2.2. Diffusion modeling on all-atom protein

The all-atom representation bypasses the complexities of
SE(3) frames (Yim et al., 2023b) and Riemannian diffusion
(De Bortoli et al., 2022). Gaussian-based diffusion models
provide a robust theoretical framework, with EDM (Kar-
ras et al., 2022) emerging as a prominent approach. EDM
has been successfully implemented in Alphafold3 and Prot-
pardelle for all-atom coordinate diffusion, showcasing its
efficacy in protein generation. We briefly outline EDM’s
mechanism below.

Assuming the data distribution of all-atom coordinates un-
der any representation as pdata(x) with standard deviation
σdata, the forward process involves adding Gaussian noise
of varying scales to generate a series of noised distribu-
tions pt(x) = [pdata ∗ N (0, σ(t)2I)](x) ≜ p(x;σ) with
a particular configuration σ(t) = t and s(t) = 1. When
σmax ≫ σdata, pσmax(x) ≈ N (0, σ2

T ) approximates pure
Gaussian noise. The probability flow ordinary differential
equation (ODE) is given by:

dx = −σ(t)∇x log p(x;σ(t))dt (1)

Here, ∇x log p(x;σ) is the score function, which does not
depend on the normalization constant of the underlying den-
sity function pt(x). A neural network Dθ(x;σ) is typically
trained for each σ using the following loss function to match
the score function (Song et al., 2021):

Ey∼pdata,n∼N (0,σ2I)[λ(σ)||Dθ(y + n;σ)− y||22], (2)

∇x log p(x;σ) = (Dθ(x;σ)− x)/σ2 (3)

In practice, EDM introduced a preconditioning technique
that stabilizes training by adjusting noise-related scaling
coefficients, ensuring that the model’s inputs and outputs
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remain within a stable numerical range at each time step.
Consequently, Dθ and the loss function can be derived as:

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x, cnoise(σ))

Eσ,y,n[λ(σ)||cout(σ)Fθ(cin(σ) · (y + n), cnoise(σ))−
(y − cskip(σ) · (y + n))||22] (4)

where cskip(σ) = σ2
data/(σ

2 + σ2
data), cout(σ) =

σ · σdata/
√

σ2
data + σ2, cin(σ) = 1/

√
σ2 + σ2

data,
cnoise(σ) =

1
4 ln(σ) and λ(σ) = 1/cout(σ)

2 represent skip
scaling, output scaling, input scaling, noise conditioning,
and the Coefficient respectively.

2.3. Framework for structure-based protein generation

Currently, the field of protein structure design lacks com-
prehensive methods for all-atom coordinate generation. The
most relevant approaches are structure-based backbone de-
sign or sequence-backbone co-generation methods, which
typically rely on a core building block to perform multi-view
feature fusion and coordinate updates on protein representa-
tions (e.g., 1D single-, 2D pair-, and 3D frame-embeddings).
By stacking multiple such blocks, these methods progres-
sively refine protein structures. For instance, RFDiffusion
(Watson et al., 2023), built on RoseTTAFold (Baek et al.,
2021), integrates information from three tracks within each
block, continuously updating and fusing representations
through sophisticated network operations. Similarly, Multi-
Flow (Campbell et al., 2024) and CarbonNovo (Ren et al.,
2024) adopt Alpahfold2’s Invariant Point Attention (IPA)
layer as their building block, augmented with additional
mechanisms to refine pairwise and sequence information.
Through multi-view feature fusion and coordinate updates,
these methods achieve precise backbone generation.

In contrast, ProtPardelle uses a simpler U-ViT (Bao et al.,
2023) architecture to generate all-atom proteins but relies on
a post-processing miniMPNN module to redesign sequences
and guide side-chain placement, which limits its robustness.
This highlights a key limitation of simplified frameworks:
their inability to effectively integrate diverse information
sources. In contrast, the complex network frameworks offer
significant advantages to incorporate additional auxiliary
information. For example, RFDiffusion employs a self-
conditioning mechanism (Chen et al., 2022) to generate
preliminary structures as 2D templates for guiding sam-
pling, while CarbonNovo leverages encoded single- and
pair-features to perform sequence sampling through Markov
Random Field (MRF). These strategies significantly im-
prove the diversity and quality of generated proteins. Thus,
exploring all-atom generation frameworks that integrate
multiple encoding forms remains a critical research direc-
tion.

3. Method
3.1. atom14: the all-atom representation

The all-atom protein generation model faces many chal-
lenges in constructing both backbone and side-chain atoms.
A pivotal initial question arises: How to represent a system
with a variable number of atoms? At the initial sampling
stage, both the backbone and sequence are unknown, how-
ever, the atom number of a system depends on unique se-
quence, once the sequence is determined, it also dictates the
structure.

To avoid potential conflicts arising from the simultane-
ous design of sequence and structure, we introduce the
atom14 representation, establishing a unified framework
through virtual atom integration that normalizes heavy atom
counts across all amino acid types. This padding strat-
egy that empirically positions additional virtual atoms to
align with the Cα coordinates of each amino acid residue.
Through this representation, a protein with N residues, de-
noted as x = {xi}Ni=1, is transformed into a fixed-size
point cloud x0 ∈ RN×14×3. For example, if residue xi

is CYS, its coordinates [N,Cα,C,O,Cβ ,Sγ ] ∈ R6×3 are
augmented with eight virtual atoms aligned at the Cα po-
sition, yielding x0

i ∈ R14×3. We denote the system as
r⃗ =

{⃗
rl | r⃗l ∈ R3, l = 1, 2, . . . , L

}
with L = N × 14 and

define the noise level as t̂.

The primary task of all-atom generation involves learning
the score function ∇r⃗t̂ log p(⃗r

t̂) through a diffusion pro-
cess that progressively perturbs the initial state r⃗0 at each
noise level t̂. While the virtual atom framework inherently
precludes explicit element-specific assignments, we posit
that the all-atom coordinate distribution sufficiently encodes
essential sidechain properties, including hydrophobicity, po-
larity, hydrogen bonding, and salt bridge formation. There-
fore, we introduce an auxiliary visualization module that
predicts amino acid types. With discarding the redundant
virtual atoms based on the predicted amino acid type as
a post-processing step, we can generate all-atom proteins
with corresponding sequences from a 3D point cloud noise.
Details are presented in Figure 3 and Appendix C.1

3.2. MainTrunk: the denoising network

We refer to the protein generation task as the generation
of all-atom coordinates. In the atom14 representation, a
protein with L atoms can be expressed as r⃗0 = {⃗r0l }Ll=1,
which r⃗0l ∈ R3 represents an atom coordinate. For each
noise level t̂ in the diffusion process, the network predicts
the updated coordinates r⃗denoised from the input r⃗input.

The network comprises two main components: a feature
encoder and iterative decoding units. Figure 1A illustrates
the main architecture. We implement a dual-track represen-
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Figure 1. Pallatom model framework: (A, B) Architecture of the network and the AtomDecoder unit.

tation framework, employing local attention mechanisms for
atomic-level feature extraction and global attention mecha-
nisms for residue-level feature integration.

For feature initialization and encoding (Algorithm 4), We
first initialize “traversing” atomic embeddings (cskip

l , qskip
l

and pskip
lm by integrating three key components: (1) structural

features from alanine’s standard conformation to establish
a stable backbone frame, (2) residue positional encoding,
and (3) noisy coordinate vectors. For residue-level embed-
ding, single embedding (si) is initialized using diffusion
timestep encoding and residue positional encoding, while
pair features (zij) incorporate relative positional encoding
and self-condition template distograms from previous pre-
dictions. Detailed features are recorded in Appendix Table
5.

In the decoding phase, we implement an iterative refine-
ment mechanism that facilitates bidirectional information
flow: residue-level embedding are propagated to atomic-

level, while atomic information is subsequently integrated
back through a differentiable recycling process. These oper-
ations are encapsulated within an AtomDecoder unit (Figure
1B), which is designed to continuously update the coordi-
nates. In practical implementation, we identify a funda-
mental challenge in the decoding architecture: preserving
residual connections between residue-level and atomic-level
embeddings across successive decoder units may result in
significant information redundancy, especially during the
residue-level feature broadcasting process (where “feature
broadcasting” refers to the process similar to AF3’s ap-
proach of replicating residue-level features and incorporat-
ing them into corresponding atom-level features). A com-
prehensive analysis of this phenomenon and our solution
is provided in Appendix C.5. To address this challenge,
the three “traversing” atomic embeddings serve as stable
information carriers, facilitating efficient residue-level prop-
agation while enabling coordinate refinement through the
accumulated r⃗updates

(k) in the k-th unit.
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r⃗denoised
(k) = cskip(t̂) · r⃗input + cout(t̂) · r⃗updates

(k) (5)

Following coordinate denoising, the partially denoised posi-
tions r⃗denoised

(k) are transformed into relative distance matrices
and subsequently recycled into the zij pair embeddings.
Concurrently, the triangle update module selectively main-
tains physically valid triangular constraints while eliminat-
ing geometrically inconsistent features, enabling iterative
improvement of structural quality throughout the decoding
process. Details can be found at Appendix Algorithm 2.

