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Abstract001

Preference modeling techniques, such as di-002
rect preference optimization (DPO), has shown003
effective in enhancing the generalization abili-004
ties of large language model (LLM). However,005
in tasks involving video instruction-following,006
providing informative feedback, especially for007
open-ended conversations, remains a signifi-008
cant challenge. While previous studies have ex-009
plored using large multimodal models (LMMs)010
as reward models for guiding preference mod-011
eling, their ability to accurately assess the qual-012
ity of generated responses and their alignment013
with video content has not been conclusively014
demonstrated. This paper introduces a novel015
framework that utilizes detailed video captions016
as a proxy of video content, enabling language017
models to incorporate this information as sup-018
porting evidence for scoring video Question019
Answering (QA) predictions. Our approach020
demonstrates robust alignment with OpenAI021
GPT-4V model’s reward mechanism, which di-022
rectly takes video frames as input. Furthermore,023
we show that applying our reward mechanism024
to DPO algorithm significantly improves model025
performance on open-ended video QA tasks.026

1 Introduction027

This paper addresses the challenge of aligning028

LMMs, particularly in tasks that involve video in-029

struction following. Despite recent advancements030

in reinforcement learning (RL) (Ouyang et al.,031

2022; Bai et al., 2022; Lee et al., 2023; Sun et al.,032

2023b) and DPO (Rafailov et al., 2024; Chen et al.,033

2024c; Hosseini et al., 2024), which have been ef-034

fective in guiding LLMs towards generating more035

honest, helpful, and harmless content, their effec-036

tiveness in video domain remains limited. The crit-037

ical obstacle lies in developing a robust reward sys-038

tem capable of distinguishing preferred responses039

from less preferred ones based on video inputs.040

The challenge is further complicated by the cov-041

erage and potential inaccuracies in generated con-042

tent, stemming from the scarcity of alignment data 043

across different modalities (Liu et al., 2023b; Sun 044

et al., 2023a). 045

While human preference data is valuable, it 046

is challenging to scale due to its cost and labor- 047

intensive nature, as highlighted by the LLaVA- 048

RLHF (Sun et al., 2023a) paper, which collected 049

10k human-evaluated instances at a considerable 050

cost of $3000. Existing approaches for distilling 051

preferences, such as those for image data using 052

GPT-4V (Li et al., 2023d), encounter scalability 053

issues, especially for video inputs that require an- 054

alyzing multiple frames. While (Ahn et al., 2024) 055

leverage a supervised finetuning (SFT) model for 056

self-evaluation, the efficacy of the SFT model re- 057

mains uncertain, particularly in accurately assess- 058

ing the factuality of responses in relation to their 059

corresponding videos. 060

To tackle the aforementioned challenges, we in- 061

troduce a cost-effective reward mechanism that is 062

both computationally and financially efficient for 063

evaluating the quality of responses generated by 064

video LLMs, serving as a basis for further on-policy 065

preference optimization. We propose the use of de- 066

tailed video captions as a proxy for video content, 067

enabling a language model analyze the content and 068

assess the quality of an LMM’s response to related 069

questions. The language model generates natural 070

language feedback as a chain-of-thought step, and 071

produces a numerical score as the reward, thereby 072

creating an efficient feedback system. 073

However, high-quality video captions are essen- 074

tial for this process. To mitigate the shortage of 075

high-quality video captions, we have developed a 076

comprehensive video caption dataset, SHAREG- 077

PTVIDEO, using a simple prompting technique 078

with the GPT-4V model, comprising 900k cap- 079

tions that encompass a wide range of video content, 080

including temporal dynamics, world knowledge, 081

object attributes, and spatial relationships. With 082

this video caption dataset available, we verify that 083
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our reward mechanism, which utilizes video cap-084

tions as a proxy, is well-aligned with evaluations085

derived from the more powerful, albeit costlier,086

GPT-4V model-generated rewards. Employing this087

reward mechanism as the basis for DPO algorithm,088

we train LLAVA-HOUND-DPO that achieves an089

8.1% accuracy improvement over the SFT counter-090

part. This marks a significant advancement in video091

LMM alignment and represents the first successful092

application of a DPO method in this domain.093

Our contributions are outlined as follows:094

1. We release a large-scale detailed video cap-095

tion (900k) and instruction-following (900k)096

dataset covering a wide range of video content,097

which facilitates video LMM model training098

and research.099

2. We demonstrate the effective application of100

DPO to improve model performance by lever-101

aging the language model feedback as reward,102

which substantially improves model perfor-103

mance on open-ended video QA tasks.104

3. We propose an automated development105

benchmark for evaluating video instruction-106

following capability, serving as a cost-107

effective way to validate model performance.108

2 Related Work109

2.1 Large Multi-Modal Models110

LMMs (Liu et al., 2023b,a; Bai et al., 2023; Chen111

et al., 2023; Li et al., 2023a) have enabled instruc-112

tion following across modalities by utilizing LLM113

as backbones. In the context of video understand-114

ing, LLMs have been adapted to process video con-115

tent (Zhang et al., 2023a; Maaz et al., 2023; Li et al.,116

2023b; Luo et al., 2023; Liu et al., 2023c; Jin et al.,117

2024; Ahn et al., 2024). Our work adopts Video-118

LLaVA (Lin et al., 2023a) backbone, focusing on119

model enhancement through preference modeling120

with the DPO technique.121

2.2 Video-text Datasets122

Existing video-text datasets typically provide brief123

sentences or mere keywords as captions, as indi-124

cated by (Bain et al., 2021a; Wang et al., 2023;125

Yu et al., 2019; Jang et al., 2017; Xu et al., 2016).126

(Shvetsova et al., 2023). Video-ChatGPT (Li et al.,127

2023b) employs human effort to create high-quality128

video instructions, albeit limited to the ActivityNet129

domain with only 100k instruction pairs. Concur-130

rent work (Chen et al., 2024b) leverages GPT-4V131

to label video captions. Our work also leverages 132

the GPT-4V model to produce detailed video cap- 133

tions, which we release as community resource for 134

LMM training. 135

2.3 Preference Modeling for LMMs 136

Preference modeling techniques are DPO (Deng 137

et al., 2024; Yu et al., 2024; Li et al., 2023d; Gunjal 138

et al., 2023; Sun et al., 2023a) or PPO (Sun et al., 139

2023a) are applied to LMM alignment. More re- 140

cently, (Ahn et al., 2024) used RL on AI feedback 141

to improve video LMM performance. Our contri- 142

bution extends DPO to the video LMM alignment, 143

with the use of detailed captions as factual evidence 144

for reward modeling. 145

3 Method 146

As shown in fig. 1, our methodology enhances 147

video LMM alignment through DPO method using 148

rewards from a language model. We elaborate on 149

constructing a video caption dataset in section 3.1. 150

Subsequently, in section 3.2, we discuss the gener- 151

ation of video instruction data and the fine-tuning 152

process of our model. Lastly, section 3.3 details the 153

incorporation of generated captions as a feedback 154

mechanism for DPO method to refine our model’s 155

factual alignment in video instruction-following 156

tasks. 157

3.1 Prompting GPT-4V Model for Detailed 158

Video Caption Distillation 159

The selection of dataset includes videos from three 160

sources: WebVid (400k) and VIDAL (450k) Activ- 161

ityNet (50k) datasets. WebVid and VIDAL videos 162

are in the general domain sourced from YouTube, 163

and ActivityNet videos focus on human activities. 164

The three datasets together result in a comprehen- 165

sive collection of 900k videos. To accommodate 166

the requirement that GPT-4V only takes images as 167

input, we preprocess videos by uniformly extract- 168

ing ten frames per video content. These frames 169

are then concatenated into a sequence to serve as a 170

proxy for the video. We use GPT-4V to generate 171

a coherent caption for the represented video based 172

on the frame sequence. The prompt (fig. 18) ad- 173

heres to guidelines covering temporal dynamics, 174

world knowledge, object attributes, spatial relation- 175

ships, aesthetic assessments, etc., with the goal of 176

comprehensively understanding the video contents 177

(examples in fig. 8). 178
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Concatenate a sequence of frames to represent a video

