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Abstract

Natural behaviors, even stereotyped ones, exhibit variability. Despite its role in ex-
ploring and learning, the function and neural basis of this variability is still not well
understood. Given the coupling between neural activity and behavior, we ask what
type of neural variability does not compromise behavioral performance. While
previous studies typically curtail variability to allow for high task performance in
neural networks, our approach takes the reversed perspective. We investigate how
to generate maximal neural variability while at the same time having high network
performance. To do so, we extend to neural activity the maximum occupancy
principle (MOP) developed for behavior, and refer to this new neural principle
as NeuroMOP. NeuroMOP posits that the goal of the nervous system is to max-
imize future action-state entropy, a reward-free, intrinsic motivation that entails
creating all possible activity patterns while avoiding terminal or dangerous ones.
We show that this goal can be achieved through a neural network controller that
injects currents (actions) into a recurrent neural network of fixed random weights
to maximize future cumulative action-state entropy. High activity variability can
be induced while adhering to an energy constraint or while avoiding terminal states
defined by specific neurons’ activities, also in a context-dependent manner. The
network solves these tasks by flexibly switching between stochastic and determin-
istic modes as needed and projecting noise onto a null space. Based on future
maximum entropy production, NeuroMOP contributes to a novel theory of neural
variability that reconciles stochastic and deterministic behaviors within a single
framework.

1 Introduction

From opening a door to crossing the street, everyday life hinges on reliably executing actions. Despite
that, natural behaviors, including repetitive movements from expert athletes [1, 2, 3, 4], exhibit
variability [5, 6, 7]. The mechanisms governing the emergence of this variability from the central and
peripheral nervous systems remain unclear. Variability of neural activity in motor cortex [8, 9, 10] and
subcortical structures [11, 12] controlling muscle movements, as well as state changes of the effectors
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due to, e.g., fatigue [13, 14], might contribute to the observed behavioral variability. However, as
behavioral variability is also observed at longer time scales during perception [15, 16], decision
making [17, 6, 5, 18] and planning [19], neural fluctuations in most parts of the brain [20, 21, 22]
might be involved in the generation of variable behavioral repertoires as a whole.

Several mechanisms have been put forward for the generation of neural variability, including synaptic
noise within neural circuits [23, 24] or non-linear network interactions leading to variable activity
patterns [25, 26, 27, 28]. These proposed mechanisms are predominantly designed to describe
variability during spontaneous activity – in the absence of sensory stimuli – [22, 20] or in response to
simple stimuli [29, 30], most frequently outside a complex task. In other theoretical studies where the
goal is to maximize network performance in a task, variability is typically suppressed after learning
[31, 32, 33]. If anything, the initial noise or activity variability is used as means to regularize and
promote exploration during learning [34, 35], but they are considered to be unnecessary thereafter.
This approach is also the one taken in state-of-art reinforcement learning, where variability is added
during learning, but during task execution policies are forced to be deterministic [36, 37].

Given these two coexisting sides of natural behavior – namely, high task performance in spite
of large variability – we ask whether it is possible to have neural networks generating maximal
variability while at the same time being able to flexibly switch to deterministic behavioral modes
when needed. We surmise that generating neural variability is a fundamental goal of the nervous
system, as it enables the exploration of its entire dynamical range. This idea parallels the one that
neural activity should be variable to generate the vast behavioral repertoires [38, 8, 39, 40, 41] as the
ones empirically observed [5, 18, 42, 11]. The sought neural variability needs to be highly structured
in order to avoid non-adaptive behaviors. One relevant example comes from reaching tasks, where
neural activity is indeed found to be confined in null spaces as to avoid undesired movements [43].
To address the above question, we build on the maximum occupancy principle (MOP) developed for
behavior [44, 45], which posits that agents ought to occupy action-state space by generating all sorts
of action-state paths compatible with the dynamical and environmental constraints. Applied to neural
activity, we introduce NeuroMOP, which puts forward the hypothesis that the brain should generate
maximum entropy in the neural activity paths. Importantly, this entails avoiding the terminal states
where further entropy cannot be generated. This principle aligns with a broad body of Reinforcement
Learning (RL) literature on reward-free algorithms based on purely-entropic objectives [37, 46, 47].
By optimizing the cumulative sum of future action-state entropy, NeuroMOP emphasizes seeking
future variability to the extent that does not compromise performance. By properly defining terminal
states as absorbing states where no more entropy can be generated, this principle seeks variability
while also generating behaviors that guarantee future ‘survival’.

In this paper, we employ random recurrent neural networks (RNNs) of fixed weights as a simplified
representation of brain dynamics, and we let them interact with a stochastic input current generator
following MOP (Fig. 1). The input current generator (the agent) is designed to maximize the entropy
– hence, the variability – of the series of currents (a function of the actions) it injects in the RNN (the
environment). As expected, variable currents lead to variable neural activities, but this variability
becomes structured in order to avoid dangerous (terminal) states. To bridge neural variability with
functionality, we test our architecture in a series of different problems. First, we show that the
NeuroMOP network learns to satisfy energy constraints, while generating large neural variability.
Second, a subset of RNN neuron activities can be confined within complex regions while remaining
free within the region, thereby ‘drawing’ different symbols, also in a context dependent manner.
Crucially, the NeuroMOP network not only learns to effectively solve tasks, but it maintains a high
dimensionality of action signals whenever possible, allowing the visitation of a wide range of activity
patterns. By flexibly reducing its dimensionality when close to terminal states, we show that low
dimensionality is an emergent property under constrained tasks where higher dimensionality is the
default mode.

2 Methods

2.1 NeuroMOP architecture: controller and RNN

The NeuroMOP architecture consists of a controller (agent) injecting currents into an RNN of fixed
random weights (environment) (Fig. 1). The state x ∈ RN of the RNN, where xi is the activity of
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Figure 1: Schematic of the NeuroMOP network. At each time step the controller reads the activity x
(state) of the RNN and samples an action a from the policy π(·|x). Using the optimal policy in Eq. 4
requires predicting the effect that each of the possible actions a(k) ∈ A(x) would have on the state of
the RNN by computing the successor state x′(x, a(k)) and then evaluating the corresponding value
function V

(
x′(x, a(k))

)
in that state. The value function is approximated by a feedforward network

(FFN). Once sampled, the low-dimensional action a is expanded and transformed into currents I via
a matrix K and fed into the RNN. Next, the RNN state evolves one time step and the loop is repeated.
The weights of the FFN are trained via gradient descent using as cost function the Bellman error
stored along a batch of trajectories.

neuron i = 1, . . . , N , follows the dynamics

xi(t+ 1) = xi(t) + δt

−xi

τ
+Φ

 N∑
j=1

Jijxj + Ii(t)

 , (1)

where Φ(·) is a non-linear transfer function, δt is the integration time step of the dynamics, and Ii(t)
are currents injected by the controller in the RNN neurons. The recurrent connections of the RNN
are fixed and sampled from a normal distribution, Jij ∼ N (0, g2/N). We use a saturating transfer
function Φ(·) = tanh(·), which leads to chaotic dynamics when the internal recurrent connections
are strong enough [25] (see Fig. 2a). Results for RNNs with non-saturating (ReLU) transfer functions
are shown in Appendix F.

At time t, the controller samples a random action a from a state-dependent, stationary policy π(·|x).
The action is an M -dimensional discrete vector a ∈ A(x); we will consider below the presence
of terminal states x†, where the number of available actions is drastically reduced. Based on the
generated action a, the controller injects into the i-th neuron the current

Ii(t) = ρ

M∑
k=1

Kikak , (2)

where Kik ∼ U(0, 1) are positive input weights sampled from a uniform distribution and ρ is a
parameter that scales the strength of the current. Thus, internal actions a are expanded via the random
matrix K into N -dimensional currents. This expansion allows us to study the harder problem of
controlling the RNN’s dynamics using actions with reduced dimensionality, i.e., M ≪ N , but our
framework also works for projections, M > N .