3.3. SeqHead: sequence decoder

The atom14 representation, while effective for structural
denoising, inherently lacks elemental information in the gen-
erated side chains, preventing direct extraction of protein
sequence information from the atomic coordinates alone. To
bridge the gap between structural generation and biological
interpretation, we introduce a SeqHead module that con-
verts the predicted atomic coordinates into corresponding
amino acid sequences, enabling the transformation of geo-
metric data into biologically meaningful protein structures.
Specifically, we aggregate the atomic embedding (ql) corre-
sponding to each residue and process them through a linear
transformation layer to predict probability distributions over
the 20 canonical amino acid types â(k) ∈ RN×20. We take
the predictions from the last unit as the final sequence logits,
â = â(K).

3.4. Training Loss

Our training method mainly follows the application and im-
provements of the EDM framework. The denoising all-atom
positions score-matching losses are described according to
Eq.(2). Given that the network architecture lacks inherent
equivariance constraints and iteratively refines coordinates
across multiple decoding stages, it is imperative that the
coordinates transformations between these stages remain
invariant under changes in orientation to ensure consistent
geometric interpretations. Therefore, we employ an aligned
MSE loss. We first perform rigid alignment of the ground
truth r⃗0 on the denoised structure r⃗denoised using the Kabsch
algorithm, yielding r⃗aligned. The MSE loss is then defined
as: Latom = ||⃗rdenoised−r⃗aligned||2

3L

For sequence decoding, we use the standard cross-entropy
loss function to evaluate the difference between the pre-
dicted sequence â and the true sequence a0. The loss func-
tion is defined as Lseq = CE(â,a0). The primary loss
function of the network is:

L0 = λ(t̂) · Latom + α0 · Lseq (6)

To capture the fine-grained characteristics of the all-
atom structure, we introduce the simplified smooth lo-

Algorithm 1 Pallatom Inference

1: def SampleDiffusion ({f∗}, T = 200, λ = 1.003,
η = 2.25, γ0 = 0.2, tmin = 0.01, tmax = 1.0)

2: δt = 1/T
3: cT = GetNoiseSchedule(1− uniform(0, 1) · δt)
4: r⃗l ∼ cT · N (⃗0, I3)
5: # Initialize the self-condition feature
6: f template distogram = 0,∈ {f∗}
7: for all t ∈ {T, . . . , 1} do
8: tp = t/T − uniform(0, 1) · δt
9: cτ = GetNoiseSchedule(tp)

10: cτ−1 = GetNoiseSchedule(tp − δt)
11: r⃗l ← CentreRandomAugmentation(r⃗l)
12: γ = γ0 if tmin ≤ t/T ≤ tmax else 0
13: t̂ = cτ (γ + 1)

14: r⃗l
noisy = r⃗l + λ

√
t̂2 − c2τ · N (⃗0, I3)

15: # Update the self-condition feature
16: r⃗l

denoised, f seq logits
i = MainTrunk(

17: {f∗}, r⃗lnoisy, t̂, tp)

18: f template distogram ← Distogram(r⃗l
denoised)

19: # Calculate the score function
20: r⃗l

denoised, f seq logits
i = MainTrunk(

21: {f∗}, r⃗lnoisy, t̂, tp)

22: δ⃗l = (r⃗l
noisy − r⃗l

denoised)/t̂
23: dt = cτ−1 − t̂

24: r⃗l ← r⃗l
noisy + η · dt · δ⃗l

25: end for
26: return {r⃗l}, {f seq logits

i }

cal distance difference test (LDDT) loss from AF3
Lsmooth lddt(⃗r

denoised, r⃗0). This can be found in the Ap-
pendix algorithm 8. Additionally, we implement two
distogram-based loss function Ldist res and Ldist atom to en-
force global/local distance constraints at the residue/atomic
level, ensuring proper maintenance of overall protein topol-
ogy throughout the optimization process. We introduce an
intermediate layer loss Lmed, that supervises the sequence
and structure predictions from each AtomDecoder unit, sig-
nificantly enhancing both model performance and inference
stability through progressive refinement. Details of training
losses can be found in Appendix D.

The total loss can be written as:

L = L0 + α1 · Lsmooth lddt + α2 · Ldist res

+ α3 · Ldist atom + α4 · Lmed (7)

3.5. Sampling

The sampling process is described in Algorithm 1. The
initial atoms are sampled from a Gaussian distribution on
RL×3. We only use the first-order Euler method as the ODE
solver with T steps for discretization. Optionally, additional
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noise can be injected during the sampling steps to introduce
stochasticity into the ODE solving process. We focus only
on the sequence distribution decoded by the network in the
final sampling step, employing a low-temperature softmax
strategy to derive an approximate discrete one-hot amino
acid sequence as the final sequence.

4. Experiments
4.1. Training setting

The training dataset of the model includes the PDB
(Zardecki et al., 2022) and AlphaFold Database (AFDB)
(Varadi et al., 2021). We performed rigorous data cleaning
on augmented data from AFDB to obtain high-quality re-
sults. Details can be found in the Appendix B. We focus
on small monomer proteins that can be easily synthesized
using commercial oligo-pool method and the models are
trained on crops of lengths up to 128. The model training
utilized the Adam optimizer (Kingma & Ba, 2017) with a
learning rate of 1e-3, β1 = 0.9, β2 = 0.999, and a batch size
of 32. Details are provided in the Appendix Table 6.

4.2. Metrics

While some evaluation criteria used for protein backbone
generation are not suited for the new task, we propose new
metrics specifically designed for assessing all-atom protein
generation.

The first criterion is structure designability. The self-
consistency process assesses the designability of protein
backbones (DES-bb). This involves using a fixed-backbone
design model (e.g., ProteinMPNN (Dauparas et al., 2022))
to generate Nseq sequences for the backbone, which are
then folded by structure prediction models like ESMfold
(Lin et al., 2023). The backbone’s designability is evaluated
by the optimal TM-score or Cα-RMSD between the folded
and original backbones. However, this metric is not suit-
able for all-atom proteins, which include side-chain atoms.
Therefore, we similarly define the designability of all-atom
protein generation, denoted as DES-aa. For the all-atom
proteins, the sequence is used to predict the structure, and
the sample is considered designable if the mean pLDDT of
the predicted structure exceeds 80 and the all-atom RMSD
(aaRMSD) is less than 2 Å. This metric ensures atomic-level
accuracy and provides strong confidence in the structural
integrity and designability of the predicted protein.

The second criterion is structure diversity, denoted as DIV-
str. This can be quantified by calculating the clusters num-
ber of the designable structures using Foldseek (Van Kem-
pen et al., 2024). For all-atom proteins, we use a similar
diversity evaluation method for the generated sequences,
denoted as DIV-seq. Specifically, we use MMseq2 (Steineg-
ger & Söding, 2017) to calculate the clusters number of the

designable sequences.

The last criterion is structure novelty, which evaluates the
structural similarity between the generated backbones and
natural proteins in the PDB, denoted as NOV-str. This
is calculated by the TM-score of the generated designable
backbones compared to the most similar proteins in the
PDB. In our evaluation, we use the following two modes:

• CO-DESIGN 1: For methods that can predict both
all-atom coordinates and sequences, DES-aa is used.
Diversity and novelty are evaluated based on the all-
atom designable proteins.

• PMPNN 1: Other methods use DES-bb with Nseq = 1.
Specifically, we calculate and display the two DES-bb
(w/wo) under conditions with and without the pLDDT
> 80 constraint. Diversity and novelty are evaluated
based on the proteins filtered by DES-bb (w).