GPT-4v

ChatGPT

SFT Data

A: They perform a sequence of movements 
including running, skillful footwork …

Q: What do the individuals perform in the video?

Imagining yourself as a customer service agent overseeing an 
uploaded video. The video comprises a sequence of frames…

Prompt

The video takes place on a grass soccer 
field with white boundary lines. It features 
two individuals, one wearing a light-colored 
football kit …

Detailed Video Caption

(A) Prompting for 
caption generation

LMM-SFT

(B) Video instruction 
Fine-tuning

Sampled Responses

Pred1: They are playing football.
Pred2: They are resting on grass.

…
Pred6: They are practicing wrestling.(C) Factually-enhanced DPO

sample

feedback

Figure 1: Workflow diagram showing: a) the use of GPT-4V for creating a detailed caption dataset for videos; b)
generating video instruction data for SFT; c) integrating captions into a feedback loop for DPO, improving the
model’s performance on video instruction-following tasks.

3.2 SFT with Generated Video Instruction179

Data from Detailed Caption180

To generate video instruction-following data for181

SFT, we adopt a similar methodology outlined182

in Video-ChatGPT (Li et al., 2023b). Specifi-183

cally, we first randomly sample 300k video cap-184

tions and then employ ChatGPT to generate 3185

question-answer pairs conditioned on each caption186

(prompt in fig. 19). We release the 900k instruction-187

following data to public, but we only use a random188

subset of 240k for our training. This approach en-189

sures that the instructional data remains factually190

consistent with the content of the detailed captions.191

3.3 DPO with Language Model Reward192

Acquiring high-quality on-policy preference data193

can be costly and labor-intensive. Although GPT-194

4V can be used for reward distillation, for video195

data, its high computation cost1, slow response, and196

limited accessibility hinder scalability. We propose197

a cost-efficient method to generate reward data for198

DPO using detailed video captions as supporting199

evidence, as shown in fig. 2.200

Initially, we randomly select a subset of 20k201

instruction pairs from the dataset described in sec-202

tion 3.2. The SFT model generates six responses203

1Video representation is typically encoded with 2048 to-
kens, while our captions only uses roughly 140 tokens.

per input at a temperature of 1.0. This proce- 204

dure results in 120k question-answer pairs. Subse- 205

quently, we employ ChatGPT to evaluate the model 206

responses based on the ground truth answer and 207

detailed description (prompt in fig. 21). ChatGPT 208

generates an output that includes a natural language 209

explanation as chain-of-thought step, followed by 210

a numerical reward score on a scale from 1 to 5, 211

indicating the overall quality. 212

For each video and question pair, we randomly 213

select an answer with a score ≥ 3 as positive 214

example, and an answer with a score below 3 215

as negative. Cases where all responses are uni- 216

formly scored above or below 3 are excluded from 217

the dataset. After the selection process, approx- 218

imately 17k training instances are compiled for 219

DPO training. Formally, the dataset is denoted as 220

DDPO = {(V, x, yw, yl)}, where V is the video, 221

x is the question, yw and yl are the positive and 222

negative responses. The DPO objective is defined 223

as below: 224

LDPO (πθ;πref) = −E(V,x,yw,yl)∼DDPO

[

log σ

(
β log

πθ (yw | x,V)
πref (yw | x,V) − β log

πθ (yl | x,V)
πref (yl | x,V)

)]
,

225

where πθ is the policy model to be optimized and 226

πref is the base reference model, both models are 227
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LMM-DPO

What is the second symbol 
drawn on the paper? 

Query LMM-SFT

The second symbol is a pound sign.
Sampled Output No. 1

The second symbol that is drawn on the blank piece of paper is 
"¥" which stands for Japanese Yen.

Sampled Output No. 2

Sampled Output No. 6
…The second symbol that is drawn is a dollar sign.

Given the following inputs:
1. **Ground Truth Video Caption**: {caption}
2. **Question Related to the Caption**: {query}
3. **Ground Truth Answer**: {answer}
4. **Model Predicted Answer**: {sampled_output}

Follow the guidelines to generate reward …

ChatGPT

(B) Language-based Feedback from ChatGPT as Reward

(C) Build Preference Dataset (highest paired with lowest, skip if all ≥ 3 or all <3)

Explanation: In the caption of the video, 
the second symbol drawn is a Japanese 
Yen, so the “dollar sign” in the model 
prediction is not accurate …. 
Reward: 2/5

No.6No.5No.4No.3No. 2No. 1Sampled Output

533421Scores

win:

lose:

No.6

No.1

(A) Sample Multiple Outputs from LLM with Temperate=1.0

Figure 2: Detailed illustration of the proposed factually-enhanced DPO method.