The controller follows MOP, that is, it aims at occupying action-state path space [44]. Here we restrict
ourselves to action paths, and show the general action-state framework in Appendix D. We assume
that the controller gets an intrinsic reward of − lnπ(a|x) for generating action a when the network
is in state x at time t, being the largest when the generated action has low probability under the
current policy π. The controller does not greedily maximize this immediate intrinsic reward at every
time step. Instead, the policy π is chosen to maximize the value function, defined as the expected
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discounted sum of future intrinsic rewards

Vπ(x) = Eτ∼π,p

[
−

∞∑
t=0

γt lnπ(a(t)|x(t))

]
= Eτ∼π,p

[∑
t

γtH (A|x(t))

]
, (3)

with discount factor 0 < γ < 1. Note that this expression takes the form of a sum of future
action entropies, where H(A|x) = −

∑
a∈A(x) π(a|x) lnπ(a|x). The expectation is over all paths

τ = (x, a(0), x(1), a(1), . . . ) with initial condition x(0) = x generated by sampling actions from
the policy π and following the state transitions probability p = p(x(t+ 1)|x(t), a(t)) defined by Eq.
1. By virtue of maximizing action path entropy, the MOP agent occupies current and future action
space as broadly as possible [44, 45]. Discounted cumulative future action entropy stands as the only
measure of occupancy that adheres to the intuitive notion that the occupancy over an action path is
the sum of the occupancies over any of its subpaths, the so-called additive property [44].

The optimal policy π∗ ([44], Appendix C) maximizing the value function is

π∗(a|x) = 1

Z(x)
eγ

∑
x′ p(x

′|x,a)V ∗(x′) , (4)

where Z(x) =
∑

a∈A(x) e
γ
∑

x′ p(x
′|x,a)V ∗(x′) is the partition function and V ∗(x) is the optimal

value following the optimal policy, defined as

V ∗(x) = lnZ(x) = ln
∑

a∈A(x)

eγ
∑

x′ p(x
′|x,a)V ∗(x′) . (5)

In our specific implementation with deterministic dynamics (Eq. 1), the transition probability
p(x′|x, a) is a delta function, and so the successor state x′ is uniquely determined by the current
state x and the action a, x′(x, a). Our algorithms work well also for RNNs with noisy dynamics
(Appendix E).

We will define different problems by choosing specific state-dependent action sets, so that the
available set of actions a depends on x, a ∈ A(x). Specifically, we define terminal states, denoted
x†, as absorbing states the network cannot escape from and where doing nothing is the only
available action. These terminal states might represent detrimental state regions, e.g., too high neural
activity, or other adverse activity patterns resulting in significant external penalties, such as the falling
of an agent to the floor. With doing nothing being the only action, entering a terminal state is
an irreversible process leading to an intrinsic reward of always zero from that point onwards, i.e.,
− lnπ(a = nothing|x†) = ln 1 = 0, as no further action entropy can be generated. Therefore,
by definition, Vπ(x

†) = 0 for any policy. Terminal states can be considered ‘dead’ states of the
network, and they will be naturally avoided to keep maximizing future action path entropy. In our
implementations, non-terminal states share the same action set of M−dimensional binary actions
ak ∈ {−1, 1} ∀k = 1, . . . ,M . This does not imply that all non-terminal states are equally desirable;
via the computation of the value function, the network naturally exhibits less preference for ‘bad’
states that increase the likelihood of encountering terminal states in the future. We will show that
the structure of terminal regions, along with the network dynamics, leads to complex, rich, variable
behaviors without the need to specify an extrinsic reward function. In essence, MOP tells agents what
not to do, and thus it does not restrict behavior. In contrast, standard extrinsic reward maximization
tells agents what to do, inevitably limiting behavior. Note that maximizing action path entropy entails
striking a balance between maximizing immediate and future entropy, with behaviors that can become
locally very deterministic if this globally opens up larger repertoires of possible action courses, i.e.,
larger future action entropy.

2.2 Value function approximator by minimizing the Bellman error

As our problem involves a high-dimensional continuous state space (N = 100), we use a feed-
forward network (FFN) to approximate the optimal value function V ∗(x) in Eq. 5 with V (x,w). The
FFN with parameters w consists of one hidden layer of Nhid neurons, an input layer with input the
activities x of the RNN, and one single output neuron with activity V (x,w) (Fig. 1).

In order to optimize the parameters of the FFN, we consider VB(x,w), the expected evolution of the
approximated value function satisfying the Bellman consistency equation, defined as

VB(x,w) = ln
( ∑

a∈A(x)

eγ
∑

x′ p(x
′|x,a)V (x′,w)

)
. (6)
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If the approximated value function V (x,w) were equal to the optimal value V ∗(x), its expected
evolution would coincide with the value function itself, i.e., VB(·) = V ∗(·) (see Eq. 5). Thus, we
optimize the weights w of the FFN by minimizing a loss function, defined as the summed squared
errors between VB(·) and V (·, w) over trajectories in each epoch l = 1, . . . , Nep,

Ll(w) =
1

Ntraj

Ntraj∑
τ=1

1

t
(τ)
end

t
(τ)
end∑
t=1

(
V (x(τ)(t), w)− VB(x

(τ)(t), wl)
)2

, (7)

where the squared error is accumulated over a batch of Ntraj paths τ =(
x(τ)(0), x(τ)(1), . . . , x(τ)(t), . . .

)
, and the path lifetime t

(τ)
end is the minimum between the

time when the network reaches a terminal state and the maximum episode duration T . Each path τ is
generated by sampling actions from the policy in Eq. 4 with the same initial condition x(0) = x. The
policy depends on the specific values of the FFN weights at epoch l. The parameters of the network
are updated at each epoch l using Adam as optimizer.

Our results have proven to be stable also for FFNs only receiving as an input Ninp < N activities
randomly selected from the N−dimensional state, denoted x̃. If needed, the input can be extended to
include any required extra-information or x̃ can be constrained to specific neurons. For instance, in
the context-dependent constraints problem defined in Sec. 3.2.1, we added extra units to the FFN
input layer to flag (via a one-hot vector) the context. Including in x̃ the readout neurons (x1, x2)
improved stability and performance.

2.3 The reward-maximizing network

To provide a comparison for the NeuroMOP network, we introduce the R network, which aims
at maximizing the discounted sum of future extrinsic reward. To ensure a fair comparison, we
incorporate the notion of survivability present in MOP by assigning to the R network in state x and
taking action a the extrinsic reward

r(x, a) =

{
1 if x′(x, a) ̸= x†

0 if x′(x, a) = x† , (8)

where x′(x, a) is the state evolution of the RNN as defined in Eq. 1. To allow the generation of
variable trajectories also by this network, stochasticity in the action selection is implemented by
endowing the network with an ϵ-greedy policy defined as

a ∼ πϵ(·|x) =

{
argmax

a
Vϵ(x

′(x, a)) with probability 1− ϵ

random with probability ϵ
, (9)

where Vϵ(x) is the expected future cumulative reward when following this policy, which can be
written recursively as

Vϵ(x) = Ea∼πϵ,x′∼p [r(x, a) + γVϵ(x
′)] . (10)

In this framework ϵ is a hyperparameter controlling the amount of (random) action variability
generated by the network. To better compare the two networks behaviors, the choice of ϵ is such
that the average lifetime of the two networks in each problem is comparable. The value function is
approximated using a one-hidden layer FFN as in Sec. 2.2. Analogously to MOP, in order to train the
network we generate a batch of Ntraj paths τ starting with the same initial conditions x(τ)(0) = x
and minimize the loss function defined as the summed squared error between the approximated value
Vϵ(x,w) and its expected evolution following the Bellman equation in Eq. 10.