4.3. Results

We sample Pallatom with 200 time steps using a noise scale
γ0 = 0.2, a step scale η = 2.25 and evaluate 250 proteins
sampled for each length L = 60, 70, 80, 90, 100, 110, 120.
Our primary comparisons are with state-of-the-art methods
capable of generating all-atom proteins, such as Protpardelle
and ProteinGenerator (Lisanza et al., 2023). For backbone
generation, we compare with RFdiffusion. We also com-
pared Multiflow, which is capable of generating both back-
bones and sequences. All methods are evaluated using their
open-source code and default parameters.

As shown in Table 1 and Figure 2A, Pallatom demonstrates
superior performance in the CO-DESIGN 1 benchmark for
all-atom protein generation. Remarkably, despite lacking
specific training on fixed-backbone design tasks, Pallatom
achieves comparable results to ProteinMPNN by predict-
ing sequences with a single linear layer derived from ag-
gregated atomic embedding. Comprehensive analysis of
sequence quality between our design and ProteinMPNN,
including detailed performance metrics, is presented in the
Appendix G.4. These results substantiate Pallatom’s capac-
ity for all-atom structure design, validating our hypothesis
that modeling P (all-atom) effectively captures the funda-
mental relationship between protein structure and sequence.
Notably, Pallatom generates all-atom protein structures with
substantially enhanced structural diversity, outperforming
existing methods by achieving significantly higher diversity
than both Multiflow and ProteinGenerator, while simulta-
neously attaining the highest sequence diversity across all
evaluated approaches.

In the PMPNN 1 benchmark, we observe that the DES-
bb(wo) metric systematically overestimates designability
relative to the pLDDT-constrained DES-bb(w) metric, as
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Table 1. Comparison of various methods. Protpardelle utilized ProteinMPNN as an auxiliary tool in all-atom proteins generation, resulting
in identical results for CO-DESIGN 1 and PMPNN 1. In the case of Multiflow, which can only generate protein backbones and sequences
without side chains, the reported DES-aa metric is based on CαRMSD rather than aaRMSD.

Method CO-DESIGN 1 PMPNN 1

DES-aa (↑) DIV-str/seq (↑) NOV-str (↓) DES-bb (w/wo) (↑) DIV-str (↑) NOV-str (↓)
Protpardelle* 30.00% 15 / 26 0.747 30.00% (80.23%) 15 0.747
ProteinGenerator 43.14% 83 / 706 0.791 93.14% (96.34%) 151 0.785
Multiflow* 62.74% 134 / 1042 0.753 84.69% (95.43%) 184 0.744
RFdiffusion N/A N/A N/A 78.29% (84.40%) 165 0.805

Pallatom 85.03% 291 / 1466 0.719 89.89% (94.46%) 318 0.716

all atom RMSD: 0.842
mean pLDDT:    84.42
maxTM-score:   0.633

all atom RMSD: 0.423
mean pLDDT:    90.71
maxTM-score:   0.61

all atom RMSD: 0.640
mean pLDDT:    90.72
maxTM-score:   0.54

all atom RMSD: 0.806
mean pLDDT:    89.08
maxTM-score:   0.53

A B C

D

Figure 2. Evaluation of proteins sampled from Pallatom. (A) Boxplot of aaRMSD for proteins sampled by various methods under the
CO-DESIGN 1 mode. Multiflow exhibits the CαRMSD. (B, C) The proportions of secondary structures in designable proteins across
different lengths are presented for CO-DESIGN 1 and PMPNN 1 modes across various methods, with the total height of the y-axis
representing the designability. (D) Examples of high-quality, novel all-atom proteins sampled by Pallatom.

demonstrated by substantial discrepancies in Protpardelle’s
designability evaluations, highlighting the importance of
quality constraints in designability assessment. The back-
bone generative models like ProteinGenerator, Multiflow
and RFdiffusion demonstrate comparable performance.
However, Protpardelle demonstrates suboptimal perfor-
mance across all evaluation metrics, underscoring the crit-
ical importance of both network architecture design and
atomic representation strategies in developing effective gen-
erative models for protein design. Consistent with its CO-
DESIGN 1 performance, Pallatom demonstrates robust des-
ignability while simultaneously generating structurally di-
verse and novel protein conformations, effectively balancing
these traditionally competing objectives. A detailed analysis

in Figure 2BC shows Pallatom’s stable performance across
protein lengths and balanced secondary structure distribu-
tions, in contrast to the preference of comparative methods
for specific secondary structures like α-helical ones. The
case studies in Figure 2D highlight Pallatom’s ability to
design highly ordered proteins with hydrophobic cores and
hydrophilic surfaces, consistent with high pLDDT structures
predicted by ESMFold, underscoring its understanding of
protein folding principles.

To assess generalization capabilities, we extensively evalu-
ated Pallatom’s performance on out-of-distribution (OOD)
protein lengths, conducting systematic sampling and anal-
ysis across a broad range of 150-400 residues. The results
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demonstrate that Pallatom exhibits exceptional scalability,
achieving the highest designability even at over twice the
maximum training length (L = 128). We also analyze sec-
ondary structure preferences in generated proteins across
different methods, particularly for longer sequences, with
comprehensive distribution statistics and detailed compar-
isons provided in the Appendix G.1. We also performed
a statistical analysis of sampling duration, which demon-
strates the efficiency of Pallatom. The results are presented
in Appendix G.7.

Table 2. Pallatom sample metrics.

Noise Level γ0 0.2 0.2 0.1 0.2 0.2
Step Scale η 1.75 2.25 2.25 2.75 3.25
Nsteps 200 200 200 200 200

DES-aa (↑) 57% 87% 89% 94% 93%
DIV-str (↑) 56 64 52 55 46

HHH(%) 28% 28% 45% 35% 38%
HEL(%) 56% 54% 44% 47% 51%
EEE(%) 16% 18% 11% 18% 11%

4.4. Hyperparameter

We analyzed the impact of the sampling parameters and
Table 2 presents the metrics for Pallatom when sampling
250 proteins with L = 100. We observed that, under the
same noise scale, increasing the step scale η leads to a corre-
sponding rise in designability, as well as an increase in the
proportion of all-helix structures within the secondary struc-
ture. However, this improvement in designability comes at
the cost of reduced structural diversity, indicating a trade-off
between these two metrics. We further demonstrated the im-
pact of varying step scales on the sampling of OOD-length
proteins, with detailed results provided in the Appendix G.3.
Furthermore, we found that reducing the additional noise
level to γ = 0.1 slightly enhances designability but also
significantly decreases structural diversity, consistent with
the findings of previous work (Yim et al., 2023b).

Table 3. Ablation Studies evaluating the key concept of Pallatom
to designability.

Method DES-aa DES-bb(w) DES-bb(wo)

atom14 87% 95% 95%
hybrid14 5% 68% 82%
woRC 21% 93% 95%

4.5. Ablation Studies

Building upon the hypothesis that all-atom coordinates in-
trinsically encode essential protein information, we system-
atically investigated the key factors underlying Pallatom’s

superior designability performance. Table 3 presents the
results, with the first row (atom14) serving as the baseline.
We first conducted an ablation study on the atom14 repre-
sentation. For comparative analysis, we implemented the
hybrid14 representation and retrained the model. Similar
to Protpardelle’s methodology, the hybrid14 representa-
tion maintains a superposition of 20 possible side-chain con-
figurations, which collapse into a single hybridized residue
state based on predicted sequence probabilities during the
generation process. However, as shown in the second row,
the sequence-guided all-atom approach not only failed to
improve performance but actually resulted in reduced se-
quence quality (lower DES-aa) and compromised backbone
generation (decreased DES-bb), revealing fundamental lim-
itations in this design strategy. We hypothesize that this
phenomenon stems from the absence of a well-defined map-
ping between noisy coordinate space and sequence space
during diffusion. The sequence predictions derived from
noisy structural intermediates exhibit substantial deviations
from native foldable sequences, and these discrepancies
are amplified throughout the reverse diffusion process, ul-
timately hindering the generation of biologically plausible
sequences.

We next assessed the impact of the differentiable recycling
process (woRC, shown in the third row). Our evaluation
indicated that while the recycling process had little effect
on backbone quality (DES-bb remained almost unchanged),
it significantly impacted sequence generation, leading to a
substantial reduction in DES-aa. These results highlight the
crucial role of the recycling process in the components and
its differential influence on various aspects of protein design.
The detailed setup of the ablation studies can be found in
the Appendix E.