initialized with SFT weights. σ is the logistic func-228

tion and β is set to 0.1.229

For on-policy reward generation, our method in-230

curs a cost of less than $20, under a pricing model231

of $1.5 per million tokens. In comparison, previ-232

ous methods of preference data collection, such as233

in (Sun et al., 2023a), required an expenditure of234

$3,000 to gather 10k human preference data points.235

Additionally, the method proposed by (Li et al.,236

2023d), which employs GPT-4V for reward data237

labeling, incurs a significantly higher cost—$30238

per million tokens—and demonstrates considerably239

slower inference speeds.240

4 Assessment of Evaluator with GPT-4V241

Caption as Video Content242

To assess the effectiveness of our proposed reward243

assignment method, we conducted a comparative244

analysis the GPT-4V used as a video QA evaluator.245

Our method utilizes detailed captions as a proxy of246

actual video frames, while GPT-4V directly takes247

in video frames as inputs. Both reward systems248

follow the same set of guidelines for scoring reward249

(prompt in fig. 22).250

To compare the two methods, we sample 200251

videos from each of the WebVid, VIDAL, and Ac-252

tivityNet datasets, each associated with one ques-253

tion and two model predictions from our SFT254

model, with one preferred and one dispreferred255

by ChatGPT. This results in 1, 200 examples, for256

which we used GPT-4V to assign scores. Filter-257

ing through the Azure API backend resulted in 196, 258

151, and 143 videos from each dataset, respectively, 259

having both answers evaluated. The average scores 260

of all examples from ChatGPT and GPT-4V eval- 261

uations were 2.9 and 3.5 respectively, indicating a 262

tendency of GPT-4V to yield slightly positive evalu- 263

ations. The Pearson Correlation Coefficient (PCC) 264

of 0.47 (p < 0.01) suggests a moderate positive 265

correlation. In fig. 3 (left), the distribution of the 266

difference between ChatGPT and GPT-4V scores 267

reveals that majority (> 75%) of ChatGPT scores 268

fall within one standard deviation (σ = 1.31) of 269

GPT-4V scores. Additionally, in fig. 3 (right), the 270

agreement on preference between ChatGPT and 271

GPT-4V, excluding ties, exceeded 70%. These find- 272

ings cautiously support our benchmark’s applica- 273

bility in video QA evaluation. Further refinements 274

for better alignment—such as incorporating Likert 275

scales (Zhou et al., 2023) or GPT-4 evaluation—are 276

areas for future research. 277

Human Annotation of Captions: To evaluate the 278

quality of the distilled captions, we conducted hu- 279

man annotations focusing on two aspects: cover- 280

age and accuracy (hallucination). Annotators were 281

asked to assess each caption by identifying the num- 282

ber of missing items and the number of incorrect 283

facts. The assessment was performed on a sample 284

of 75 videos, with 25 from each domain. The re- 285

sults showed that annotators identified a total of 286

21 inaccurate items across 14 videos (accuracy: 287

81%) and 12 missing items across 8 videos (accu- 288
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-3 +4−σ +σ

75.53%

Majority of

ChatGPT scores

are within

GPT-4v scores
±σ = 1.31

(ChatGPT score
− GPT-4v score)

WebVid 45 111 71.2%

Vidal 31 88 73.9%

ActNet 31 87 73.7%

RateName Disagree Agree

Figure 3: Assessing Evaluator Quality Using Captions
in Place of Frames. The left figure shows the distribution
of evaluation score differences between ChatGPT (with
caption as proxy) and GPT-4V (directly on frames) eval-
uations. The right figure shows the rate of preference
agreement between ChatGPT and GPT-4V as evalua-
tors.

racy: 89%). Annotated examples are provided in289

appendix D.290

5 Experiments291

We adopt Video-LLaVA (Lin et al., 2023a) as the292

backbone of our video LMM, but our method can293

be applied to any other architectures as well.294

Caption Pre-training Stage (LLAVA-HOUND-295

PT): We use captioning data including 650k image296

caption data from ALLaVA (Chen et al., 2024a)297

and our distilled 900k video caption. We freeze the298

visual encoder and fine-tune the MLP projector and299

LLM, with learning rate 2e-5 and batch size 128.300

SFT Stage (LLAVA-HOUND-SFT): We use 600k301

image instruction data from ALLaVA and our gen-302

erated 240k video instruction data, with learning303

rate 5e-6 and batch size 128.304

DPO training Stage (LLAVA-HOUND-DPO):305

We use the 17k preference data introduced in sec-306

tion 3.3 for DPO training. Following (Ivison et al.,307

2023), we train our policy model with full model308

training for 3 epochs with learning rate 5e-7, and309

a batch size of 128. All the experiments are per-310

formed on 8 A100 gpus.311

5.1 Benchmark Evaluation 312

Dataset and Testing Environment We evaluate 313

model performance on four benchmark datasets: 314

MSVD-QA (Chen and Dolan, 2011), MSRVTT- 315

QA (Xu et al., 2016), TGIF-QA (Jang et al., 2017), 316

and Next-QA (Xiao et al., 2021) using ChatGPT 317

with version gpt-3.5-turbo-0611 to assess model 318

predictions. The evaluation prompts follow (Maaz 319

et al., 2023). In our experiment, we found that 320

different ChatGPT versions have high impact on 321

absolute score of metric, but the overall ranking of 322

models is relatively stable. We select gpt-3.5-turbo- 323

0613 due to its closeness to the reported score in 324

Video-LLaVA paper. Further details on the selec- 325

tion rationale and evaluation pitfalls are discussed 326

in Appendix A. 327

Baseline Selection We select video LMM mod- 328

els that have demonstrated SOTA performance with 329

with accessible code and checkpoints at the time of 330

paper writing, specifically including Video-LLaVA, 331

which is also our choice of architecture. We repli- 332

cate results including Video-ChatGPT (Maaz et al., 333

2023), LLaMA-VID (Li et al., 2023e) (7B and 334

13B), Chat-UniVi (Jin et al., 2023), and Video- 335

LLaVA (Lin et al., 2023b). We copy the re- 336

sults from additional baselines including Frozen- 337

BiLM (Yang et al., 2022), VideoChat (Li et al., 338

2023b) and VideoLLaMA (Zhang et al., 2023a), 339

sourced from their original publication. 340

Results In table 1, our analysis shows that 341

within the SFT models, LLaMA-VID-7B and 342

Video-LLaVA exhibit comparable performance, 343

with LLaMA-VID-13B performing the best. Our 344

LLAVA-HOUND-SFT model achieves compara- 345

ble performance to LLaMA-VID-13B. Incorporat- 346

ing preference modeling, LLAVA-HOUND-DPO 347

achieves an average accuracy of 70.75%, surpass- 348

ing LLAVA-HOUND-SFT, which has an aver- 349

age accuracy of 62.65%, by 8.1%. Furthermore, 350

LLAVA-HOUND-DPO exhibits superior accuracy 351

compared to other RL methods such as VLM- 352

RLAIF. In table 2, our model demonstrated consis- 353

tent result on a relative new benchmark Next-QA. 354

Error Analysis Figure 4 illustrates two exam- 355

ples. In the left example, LLAVA-HOUND-SFT 356

provides an accurate description of the video’s first 357

half but introduces a hallucination with the phrase 358

“I’m not scared of space," absent in the video con- 359

tent. LLAVA-HOUND-DPO yields a more accu- 360

rate inference. In the right example, both LLAVA- 361
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Question ID: v_video9990_0 (MSRVTT-QA)
Question: what do a show about on a cartoon show?
GT: superhero

Video-LLaVA Prediction: The video shows a cartoon show called 
"The Smurfs" and it features a character named Smurfette who 
is shown in a pink dress.

SFT: The video shows a cartoon character in a spacesuit floating in 
space with a speech bubble that reads "I'm not scared of space."

Question ID: v_uiLr9bdOL0M_23_30_2 (MSVD-QA)
Question: what moves a plastic glass containing liquid into 
a bowl? 
GT: bird

Video-LLaVA Prediction: A person’s hand moves the plastic 
glass containing liquid into the bowl.

SFT: A person’s hand moves a plastic glass containing liquid 
into a bowl.DPO: The show appears to be about adventure and 

exploration, as indicated by the animated characters and their 
actions.

DPO: The parrot moves a plastic glass containing liquid 
into a bowl.

Figure 4: Examples from MSRVTT-QA and MSVD-QA showcase that our LLAVA-HOUND-DPO generates better
responses, and reveal key limitations of the existing benchmark evaluation.