3 Results

3.1 Energy constraint

To test whether NeuroMOP can produce maximal variability under strict constraints, we first study
a scenario where a terminal state is reached when the overall level of the RNN’s activities is high.
Specifically, x† are all the states where the energy, defined as a function of x, exceeds a certain value
E(x†) > L (see Appendix B). In this way, we implement the idea that high activity is detrimental,
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Figure 2: Energy constraint. (a) In the free network, the RNN shows chaotic activity (top panel)
with high energy consumption (bottom) above threshold (dashed line). In the top panel, each line
represents the activity of a randomly sampled neuron of the RNN. A single trial is shown. (b) Early
in training (∼ 10 epochs), the NeuroMOP network quickly reaches a terminal state by crossing
the energy threshold (dashed line, bottom panel). Indeed, the large action entropy throughout the
trajectory suggests no state-dependent action entropy adjustment. Inset provides a zoom of the energy
close to the boundary. (c) After training, the NeuroMOP network is able to avoid terminal states for
the whole duration of the trajectory (T = 1000) by reducing its action entropy whenever closer to the
energy threshold. Inset as in (b). (d) The R network employs completely different and risk-averse
solutions. (e) Probability density function of the average state occupancy. (f) When far from the
energy threshold (E(x)≪ L), the NeuroMOP network exhibits maximum effective dimensionality
(EDa ≃M = 8), but loses one degree of freedom (EDa ≃M = 7) when approaching the threshold
corresponding to terminal states (E(x) ∼ L, i.e. E(x) ∈ [L− δL, L], with δL = 0.001, arbitrary).
The R network only lives far from the threshold injecting mainly inhibitory currents and it exhibits a
low effective action dimensionality. (g,h) With training, both networks increase the average standard
deviation of the individual trajectories ⟨σ⟩, with MOP displaying larger variability (g). Together, they
learn to reach the end of the episode tend = T = 1000 (h). Averages over Nav = 10 networks with
batches of Ntraj = 10 trajectories; errors are standard errors of the mean (SEM ).

either because it is costly [48], or because it leads to neural saturation, impeding sensory encoding
[49]. We consider a free network (the RNN without external current, Eq. 1 with I = 0) in a chaotic
state, where the repetitive saturation of the neurons activities leads to high energy consumption over
time (Fig. 2a). The NeuroMOP network learns to control the input current in order to generate
maximal input entropy while, at the same time, avoiding terminal states and thus surviving for the
whole length of the stimulation (Fig. 2b, early training; Fig. 2c, late training). Importantly, we
observe that the NeuroMOP network changes dynamical regimes depending on how far the energy
consumption is to threshold (Fig. 2c, bottom panel, inset): when the energy is close to threshold,
the action entropy reduces, and therefore the policy becomes more deterministic. In contrast, when
the energy is far from threshold, action entropy rises again and the policy increases its stochasticity.
Moreover, the policy dimensionality, as measured by the effective dimensionality of the currents (see
Appendix A), is lower when close to the threshold compared to further away (Fig. 2f), projecting
noise to a lower dimensional manifold such that actions (i.e., currents) that would push the network
above threshold are suppressed. Overall, these results show that the NeuroMOP network flexibly
changes from a highly stochastic to a more deterministic policy depending on the network state.

Comparing NeuroMOP with the R network, we find that the R network employs different solutions,
showcasing a preference for risk-averse solutions (Fig. 2d). As a long lifetime is encouraged by the
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Figure 3: Constrained neural space. (a) Terminal states are defined as the boundaries of a square in the
activity space of two randomly selected RNN’s neurons (x1, x2). (b-c) As a result, the NeuroMOP
network confines the activities x1 and x2 within the square boundaries (panel b, magenta traces),
while it ‘draws’ the square by filling its inside (panel c, colored line, representing one trajectory of the
two readout neurons). In contrast, in the space of any other pair of neurons (xi, xj) i, j > 2 activities
spread in space (grey line, representing one trajectory). A zoom-in of the readout space shows that
the NeuroMOP network adapts the action entropy based on the state proximity to the boundaries
(colorbar, c, right panel). (d) The R network, following an ϵ − greedy policy, fails to avoid the
terminal states except for extremely small values of ϵ, effectively reducing its action stochasticity to
zero. Lifetime computed after training the network for 100 epochs. (e) Matching lifetimes for both
NeuroMOP and R network with an ϵ−greedy policy with exponential decay (see Appendix B). The
R network learns to satisfy the boundaries constraints after the exponential decay has dropped the
randomness of the action selection (ϵ) to zero. (f) Same as in (c) for the R network. The R network
only ‘draws’ one side of the square with the two readout neurons (x1, x2), while the other neurons,
as well receiving the external currents, are driven towards the saturating states. Averages are over
Nav = 10 networks with batches of Ntraj = 10 trajectories. Errors are SEM .

extrinsic reward, the R network learns to steer the RNN’s energy very far from the terminal state, so
that the spontaneous action fluctuations given by the stochasticity of the random policy would not
harm the overall performance by keeping it far from threshold. The policy found by the R network
consists in injecting mostly inhibitory currents, driving the RNN towards the point of minimum
energy and effectively ‘silencing’ the RNN.

Although both networks are able to avoid the terminal states, they lead to different behaviors and
space occupancy: while the R network tends to suppress the RNN’s activity, the NeuroMOP network
exploits the overall range of activities permitted by the terminal states (Fig. 2e). Again, the NeuroMOP
network is able to do so by adapting its action entropy in a state dependent manner. Proximity to the
terminal state imposes a constraint on the network’s activity. In contrast, the R network operates only
far from the threshold and, by showing a clear preference for inhibitory actions, exhibits an effective
dimensionality significantly lower than the maximum possible one, i.e., EDa < M (Fig. 2f). As a
consequence of the different action selection strategies, the RNN’s neurons within the NeuroMOP
network display greater variability than those within the R network, with a larger average standard
deviation over the trajectories (Fig. 2 g). The choice of ϵ, representing the level of stochasticity, of
the R network is such that the two networks have comparable lifetimes (Fig. 2 h).

3.2 Constrained neural space

Terminal states can be arbitrarily imposed on the activities of individual neurons or any subset of
them, not only globally as in the previous scenario. Here, we test NeuroMOP in a new problem
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Figure 4: NeuroMOP can constrain a subset of neural activities within different regions of the neural
space in a context-dependent manner. The network is informed of the shape it needs to draw via
a one-hot vector fed into the value function. (a) Example of a single network drawing C = 6
different shapes by confining its readout activities (x1, x2) within the corresponding activity regions
(T = 5000). Notably, action entropy is both state and context dependent. One trajectory per context
is shown. (b) Mean accuracy, measured as the mean lifetime in each context tCend, reflects varying
shape difficulty, consistent across networks. (c) With training, the NeuroMOP network learns to
approach the arbitrary training end of the simulation tend = T = 600 (left panel) and to increase the
average standard deviation of the individual trajectories ⟨σ⟩ (right panel). Averages over N = 10
networks, with batches of Ntraj = 10 trajectories. Errors are SEM .

where terminal states are set directly on two randomly selected readout neurons (x1, x2) of the RNN.
Specifically, a terminal state is encountered any time |x1| > L or |x2| > L.

The structure of the terminal states generates interesting behavior in the NeuroMOP network: the
network ‘draws’ a square in the (x1, x2) activity space by filling the available area while avoiding
the square’s boundaries (Fig. 3). In other words, the network occupies all the space allowed by the
terminal states after learning. The NeuroMOP network can confine the activities of the two readout
neurons even within very small regions of the activity space (Fig. 3b, magenta lines). Notably, as
neurons are driven by actions that aim to maximize future cumulative entropy and terminal states are
here exclusively set on x1 and x2, all other neurons (xi, ∀i ̸= 1, 2) occupy a much larger region of
the activity space (grey lines, in their own spaces (xi, xj)). In the (x1, x2) space, the network reduces
its action entropy when in proximity to terminal states, corresponding to the square boundaries (Fig.
3c). Due to the activity correlations induced by the shared input current, controlling the readout
neurons along the anti-diagonal of the square presents challenges for the NeuroMOP network. In
those regions, the NeuroMOP network learns the necessity of highly deterministic action selection to
avoid terminal states (Fig. 3c, right panel).