5. Discussion
We introduce Pallatom, a highly efficient end-to-end all-
atom protein generation framework that simultaneously cap-
tures the relationship between sequence and structure, en-
abling state-of-the-art performance. Our proposed all-atom
protein atom14 representation eliminates the constraints of
explicitly defining all amino acid types during generation, of-
fering a more precise approach for representing coordinates
in all-atom systems. We have redesigned a fundamental
unit capable of fusing, recycling and updating diverse fea-
tures of all-atom proteins while predicting their coordinates.
The new framework efficiently adapts to all-atom protein
structure diffusion generation. The results demonstrate that
models learning P (all-atom) exhibit strong performance
and diversity in de novo protein generation, unlocking new
pathways for protein design. Future work includes devel-
oping a more generalized model architecture and extending
our framework to enable the design of complex systems.
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Impact Statement
The novel protein generation method proposed in this pa-
per, which is based on learning the distribution of all-atom
coordinates, aims to advance the paradigm of protein de-
sign engineering. This work holds significant potential for
broad societal impact and direct applications. For instance,
it offers greater utility in tasks such as enzyme design, drug
design involving small molecule binding pockets, and other
applications requiring all-atom protein constraints.

Code Availibility
The Pallatom is available on GitHub (https://github.
com/levinthal/Pallatom).
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A. Related work
Backbone Generation. Diffusion models based on SE(3)-equivariant network architectures and protein representations
using rigid frames have achieved significant success in protein generation, as evidenced by models like Chroma (Ingraham
et al., 2023), Genie2 (Lin et al., 2024), RFdiffusion (Watson et al., 2023), FrameDiff (Yim et al., 2023b), FrameFlow (Yim
et al., 2023a), Proteus (Wang et al., 2024), and FoldFlow2 (Huguet et al., 2024). These models now support multi-condition
controlled generation and have been extensively validated through both in-silico and wet-lab experiments.

Codesign Models. Recent methods have explored a co-design approach that simultaneously designs both the backbone
and sequence. Multiflow (Campbell et al., 2024) utilizes a diffusion process that jointly operates on discrete sequences
and continuous SE(3) backbones, eliminating the need for sequence redesign with ProteinMPNN (Dauparas et al., 2022).
CarbonNovo (Ren et al., 2024) employs a similar approach, using SE(3) diffusion on the protein backbone while simultane-
ously designing a sequence at each step with the MRF decoder. The sequence information is then embeded using the protein
language model ESM2-3B (Rives et al., 2021) to guide structural generation.

All-Atom Generation. Recent research teams have begun exploring fully all-atom generative representation systems. For
instance, Protpardelle (Chu et al., 2024) employs a coordinates diffusion model to support the generation of all-atom protein
structures. ProteinGenerator (Lisanza et al., 2023) applies Euclidean diffusion on one-hot encoded sequences, combined
with a structure prediction module to obtain all-atom structure. Similarly, PLAID (Lu et al., 2025) achieves sequence design
through latent space diffusion within ESMFold while decoding full-atom protein configurations. RFdiffusionAA (Krishna
et al., 2024), based on fine-tuning the RoseTTAFold2 (Baek et al., 2023), can produce backbone structures of proteins and
small molecule complexes but lacks side-chain conformations for standard amino acids. We focus on the methods directly
generate all-atom protein structures, the most relevant work is Protpardelle, which uses an end-to-end approach to generate
all-atom structures.

Beyond protein modeling, recent works leverage atomic-level representations for localized design tasks. For instance,
Abdiffuser (Martinkus et al., 2023) introduces a universal four-atom side-chain template for antibody CDR redesign,
preserving dihedral freedom via pseudo-carbon atoms while integrating ideal amino acid templates for rotamer construction.
FAIR (Zhang et al., 2023) adopts a two-stage approach for protein pocket design: initial backbone/sequence generation
followed by iterative refinement to ensure sequence-side-chain consistency. PocketFlow (Zhang et al., 2023) extends this by
simultaneously designing pocket sequences and all-atom structures through flow matching across backbone, side-chain
torsion angles, and sequences. PepFlow (Li et al., 2024) similarly utilizes multi-modal flow matching (torsion angles +
sequences) for peptide design. However, such decoupled representations risk sequence-structure conflicts and steric clashes.
Pallatom addresses these limitations through its atom14 representation, which intrinsically fuses structural and sequential
modalities to minimize explicit conflicts.

B. Training Datasets
B.1. PDB Data

We used PISCES (Wang & Dunbrack Jr, 2003) to obtain the required PDB list. For training, we selected a subset of PDB
entries with a resolution of <3Å and a 95% sequence identity threshold. We then performed standard filtering to remove any
proteins with >50% loops and applied a series of folding quality filters (described below). This process resulted in 7,459
structures.

B.2. Augmented Data

Augmented data are widely used in protein modeling-related work. Consequently, we supplemented our dataset with the
AlphaFold Database (AFDB) (Varadi et al., 2021). The AF2 predicted structure database is available under a CC-BY-4.0
license for both academic and commercial uses. The AFDB contains 214 million data points, while (Barrio-Hernandez
et al., 2023) provides a redundancy-reduced version (AFDB-cluster) through sequence-structure clustering. We performed
additional curation on AFDB-cluster, applying an average pLDDT threshold (≥80) and maximum sequence length restriction
(128 residues) yielded 582,652 refined structures.

Furthermore, we implemented refined filtering strategies to acquire designable and high-quality data by evaluating two
structural metrics — Average Neighboring Density and Core Residue Ratio — for retaining proteins with superior packing
quality. The curation workflow operates as follows:
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• Average Neighboring Density: Specifically, we used a 10 Å distance cutoff for neighbor identification. The neighbor
count is averaged across the entire protein length. This serves as a packing quality filter. The threshold values were
empirically determined—we adopted 20.0 as the cutoff for Pallatom training. Note that this threshold may require
further adjustment for protein datasets of varying lengths.

• Core Residue Ratio: We calculated the solvent-accessible surface area (SASA) for each residue using DSSP (Touw
et al., 2015), with residues having SASA ≤ 0.2 classified as core residues. A final cutoff of ≥30% core residue content
was applied to retain high-quality training data.

We found that these two filters effectively selected training data with satisfactory packing quality.

Furthermore, the number and distribution of secondary structures can define the compactness and diversity of folding. We
used DSSP (Touw et al., 2015) to assign the protein secondary structures and removing structures with loop content >50%.
We also apply filter on the total number of continuous segments of β-sheet and α-helix to maintain structural diversity.
Specifically, we define continuous segments of β-sheet and α-helix, where a continuous segment must contain at least 2-3
consecutive residues of the same secondary structure. The total number of continuous segments in the entire protein is
then calculated. For Pallatom training, we applied a cutoff of 4 continuous segments as a filtering threshold during data
processing. This step helps further remove overly simplistic secondary structures from the AFDB-cluster dataset.

For highly extended structures, we limited the radius of gyration (Rg) to less than 25.0. To avoid overly long continuous
unstructured regions within the protein structures, we restricted the maximum length of each loop to 15. Finally, we used the
FoldSeek easycluster algorithm to remove redundant structures, setting a TM score threshold of 0.8 and a coverage of 0.9,
which removed approximately 30% of highly similar structures. After applying these stringent filters, only 27,697 protein
structures remained. These structures typically exhibit good folding and high designability.

C. Algorithms
We present a comprehensive description of Pallatom’s all-atom representation atom14, architectural modules and algo-
rithmic workflow. In the accompanying pseudocode, components highlighted in blue maintain substantial similarity to
AlphaFold3’s implementation and are not expanded to prevent redundancy while ensuring clarity.

C.1. atom14

To resolve the discrepancy in atom counts across amino acids within an all-atom diffusion model, we designed an atomistic
representation called atom14. As shown in Figure 3, this representation differs from conventional amino acid encoding
schemes. In the atom14 framework, the side chains of all amino acids are uniformly represented using 14 atom coordinates.

For atoms absent in the native conformation of a given amino acid, their coordinates are overlapped with a reference atom
position, specifically the Cα atom in the Pallatom implementation. For example, glycine (Gly), which only contains four
backbone atoms (C, Cα, N, and O), has the remaining 10 “excess” side-chain positions all assigned to the Cα coordinate.
To avoid pre-specifying atom types, the atom14 representation retains elemental types only for backbone atoms. All
side-chain atoms are uniformly predefined as masked types, regardless of their actual chemical identities. It is important
to note that this unified representation introduces degeneracy: certain amino acids share similar side-chain configurations
(e.g., Asn vs Asp, Glu vs Gln, Cys vs Ser, Thr vs Val). Consequently, the final model output must incorporate an additional
mechanism to resolve ambiguities in amino acid type determination arising from this degeneracy.