Existing Video QA Benchmark from (Maaz et al., 2023)

Methods LLM Size MSVD-QA MSRVTT-QA TGIF-QA

Acc. Score Acc. Score Acc. Score

FrozenBiLM (Yang et al., 2022)∗ 1B 32.2 - 16.8 - 41.0 -
VideoLLaMA (Zhang et al., 2023a)∗ 7B 51.6 2.5 29.6 1.8 - -
LLaMA-Adapter (Zhang et al., 2023b)∗ 7B 54.9 3.1 43.8 2.7 - -
VideoChat (Li et al., 2023b)∗ 7B 56.3 2.8 45.0 2.5 34.4 2.3
BT-Adapter (Liu et al., 2023c)∗ 7B 67.5 3.7 57.0 3.2 - -
Video-ChatGPT (Maaz et al., 2023) 7B 68.6 3.8 58.9 3.4 47.8 3.2
Chat-UniVi (Jin et al., 2023) 7B 70.0 3.8 53.1 3.1 46.1 3.1
VideoChat2 (Li et al., 2023c) 7B 70.0 3.9 54.1 3.3 - -
Video-LLaVA (Lin et al., 2023b) 7B 71.8 3.9 59.0 3.4 48.4 3.2
LLaMA-VID (Li et al., 2023e) 7B 72.6 3.9 58.7 3.4 49.2 3.3
LLaMA-VID (Li et al., 2023e) 13B 74.3 4.0 59.8 3.4 50.8 3.3
VLM-RLAIF (Ahn et al., 2024)∗ 7B 76.4 4.0 63.0 3.4 - -

LLAVA-HOUND-SFT 7B 75.7 3.9 58.7 3.3 53.5 3.3
LLAVA-HOUND-DPO 7B 80.7 4.1 70.2 3.7 61.4 3.5

Table 1: Evaluation of Model Performance on Zero-Shot Video Question Answering Benchmarks Using
gpt-3.5-turbo-0613. Models denoted with ∗ have their results directly sourced from their original publications.
Caution is advised when interpreting these results; see Appendix A for an in-depth analysis of evaluation challenges.
All other baseline models were reproduced by our team.

No. Methods Next-QA

Acc. Score

[1] Video-ChatGPT (Maaz et al., 2023) 45.23 2.09
[2] LLaMA-VID-7B (Li et al., 2023e) 49.43 3.24
[4] Chat-UniVi (Jin et al., 2023) 47.62 3.14
[5] Video-LLaVA (Lin et al., 2023b) 48.97 3.25

[6] LLAVA-HOUND-SFT 60.60 3.51
[7] LLAVA-HOUND-DPO 74.27 3.74

Table 2: Evaluation on Next-QA benchmark using gpt-
3.5-turbo-0611 on official test set.

HOUND-SFT and Video-LLaVA models produce362

incorrect inferences, whereas LLAVA-HOUND-363

DPO successfully correctly identifies the subject 364

in the video. 365

5.2 Open-ended QA Analysis 366

In this section, we conduct analysis on open- 367

ended long-form QA with a proposed development 368

benchmark. Specifically, we select 2,000 videos 369

from each source: WebVid (Bain et al., 2021b), 370

VIDAL (Zhu et al., 2023), ActivityNet (Fabian 371

Caba Heilbron and Niebles, 2015), MSRVTT (Xu 372

et al., 2016), MSVD (Chen and Dolan, 2011), 373

TGIF (Jang et al., 2017), and Something-something 374

V2 (SSV2) (Goyal et al., 2017). For each video, 375

ChatGPT was utilized to generate three QA pairs 376

6



based on the detailed captions, and we evaluate377

model predictions with our reward mechanism.378

WebVid, VIDAL, ActivityNet are classified as in-379

domain, which are involved in the model’s training380

pipeline. MSRVTT, MSVD, TGIF, SSV2 are clas-381

sified as out-of-domain.382

The evaluation reveals insights into (1) the qual-383

ity of long-form open-ended QA, (2) in-domain384

and out-of-domain generalization, and (3) Abla-385

tions on SFT and DPO experiments. Additionally,386

we select our best performing model on the devel-387

opment bench before evaluating on public bench-388

marks, which avoids tuning hyperparameters on389

test data. Comparisons are shown in appendix E.390

Domain Generalization: Table 3 and table 4391

shows the in-domain and out-of-domain evaluation.392

SFT with our data tends to perform better both in-393

and out-of-domain, and DPO further enhances the394

model performance, showing the effectiveness of395

preference modeling.396

Video LMM without Video Instruction: [8] in397

table 3 is baseline trained with only image instruc-398

tion fine-tuned on LLAVA-HOUND-PT, which399

achieves an average accuracy of 65.97%, compara-400

ble to the LLAVA-HOUND-SFT model’s 66.06%401

in in-domain QA scenarios. However, its perfor-402

mance significantly drops in out-of-domain QA403

contexts (49.32% vs. 56.50%), suggesting that404

Video QA training could potentially enhance gen-405

eralization capabilities.406

Quality of Generated SFT: [9] substitutes our gen-407

erated video QA with the Video-ChatGPT dataset408

for Video-LLaVA fine-tuning. A comparison be-409

tween the findings of [9] and [6] reveals a marginal410

performance disparity of 0.2% in average accu-411

racy, indicating that the quality of our generated412

QA closely parallels that of the existing video QA413

datasets. Given the similar quality in SFT data,414

the large gain of [6] over [5] can be reasonably415

concluded from large-scale pre-training on video416

captions.417

Unfreeze MLP: The comparison between [10] and418

[7] reveals a significant decrease in performance419

when the MLP is unfrozen during DPO training.420

Despite this drop, however, the performance re-421

mains superior to that of the SFT baseline.422

Smaller Learning Rate: The comparison between423

[12] and [7] reveals that using a smaller learning424

rate of 3e-7 (vs. 5e-7) results in a decreasing of425

model performance. This highlights the future im-426

provements by finding better hyperparameters.427

Self-Play vs. DPO: (Chen et al., 2024c) introduced428

a self-play methodology for DPO training, which 429

designates ground truth answers as preferred and 430

model-generated responses as dispreferred. When 431

comparing the results of [11] with those in [6], a 432

notable decrease in accuracy by 3% from the SFT 433

model is observed, suggesting that self-play may 434

be less effective for video LMM alignment, and 435

introducing reward model is helpful. 436
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Figure 5: The left figure shows the test set accuracy
of the DPO model w.r.t the number of training epochs.
The right figure shows a comparison of DPO model
performance as generator vs. ranker.