While NeuroMOP adapts the stochasticity of its policy to occupy the maximum available space, we
find that the R network, following ϵ−greedy policy, fails to do the same for most values of ϵ (Fig.
3d). The R network’s lifetime is comparable to that of the NeuroMOP network for extremely low
values of ϵ (notice decreasing scale), for which the consequent randomness of the action selection is
effectively zero. To give more flexibility to the R agent, we allowed the R network to first explore
phase space by using an epoch-dependent ϵl with an exponential decay. Starting from a larger ϵ0 at
epoch l = 0, and slowly decreasing it, we can match the two lifetimes (Fig. 3e). Despite this, the
inherent greediness of the action selection forbids the R network to occupy all the available activity
region (Fig. 3f), resulting in a largely repetitive and stereotyped network behavior.

3.2.1 Context-dependent neural space constraints

We next wondered about the versatility of the NeuroMOP network to confine neural activity within
even more complex boundaries. We introduce context-dependent neural space constraints (see
Appendix B), where in each context the set of terminal states in the readout space of two random
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activities (x1, x2) define different shapes, with different sizes, orientations and border complexity.
We augment the input layer of the value approximator described in Sec. 2.2 with C = 6 additional
nodes, where C represents the number of different shapes where activity has to be confined. Thus,
the feedforward value approximator now receives, alongside the network state x, a C dimensional
one-hot vector indicating the current context.

The same feedforward network, opportunely informed of the context, correctly approximates the
value function. Consequently, the NeuroMOP network also adapts its action entropy in a context-
dependent manner (Fig. 4a). Notably, while avoiding terminal states, the NeuroMOP network learns
to occupy the available state region in each given context. As expected, some terminal states rise
greater challenges for the NeuroMOP network to be avoided (Fig. 4b), a feature that is independent
on the number of stored contexts C. Overall, the NeuroMOP network successfully avoids terminal
states while increasing the variability in the network with learning (Fig. 4c).

4 Discussion

We have introduced NeuroMOP, a novel theory that puts forward the idea that neural variability
arises from the active generation of future neural activity entropy. We have explored this theory by
introducing a mechanism for maximizing and controlling variability in a highly-dimensional RNN in
the chaotic regime. Contrary to the common idea that excessive variability may impede performance,
our model showcases that injecting maximal controlled variability into RNNs actually permits to
solve different ‘tasks’, indirectly defined by the structure of terminal states. By allowing for a diverse
array of actions according to the state, this variability enables the network to explore a wider solution
space, potentially leading to more effective adaptations [50, 51, 52].

We tested our network in a series of scenarios. First, we introduced an energy threshold on the
network activity. Energy constraints may have been likely selected by evolution, as brain activity is
costly both during information processing and at rest [53, 48]. By observing that the network always
keeps energy consumption close to the threshold without exceeding it, our results align with the
idea that sustained, controlled energy consumption could actually be beneficial [54]. In a second
series of problems, we showed that the NeuroMOP network can avoid terminal states in the readout
space while increasing the variability in the subspaces where no boundaries are set. Therefore,
long lifetime is achieved by flexibly switching between deterministic and stochastic dynamical
regimes when needed. Additionally, we show that our algorithm is capable of solving problems often
tackled through extrinsic rewards, such as balancing a cartpole (Appendix G), or scenarios where
more deterministic behavioral modes are required, like traversing a narrow corridor in neural space
(Appendix H). In addition, we show that introducing extrinsic rewards in the MOP framework largely
reduces the variability of the network behavior (Appendix I).

When comparing MOP with other systems that also generate variability, like a reward-maximizing
(R) network with epsilon-greedy noise, we find that R networks can only avoid terminal states after
extensive training and only by quenching the source of randomness. We remark that MOP agents
face as well the drawback of stochasticity as their policy follows a Boltzmann distribution (Eq.
4), and thus a non-zero probability is assigned to all actions regardless of the state. Despite that,
MOP agents overcome this tendency by adapting their randomness via the computation of the value
function, which trades-off immediate with future variability. This is in contrast with R agents, where
the stochasticity parameter ϵ is state independent. These results suggest that state adaptation of
stochasticity is a relevant property we might expect in intelligent systems.

By keeping the weights of the RNN fixed, we depart from the common practice of training networks.
Weights training usually leads to activities exploiting the saturation state of the neurons [35, 33]. We
conjecture this dynamics to be unrealistic, as biological neurons largely display activities that are well
below their maximum values [55, 56, 49]. Analogously, saturation is undesirable even in artificial
neural networks due to the vanishing curvature of the loss landscape. By favoring states and actions
with low probability, the NeuroMOP network leads to the more uniform occupation as possible,
avoiding saturation and encouraging neurons to stay in a ‘healthy’ regime, i.e., a regime suitable for
computation [57]. As well, we have demonstrated that NeuroMOP can control high-dimensional
chaotic RNNs. Future research should investigate how MOP-driven input currents affect the RNN’s
regime. We anticipate that MOP currents will stabilize neural trajectories, consistent with operating at
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the edge of chaos [58]. Characterizing chaoticity as a function of the input properties (e.g., magnitude)
[59] is a promising direction.

In our system, an external stochastic input current generator is designed to maximize its cumulative
entropy impinging onto the neurons of an RNN. The idea of specialized circuits serving the role of
stochastic input generator is not novel. In songbirds, for instance, the LMAN brain region, part of
the neural circuit controlling songs’ production, has been largely postulated to fulfill the function of
injecting variability into the downstream motor pathways [60, 61]. Allegedly, increased variability
in the motor neural activity favors behavioral exploration in the songs’ production. Remarkably, it
has also been shown that, during courtship, adult birds significantly reduce their vocal variability
compared to their solitary singing [60, 62]. This switch of behavior from random to more deterministic
modes aligns with our hypothesis of the existence of directed variability in the brain.

Finally, NeuroMOP offers several testable predictions regarding the nature of neural variability
we should expect in the brain. Firstly, it predicts that neural variability will persist even after
extensive training, which aligns with studies reporting large spiking variability even in well-trained
non-human primates [21, 29]. Despite this persistence, our model also suggests that neural variability
may decrease when terminal states are sufficiently close, as the network is expected to transition
into a more deterministic mode to avoid those states [30, 63]. Finally, our model predicts that
reward signaling systems in the brain will also signal intrinsic motivation rewards. This is partially
supported by recent studies demonstrating that spontaneous movements elicit dopamine release
[11]. Further, we postulate that the visitation of all activity states may increase flexibility and
help generalization. Consistent with that, certain activity states are observed to be replayed in the
absence of any stimulation in the brain, and several mechanisms in RNNs have been proposed for
this phenomenon [64, 65]. NeuroMOP predicts the deterministic reactivation of activity patterns and
memories that are relevant for generating higher future behavioral entropy, but the more stochastic
reactivation of less relevant memories.

Limitations In the proposed framework, we choose not to approximate the policy, but instead
to rely on an ‘oracle’ to provide the best action following the derived exact analytical expression
(Fig. 1, π box). Our model could be extended to include a neural network to also approximate the
policy π using actor critic approaches [66]. Therefore, we do not delve in the process of learning
the policy itself. Exploring the policy learning process represents a significant direction for future
work. Despite relying on the exact policy, the input current selection has still a high computational
cost. In order to partially mitigate this, we introduced the random matrix K, which transforms low
M -dimensional binary actions into high N -dimensional currents. Via this matrix, we were able to
reduce complexity from ∼ O

(
2N
)

to ∼ O
(
2M
)
, thereby significantly speeding up the computation,

without compromising the convergence of the algorithm. The extension of NeuroMOP to more
realistic spiking and Poisson-like variability is another major possible direction. Finally, another
interesting direction that we have not addressed here is how to learn the structure of terminal states,
and how nearby ‘bad’ states surrounding terminal states can be learnt and used to speed up learning.

