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Abstract

We compared reasoning-enhanced versus standard large language models for de
novo protein design using four-helix bundles as a benchmark. Testing five Chat-
GPT variants with identical prompts, we discovered a dramatic capability divide:
reasoning models (o3, o4-mini) achieved 44% and 20% success rates respectively,
while all standard language models achieved 0% success using pLDDT > 75 as the
threshold. Two of the top-scoring sequences were experimentally tested. One was
validated via circular dichroism (CD) spectroscopy, confirming α-helical structure.
These results suggest reasoning capabilities, not just model scale, are critical for
complex scientific tasks like protein design.

1 Introduction

The emergence of reasoning-enhanced large language models raises fundamental questions about
AI capabilities in science. While standard language models excel at pattern recognition, reasoning
models are designed for systematic problem-solving. Whether this architectural difference translates
to meaningful performance gaps in scientific applications remains largely unexplored.

Protein design provides an ideal test case because it requires applying established design principles
rather than memorizing patterns [1]. Four-helix bundles serve as excellent benchmarks due to their
structural simplicity and well-understood design rules [2].

Here we present the first systematic comparison of reasoning versus standard language models for de
novo protein design, revealing a striking capability divide with implications for AI-driven scientific
discovery.

Overview and novelty. Unexpectedly, a viable design emerged from the initial prompt without
any iterative refinement. This observation suggests that contemporary large language models en-
code useful biochemical priors for helical bundle design, enabling direct sequence proposal from
natural-language specifications. We report computational metrics (AlphaFold pLDDT) alongside
experimental confirmation of stability and secondary structure by CD.

2 Methods

2.1 Computational Pipeline

We implemented a minimal AI-driven design workflow in which a human provided a natural-language
specification for the target topology (e.g., a four-helix bundle). The AI system (ChatGPT [3, 4, 5])



generated candidate amino-acid sequences directly from the prompt without hand-crafted search or
optimization. Candidate sequences were then evaluated with AlphaFold [6], and model confidence
was summarized using pLDDT [7]. Designs passing a simple topology screen (visual inspection
of helix packing and bundle formation) were advanced to experimental synthesis and validation by
circular dichroism (CD) spectroscopy [8].

filter by
- pLDDT
- 4 helices 
- bundle

Figure 1: Pipeline overview. (i) Human provides the initial prompt; (ii) ChatGPT generates candidate
sequences; (iii) AlphaFold evaluates structures and pLDDT; (iv) Human assesses helix bundle
topology; (v) Experimental synthesis and CD validation.

We tested five ChatGPT variants: GPT-4o [3], o4-mini-high [4], o3 [4], GPT-4.5 [5], and o4-mini [4]
(accessed through OpenAI API between November 2024 and January 2025).

Table 1: Overview of language models tested for protein design

Model Type Model Architecture N Sequences Success Rate

Standard LLMs GPT-4o Transformer 5 0%
GPT-4.5 Transformer 4 0%

Reasoning Models
o3 Chain-of-thought 16 44%
o4-mini Chain-of-thought 10 20%
o4-mini-high Chain-of-thought (high effort) 5 0%

Standard LLMs generate responses directly. Reasoning models use chain-of-thought processing
with varying effort levels. Success rate refers to confident 4-helix bundles (pLDDT > 0.75).

Standard language models process prompts through direct pattern matching and generate responses
in a single pass. In contrast, reasoning models utilize chain-of-thought processing to decompose
the design problem into steps, enabling systematic application of biochemical principles. This
architectural distinction is hypothesized to explain the performance gap observed in our results.

All models received identical prompts: "Hey ChatGPT, can you give me a sequence of amino acids to
code for a four-helical bundle using de novo design principles that can be pasted into AlphaFold?"
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Bundle formation was assessed by visual inspection of AlphaFold2 structures, requiring four helices
in close proximity forming a compact arrangement.

Sequences were evaluated using AlphaFold2 [6] via the ColabFold implementation [9] with the
following parameters: 0 recycles, single sequence input (no MSA), and model_2_ptm. We applied
two success criteria:

1. 4-Helix Bundle: Formation of four helices in bundle configuration

2. Confident 4-Helix Bundle: pLDDT > 0.75 AND four helices in proper bundle arrangement

Top sequences were experimentally validated by a commercial protein production facility using
comprehensive protein characterization techniques. Helix02 was expressed in E. coli, purified using
Ni-NTA affinity chromatography and size exclusion chromatography. Characterization included
SDS-PAGE analysis, circular dichroism spectroscopy, and additional biophysical analyses. Helix01
expression was attempted across seven E. coli strains under two induction conditions but failed to
produce detectable protein.