C.2. MainTrunk

Algorithm 2 details the denoising process of the Pallatom MainTrunk network.

C.3. TemplateEmbedder

In the TemplateEmbedder module, we retained only the necessary mask and distogram features, and additionally included
the timestep feature for self-conditioning.
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Algorithm 2 MainTrunk

def MainTrunk(f∗, r⃗inputl , t̂, t, catom=128, cpair=128, cres=256, catompair=16, σdata=16):
# Initialize positions and conditions embedding

1: r⃗l
scaled = r⃗l

intput/
√
σ2

data + t̂2 r⃗l
scaled ∈ R3

2: siniti = LinearNoBias((f residue idx
i )) siniti ∈ Rcres

3: ti = TimeFourierEmbedding( 14 log(t̂/σdata)) ti ∈ Rcres

4: siniti += ti
5: zinitij = RelativePositionEncoding(f∗) zinitij ∈ Rcpair

6: zij = zinitij + TemplateEmbedder({f∗}, zinitij , t, Nblock = 2, c = 64, d = cpair)
# Initialise single and atom embeddings
7: {si}, {qskip

l }, {cskipl }, {pskip
lm }, {cl} = AtomFeatureEncoder({f∗}, siniti , zij , r⃗l

scaled, cres, catompair, catom)
8: si += LinearNoBias(LayerNorm(siniti ))
# AtomDecoder Units
9: r⃗l

updates = 0 r⃗l
updates ∈ R3

10: for all unit ∈ {1, . . . ,Kunit} do
11: si = NodeUpdate(si, ti, zij , c = cres)

12: {qupdated
l }, {r⃗lupdate}, {cl} = AtomAttentionDecoder(qskip

l ,pskip
lm , cskipl , cl, si, zij)

13: r⃗l
updates += r⃗l

update

14: r⃗l
denoised = σ2

data/(σ
2
data + t̂2) · r⃗lintput + σdata · t̂/

√
σ2

data + t̂2 · r⃗lupdates

15: r⃗i
center = r⃗l

denoised[center uid]
16: zij = PairUpdate(zij , r⃗i

center, c = cpair)
17: end for
# SeqHead for amino acid decoding
18: ai = mean

l∈{1,...,Natoms}
tok idx(l)=i

(
ReLU(LinearNoBias({qupdated

l })
)

ai ∈ Rcres

19: f seq logits
i = LinearNoBias(ai) f seq logits

i ∈ R20

return {r⃗ldenoised}, {f seq logits
i }

Algorithm 3 Template Embedder
def TemplateEmbedder(f∗, zij , t, Nblock=2, c=64, d=128):

# Concat template features
1: btemplate pseudo beta mask

ij = f template pseudo beta mask
i · f template pseudo beta mask

j

2: btime
ij = t⊙ f template pseudo beta mask

ij t ∼ [0, 1)

3: aij = concat(f template distogram
ij , btemplate pseudo beta mask

ij , btime
ij )

# Embed the self-condition feature
4: vij = LinearNoBias(LayerNorm(zij)) + LinearNoBias(aij) vij ∈ Rc

5: vij = PairformerStack(vij , Nblock)
6: uij ← LinearNoBias(ReLU(LayerNorm(vij))) uij ∈ Rd

return {uij}
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Figure 3. atom14 encoding schemes.

C.4. AtomFeatureEncoder

The AtomFeatureEncoder is adapted from AF3, with modifications for all-atom generation. We exclusively utilize alanine as
the reference conformer, eliminating the need for predefined amino acid sequence information during the initialization phase.
Furthermore, we standardized residue representations using the atom14 format, with virtual atoms to prevent information
leakage. The initialization process for traversing atomic embeddings is detailed as follows:
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Algorithm 4 AtomFeatureEncoder

def AtomFeatureEncoder(f∗, sinputi , zinputij , r⃗l
scaled, c=256, d=16, m=128):

# Create the atom single conditioning
1: fref = concat(⃗f ref pos, f ref element) fref ∈ R14×7

2: cl = LinearNoBias(tile(fref )) cl ∈ Rm

3: f⃗ ref pos
l = tile(⃗f ref pos) f⃗ ref pos

l ∈ R3

4: cskipl = cl
# Embed offsets between atom reference positions
5: d⃗lm = f⃗ ref pos

l − f⃗ ref pos
m d⃗lm ∈ R3

6: vlm = (f ref space uid
l == f ref space uid

m ) vlm ∈ R
7: plm = LinearNoBias(d⃗lm) · vlm plm ∈ Rd

8: plm += LinearNoBias
(
1/(1 + ∥d⃗lm∥2)

)
· vlm

9: plm += LinearNoBias(vlm) · vlm
10: plm += LinearNoBias(ReLU(cl)) + LinearNoBias(ReLU(cm))

11: pskip
lm = plm

# Initialise the atom single representation as the single conditioning
12: qskip

l = cl + LinearNoBias(r⃗l
scaled) ql ∈ Rm

# Add atom positional and time conditioning
13: cl += LinearNoBias(LayerNorm(sinittok idx(l)))

14: plm += LinearNoBias(LayerNorm(zinittok idx(l)tok idx(m))

15: plm += LinearNoBias(ReLU(LinearNoBias(ReLU(LinearNoBias(ReLU(plm)))))))
# Cross attention transformer
16: qskip

l = AtomTransformer(qskip
l , cl,plm, Nblock = 3, Nhead = 4)

# Aggregate per-atom representation to per-residue representation
17: si = mean

l∈{1,...,Natoms}
tok idx(l)=i

(
ReLU(LinearNoBias(qskip

l ))
)

si ∈ Rc

return {si}, {qskip
l }, {cskipl }, {pskip

lm }, {cl}
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C.5. AtomAttentionDecoder

We developed a novel information management strategy for decoder layers that simultaneously integrates updated single-
and pair-embeddings into traversing atomic-level embeddings. This approach effectively prevents redundant structural
information accumulation while maintaining essential feature propagation.

We present a mathematical derivation to analyze information redundancy arising from residual connections between residue-
level and atomic-level embeddings, identifying key factors contributing to “traversing” strategies. For notational clarity, we
define si as the residue-level embedding and qi as the atom-level embedding for the i-th unit, with broadcast(si) denotes the
operation that propagates residue-level information to atomic-level. The network updates are represented by the functions
f(·) and g(·):

si = si−1 + f(si−1) (8)

qi = qi−1 + g(broadcast(si−1) + qi−1) (9)

The iterative process can be organized as follows:

si = s1 +

i−1∑
k=0

f(sk) (10)

qi = q1 +

i−1∑
k=1

g(broadcast(sk) + qk) (11)

= q1 +

i−1∑
k=1

g(broadcast(sk) + (q1 +

k−1∑
j=1

g(broadcast(sj) + qj))) (12)

Through recursive expansion of the qi, we observe that each term depends on its preceding qk while incorporating broadcasted
features from si−1 at each update step. This results in information redundancy, ultimately impeding efficient network
learning and feature updating.

Algorithm 5 AtomAttentionDecoder

def AtomAttentionDecoder(qskip
l , pskip

lm , cskipl , cl, si, zij):
# Add trunk embeddings
1: ql = LinearNoBias(LayerNorm(stok idx(l))) + qskip

l

2: plm = LinearNoBias(LayerNorm(ztok idx(l)tok idx(m)) + pskip
lm

3: plm += LinearNoBias(ReLU(LinearNoBias(ReLU(LinearNoBias(ReLU(plm)))))))
# Cross attention transformer
4: ql = AtomTransformer(ql, cl,plm, Nblock = 3, Nhead = 4)
# Map to positions update
5: r⃗l

update = LinearNoBias(LayerNorm(ql))
# Update trunk embeddings to atom condition
6: cl = LinearNoBias(LayerNorm(stok idx(l))) + cskip

l

return {r⃗lupdate},{cl}

C.6. NodeUpdate

The NodeUpdate module manages residue-level embedding updates through a time-conditioned AttentionPairBias mecha-
nism, enabling adaptive scaling of network updates based on noise levels during the diffusion process. Additionally, we
implemented dropout regularization during training to prevent overfitting and improve model generalization capabilities.