Conclusion Our results demonstrate that maximizing cumulative future action entropy while
avoiding terminal states leads to interesting behaviors without the need of defining an extrinsic reward
function. Our work shows that NeuroMOP networks can flexibly switch between stochastic and
deterministic modes as needed to avoid terminal states. These results contribute to a novel theory
of neural variability based on future entropy production, reconciling stochastic and deterministic
behaviors within a single framework. Our work highlights a significant limitation in classical
neuroscience studies, where limited behavioral repertoires are promoted by the task design and
experimental trials terminate upon reaching the goal. In ecological settings, in contrast, agents
continuously generate interim goals and elicit new behaviors. NeuroMOP offers a powerful model of
neural activity underlying natural behavior.
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Appendix

A Additional Methods

Effective dimensionality We model an external controller sampling actions a living in an
M−dimensional space. In the NeuroMOP network, the controller aims at occupying action-state
path space, and therefore we expect the sampled actions to maximally occupy the action space. To
quantify the effective occupation of action space, we introduce the effective dimensionality [67, 68]
of the actions as

EDa =
(
∑

i λi)
2

(
∑

i λ
2
i )

, (11)

where λi (i = 1, . . . , N ) are the eigenvalues of the covariance matrix of the sampled actions.
Intuitively, the effective dimensionality quantifies the number of dimensions needed to explain the
observed variance in the sampled actions by identifying the dimensions of spread of the signal. In the
absence of constraints, the NeuroMOP network would maximally occupy space, uniformly in all the
directions of the action space, leading to comparable eigenvalues λi ∀i = 1, . . . ,M and an effective
dimensionality close to the full dimensionality of the action space itself (EDa ≃M ). The presence
of constraints introduce directions of actions that will be avoided by optimal networks. Along these
constrained directions, the sampled actions variances, hence the corresponding eigenvalues, are
significantly reduced, resulting in a lower effective dimensionality, i.e. EDa < M . Since actions
are sampled from a state-dependent stationary distribution, the effective action dimensionality may
vary according to the state. To investigate that, we quantify the effective dimensionality as a function
of different states by restricting the covariance matrix, from which the eigenvalues in Eq. 11, to the
actions sampled in specific regions of the state space.

Average standard deviation We quantify the induced variability in the RNN’s activities by mea-
suring the fluctuations of individual neurons. For this reason, we introduce the average standard
deviation as

⟨σ⟩ = 1

Ntraj

1

N

∑
τ

N∑
i=1

σ
(τ)
i , (12)

where σ
(τ)
i is the standard deviation of the activities of neuron i ∀i = 1, . . . , N along a trajectory τ .

Parameters of the simulation We simulate RNNs in the chaotic state [25, 35] with the parameters
reported in Table 1, unless otherwise specified. The parameters defining the algorithm, including the
specifics of the feedfoward network and the details of the optimization, are reported in Table 2.

B Terminal states

Energy constraint Terminal states are reached whenever the RNN’s current energy expenditure

exceeds L = 0.11 (arbitrary units). Energy is defined as E(x) = 1
N

√∑N
i=1 (xi + 1)

2
, the euclidean

norm of the activity, translated so that the lowest activity state xi = −1 ∀i = 1, . . . , N has zero
energy. Thus, terminal states x† are all the states where E(x†) > L. Analogous results have been

Table 1: Hyperparameters for the RNN.

Parameter Value

N 100
nonlinearity Φ(·) tanh, ReLU
δt 0.05
τ 1.0
g 5.0
ρtanh 2.0
ρReLU 5.0
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Table 2: Hyperparameters for the algorithm, including the parameters of the FFN.

Parameter Value

action dimensionality M 8
discount factor γ 0.9
number of hidden layers (FFN) 1
hidden units per layer 256
input units Ninp 20
FFN nonlinearity ReLU
x† see Sec. Terminal states
training epochs Nep see Sec. Terminal states
number of agents Nag 10
trajectories per batch Ntraj 10
optimizer Adam
learning rate η 0.01

obtained with different definitions of energy function. Reward-maximizing (R) networks follow an
ϵ−greedy policy with ϵ = 0.3. Both networks are trained for Nep = 60 epochs.

Constrained neural space Terminal states are all states where |x1| > L or |x2| > L, with (x1, x2)
being two arbitrary neurons of the RNN and L = 0.1. The R networks follow an ϵ−greedy policy
with exponential discount, i.e. at epoch l the probability of sampling a random action decreases as
ϵl = ϵl−1 × δ, with ϵ0 = 0.5 and δ = 0.9. The networks are trained for Nep = 100 epochs.

Context-dependent neural space constraints Taking two length scales L+ = 0.2 and L− = 0.1,
we define terminal states in the different contexts as below. In each epoch, one of the C possible
contexts is randomly sampled, and kept fixed for all the trajectories in the epoch. More stable yet
slower convergence is obtained if different contexts are sampled in each trajectory of the batch. The
NeuroMOP network is trained for Nep = 100 epochs. Terminal states in each context are reached
whenever the following conditions are met:

square context: |x1| > L− or |x2| > L−;

plus context: |x1| > L+ or |x2| > L+ or (|x1| > L− and |x2| > L−);

circle context:
√

x2
1 + x2

2 > L+;

diamond context: |x1|+ |x2| > L+;

oval context:
(

x1

L+

)2
+
(

x2

L−

)2
> 1;

heart context:
(
x2
1 + x2

2 − L−
)3 − x2

1x
3
2 > 0.

C Optimal policy and value

We show here the derivation of the analytical expression for the optimal policy π∗(a|x) in the case
of an agent following MOP and maximizing the action-state path entropy [44]. Then, we use this
analytical solution to derive the Bellman consistency equation. While in the main text we focused
on agents maximizing the action space occupancy, here we take the more general formulation
considering both the action and state space occupancy maximization. We include the state entropy in
our NeuroMOP network using a small noise approximation in Appendix D.

The MOP agent gets an intrinsic reward over a path equal to R(τ) =
−
∑

t γ
t ln
(
πα (a(t)|x(t)) pβ (x(t+ 1)|x(t), a(t))

)
, with discount factor 0 < γ < 1, action

α > 0 and state β ≥ 0 weights, and where τ = (x(0), a(0), x(1), a(1), . . . , x(t), a(t), . . . ) denotes
a path of states and actions. Although we use two parameters, α and β, effectively the number of
parameter is only one, their ratio, which measures the relative strength of state over action entropy.
Note that the action path entropy maximizer agent is recovered by taking β = 0 and α = 1. The
objective of the agent is to maximize the value function V (x), defined as the expected return of the

16



intrinsic reward as V (x) = Eτ∼π,p [R(τ)|x(0) = x]. The Bellman recursive equation enables us to
write the value function as the sum of the intrinsic reward the agent receives in the state x and the
expected discounted sum of future intrinsic rewards, i.e., the value function in the next state, taking
the form
V (x) = Eτ∼π,p [R(τ)|x(0) = x]

= Eτ∼π,p

[
−
∑
t=0

γt ln
(
πα (a(t)|x(t)) pβ (x(t+ 1)|x(t), a(t))

)
|x(0) = x

]

= −
∑
a

∑
x′

π(a|x)p(x′|x, a)
∑
t=0

γt ln
(
πα(a(t)|x(t))pβ (x(t+ 1)|x(t), a(t))

) ∣∣∣∣
x(0)=x

= −
∑
a

∑
x′

π(a|x)p(x′|x, a)
[
ln
(
πα(a|x)pβ (x′|x, a)

)
+

+ γ
∑
t=0

γt ln
(
πα(a(t)|x(t))pβ (x(t+ 1)|x(t), a(t))

) ∣∣∣∣
x(0)=x′

]
= −

∑
a

π(a|x)α lnπ(a|x)−
∑
a

π(a|x)
∑
x′

p(x′|x, a)β ln p (x′|x, a) +

+ γE
[
R(τ ′)|x(0) = x′]

= αH(A|x) + β
∑
a

π(a|x)H(S|x, a) + γ
∑
a

π(a|x)
∑
x′

p(x′|x, a)V (x′) ,

where we recognize the entropy over the action spaceH(A|x) = −
∑

a π(a|x) lnπ(a|x) and state
spaceH(S|x, a) = −

∑
x′ p(x′|x, a) ln p (x′|x, a).