DPO Accuracy vs. Training Epochs. The left of 437

fig. 5 depicts the generalization performance of the 438

model on out-of-domain video QA tasks with re- 439

spect to the number of training epochs. We observe 440

a consistent enhancement in model performance 441

among datasets during the initial 0 to 2 epochs, 442

with peak performance materializing at around 2.5 443

epochs, which corresponds to 350 training steps. 444

DPO as Ranker vs. Generator. Following (Hos- 445

seini et al., 2024), we compare the performance of 446

employing the DPO model as a ranker for candidate 447

answers produced by the SFT model, operating at 448

a temperature setting of 1.0. As depicted on the 449

right in fig. 5, we illustrate the test accuracy pro- 450
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Proposed Video QA Benchmark (In-domain)

No. Methods ActivityNet-QA VIDAL-QA WebVid-QA

Acc. Score Acc. Score Acc. Score

[1] Video-ChatGPT (Maaz et al., 2023) 34.17 2.19 29.35 2.10 38.88 2.27
[2] LLaMA-VID-7B (Li et al., 2023e) 36.54 2.27 30.58 2.15 36.99 2.24
[3] LLaMA-VID-13B (Li et al., 2023e) 37.33 2.29 32.50 2.18 39.73 2.30
[4] Chat-UniVi (Jin et al., 2023) 39.35 2.32 31.40 2.16 40.05 2.31
[5] Video-LLaVA (Lin et al., 2023b) 41.35 2.38 34.30 2.24 42.47 2.39

[6] LLAVA-HOUND-SFT 66.62 3.05 60.50 2.88 71.07 3.17
[7] LLAVA-HOUND-DPO 76.62 3.18 70.06 3.04 79.82 3.29
[8] LLAVA-HOUND-PT + Image Inst. 69.31 3.09 60.57 2.85 68.03 3.02
[9] LLAVA-HOUND-PT + VChat 67.34 3.02 62.33 2.89 68.98 3.00

[10] LLAVA-HOUND-DPO + training MLP 71.89 3.10 65.57 2.95 75.37 3.21
[11] LLAVA-HOUND-SFT + Self-play 64.11 2.85 56.28 2.68 67.89 2.95
[12] LLAVA-HOUND-DPO w/ lr3e-7 71.13 3.08 64.90 2.92 73.25 3.17

Table 3: Our proposed video QA benchmark evaluation on in-domain dataset using gpt-3.5-turbo-0301, with detailed
captions as supporting evidence.

Proposed Video QA Benchmark (Out-of-domain)

Methods MSVD-QA MSRVTT-QA TGIF-QA SSV2-QA

Acc. Score Acc. Score Acc. Score Acc. Score

Video-ChatGPT (Maaz et al., 2023) 34.06 2.20 25.65 1.98 31.35 2.09 19.36 1.75
LLaMA-VID-7B (Li et al., 2023e) 34.14 2.21 25.02 1.99 27.18 2.00 22.16 1.84
LLaMA-VID-13B (Li et al., 2023e) 35.81 2.25 26.34 2.02 27.58 2.01 21.98 1.83
Chat-UniVi (Jin et al., 2023) 35.61 2.23 25.89 2.01 33.23 2.13 20.59 1.79
Video-LLaVA (Lin et al., 2023b) 39.46 2.37 30.78 2.15 32.95 2.18 24.31 1.90

LLAVA-HOUND-SFT 66.99 3.09 57.82 2.85 66.13 3.07 35.07 2.23
LLAVA-HOUND-DPO 73.64 3.12 68.29 2.98 74.00 3.12 48.89 2.53
LLAVA-HOUND-PT + Image Inst. 65.19 2.96 48.66 2.52 53.83 2.62 29.60 2.04

Table 4: Our proposed video QA benchmark evaluation on out-of-domain dataset using gpt-3.5-turbo-0301, with
detailed captions as supporting evidence.

gression through the selection of the best among N451

candidates by the DPO ranker. Initial observations452

indicate that the SFT model, when set to a tem-453

perature of 1.0, demonstrates a reduced accuracy454

(43.3%) compared to that achieved through greedy455

decoding (57.8%). A steady enhancement in per-456

formance is noted as the number of candidates in-457

creases, plateauing at an accuracy of approximately458

62% with 64 candidates. This performance, how-459

ever, falls short when compared with the direct ap-460

plication of the DPO model for answer generation,461

which yields an accuracy of 68.29%. This differ-462

ence suggests the stronger generalization of DPO463

model in answer generation, despite it is trained464

on a reward classification loss. The contradictory465

results to (Hosseini et al., 2024) may be due to the466

difference of tasks, i.e. Math vs. Video QA. Refer467

to appendix F for more results. 468

6 Conclusion 469

We study the techniques for effective video LMM 470

alignment. Specifically, we propose an cost- 471

effective reward system that utilizes detailed cap- 472

tions as proxies for video content. We have shown 473

the reward scores is well-aligned with the evalua- 474

tion metrics of GPT-4V, and DPO training greatly 475

enhances model performance. In addition, we have 476

released 900k detailed video caption, 900k video 477

instruction-following data, and 17k preference data 478

pairs, with a complete code pipeline including pre- 479

training for video captioning, fine-tuning for video 480

instruction following and reinforcement learning 481

with DPO for better LMM alignment. 482
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7 Limitations483

Firstly, several evaluation datasets, such as Video-484

MME (Fu et al., 2024) featuring multiple-choice485

questions, were not included in our study. These486

datasets were available at or before the completion487

of our manuscript. Given our focus on enhancing488

open-ended question answering, multiple-choice489

datasets were not incorporated into our training pro-490

cess. Consequently, we did not retrain the model491

to include this data.492

Secondly, the benchmark we developed is fully493

automated and does not incorporate human cor-494

rections for captions and QA. Human annotations495

indicate that caption accuracy ranges from 80% to496

90%, inherently introducing errors. Therefore, we497

recommend using this benchmark solely for model498

development and hyperparameter tuning, treating499

performance metrics as indicative rather than defini-500

tive.501
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A Effect of ChatGPT Version on Official Benchmark Evaluation734

Methods LLM Size MSVD-QA MSRVTT-QA TGIF-QA Summary

Acc. Score Acc. Score Acc. Score Avg Acc. Rank
gpt-3.5-turbo-0301 evaluation

Video-ChatGPT (Maaz et al., 2023) 7B 78.62 4.00 71.67 3.63 56.31 3.45 68.87 6
LLaMA-VID (Li et al., 2023e) 7B 82.57 4.12 71.94 3.65 59.00 3.63 71.17 4
LLaMA-VID (Li et al., 2023e) 13B 83.72 4.16 73.63 3.68 59.72 3.66 72.36 3
Chat-UniVi (Jin et al., 2023) 7B 80.52 4.02 66.92 3.41 57.73 3.49 68.39 7
Video-LLaVA (Lin et al., 2023b) 7B 81.44 4.08 73.29 3.65 58.34 3.61 71.02 5
LLAVA-HOUND-SFT 7B 85.65 4.10 73.85 3.62 64.98 3.65 74.83 2
LLAVA-HOUND-DPO 7B 88.50 4.20 82.10 3.84 75.48 3.81 82.03 1

gpt-3.5-turbo-0613 evaluation

Video-ChatGPT (Maaz et al., 2023) 7B 68.55 3.80 58.90 3.36 47.83 3.21 58.43 6
LLaMA-VID (Li et al., 2023e) 7B 72.62 3.92 58.73 3.38 49.21 3.28 60.19 4
LLaMA-VID (Li et al., 2023e) 13B 74.29 3.96 59.82 3.41 50.83 3.33 61.65 3
Chat-UniVi (Jin et al., 2023) 7B 70.01 3.79 53.08 3.14 46.09 3.12 56.39 7
Video-LLaVA (Lin et al., 2023b) 7B 71.75 3.88 58.97 3.39 48.39 3.24 59.70 5
LLAVA-HOUND-SFT 7B 75.70 3.86 58.73 3.31 53.51 3.30 62.65 2
LLAVA-HOUND-DPO 7B 80.73 4.07 70.15 3.66 61.38 3.46 70.75 1