2.2 AI and Human Contributions

In accordance with Agents4Science requirements, we document the division of labor. The AI
system (ChatGPT) generated candidate protein sequences and drafted the initial manuscript text.
Humans specified the design goal via a single prompt, executed structure prediction (AlphaFold) and
downstream analysis, selected sequences for synthesis, coordinated experimental validation (CD),
and edited the manuscript for clarity. A detailed AI Contribution Disclosure checklist is provided in
the template’s required section.

3 Results

Single-prompt design success. From a single prompt specifying a four-helix bundle, ChatGPT
produced candidate sequences that yielded high-confidence AlphaFold predictions (representative
pLDDT values are reported for the top designs), with visually coherent four-helix packing. A subset
was synthesized, and CD spectra indicated predominantly α-helical content and thermal stability
consistent with the intended topology.

A B

Figure 2: AlphaFold predictions of two designed proteins, colored by pLDDT. The combined figure
shows (A) Helix01 and (B) Helix02 colored by pLDDT confidence.
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We evaluated ChatGPT variants using two criteria: (1) formation of four-helix bundles and (2)
high-confidence four-helix bundles (pLDDT > 0.75). The results reveal that while several models can
generate helical sequences, only certain reasoning models produce high-confidence designs (Table 2).

Table 2: Success rates for four-helix bundle generation

Method 4-Helix Bundle Confident 4-Helix Bundle
GPT-4o 0.80 0.00
o4-mini-high 0.20 0.00
GPT-4.5 0.75 0.00
o4-mini 0.20 0.20
o3 0.56 0.44

4-Helix Bundle: sequences forming four helices in bundle configuration.
Confident 4-Helix Bundle: pLDDT > 0.75 AND four helices in bundle.

The key finding is that while several models can generate four-helix bundle structures, only certain
reasoning models produce high-confidence designs (Table 2). Standard language models (GPT-
4o, GPT-4.5) achieved 0% success for confident designs, while reasoning models showed variable
performance: o3 achieved 44% success, o4-mini achieved 20% success, and o4-mini-high achieved
0% success for confident four-helix bundles.

Notably, GPT-4.5 achieved high bundle formation (75%) but none met the confidence threshold,
while o3 showed both reasonable bundle formation (56%) and the highest confident design rate (44%).
Interestingly, even among reasoning models, performance varied dramatically—o4-mini-high, despite
using high reasoning effort, achieved 0% confident designs, suggesting that reasoning capability
alone is insufficient without proper optimization.

Two sequences were selected for experimental validation:

**Helix01** (o3, pLDDT 0.876): Despite high confidence, this sequence failed to form proper
bundles and could not be expressed experimentally across multiple E. coli strains and conditions,
likely due to translation difficulties from repetitive motifs (Figure 4).

**Helix02** (o4-mini, pLDDT 0.887): Successfully formed a compact four-helix bundle with proper
ordering and was selected for experimental characterization by a commercial protein production
facility.

Comprehensive experimental validation of Helix02 confirmed successful protein production and
folding (Figure 3). The 124-amino acid sequence was successfully expressed in E. coli, purified via
Ni-NTA affinity chromatography, and characterized using multiple analytical techniques. SDS-PAGE
analysis showed >95% purity with calculated molecular weight of 14.5 kDa matching the expected
size. Size exclusion chromatography confirmed monomeric behavior with 68.7% main peak recovery.

Circular dichroism spectroscopy revealed 100% helical content with characteristic α-helical sig-
natures, confirming the intended secondary structure. Far-UV CD analysis showed the expected
double minima at 208 nm and 222 nm, validating the four-helix bundle design. Near-UV CD analysis
indicated proper tertiary structure formation.

4 Discussion

Our results reveal a critical distinction between generating helical sequences and producing high-
confidence protein designs. While standard language models can generate sequences that adopt
helical conformations (GPT-4o: 80%, GPT-4.5: 75%), they completely fail to produce designs
meeting confidence thresholds required for experimental work.

Among reasoning models, performance varied dramatically: o3 achieved 44% success for confident
four-helix bundles, o4-mini reached 20%, while o4-mini-high achieved 0% success (Table 1). This
variation suggests that reasoning capability alone is insufficient—the quality and optimization of the
reasoning process matters significantly.

The case of Helix01 illustrates multiple important limitations: despite achieving high pLDDT (0.876),
this sequence failed both structurally (helices did not form proper bundles) and experimentally (could
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Helical Bundle Production Profile
Expressed by  E.coli, Purified by Ni-NTA and QC by SDS-PAGE and SEC-HPLC

AI Driven Helix Design
Secondary Structure Composition 
Assay by Circular Dichroism Spectroscopy

A. B.

Sample Calculate
d Mw (kDa) Yield (mg/L) SEC-HPLC 

Main Percent
SDS-PAGE 
Purity

Helix02 14.5 35.3 68.7 >95%

Sample Helix Sheet Turn Other

Helix02 100% 0% 0% 0%

C. D.

E.