The optimal policy π∗(·|·) is the policy maximizing this value function. Therefore, we look for the
critical policies πc(·|·) under the constraints π(·|s) ≥ 0 and

∑
a π(a|x) = 1. Finding the critical

points of the Lagrangian function defined as L = V (x)− λ (
∑

a π(a|x)− 1) involves solving

∂L
∂π(a|x)

∣∣∣∣
π=πc

=
∂V (x)

∂π(a|x)

∣∣∣∣
π=πc

− λ(x, x) = 0 , (13)

where λ(x, x) indicates that the derivatives and the policy are computed in the same state x. Deriving
the value function with respect to π(a|x) gives the desired Lagrange multiplier λ. By writing V (x)
using the Bellman recursive equation we get that

λ(x, x) =
∂V (x)

∂π(a|x)

∣∣∣∣
π=πc

=
∂

∂π(a|x)

[
−
∑
a′

π(a′|x)
(
α lnπ(a′|x) +

∑
x′

p(x′|x, a′)
(
β ln p(x′|x, a′)−

− γV (x′)
))]∣∣∣∣∣

π=πc

= −α lnπc(a|x) +
∑
x′

p(x′|x, a) (−β ln p(x′|x, a) + γVπc(x′))−

− α+ γ
∑
a′

πc(a′|x)
∑
x′

p(x′|x, a′)λ(x′, x)

= −α lnπc(a|x)− β
∑
x′

p(x′|x, a) ln p(x′|x, a) + γ
∑
x′

p(x′|x, a)Vπc(x′) + h(14)

where we collected in h = h(x) all the terms that are not dependent on
a. Introducing the partition function Z(x) = exp

(
1
α (λ(x, x)− h(x))

)
=∑

a∈A(x) exp
(
1
α (βH(S|x, a) + γ

∑
x′ p(x′|x, a)Vπc(x′))

)
as the normalization constant,

the critical policy takes the expression

πc(a|x) = Z(x)
−1

exp

(
1

α

(
βH(S|x, a) + γ

∑
x′

p(x′|x, a)Vπc(x′)

))
. (15)
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The corresponding critical expected return is obtained by substituting the critical policy in the Bellman
recursive equation as

V c(x) =
∑
a

πc(a|x)
∑
x′

p(x′|x, a) [−α lnπc(a|x)− β ln p(x′|x, a)] + γE[V c(x′)]

=
∑
a

πc(a|x)
∑
x′

p(x′|x, a)

[
α lnZ(x)− β ln p(x′|x, a)−

− α ln
(
e

1
α (βH(S|x,a)+γ

∑
x′ p(x

′|x,a)V c(x′)))
)]

+ γEπc

[
V c(x′)

]
= α lnZ(x)−

∑
a

πc(a|x)

(
βH(S|x, a) + γ

∑
x′

p(x′|x, a)V c(x′)

)
+

+
∑
a

πc(a|x)βH(S|x, a) + γEπc

[
V c(x′)

]
= α lnZ(x) = α ln

∑
a∈A(x)

e(
1
α (βH(S|x,a)+γ

∑
x′ p(x

′|x,a)Vπc (x′))) , (16)

where we see the expectation value over future states simplifies in the last step.

We now prove that this stationary point corresponds to a maximum of the value function. For this,
first note that the value function is continuous and has continuous derivatives with respect to the
policy, and therefore the maximum lies either on the boundaries of the policy constraints or it is
indeed the critical value. Given a state x, the policy boundaries are the points where an (initially
available) action ã is unavailable, i.e. π(ã|x) = 0. Thus, computing the critical value of the expected
return along a boundary leads to the same solution defined in Eq.(16) but the unavailable action ã
does not appear in the sum over all the possible a. As the expected return is an increasing function
with the elements making up the sum, the critical value V c(x) is greater than the expected return
along the policy boundaries. The critical value function is therefore the optimal value function,
i.e., V c(x) = V ∗(x), and the critical policy is indeed the optimal policy, i.e., πc(a|x) = π∗(a|x).
Uniqueness of the critical value comes from concavity of the value function.

As discussed in Sec. 2.2, we deal only with approximations of the optimal value function, and
consequently our V (x,w) will not exactly satisfy the Bellman consistency equation. We extend
the evolution via the Bellman operator defined in Eq. 6 to the case of the action-state occupancy
maximization by defining VB(x,w) as

VB(x,w) = α lnZVB(x,w) = ln
∑
a

exp

(
1

α

(
βH(S|x, a) + γ

∑
x′

p(x′|x, a)V (x′, w)

))
.

(17)
As the Bellman consistency equation is satisfied by the optimal value V ∗(x), we take the best
representation of the weights w of the value approximator to be the one that minimizes the difference
between the value V (x,w) and its evolution through the Bellman operator VB(x,w) by minimizing
the loss function defined in Eq. 7.

D Approximation of the state entropy term

We introduce here an approximation for the state entropy term in NeuroMOP networks that maximize
cumulative future action-state entropy. The state entropy term could bring a fundamental contribution
in the overall desired large occupancy of the state space when the magnitude of the action signal is
weaker. To quantify the state entropy term, we leverage the non-linear dynamics of the RNN. By
taking the small noise limit, we assume that a network maximizing state entropy would exhibit a
preference for the regions where the non linear dynamics induces larger changes in phase-space
volumes, resulting in a larger occupation in the state space. We rewrite the RNN’s dynamics in Eq. 1
in differential form as dx′ = dx + δt∇fπ(x, a)dx , where fπ(x, a) = −x

τ + Φ(Jx + I(a)) is the
dynamics of the RNN for a fixed policy π(·|x) and where we made explicit the dependence from the
MOP actions. We quantify the changes in the occupation by looking at the changes in the volume in
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Figure 5: Effect of introducing a ‘reward’ term approximating the state-entropy. (a) The free network
is characterized by high energy consumption and the exploitation of the saturating states, with the
RNN’s neurons alternating between activities −1 and 1. (b-d) Same as in (a), but for increasing
values of the β ∈ {0.0, 0.8, 1.5}. With increasing β, there is a larger average occupancy of the non-
saturating regime of the neurons. Activities and corresponding energies correspond to single trials,
while the occupancy is averaged over the trajectories of Nag = 10 agents. (e) Lifetime as a function
of β. With reduced action magnitude, for small values of β, a small fraction of agents (∼ 1 out of the
Nav = 10) fails to avoid the terminal state. (f) The exploitation of the non-saturating regime leads the
NeuroMOP network to increase also ⟨σ∆X⟩, i.e., the average standard deviation of the ‘jumps’ done
by the activities in two consecutive temporal points in the dynamics. (g) Average standard deviation
over the trajectories is not affected by β. (h) The effective dimensionality of the action signal is
reduced for β = 1.5 in order to drive the dynamics in the ‘rewarded’ non saturating region. Averages
are over Nav = 10 networks trained for Nep = 60 epochs, with batches of Ntraj = 10 trajectories.
Standard deviations are computed over batches of Ntraj = 50 trajectories. Errors are SEM .

the state space

Vol(dx′) = det(1̂ + δt∇fπ(x, a))Vol(dx) =
(
1̂ + Tr (∇fπ(x, a))

)
Vol(dx) , (18)

where we exploited the fact that for small δt the RNN dynamics behaves as a perturbation of an
identity transformation and we can approximate the determinant with the trace. This ‘extra’ term
Tr(∇fπ(x, a)) represents the contribution of the RNN dynamics in increasing the occupation of the
state space. We take this term as the approximation of the state entropyH(S|x, a) and add it to the
intrinsic return the MOP agent receives along a trajectory. The value function is then modified as

Vπ(x) = Eτ∼π,p

[ ∞∑
t=0

γt (αH (At|x(t)) + βTr(∇fπ(x(t), a(t)))) |x(0) = x

]
, (19)

where we introduced the ‘temperature’ hyperparameters α and β regulating the amount of action and
state entropy. Finding the optimal policy maximizing this value function reduces to solving the same
constrained minimization problem defined in Eq. 13, with the value function Vπ(x) defined here.
The resulting Lagrange multiplier follows the same expression as in Eq. 14, where the state entropy
termH(S|x, a) is substituted by our approximation Tr(∇fπ(x, a)). The optimal policy maximizing
the value function defined above is

π∗(a|x) = 1

Z(x)
e

1
α (βTr(∇fπ(x,a))+γ

∑
x′ p(x

′|x,a)V ∗(x′)) . (20)

Effectively, we will set α = 1 and measure the state entropy temperature in units of α.