C.7. PairUpdate

The PairUpdate module exclusively employs a modified TriangleAttention algorithm, excluding TriangleMultiplication
while preserving robust generative capabilities. Our implementation utilizes recycling-derived pair representations as
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Algorithm 6 NodeUpdate
def NodeUpdate(si, ti, zij , c=256):

# AttentionPairBias with updated pair bias
1: si += DropoutRowwise0.25(AttentionPairBias(si, ti, zij , βij = 0,Nhead = 8))
2: si += Transition(si)
return {si}

attention biases, enhancing the model’s ability to capture long-range interactions. To ensure pair feature space consistency,
we processed recycling structures using identical binning parameters as the TemplateEmbedder module, employing 39
discrete bins spanning from 3.25 to 50.75 angstroms for comprehensive distance representation.

Algorithm 7 PairUpdate
def PairUpdate(zij , rcenteri , c=128):

# Obtaining the pairwise distance matrix through RBF discretization
1: dij =

∥∥r⃗icenter − r⃗j
center

∥∥ dij ∈ R
2: bij = LinearNoBias(Transform RBF(dij)) bij ∈ Rc

# TriangleAttention with coordinates pair bias
3: zij += DropoutRowwise0.25(TriangleAttentionStartingNodeWithBias(zij ,bij))
4: zij += DropoutColumnwise0.25(TriangleAttentionEndingNodeWithBias(zij ,bij))
5: zij += Transition(zij)
return {zij}

D. Loss Function
In this paper, in addition to the primary loss function L0, which is composed of the denoising score matching loss Latom

and the cross-entropy loss Lseq for sequence decoding, we describe additional loss components that contribute to model
optimization.

D.1. Distogram Loss

The distogram loss function has become a fundamental component in protein structure prediction pipelines, effectively
guiding the estimation of inter-residue distance matrices from pairwise feature representations. In our implementation, we
symmetrize the global residue-level pair representations and project them into 64 distance bins with predicted probabilities
pbij , which are then supervised using one-hot encoded target distance bins ybij .

Ldist res = −
1

L2

∑
i,j

64∑
b=1

ybij log p
b
ij

Similarly, to supervise the local relative distance distribution, we project the atomic-level pair representation from local
atomic attention into 22 distance bins from 0 Å to 10 Å with qbnm, and construct the loss function using one-hot encoded
target distance bins, with the local region defined by the attention window within the the 14L × 14L atomic-level map,
ensuring precise local geometry constraints.

Ldist atom = − 1

NM

∑
n,m∈local

22∑
b=1

ybnm log qbnm

D.2. Intermediate Loss

To stabilize the training process, we implement intermediate supervision of sequence and structure predictions from each
decoder unit. Additionally, we introduce a loss weight decay mechanism with γ = 0.99 across decoder blocks, progressively
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increasing the weight assigned to later layers. Therefore, the intermediate loss for the K units can be expressed as:

Lk
med = λ(t̂) ·

||⃗rdenoised
(k) − r⃗aligned||2

3L
+ α0 · CE(â(k),a0),

Lmed =
1

K

K∑
k=1

γK−k · Lk
med

D.3. Smooth LDDT loss function

During the training, we adopt the smooth LDDT loss (Algorithm 8, a simplified version from AF3) for all-atom protein
design.

Algorithm 8 Smooth LDDT loss
def SmoothLDDTLoss(⃗rl, r⃗GT

l ):
# Compute distances between all pairs of atoms
1: δrlm ← ||⃗rl − r⃗m||
2: δrGT

lm ← ||⃗rGT
l − r⃗GT

m ||
# Compute distance difference
3: δlm = abs(δrGT

lm − δrlm)
4: ϵlm = 1

4 [sigmoid( 12 − δlm) + sigmoid(1− δlm) + sigmoid(2− δlm) + sigmoid(4− δlm)]
# Set the radius threshold and compute mean
5: clm ← 1(δxGT

lm < 15Å)
5: lddt = mean

l ̸=m
(clmϵlm)/mean

l ̸=m
(clm)

return 1 - lddt

E. Ablation Studies
We systematically investigate the fundamental factors contributing to Pallatom’s superior co-design performance through
complementary top-down and bottom-up analyses, aiming to uncover the underlying principles of its exceptional designabil-
ity. The success of the atom14 all-atom representation demonstrates the viability of comprehensive atomic-level generative
modeling. To further explore this paradigm, we develop a hybrid14 representation that incorporates sequence information,
enabling comparative analysis that highlights the distinct advantages of the atom14 approach. Another key innovations in
the AtomDecoder unit is the differentiable recycling process, we further investigate through ablation studies.

E.1. hybrid14

To efficiently represent side-chain configurations across all 20 amino acids while avoiding the computational overhead of
Protpardelle’s atom73 representation, we propose the hybrid14 representation maintains a superposition of 20 possible
side-chain configurations, which collapse into a single hybridized residue state based on predicted sequence probabilities
during the generation process.

Specifically, we implement the model’s self-conditioning mechanism by matrix-multiplying the predicted sequence proba-
bilities S ∈ RL×20 with standard amino acid reference conformer coordinates V ∈ R20×14×3, generating hybrid reference
conformations Vhybrid = SV ∈ RL×14×3 that are subsequently integrated by atomic embedding.

Using identical loss functions and training configurations, we retrained the model and conducted ablation studies by
generating 100 protein sequences of length L = 100, followed by comprehensive designability evaluation to assess the
impact of atomic representation modifications.

E.2. woRC: Ablation Setup without the Recycling Process

To assess the contribution of the differentiable recycling process in the AtomDecoder unit, we conducted ablation experiments
by substituting the recycling pair with a zero matrix and disabling gradient backpropagation. This modification prevents the
residue-level pair embedding zij from receiving updates from partially denoised structures while maintaining the triangle
update module for self-conditioning during training.
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E.3. smooth LDDT loss

We also conducted ablation studies on the smooth LDDT loss function. Table 4 show the results. The training observations
revealed that the LDDT loss maintained consistently low values throughout training, suggesting it may act as an implicit
violation loss to mitigate side-chain atomic clashes. Ablation experiments confirm the LDDT loss’s role in enhancing
the quality of Pallatom-generated all-atom proteins, particularly by preserving critical sequence-structure self-consistency
(DES-aa reduction).

Table 4. Ablation Studies on Smooth LDDT Loss.
Method DES-aa DES-bb(w) DES-bb(wo)

Pallatom 87% 95% 95%
wo-LDDT 84% 95% 95%

F. Experiment Details
Table 5 provides a detailed list of the input feature.

Table 5. Input Feature Descriptions

Input Feature Dimension Description

ref pos (14, 3) Atom positions in the reference conformer are given in Å. The
backbone atoms (N, C, Cα, O, Cβ) are listed in the first five columns,
while all side-chain atoms are moved to the Cα atom position.

ref element (14, 4) We encode the backbone atoms based on their elemental types [N, C,
O], while the side-chain atoms are encoded as a single class using
‘UNK’ (unknown).

ref space uid (Natom,) Numerical encoding of the residue index associated with this refer-
ence conformer.

ref center mask (Natom,) Masks indicating the center atom of the residue.

residue index (Nres,) The pdb residue number for calculating relative positional embed-
ding

residx embedding (Nres, 32) The absolute position embedding by sinusoidal positional encoding.
template distogram (Nres, Nres, 39) Pairwise distogram of pseudo Cβ are discretized into 38 bins of

equal width between of bin min=3.25Å, bin max=50.75Å, one more
bin contains any larger distances.

template cb mask (Nres,) Mask indicating if the Cβ atom has coordinates for the template at
this residue, where 1 indicates existing residues and 0 is used for
padding residues.

template time (Nres, Nres, 1) Normalized pairwise time-step feature, ranging from 0 to 1.

all atom positions (Natom, 3) The noisy position of all atoms in the system.
all atom mask (Natom,) Mask indicating which atom slots are used in the the system.
t hat (1,) The noise level value for adding noise.
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Table 6 provides a detailed list of the hyperparameters used for training.

Table 6. Pallatom training hyperparameters.

Parameter name Value

Batch size 32
Learning rate 0.001, No warm-up.
Examples per epoch 35156
Crop size 128
Loss weights Sequence loss weight α0 = 0.25,

Smooth lddt loss weight α1 = 1.0,
Residue-level distogram loss weight α2 = 0.5,
Atomic-level distogram loss weight α3 = 0.5,
Intermediate loss weight α4 = 1.0
In the basic loss L0, weight allocation was applied to residue types, with
a weight of 2.0 assigned to polar residues, and 1.0 to the others.