gpt-3.5-turbo-1106 evaluation

Video-ChatGPT (Maaz et al., 2023) 7B 73.02 4.01 62.09 3.61 47.76 3.36 60.96 6
LLaMA-VID (Li et al., 2023e) 7B 75.49 4.08 62.09 3.61 51.72 3.47 63.10 4
LLaMA-VID (Li et al., 2023e) 13B 76.97 4.10 63.16 3.61 52.53 3.50 64.22 3
Chat-UniVi (Jin et al., 2023) 7B 72.22 3.92 55.02 3.35 48.16 3.31 58.47 7
Video-LLaVA (Lin et al., 2023b) 7B 74.76 4.04 62.70 3.60 51.21 3.45 62.89 5
LLAVA-HOUND-SFT 7B 81.09 4.08 64.13 3.57 58.05 3.53 67.76 2
LLAVA-HOUND-DPO 7B 86.05 4.23 76.75 3.85 70.02 3.71 77.61 1

Table 5: Performance Evaluation Across ChatGPT Versions on Zero-Shot Video Question Answering Bench-
marks. This table compares the performance of state-of-the-art video LMMs evaluated under different ChatGPT
versions. The absolute performance metrics scored by ChatGPT vary by versions. However, the comparative ranking
of models under the same ChatGPT version is relatively stable.

In Table 5, we show impact of using different ChatGPT versions on metric scores within zero-shot735

video question answering benchmarks. Our analysis reveals significant variations in the absolute scores736

across ChatGPT versions, but based on the average accuracy metric, the relative ranking of models under737

the same ChatGPT version shows consistency.738

This comparison underscores a critical issue: many prior studies neglect to specify the ChatGPT739

version used, potentially leading to inaccurate conclusions during evaluation. We advocate for the explicit740

designation of the ChatGPT version in future evaluations. Analysis from Table 5 indicates that the version741

gpt-3.5-turbo-0613 aligns most closely with the performance of the Video-LLaVA (Lin et al., 2023a)742

model, serving as the benchmark for model performance comparison in our study.743
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B Evaluation of Captioning Ability from pre-training 744
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Figure 6: Training subsets exhibit varying levels of generalization difficulty. The WebVid subset (left) requires less
data compared to the VIDAL subset (right)
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Figure 7: The video caption ability w.r.t number of training data evaluated on both in-domain and out-of-domain
test videos using GPT-4V.

In Figure 7, we present the video captioning ability of models across various datasets, with a total of 745

900k distilled data instances. GPT-4V is employed for self-evaluation (fig. 20), serving as the upper-bound 746

performance, while the Video-LLaVA serves for comparative analysis, establishing a baseline. Notably, 747

Video-LLaVA is trained on 54k video QA data instances. However, our first checkpoint, utilizing only 748

10% of the data, is trained on 90k high-quality caption data instances, likely accounting for the observed 749

performance disparity in the video captioning task. Our results demonstrate that incorporating more 750

distilled data contributes to improved model performance across both in-domain and out-of-domain 751

datasets. Despite these improvements, a performance discrepancy with the GPT-4V model remains. 752

Further, we evaluate the generalization potential in specific data subsets, as shown in fig. 6 in the 753

Appendix. These subsets reveal varying degrees of generalization challenges for different types of dataset. 754

For example, the WebVid subset, which concentrates on relatively static scenes, necessitates less data for 755

effective training compared to the VIDAL subset, which is marked by dynamic scene transitions and a 756

diversity of video themes. 757
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C GPT-4V Caption Distillation758

Original Caption: When you flip a pancake (pt.26) #shorts

GPT-4V Annotation: The video begins with a close-up view of a pancake 
on a griddle or pan, which has not been flipped yet, showing its 
uncooked, batter side. The pancake is pale in color with bubbles forming 
on the surface, typical of a pancake as it cooks. There is a spatula with a 
novelty design. It resembles a Stormtrooper helmet from the Star Wars 
franchise placed beside the pancake. Text urging the viewer to "Send this 
to your bestie!" along with a Snapchat handle are overlaid on top of the 
video. The spatula is then slid underneath the pancake, which is then 
flipped over to reveal a cooked side featuring the drawing of a cartoon 
crab and the phrase "U R CLAWSOME!" written on it. The cooked side of 
the pancake has a golden-brown color, and the cartoon and text appear 
to be created with some dark-colored substance, possibly chocolate or 
some edible ink.

Original Caption: Time-lapse of purple iris flowers blooming.

GPT-4V Annotation: The video captures a close-up time-lapse 
of purple irises with bright yellow accents against a black 
background. Initially, the buds are tightly closed, with green 
sepals protecting the petals. As the frames advance, the buds 
begin to open slowly, revealing the velvety texture and deep 
purple hue of the petals. The blooming is sequential, with 
some buds opening earlier than others, offering a dynamic 
contrast between the stages of bloom. At final bloom, the 
yellow stamen stands out against the purple petals. 
Throughout the sequence, the number of visible flowers 
changes.

Figure 8: A showcase of our dataset for detailed video caption automatically distilled from GPT-4V via our prompt
technique in section 3.

D Human Annotated Examples of Distilled Captions759

GPT-4V Caption
Initially, the video displays a curved road lined with multiple orange traffic 
cones and greenery on either side. The focus shifts to a large, dark-colored 
truck approaching, its engine sound becoming increasingly prominent. The 
camera angle changes to the rear of the truck, revealing a runner, wearing a 
blue top with a white number bib marked '108', passing the truck on its left 
side. The video concludes with the truck's rear-end seen driving away with the 
traffic cones visible in the background.

Human Annotation
Inaccuracy (Hallucination):
1. The truck is driving away instead of approaching
Coverage:
1. The runner is holding a cup-like item

WebVid Video ID: 2994286

Figure 9: Human Annotation Analysis: The video frames depict a truck driving away from the camera, but the
distilled caption incorrectly describes the direction, which is identified as a hallucination. Additionally, human
annotators noted that the GPT-4V model failed to recognize a man holding a cup.
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GPT-4V Caption
The cat is observed suspended by a limb caught in an electrical cable. It is a 
light-colored feline, possibly tan or cream, with a noticeably fluffy tail. Below, 
the person stands on what appears to be a blue stool or small ladder, reaching 
out towards the cat in an attempt to free it. The environment includes a green, 
neatly trimmed bush directly under the cat, and to the side, there appears a 
section of a vehicle – likely a car, suggesting the proximity to a driveway or 
parking spot. The pavement where these activities are occurring has a distinct 
pattern, likely tiles, surrounded by green grass, which borders a residential 
building. Above, an electrical pole is partially visible with thick cables extending 
from it – one of which the cat is caught in.