We test the effect of introducing the state entropy term in the NeuroMOP network while satisfying
the energy constraint, as defined in Appendix B. We start with an RNN showcasing chaotic dynamics,
with large energy consumption, when left free to evolve with no external currents, i.e., with the
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Figure 6: Energy constraint problem with noisy RNNs. (a) The RNN with no external control
(I = 0) now has an intrinsic source of noise in the dynamics (n = 0.1, parameter scaling the external
Gaussian noise term ξ(t)) (top panel). The energy is also subject to small fluctuations due to the
noisy nature of the activities (bottom). (b) Given the external source of random noise, the NeuroMOP
network learns to generate long lifetimes by keeping the energy close, but far enough from threshold.
(c) The NeuroMOP network learns to avoid the terminal states and generate variability, but in this
case the lifetime does not reach (on average) the maximum episode length. (d) On the other side, the
average standard deviation of the trajectories increases with learning. (e) Average probability density
function of the occupancy in the activity space. Averages over Nav = 10 networks with batches of
Ntraj = 10 trajectories, errors are SEM .

dynamics defined in Eq. 1 with I = 0 (Fig. 6a). Without the state-entropy term (β = 0), the choice
of the parameter ρ (ρ = 1.2) rescaling the external current is such that the injected external currents
cannot lead to the full occupancy of the state space. Thus, the NeuroMOP network learns to avoid the
terminal states but still largely exploits the saturating states of the transfer function (Fig. 6b). With
increasing β, the NeuroMOP network gradually expands its occupation in the activity space, favoring
those regions leading to larger activity changes (Fig. 6c,d). First, we note that we can match the
average lifetimes for different values of β (Fig. 6e). To test the effect of introducing the state entropy
term, we define for each neuron i the activity ‘jumps’ ∆xi as the difference in activity between two
consecutive time points, i.e., ∆xi(t) = xi(t+ 1)− xi(t) ∀i = 1, . . . , N . Therefore, we introduce
the standard deviation of these series averaged across neurons, i.e., ⟨σ∆x⟩, and find that it increases
with the contribution of the (approximated) state entropy (Fig. 6f). Conversely, the average standard
deviation remains roughly constant (Fig. 6g). To drive neurons towards the highly sensitive region of
the transfer function, the NeuroMOP network reduces its effective action dimensionality even when
far from the threshold, deviating from the maximum available dimensionality when β = 1.5 (Fig.
6h).

E RNNs with noisy dynamics

We extend the NeuroMOP network to a controller of a noisy RNN, following the same dynamics as
in Eq. 1 but with an additional Gaussian noise term as

xi(t+ 1) = xi(t) + δt

−xi

τ
+Φ

 N∑
j=1

Jijxj + Ii(t) + nξi(t)

 , (21)

where ξi ∈ N (0, 1) is an i.i.d. normal random variable acting on each neuron i, and n is the noise
amplitude. With the introduction of noise in the network, we consider an environment whose transition
probability is defined over a continuous set of possible values. Therefore, sampling from the optimal
policy requires performing the integral that appears in the r.h.s of π∗(a|x) = 1

Z(x)e
γ
∫
x′ p(x

′|x,a)V (x′).
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(a) (d) (e)(b) NeuroMOP netFree net (c)

Figure 7: Energy constraint problem with non-saturating transfer function (Φ(·) = ReLU (·)).
(a) The free network (Eq. 1 with I = 0) is characterized by exploding patterns of the RNN’s
activity. Consequently, its energy consumption quickly diverges as well (not shown). (b-c) The
NeuroMOP network learns to keep the RNN’s activity bounded (b) by avoiding a terminal state of
high energy consumption (c). Here, we choose an arbitrary threshold of L = 0.13. (d) Effective
action dimensionality when far (E(x)≪ L) and close (E(x) ∼ L) to the terminal state. (e) Average
lifetime as a function of the training epochs. Averages over Nav = 10 networks with batches of
Ntraj = 10 trajectories, errors are SEM .

Here, we describe an approximation to the integral, suitable for our transition dynamics. For small
δt, we can locally linearize the transfer function Φ(·), and replace normal variable with a Bernoulli
variable with p = q = 0.5. With this approximation, the integral simplifies to a sum of a positive and
a negative contribution of the noise over the dynamics, namely∫

dx′p(x′|x, a)V (x′) = qV (x′(x, a, ξ = 1)) + qV (x′(x, a, ξ = −1)) , (22)

where x′(x, a, ξ = ±1) defines the evolution of the dynamics as in Eq. 21 when the external noise
takes the values +1 or −1, respectively.

The dynamics in Eq. 21 in the absence of external control (I = 0) generate noisy patterns of
activation, with neurons, and consequently the energy, randomly fluctuating (Fig. 6a). We test
the NeuroMOP network in the same energy constraint problem defined in Appendix B. Due to the
inherent random fluctuations in the activities, long lifetimes are only granted if the RNN is kept
sufficiently distant from the terminal state. The NeuroMOP network adopts this strategy, reducing
its action entropy even before approaching proximity to the boundary (Fig. 6b). Nevertheless, the
stochastic nature of the RNN can still lead the network to enter the terminal state after training:
while the average lifetime approaches the arbitrary length of the simulation, it always remains below
threshold (Fig. 6c). The NeuroMOP network learns to increase the average standard deviation of the
individual trajectories (Fig. 6d), and to broadly occupy the activity space (Fig. 6e).

F RNNs with non-saturating transfer function

The ability of the NeuroMOP network to avoid terminal states and generate variability is independent
on the choice of the RNN parameters and dynamics. To illustrate this point, we introduce RNNs
following the dynamics defined in Eq. 1, but employing a non-saturating transfer function, specifically
Φ(·) = ReLU(·). In the absence of external control (no external currents, I = 0), the RNN
activity exhibits runaway excitation of its neurons (Fig. 7a), resulting in unbounded levels of energy
consumption. We set thus an arbitrary threshold L of high energy and test the NeuroMOP network’s
ability to inject variable currents while avoiding the terminal states x† where E(x†) > L. The
network successfully bounds the RNN’s activity pattern (Fig. 7b) by keeping the energy below
threshold for the whole duration of the episode (Fig. 7c). Notably, the inherent diverging drive of
the network given by the linear transfer function, makes it highly responsive to positive input. To
avoid this, the NeuroMOP network reduces action entropy throughout the whole episode, not only
in proximity of the energy threshold. The energy constraint imposes in the action space a no-go
direction for all states in state space due to the high susceptibility in the RNN. Thus, the effective
action dimensionality loses one degree of freedom independently of the distance from the terminal
state (Fig. 7d). The NeuroMOP network rapidly increase its lifetime through learning (Fig. 7e).
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Figure 8: Balancing a cartpole. (a) Scheme of the cartpole. The controller network has binary actions
(forces) F ∈ {−40, 40} to act on the cart. (b) Probability density function of the occupation of the
cart position x and pole angle θ. The MOP network balances the pole while generating variability
in its state variables. (c) Lifetime increases with the training of the value function. Averages over
Nav = 10 networks, errors are SEM .