Diffusion timesteps (Nsteps or T ) 200
Self-condition rate 100%
EDM Noise schedule lognormal. ln(σ) ∼ N (Pmean, P

2
std), Pmean =

−1.2, Pstd = 1.5, σdata = 16,
Stochastic sampler tmin = 0.01, tmax = 1.0, noise level γ0 = 0.2,
noise scale λ = 1.003, step scale η = 2.25

Transformer single representation dimension = 256, pair representation dimen-
sion=128, number of heads = 8, number of decoder units = 8

Training Steps 3× 105

Training time ≈ 10 days
Device 4× A6000

G. Additional Results
G.1. Out-of-distribution performance

Evaluation of Metrics We performed extensive evaluation of Pallatom’s performance on out-of-distribution se-
quence lengths, specifically testing its generalization capabilities on proteins significantly longer than those encoun-
tered during training. Specifically, we generated and analyzed 250 protein structures for each of six distinct lengths
L = 150, 200, 250, 300, 350, 400 , providing comprehensive evaluation across a broad spectrum of sequence lengths.
Notably, while our training set employed a crop size of 128, all comparative methods were trained on datasets containing
proteins with lengths up to 384, highlighting a significant difference in training data complexity. Figures 4 illustrates the
comparative performance across designability (DES), structural diversity (DIV-str), and structural novelty (NOV-str) metrics
for various sequence lengths under both CO-DESIGN 1 and PMPNN 1 evaluation modes, providing comprehensive insights
into the model’s length-dependent behavior.

Our analysis revealed that Pallatom consistently achieved superior designability metrics for sequences up to twice the
maximum training length (L = 150− 250) across both evaluation modes, while simultaneously demonstrating significantly
greater structural diversity and novelty compared to Multiflow. Even when extending to more than three times the maximum
training length at L = 350 and L = 400, Pallatom, although less advantageous in backbone design, still maintained
the ability to generate all-atom proteins, a feat unachievable by the other two comparison methods, Protpardelle and
ProteinGenerator.

Secondary Structure Analysis We further analyzed the secondary structure preferences of sampled structures from all
methods. Specifically, we utilized DSSP to classify the secondary structure of each residue in the proteins.

We established a classification scheme based on helix-to-sheet ratios: proteins with α-helix residues exceeding five times β-
residues are categorized as HHH (all-helix), while those with β residues surpassing five times α-helix residues are classified
as EEE (all-β), Proteins with balanced proportions of α-helices and β-sheets are classified as HEL, representing mixed αβ
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A B

Figure 4. Comparison of Evaluation Metrics for Sampled Proteins at Longer Lengths. (A) and (B) respectively show the designability,
structural diversity, and structural novelty under the CO-DESIGN 1 mode and the PMPNN 1 mode.

structures, completing our comprehensive secondary structure classification framework.

Figure 5 presents the secondary structure distributions for all methods under both evaluation modes, along with the
corresponding distributions for designable protein subsets. This result indicates the ProteinGenerator, multiflow, and
Pallatom exhibit similar secondary structure preferences within the length range of 150-400, with a roughly equal distribution
between HEL and HHH structures. In contrast, RFdiffusion and Protpardelle show a stronger preference for HEL structures.
Within the 150-400 length range, all models rarely succeed in generating EEE structures.

A B C

Figure 5. Secondary Structure Distribution of Sampled Proteins at Longer Lengths. Figures (A), (B), and (C) show the secondary structure
distribution of all sampled proteins across all methods, the designable proteins in CO-DESIGN 1 mode, and the designable proteins in
PMPNN 1 mode, respectively.

All these experimental results demonstrate Pallatom’s superior performance, highlighting its exceptional scalability and
generalization capabilities. To further illustrate these advantages, we present additional case studies: Figure 11 showcases
novel designable protein structures generated by Pallatom, while Figure 12 demonstrates its ability to produce high-quality
designs for length distributions beyond the training set scope.
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G.2. Structural and Chemical Validity Assessment

As an all-atom protein generation model, we further analyzed the stereochemical properties of side chains in Pallatom-
generated proteins. Through comprehensive statistical analyses of bond length distributions (Figure 6), bond angle
distributions (Figure 7), χ-angle distributions (Figure 8), and conformational clashes (Figure 9), we demonstrate that the
side-chain structures generated by Pallatom rigorously adhere to protein physicochemical constraints.

Specifically, we conducted conformational plausibility evaluation on 750 generated samples (L100-L300). Conformational
clashes and bond length/angle analyses were benchmarked against natural PDB datasets, while chi angle distributions were
compared with training set structures (AFDB+PDB) for specific considerations: certain side chains exhibit 180° rotational
symmetry where χ and χ+ π configurations are physically equivalent (differing only in atom naming) (Jumper et al., 2021).
Since Pallatom was trained on both AFDB and PDB data, we used training set comparisons for χ-angles to avoid potential
distribution discrepancies between AFDB training data and natural PDB statistics.

Bond lengths and angles were evaluated at the residue level with all-atom assessment, including separate statistics for peptide
bond parameters (the peptide bond length named “bond-peptide” and the peptide bond angle named “angle-INTER”). χ
angle distributions were analyzed individually for χ1-4 angles per residue. Conformational clashes were quantified using
Clash Num (per 1000 contacts), defined as the count of non-bonded atom pairs within 5Å having distances ≤ 1.5Å ( 50% of
summed van der Waals radii), categorized as intra-/inter-residue clashes.
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Figure 6. Comparison of bond length distributions between Pallatom-generated proteins (blue) and natural protein counterparts (yellow)
in the PDB dataset.

G.3. Analysis of Sampling Hyperparameters

We analyzed the effect of the step scale η on sampling proteins of unseen longer lengths. In Table 7, the left column for each
length corresponds to η = 2.5, while the right column corresponds to η = 3.0. We observed that a larger step size in the
gradient update direction improves the designability of proteins, and as the number of designable samples increases, the
structural diversity of generated proteins also increases, with only a slight decrease in novelty. Additionally, consistent with
the observations in the main text regarding the impact of sampling hyperparameters on secondary structure distribution, a
larger step size is associated with a more pronounced preference for all-helix structures.

G.4. Sequence Quality of Designable Proteins

We compared the quality of the sequences generated by Pallatom with those produced by ProteinMPNN for the same
protein structures designed by Pallatom. Figure 10 shows the pLDDT scores of the two sequences predicted by ESMfold.
We found that the sequence confidence score of Pallatom is slightly lower than that of ProteinMPNN, with the maximum
mean pLDDT difference not exceeding 2. We attribute this difference to both the training data and the task. Regarding
training data, Pallatom was trained on a monomer protein dataset, whereas ProteinMPNN was trained on a more diverse
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Figure 7. Comparison of bond angle distributions between Pallatom-generated proteins (blue) and natural protein counterparts (yellow) in
the PDB dataset.

Table 7. Pallatom sample metrics with step scale η = 2.5 (left) and η = 3.0 (right).

Length 150 200 250 300 350 400

DES-aa 88% 93% 79% 93% 69% 81% 35% 66% 19% 41% 4% 18%
DIV-str 131 125 153 184 149 190 73 162 38 104 9 45
NOV-str 0.650 0.656 0.618 0.636 0.594 0.610 0.576 0.589 0.551 0.574 0.525 0.554

HHH(%) 44% 53% 53% 64% 54% 70% 60% 77% 64% 85% 69% 92%
HEL(%) 53% 44% 47% 36% 46% 30% 40% 23% 36% 15% 31% 8%
EEE(%) 2.8% 2.7% 0.0% 0.4% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

dataset that includes both monomer and multichain structures. Additionally, when preparing the training set, ProteinMPNN
focused more on the sequence diversity under the same structure, while Pallatom needed to consider both sequence and
structure diversity. In terms of the training task, the objectives of the two models are fundamentally different. ProteinMPNN
is concerned solely with sequence design given a real backbone, whereas Pallatom must balance the dual objectives of
structure generation and sequence generation from pure noise.

G.5. Additional Comparative Methods and Results

In addition to the methodologies presented in the main text, we conducted extended benchmarking against three specialized
approaches: CarbonNovo (Ren et al., 2024) (for joint backbone-sequence co-design), FoldFlow2 (Huguet et al., 2024),
and Proteus (Wang et al., 2024) (both for backbone design). Systematic comparisons were performed under two modes
— CO-DESIGN-1 and PMPNN-1 — with results in Table 8, 9, 10 and 11. Pallatom consistently achieved top-ranked
performance across chain lengths from 100 to 300.