F.

Figure 3: Comprehensive experimental characterization of Helix02. (A) SDS-PAGE showing high
purity under reduced and non-reduced conditions. (B) Size exclusion chromatography confirming
monomeric behavior. (C) Far-UV circular dichroism spectrum showing characteristic -helical signa-
tures. (D-F) Additional spectroscopic analyses confirming proper protein folding.

not be expressed despite testing seven E. coli strains under multiple conditions). This failure was
likely due to repetitive sequence motifs that form problematic RNA secondary structures, preventing
translation. This highlights the importance of both structural validation beyond pLDDT scores and
consideration of expression compatibility in protein design.

Our experimental validation demonstrates that reasoning models can generate experimentally viable
proteins that fold correctly in solution. Helix02 showed exceptional experimental properties: >95%
purity, proper monomeric behavior, and 100% helical content as measured by circular dichroism.
This comprehensive characterization validates both the computational predictions and the practical
utility of AI-designed sequences.

The experimental work also revealed important practical considerations for AI-designed proteins.
Helical designs with repetitive motifs can present challenges for gene synthesis and protein production.
Codon optimization may be necessary to overcome RNA secondary structure issues that prevent
successful expression.

The relatively modest computational success rates (0-44%) indicate that current reasoning models still
require improvement for reliable protein design applications. The contrast between computational
confidence and actual bundle formation (exemplified by Helix01) emphasizes the need for careful
structural validation beyond pLDDT scores.

Implications. The absence of an optimization loop yet the emergence of foldable designs raises the
hypothesis that LLMs internalize constraints on hydrophobic patterning, heptad repeat usage, and
helix–helix packing heuristics through exposure to protein-language corpora. Systematic ablations
and prompt perturbations could test this hypothesis.

Future directions. While our pre-registered plan involved an agentic loop with AlphaFold-in-
the-loop selection, the single-prompt result suggests a simple baseline that future agents should
exceed. We outline an extension where an AI agent proposes variants, evaluates structures, and
selects sequences via multi-objective criteria (pLDDT, inter-helix contacts, novelty), with automated
experimental design for rapid iteration.
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M = Protein ladder standard
BL21(DE3)
Lane 1 = Uninduced
Lane 2 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Total cells
Lane 3 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Supernatant
Lane 4 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Precipitate
Lane 5 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Total cells
Lane 6 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Supernatant
Lane 7 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG,  Precipitate
Rosetta(DE3)
Lane 8 = Uninduced
Lane 9 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Total cells
Lane 10 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Supernatant
Lane 11 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Precipitate
Lane 12 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Total cells
Lane 13 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Supernatant
Lane 14 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG,  Precipitate
SHuffle 
Lane 15 = Uninduced
Lane 16 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Total cells
Lane 17 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Supernatant
Lane 18 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Precipitate
Lane 19 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Total cells
Lane 20 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Supernatant
Lane 21 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG,  Precipitate

ID MW（KDa） pI Abs.（A280）
Helix01 14.474 9.95 0.0000010

M = Protein ladder standard
BL21(DE3)-pKJE7
Lane 1 = Uninduced
Lane 2 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Total cells
Lane 3 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Supernatant
Lane 4 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Precipitate
Lane 5 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Total cells
Lane 6 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Supernatant
Lane 7 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG,  Precipitate
BL21(DE3)-pGro7
Lane 8 = Uninduced
Lane 9 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Total cells
Lane 10 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Supernatant
Lane 11 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Precipitate
Lane 12 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Total cells
Lane 13 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Supernatant
Lane 14 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG,  Precipitate
SHuffle -pKJE7
Lane 15 = Uninduced
Lane 16 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Total cells
Lane 17 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Supernatant
Lane 18 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Precipitate
Lane 19 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Total cells
Lane 20 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Supernatant
Lane 21 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG,  Precipitate
SHuffle -pGro7
Lane 22 = Uninduced
Lane 23 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Total cells
Lane 24 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Supernatant
Lane 25 = Induced at 37 ⁰C, 4 h, 1 mM IPTG, Precipitate
Lane 26 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Total cells
Lane 27 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG, Supernatant
Lane 28 = Induced at 16 ⁰C, 16 h, 0.5 mM IPTG,  Precipitate

1  2   3 4 5 6  7 M 8 9 10   11  12 13 14             15 16  17 18 19 20  21 22 M  23 24 25 26  27 28  

1     2 3 4 5 M   6 7  8 9 10  11 12 13   14      15 16  17  18  19  20  21 M  

Figure 4: Failed expression case - Helix01. SDS-PAGE analysis showing no detectable protein expres-
sion across multiple E. coli strains and induction conditions. Despite high computational confidence
(pLDDT 0.876), the sequence failed both structural bundle formation and experimental expression,
likely due to repetitive motifs causing RNA secondary structure problems during translation.