Table 3: Hyperparameters for the balancing of the cartpole

Parameter Value

cart mass M 1.0
pole mass m 0.1
pole length l 1.0
gravity acceleration g 9.81
discount factor γ 0.98
number of hidden layers (FFN) 1
hidden units per layer 10
input units Ninp 4
FFN nonlinearity ReLU
training epochs Nep 105

number of agents Nag 10
trajectories per batch Ntraj 20
optimizer SGD
learning rate η 0.02

G Balancing the Cartpole

We test the ability of MOP to control and generate diverse behavior in a system with physically
realistic dynamics. We consider a MOP ‘network’ balancing a cartpole [69, 70] composed of a
moving cart with a pole attached and free to rotate (Fig. 8a). The system has four degrees of freedom:
the cart position x, the pole angle θ and the corresponding velocities, ẋ and θ̇ respectively. The
value function is approximated via a feedforward network receiving as input the four variables
(hyperparameters are reported in Table 3). When not in a terminal state, the MOP network acts
directly on the cart with two possible actions, which are binary forces F ∈ {−40, 40}, with dynamics

θ̈ =
g sin θ + cos(θ)

(
−F−mlθ̇2+sin θ

m+M

)
l
(

4
3 −

m cos2 θ
m+M

) (23)

ẍ =
F +mlθ̇2 sin θ − θ̈ cos θ

M +m
, (24)

where M is the mass of the cart, m and l are the mass and the length of the pole and g is the gravity
acceleration. Note that no damping is applied to the cartpole, i.e., the system is frictionless. The
MOP network enters a terminal state when either the cart position of the pole angle overshoot their
threshold, specifically when |x| > 1.8 or |θ| > 0.62 (radiant units). We threshold the values of the
velocities such that they never exceeds the values |ẋ| = 6 and |θ̇| = 3. We find that the MOP network
can generate variability in the cart position and the pole angle (Fig. 8b) while balancing the pole,
ensuring enough distance to the terminal states (Fig. 8c).
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Figure 9: Two rooms arena connected by a narrow corridor in the neural space (x1, x2). (a) The
NeuroMOP network occupies both rooms of the arena and acts deterministically to cross the corridor
(example of one trajectory with T = 5000), and (b) learns quickly to avoid the complex terminal
states (note low action entropy at the corridor). Averages over Nav = 10 networks with batches of
Ntraj = 10 trajectories, errors are SEM .
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Figure 10: Adding an extrinsic reward term to MOP changes the behavior in the constrained neural
space problem. Terminal states are all the states outside the boundaries of a square in the neural space
(x1, x2), centered in zero and with total side length l = 0.4. The NeuroMOP network gets an extrinsic
reward r = +1 whenever in an inner square centered in (0.1, 0.1) and with side length lr = 0.1. We
introduce a parameter µ regulating the balance between extrinsic reward and the action-entropy term.
(a) Probability density function of the occupation (left) and lifetime (right) for µ = 0.1. (b) Same as
in (a), but for µ = 0.5. Averages over Nav = 5 networks with batches of Ntraj = 10 trajectories,
errors are SEM .

H Crossing a narrow corridor

MOP agents’ ability to generate future entropy is guaranteed by their capacity to flexibly switch
between stochastic and deterministic behavior. We provide an additional example of this flexibility by
showing the behavior of the NeuroMOP network in a problem where highly deterministic actions are
(locally) required. Specifically, we consider the same neural space (x1, x2) we introduced in Sec. 3.2,
but now terminal states are defined such that the network can only live in a region of space defined by
two circles (e.g., rooms) connected by a narrow available region of the neural space (e.g., a corridor).
We observe that the intrinsic motivation for occupancy drives the NeuroMOP network to visit both
rooms. To succeed in that, the NeuroMOP network largely reduces its action entropy to cross the
narrow corridor, to later increase its stochasticity when in the larger rooms (Fig. 9a). Importantly,
crossing the narrow neural space does not affect the agent’s ability to avoid the terminal states (Fig.
9b).

I Adding an extrinsic reward

We showed that the NeuroMOP network is able to show complex behavior (e.g., crossing a narrow
corridor) without the need to specify any reward function. Here we show that NeuroMOP is
compatible with the addition of an extrinsic reward function. In this case, the value function is
modified as

Vπ(x) = Eτ∼π,p

[ ∞∑
t=0

γt(αH(At|x(t)) + βH(St+1|x(t), a(t)) + µr(x(t), a(t)))|x(0) = x

]
,

(25)
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where the hyperparameters α, β and µ regulate the weight on action entropy, state entropy and
extrinsic reward maximization, respectively. By solving the same constrained minimization as in
Eq. 13 we obtain the analogous formulation of the optimal policy maximizing the value function
described above as

π∗(a|x) = 1

Z(x)
e

1
α (µr(x,a)+βH(S|x,a)+γ

∑
x′ p(x

′|x,a)V ∗(x′)) . (26)

As before, we set β = 0 and α = 1 and measure the weight of the extrinsic reward in units of α.

We have already shown that by setting specific terminal states structures we can have MOP agents
generating behaviors without the need to specify any reward function. We test now the effect of
providing the NeuroMOP network with an additional extrinsic reward. We consider the same problem
as in Sec. 3.2 where the NeuroMOP network activity has to be confined in a square region of the
neural space (x1, x2), here centered in zero and of side length l = 0.4. Here, we modify the scenario
by adding an additional state-dependent reward r(x) = 1 that the NeuroMOP network receives every
time its activity x is in a smaller square of the (x1, x2) space, centered in (0.1, 0.1) and with side
length lr = 0.1. By modulating the term µ regulating the importance of the extrinsic reward, we
observe different behaviors. When µ is small enough (µ = 0.1), the NeuroMOP network shows only
a slight preference for the rewarded region of the square, maintaining an overall uniform occupancy
(Fig. 10 a). In contrast, as µ increases (µ = 0.5), behavior collapses to the occupation of the
extrinsically rewarded square (Fig. 10 b). Finally, as the rewarded region is not in conflict with
terminal states, a more conservative behavior is also associated with a decreased variability of the
lifetime (Fig. 10). Our results highlight a significant distinction between MOP and the standard
extrinsic reward maximization framework: the introduction of extrinsic rewards is associated to
a collapse of the repertoire of the observed behavior into simpler behavioral patterns. Certainly,
while the agent in both cases acts to maximize what is asked to, the critical question remains what
constitutes interesting behavior, as we have argued throughout this paper.

J Pseudocode

We show here the pseudocode of the algorithm (Pseudocode 1). While sampling from the policy, the
network receives a teaching signal regarding the presence of terminal states. Note that we enforce that
the value function approximation has value zero in all terminal states regardless of their approximated
value. Also, to enhance stability, the contribution to the loss function coming from visited terminal
states have been weighted by a factor one order of magnitude larger.
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Data: Random J , w, K, x0

for i : 1 to N_ep do
Initialize L = 0;
for traj : 1 to N_traj do

x← x0;
for t : 1 to T do

V (x,w)← x,w;
if x > xth then
L + = 1. (V (x,w)− 0)

2 ;
tend← t ;
break

end
else

Z ←
∑

a e
γV (x′(x,a),w);

VB(x,w)← lnZ;

L + = 0.1 (V (x,w)− VB(x,w))
2 ;

end
a ∼ π(·|x) ;
x← RNN(x,a);

end
end
w← Adam(w, L)

end
Algorithm 1: Pseudo-code for the training of the weights w of the feedforward network.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions and scope are introduced in the Abstract and in the
Introduction section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the corresponding paragraph of the Discussion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions and proofs, as well as all analytical derivations, are shown in the
Appendix. All used equations are numbered and cross-referenced between main text and
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The introduced architecture is described in Fig. 1. Parameters and specifica-
tions of the simulations are also reported in the corresponding paragraph of Appendix A.
Methods to evaluate the networks’ performance are also extensively discussed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include in the supplemental material the codes to generate the data and the
corresponding figures.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report in Table 2 in Appendix A all the details regarding the type of
optimizer and the hyperparameters of the optimization problem.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars as the standard error of the mean (SEM ) across multiple
agents.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Computations run easily on a commercial CPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This is a completely theoretical work on neural variability. No external dataset
has been used. The implications of this work are the same as any other theoretical work, e.g.
reinforcement learning.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The implications of this work are the same as any other theory.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose any risk for misuse of this theory.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets have been used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce any assets that could be potentially used outside
this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not include human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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