G.6. Pallatom-bb: Backbone-Only Configuration

Through systematic validation, we established the viability of atom14 as a comprehensive point cloud representation
for all-atom protein coordinates, while concurrently investigating and implementing point cloud-based approaches for
protein backbone description and design. To implement this, we simplified the atom14 representation to atom5 – a point
cloud representation using four backbone atoms (N,Cα,C,O) plus Cβ . We named this method Pallatom-bb. We trained
Pallatom-bb using identical training data and employed PMPNN 1 for backbone design evaluation. By analogy to the right
side of Table 1 and Figure 4, the experimental results for L=60 to 120 and L=150 to 400 are provided in Table 12, 13, 14
and 15.
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Table 8. Performance Comparison in CO-DESIGN 1 Mode.

Metric Method L=100 L=150 L=200 L=250 L=300 L=350 L=400

DES-aa Pallatom 86.8% 92.9% 93.3% 81.0% 65.9% 41.3% 17.9%
CarbonNovo 75.6% 72.8% 70.0% 70.0% 59.6% 47.2% 38.8%

DIV-str Pallatom 69 125 184 190 162 104 45
CarbonNovo 61 64 52 48 36 36 40

NOV-str Pallatom 0.711 0.656 0.636 0.610 0.589 0.574 0.554
CarbonNovo 0.717 0.694 0.717 0.725 0.748 0.730 0.701

Table 9. Performance Comparison in PMPNN 1 Mode for DES-bb(w).

Method L=100 L=150 L=200 L=250 L=300 L=350 L=400

Pallatom 90.4% 94.0% 90.8% 80.8% 64.4% 36.0% 17.6%
CarbonNovo 55.2% 46.8% 50.4% 45.6% 39.2% 26.4% 16.0%
FoldFlow2 71.6% 74.0% 70.0% 57.2% 51.2% 44.4% 34.8%
Proteus 74.8% 84.8% 78.0% 67.2% 62.0% 52.4% 57.2%

Table 10. Performance Comparison in PMPNN 1 Mode for DIV-str.

Method L=100 L=150 L=200 L=250 L=300 L=350 L=400

Pallatom 79 131 171 190 157 90 44
CarbonNovo 35 37 29 36 24 22 17
FoldFlow2 30 32 32 39 25 26 18
Proteus 50 34 34 15 22 30 20

Table 11. Performance Comparison in PMPNN 1 Mode for NOV.

Method L=100 L=150 L=200 L=250 L=300 L=350 L=400

Pallatom 0.709 0.659 0.631 0.607 0.588 0.577 0.557
CarbonNovo 0.730 0.717 0.733 0.725 0.753 0.739 0.703
FoldFlow2 0.740 0.694 0.679 0.656 0.641 0.636 0.631
Proteus 0.761 0.743 0.742 0.779 0.763 0.749 0.734

Pallatom-bb achieves high designability within training sequence lengths but exhibits reduced structural diversity. While
showing limited extrapolation capability for longer sequences, it marginally outperforms RFDiffusion in overall metrics.
Crucially, backbone-only point cloud approaches neglect critical side-chain/sequence interactions, whereas atom14’s all-
atom framework explicitly models structural-sequence constraints, demonstrating superior holistic performance across
design benchmarks.
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Table 12. Comparative Evaluation of Pallatom-bb Under PMPNN 1 mode Across Chain Lengths 60–120.

Method Des-bb(w/wo) DIV-str NOV-str

Protpardelle 30.00%(80.23%) 15 0.747
ProteinGenerator 93.14%(96.34%) 151 0.785
Multiflow 84.69%(95.43%) 184 0.744
RFdiffusion 78.29%(84.40%) 165 0.805
Pallatom 89.89%(94.46%) 318 0.716
Pallatom-bb 96.46%(97.49%) 164 0.760

Table 13. Comparative Evaluation of Pallatom-bb Under PMPNN 1 on Designability.

Method L=150 L=200 L=250 L=300 L=350 L=400

RFDiffusion 77.2% 58.0% 45.6% 32.4% 22.0% 20.8%
ProteinGenerator 91.2% 80.0% 64.8% 38.4% 14.8% 1.2%
ProtPardelle 29.2% 0 0 0 0 0
MultiFlow 88.8% 78.8% 79.6% 68.8% 66.4% 51.6%
Pallatom 94.0% 90.8% 80.8% 64.4% 36.0% 17.6%
Pallatom-bb 92.0% 80.4% 52.8% 43.6% 34.4% 36.8%

Table 14. Comparative Evaluation of Pallatom-bb Under PMPNN 1 on Structure Diversity.

Method L=150 L=200 L=250 L=300 L=350 L=400

RFDiffusion 62 62 52 44 32 27
ProteinGenerator 23 23 12 6 4 2
ProtPardelle 1 0 0 0 0 0
MultiFlow 63 66 73 64 63 57
Pallatom 131 171 190 157 90 44
Pallatom-bb 41 52 52 55 46 43

Table 15. Comparative Evaluation of Pallatom-bb Under PMPNN 1 on Structure Novelty.

Method L=150 L=200 L=250 L=300 L=350 L=400

RFDiffusion 0.688 0.689 0.672 0.679 0.679 0.687
ProteinGenerator 0.752 0.721 0.733 0.734 0.756 0.737
ProtPardelle 0.790 - - - - -
MultiFlow 0.710 0.700 0.724 0.730 0.742 0.738
Pallatom 0.659 0.631 0.607 0.588 0.577 0.557
Pallatom-bb 0.720 0.694 0.667 0.655 0.662 0.647
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Figure 8. Comparison of χ-angle distributions between Pallatom-generated proteins (blue) and natural protein counterparts (yellow) in the
PDB and AFDB dataset.
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Figure 9. Comparison of conformational clashes distributions between Pallatom-generated proteins and natural protein counterparts in the
PDB and AFDB dataset. The left panel displays intra-residue clash counts, while the right panel shows inter-residue clash counts.
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Figure 10. Comparison of pLDDT between sequences designed by Pallatom and ProteinMPNN across different lengths. Sequences
designed by Pallatom are labeled as “Pallatom (CO-DESIGN),” while sequences designed by ProteinMPNN based on the backbone are
labeled as “Pallatom (PMPNN).”
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G.7. Analysis of Sampling Time

We conducted a comparative analysis of sampling times for each method. Specifically, we standardize the diffusion sampling
steps to T = 200 and sample 100 proteins for each length, calculating the mean and standard deviation. All methods were
tested on the same hardware: CPU: AMD EPYC 7402 @2.8GHz, GPU: NVIDIA GeForce RTX 4090 with 24GB VRAM.

Table 16 presents the results. Thanks to JAX’s JIT compilation and our optimizations at the atom level of Attention,
Pallatom achieved the second fastest sampling speeds for lengths ranging from 100 to 350, outperforming all methods except
Protpardelle. At L = 400, even with the atomic-level length reaching (14× 400)× (14× 400), Pallatom’s performance
remains comparable to the second-fastest method, Multiflow, and is 5 times faster than RFdiffusion and 16 times faster than
ProteinGenerator.

Table 16. Sampling Time (in seconds). The shortest time is highlighted in bold, and the second shortest is indicated in italics.

Length 100 150 200 250 300 350 400

Protpardelle 10.9±0.1 11.3±0.2 11.7±0.2 12.5±0.2 24.5±0.5 26.3±0.6 27.6±0.9
ProteinGenerator 414.1±107.5 389.5±2.3 388.8±1.3 477.6±1.7 624.0±4.1 796.3±4.6 950.3±5.3
Multiflow 25.3±0.4 25.3±0.6 27.1±0.3 29.4±0.2 35.1±0.6 40.5±0.2 46.6±0.5
RFdiffusion 95.5±14.6 93.9±1.0 106.3±0.9 138.5±0.8 183.0±0.8 230.7±1.6 287.4±6.5
Pallatom* 10.2±0.1 12.1±0.1 18.2±0.1 21.9±0.1 33.3±0.1 40.4±0.1 57.5±0.1
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Figure 11. Additional novel designable proteins generated by Pallatom. The blue structures in the figure represent the designable protein
sequences generated by Pallatom, which have been predicted using ESMfold and colored based on pLDDT scores. The white structures
are the nearest neighbors from the Foldseek database (using the default eight databases on the Foldseek web server), with the distances
between the two sets of structures evaluated using TM-Score and RMSD.
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Figure 12. Additional all-atom protein structures generated by Pallatom for longer sequence lengths. The white structures represent those
generated by Pallatom, while the colored structures are predicted by ESMfold and are colored according to pLDDT values, with bluer
hues indicating higher pLDDT scores.
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