Human Annotation
Inaccuracy (Hallucination):
1.No blue stool or ladder visible

Coverage:
-

Vidal Video ID: -d3h9kQAMvw 

Figure 10: Human Annotation Analysis: GPT-4V incorrectly identified a man wearing blue pants as a man standing
on a blue ladder, which is labeled as a hallucination.
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GPT-4V Caption
Initially, two people are seen sitting on the floor with crafting materials. They both 
wear casual clothing: one in a dark blue long-sleeve top with "Johnny’s BBQ" 
written on it and the other in a red and black checkered shirt. They appear to be 
in a cozy room with a wooden floor and a heater in the background. The next 
scenes showcase the crafting process in detail, focusing on hands carefully 
placing square-shaped burgundy materials with patterned textures onto a lighter 
brown base. The precision of their movements suggests they are experienced in 
this type of work.

Human Annotation
Inaccuracy (Hallucination):
1. The text on shirt should be “Jimmy’s BBQ”
Coverage:
1. Missing text: “Step 3: Adhere Squares Together”

ActivityNet Video ID: v__Y4czVoIxvE-Scene-006 

Figure 11: Human Annotation Analysis: The example demonstrates OCR hallucination and a coverage issue. The
text on the woman’s t-shirt is incorrectly labeled as ‘Johnny’s BBQ’ instead of ‘Jimmy’s BBQ.’ Additionally, the
text ‘Step 3: Adhere Squares Together’ is missing from the description.

GPT-4V Caption
The video showcases multiple scenes from a soccer match being played on a 
field surrounded by an athletic track. It appears to be in the evening, and a 
scoreboard is visible in the background indicating the game is underway. The 
players, wearing contrasting uniforms, are seen running, maneuvering the ball, 
and aiming at the goal. The crowd can be faintly seen on the sidelines watching 
the game.

Human Annotation

Inaccuracy (Hallucination):
-

Coverage:
1. “Gopher” and “Coca Cola” on the board
2. Score board shows time left

ActivityNet Video ID: v__wITx73-BXw-Scene-003

Figure 12: Human Annotation Analysis: The caption does not contain any hallucinations, but some text recognized
by human annotators is missing, such as ‘Coca Cola’ and ‘Gopher’ on the scoreboard, as well as the time of the
score match shown.
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ActivityNet Video ID: v__Wag6CT_0j8-Scene-003

GPT-4V Caption
Throughout the video, there are multiple sequences featuring women in athletic 
attire engaged in a field hockey match. The players are distributed across a well-
maintained, green artificial turf field. Two teams are visible: one in dark blue and 
white striped jerseys, and the other in white jerseys with black numerals. The 
white-jersey team appears to be on defense, while the dark-jersey team is in an 
offensive posture, advancing the ball. Some of the key visual elements include the 
athletic gear, such as shin guards, field hockey sticks, and cleats that the players 
are wearing. The background includes features like team benches, spectator 
stands, and a scoreboard that shows "MONMOUTH 0 2nd RIDER 2". Throughout 
the various frames of the video, players can be seen running, likely maneuvering 
the ball, and repositioning to either defend or continue their offensive push. 
Ambient shadows suggest sunny weather conditions during the recording of this 
match.

Human Annotation

Inaccuracy (Hallucination):
-

Coverage:
1. Score transition from "MONMOUTH 0 2nd 
RIDER 2” to "MONMOUTH 1 2nd RIDER 2".

Figure 13: Human Annotation Analysis: The figures illustrate a scoring transition that is not recognized by the
GPT-4V model, highlighting the challenge of using static frames for accurate captioning.
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E Video QA Dataset Demonstration760

To build the test dataset, we curated a dataset comprising 2,000 videos from each source: WebVid (Bain761

et al., 2021b), VIDAL (Zhu et al., 2023), ActivityNet (Fabian Caba Heilbron and Niebles, 2015),762

MSRVTT (Xu et al., 2016), MSVD (Chen and Dolan, 2011), TGIF (Jang et al., 2017), and Something-763

something V2 (SSV2) (Goyal et al., 2017). For each video, ChatGPT was utilized to generate three764

QA pairs based on the detailed captions. The first three datasets (WebVid, VIDAL, ActivityNet) are765

classified as in-domain, since the captions and QA pairs derived from these sources are used in the model’s766

training pipeline. Conversely, the remaining datasets (MSRVTT, MSVD, TGIF, SSV2) are classified as767

out-of-domain, evaluating model’s zero-shot QA ability.768

Appendix E compares our development benchmark with existing benchmark dataset, we identify several769

issues with the existing evaluation methods: (1) the auto-generated questions from current benchmarks770

may be grammatically incorrect or nonsensical, and (2) the answers are limited to a single word, which771

is inadequate for evaluating LMMs in the context of long-form QA. We conduct further analysis on772

open-ended long-form QA with a proposed development benchmark.773

We apply our reward system as described in section 4 and report scores from ChatGPT. A score of ≥ 3774

is considered correct for accuracy calculations. The development benchmark reveals insights into (1) the775

quality of long-form open-ended QA, and (2) in-domain and out-of-domain generalization. Additionally,776

our development benchmark results correlate with existing benchmarks. We recommend that models be777

evaluated on the development benchmark first, followed by human evaluation.778

Q: what is a suit man doing? 
A: talk

Q: who is speaking about the relevance 
of disorders? 
A: man

MSRVTT Video ID: video7012

Q: what does a man seated in a chair 
discuss?
A: health

Q: What decorative items are on the desk in the video and what does the lighting in the room look 
like?

A: The desk in the video features a couple of decorative items including a blue-striped spherical 
object and a small chrome lamp with a white shade. The lighting in the room is soft and comes from 
the person's left side, casting soft shadows.

Q: What is the person in the video doing and what does their appearance suggest?

A:  The person in the video is sitting in a leather chair against a wooden backdrop with framed art 
and a small light fixture on the wall and appears to be delivering a speech or presentation. Their 
appearance suggests that they are confident and engaged in the presentation or interaction.

Our Video QA Dataset

Existing Video QA Dataset

Figure 14: Comparing testing QA in existing benchmark with that in our proposed new benchmark.
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Q: what are girls and their 
mom doing?
A: marble

Q: what is kids doing?
A: color

Q: who does a woman teach how to 
paint eggs?
A: girl

Q: What is the purpose of the video?
A: The purpose of the video is to showcase the process of dyeing Easter eggs.

Q: What are the tools and materials used in the video?
A: The tools used in the video are a wire egg holder, and the materials are a variety of colorful dyes, 
eggs, and a tablecloth.

Q: What is the significance of the tablecloth in the video?
A: The tablecloth is adorned with whimsical fish designs and protects the workspace where the 
dyeing process takes place.