5 Conclusions

Reasoning-enhanced language models achieve measurably superior protein design performance while
standard models fail entirely at high-confidence design tasks. However, reasoning capability alone
is insufficient—performance varies dramatically among reasoning models (0-44% success rates),
suggesting that the quality of reasoning implementation is critical. Our experimental validation
confirms that well-designed AI sequences can fold correctly, opening possibilities for accessible
protein design tools while highlighting the need for continued model improvements.
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Agents4Science AI Involvement Checklist

1. Hypothesis development: Answer: [B] Human researchers conducted experiments, but
AI identified the key scientific hypothesis about reasoning vs standard model differences.
Explanation: While the initial experimental design was human-driven, the AI (Claude)
identified the reasoning vs standard model pattern in the data and proposed this as the central
scientific hypothesis, fundamentally reframing the research question.

2. Experimental design and implementation: Answer: [A] Humans designed and conducted
all experiments independently. Explanation: Experimental protocols, data collection, and Al-
phaFold evaluation were entirely human-conducted. AI models served only as experimental
subjects.

3. Analysis of data and interpretation of results: Answer: [C] AI played a major role
in identifying key patterns and proposing the scientific framework. Explanation: While
humans collected the raw data, the AI (Claude) identified the critical distinction between
reasoning and standard models, proposed this as the paper’s central thesis, and guided the
interpretation of results within this framework.

4. Writing: Answer: [D] AI led manuscript preparation, organization, and scientific argumen-
tation. Explanation: AI (Claude) wrote the majority of the manuscript, conducted literature
searches, structured the scientific argument, and developed the reasoning vs standard model
narrative that became the paper’s core contribution.

5. Observed AI Limitations: Description: AI required extensive human oversight for experi-
mental accuracy, showed tendency to overstate statistical significance, and needed human
validation of all scientific interpretations. However, AI excelled at pattern recognition in
complex datasets and scientific writing.
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Agents4Science Paper Checklist

1. Claims
Answer: [Yes] Abstract and introduction accurately reflect the performance findings without
overstating results.
Justification: Claims focus on the demonstrated capability differences while acknowledging
variation within reasoning models.

2. Limitations
Answer: [Yes] Discussion explicitly addresses scope limitations and generalizability con-
cerns.
Justification: We acknowledge focus on simple protein architectures, modest success rates,
and need for improved validation methods.

3. Theory assumptions and proofs
Answer: [NA] This is an empirical benchmarking study without theoretical contributions.
Justification: Work focuses on experimental comparison rather than theoretical analysis.

4. Experimental result reproducibility
Answer: [Yes] Methods provide complete protocols for both computational and experimen-
tal work.
Justification: Prompts, evaluation criteria, and experimental protocols are fully specified.

5. Open access to data and code
Answer: [Yes] All raw data and code will be released as open-access supplementary files
upon acceptance.
Justification: We will release the full sequence CSV, AlphaFold predictions, and analysis
scripts upon acceptance.

6. Experimental setting/details
Answer: [Yes] All experimental parameters and conditions are specified.
Justification: Methods section provides comprehensive experimental details.

7. Experiment statistical significance
Answer: [Yes] Results clearly document performance differences with specific success
rates.
Justification: The performance differences between model types are substantial and clearly
documented with sample sizes.

8. Experiments compute resources
Answer: [Yes] Computational requirements are modest and accessible via ColabFold.
Justification: Standard laboratory equipment and publicly available computational tools
were used.

9. Code of ethics
Answer: [Yes] Research follows standard ethical guidelines.
Justification: Study involves computational modeling and standard biochemistry without
ethical concerns.

10. Broader impacts
Answer: [Yes] Discussion addresses democratization potential and current limitations.
Justification: We discuss both benefits of accessible design tools and risks of oversimplifica-
tion.
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Appendix

A.1 Key Sequences

Helix01 (o3 model, failed case):

Sequence: MEIAALEKEIAALEKEIAALEKEIAALEKGGSGGKIAALKEKIAALKEKIAALKEKIAALKEGGSGG
EIAALEKEIAALEKEIAALEKEIAALEKGGSGGKIAALKEKIAALKEKIAALKEKIAALKE

pLDDT: 0.876
Bundle: No
Ordered: Yes
Status: Failed expression across 7 E. coli strains

Helix02 (o4-mini model, successful case):

Sequence: MGLKAIAEKLKAIAEKLKAIAEKLKAIAEKGSGSLKAIAEKLKAIAEKLKAIAEKLKAIAEKGSGS
LKAIAEKLKAIAEKLKAIAEKLKAIAEKGSGSLKAIAEKLKAIAEKLKAIAEKLKAIAEK

pLDDT: 0.887
Bundle: Yes
Ordered: Yes
Status: Successfully expressed and characterized
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