Our Video QA Dataset

Existing Video QA Dataset

MSRVTT Video ID: video7016

Figure 15: Comparing testing QA in existing benchmark with that in our proposed new benchmark, example 2.
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F Additional DPO Results779

0.5 1.0 1.5 2.0 2.5 3.0
Epochs

55

60

65

70

75

80

Ac
cu

ra
cy 69.24

72.75

76.89

79.97 80.30 79.82

58.01

62.65

67.32
69.95 70.67 70.06

64.87

69.33

73.60
76.21 76.55 76.62

DPO Acc vs. Training Epochs (In-domain)

webvid
vidal
actnet

0.5 1.0 1.5 2.0 2.5 3.0
Epochs

30

40

50

60

70

80

Ac
cu

ra
cy

54.32

59.61
63.92

67.52 68.29 68.29
63.90

67.55
70.88

74.73 75.02 73.64

62.70
66.98

71.13 73.08 74.08 74.00

36.58
41.40

45.22
48.86 49.19 48.89

DPO Acc vs. Training Epochs (Out-of-domain)

msrvtt
msvd
tgif
ssv2

Figure 16: Test Set Accuracy of the DPO Model vs. Training Epochs. The figure illustrates a consistent trend
in both in-domain and out-of-domain video QA, with peak performance occurring at approximately epoch 2.5,
equivalent to 350 training steps.
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Figure 17: Comparison of DPO Model Performance: Ranker vs. Generator. The DPO model serves as a ranker,
assigning reward scores to candidate answers generated by the SFT model with a temperature setting of 1.0.
Employing the DPO model directly for answer generation results in superior performance compared to its use as a
ranker.
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G Prompts for GPT-4V and ChatGPT Queries 780

Picture yourself as a customer service agent managing user-uploaded video. The
uploaded video, captioned with '{}', consists of a seires of images. All the
analysis should be video-level. Your duty is to summarize video content,
highlighting actions and object relationships. Follow this with a detailed
description. The summary briefly covers actions and relationships, while the
detailed description delves into factual, visible details with a logical
structure, considering elements like color, shape, attribute, and count.

Then craft a dialogue between the agent ('A') and the customer ('C') in a manner
suggesting that the agent is actively viewing the video and answering the
customer's questions. Frame questions using 'how many', 'what,' 'how,' 'when,'
'which,' and 'why' to ensure precise and definitive answers, rooted in video
content. Pose varied questions encompassing the visual content, such as object
types, counting objects, object actions, object locations, and relative positions
between objects. Ensure each question has a definite answer, either observed in
the video or confidently determined to be absent. Avoid questions with uncertain
answers.

Ouput format:
Summary: <your summary>
Detail: <your detailed description>
Conversation: <your quesion-answer conversation, clearly labeling the customer
and agent as 'C' and 'A'>

Figure 18: GPT-4V prompt for the generation of video summary, detailed caption and conversation generation. We
only use detailed caption for experiments.
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Task Instructions:

Given a caption that summarizes the content of a video, generate three
question-answer pairs that relate directly to the information and context
provided in the caption. The questions should be grounded to the understanding of
the video content.

Guidelines for QA Generation:

1. Helpfulness: Answers should provide sufficient detail and depth to fully
address the question. They should include relevant explanations, or context where
appropriate, to enhance understanding.

2. Faithfulness: The answers must accurately reflect the information presented in
the video caption. Avoid speculation or the inclusion of information not
contained or implied by the caption to maintain the integrity of the content.

3. Diversity: Craft questions that cover different aspects of the video caption
to provide a comprehensive understanding of the content. This includes factual
inquiries, inferential questions, and those that may elicit explanatory
responses.

Input Video Caption:
{caption}

Output format:
Q1: <question1>
A1: <answer1>
Q2: <question2>
A2: <answer2>
Q3: <question3>
A3: <answer3>

Figure 19: ChatGPT for instruction generation.

Your role is to serve as an impartial and objective evaluator of a video caption
provided by a Large Multimodal Model (LMM). Based on the input frames of a video,
assess primarily on two criteria: the coverage of video elements in the caption
and the absence of hallucinations in the response. In this context,
'hallucination' refers to the model generating content not present or implied in
the video, such as incorrect details about objects, actions, counts, or other
aspects not evidenced in the video frames.

To evaluate the LMM's response:

Start with a brief explanation of your evaluation process.
Then, assign a rating from the following scale:

Rating 6: Very informative with good coverage, no hallucination
Rating 5: Very informative, no hallucination
Rating 4: Somewhat informative with some missing details, no hallucination
Rating 3: Not informative, no hallucination
Rating 2: Very informative, with hallucination
Rating 1: Somewhat informative, with hallucination
Rating 0: Not informative, with hallucination

LMM Response to Evaluate
{LLM_response}

Output format:
Judgment: <your judgment>
Score: <integer value rating>

Figure 20: GPT-4V evaluation prompt for video captioning.
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Given the following inputs:

1. **Ground Truth Video Caption**: {caption}
2. **Question Related to the Caption**: {question}
3. **Ground Truth Answer**: {answer}
4. **Model Predicted Answer**: {prediction}

Your task is to evaluate the model's predicted answer against the ground truth
answer, based on the context provided by the video caption and the question.
Consider the following criteria for evaluation:

- **Relevance**: Does the predicted answer directly address the question posed,
considering the information provided in the video caption?
- **Accuracy**: Compare the predicted answer to the ground truth answer. Does the
prediction accurately reflect the information given in the ground truth answer
without introducing factual inaccuracies?
- **Clarity**: Assess the clarity of the predicted answer. Look for issues such
as repetition, unclear descriptions, or any grammatical errors that could hinder
understanding.
- **Completeness**: Determine if the predicted answer fully covers the scope of
the ground truth answer. Does it leave out critical information or does it
include all necessary details?

**Output Format**:
Explanation: <brief judgement of prediction>
Score: <a integer score of quality from 1-5>

Figure 21: ChatGPT-Evaluation Prompt for Video Question Answering. This prompt takes in a detailed caption,
question, ground truth answer, and model prediction, subsequently generating an assessment of the prediction’s
quality alongside a corresponding score based on predefined criteria. A score value ≥ 3 will be considered correct
for accuracy calculation.

Your task is to act as an impartial and objective assessor of answers generated
by a Large Multimodal Model (LMM) for video-based questions. Utilizing video
frames, a posed question, and the model's provided answer, your evaluation should
focus on the following aspects:

- **Relevance**: Does the predicted answer directly address the question posed,
considering the information provided in the video caption?
- **Accuracy**: Compare the predicted answer to the ground truth answer. Does the
prediction accurately reflect the information given in the ground truth answer
without introducing factual inaccuracies?
- **Clarity**: Assess the clarity of the predicted answer. Look for issues such
as repetition, unclear descriptions, or any grammatical errors that could hinder
understanding.
- **Completeness**: Determine if the predicted answer fully covers the scope of
the ground truth answer. Does it leave out critical information or does it
include all necessary details?

**Input**:
Question: {question}
Model Predicted Answer: {prediction}

**Output Format**:
Explanation: <brief judgement of prediction>
Score: <an integer score of quality from 1-5>

Figure 22: GPT-4V Evaluation Prompt for Video Question Answering. Together with video frames input in GPT-4V
API, this prompt takes in a question, and model prediction, subsequently generating an assessment of the prediction’s
quality alongside a corresponding score based on predefined criteria. A score value ≥ 3 will be considered correct
for accuracy calculation. This is used to assess the quality of ChatGPT evaluation in fig. 21.
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