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COMGS: EFFICIENT 3D OBJECT-SCENE COMPOSI-
TION VIA SURFACE OCTAHEDRAL PROBES
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(c) Real-World Composition(b) Comparison with Existing Approaches
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Figure 1: (a) Task: From multi-view images, we aim for realistic 3D object–scene composition
via reconstruction, editing, and rendering. (b) Comparison: Compared to existing methods, our
approach achieves superior harmonious appearance and plausible shadows (red arrows), while run-
ning at around 26 FPS. (c) Application: Our method also performs well on real-world captures.

ABSTRACT

Gaussian Splatting (GS) enables immersive rendering, but realistic 3D ob-
ject–scene composition remains challenging. Baked appearance and shadow in-
formation in GS radiance fields cause inconsistencies when combining objects
and scenes. Addressing this requires relightable object reconstruction and scene
lighting estimation. For relightable object reconstruction, existing Gaussian-based
inverse rendering methods often rely on ray tracing, leading to low efficiency. We
introduce Surface Octahedral Probes (SOPs), which store lighting and occlusion
information and allow efficient 3D querying via interpolation, avoiding expensive
ray tracing. SOPs provide at least a 2× speedup in reconstruction and enable
real-time shadow computation in Gaussian scenes. For lighting estimation, ex-
isting Gaussian-based inverse rendering methods struggle to model intricate light
transport and often fail in complex scenes, while learning-based methods predict
lighting from a single image and are viewpoint-sensitive. We observe that 3D
object–scene composition primarily concerns the object’s appearance and nearby
shadows. Thus, we simplify the challenging task of full scene lighting estimation
by focusing on the environment lighting at the object’s placement. Specifically,
we capture a 360° reconstructed radiance field of the scene at the location and fine-
tune a diffusion model to complete the lighting. Building on these advances, we
propose ComGS, a novel 3D object–scene composition framework. Our method
achieves high-quality, real-time rendering at around 26 FPS, produces visually
harmonious results with vivid shadows, and requires only 36 seconds for editing.
The code and dataset will be publicly released.

1 INTRODUCTION

Gaussian splatting (GS) (Kerbl et al., 2023) has emerged as a powerful point-based differentiable
rendering technique, enabling high-fidelity 3D reconstruction and rendering from multi-view im-
ages. Despite its success, realistic 3D object–scene composition is still challenging, as the GS ra-
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diance field inherently bakes appearance and shadows. Realistic object-scene composition requires
integrating objects into scenes while ensuring visual harmony and physically plausible shadows.
Two critical obstacles must be addressed to achieve this goal: (1) relightable object reconstruction
to account for appearance variations, and (2) scene lighting estimation to enable object relighting
and realistic shadows.

For relightable object reconstruction, existing Gaussian-based inverse rendering approaches (Gu
et al., 2025; Sun et al., 2025) often rely on costly ray tracing for occlusion and indirect lighting,
leading to low efficiency. This constitutes a significant bottleneck for real-time object-scene compo-
sition. Meanwhile, lighting estimation in complex scenes remains an open problem. Gaussian-based
inverse rendering (Liang et al., 2024b) methods struggle due to intricate light transport in complex
scenes, while learning-based methods (Zhan et al., 2021; Phongthawee et al., 2024), which typi-
cally predict lighting from a single image, fail to ensure multi-view consistency. Consequently, both
categories of methods fall short in providing reliable lighting for realistic object–scene composition.

To address these challenges, we propose two key innovations. First, we introduce Surface Octa-
hedral Probes (SOPs) for efficient relightable Gaussian object reconstruction. SOPs store indirect
lighting and occlusion, allowing shading points to access this information via interpolation rather
than costly ray tracing. Thanks to the efficiency of SOPs, our method achieves at least a 2× speedup
in reconstruction compared to state-of-the-art approaches, while maintaining comparable accuracy.

Second, we observe that achieving visually harmonious and plausible shadows in object–scene com-
position does not require perfectly decoupling scene lighting, which presents significant technical
challenges. In practice, it is sufficient to estimate the lighting around the object. Accordingly, we
reformulate scene lighting estimation as the task of inferring an environment map from partially
reconstructed Gaussian radiance fields. We first perform a 360-degree trace of the Gaussian scene
to extract partial radiance and then input it into a fine-tuned Diffusion Model (Rombach et al., 2022)
to generate a complete lighting estimation. Our approach leverages the existing Gaussian radiance
field, leading to more accurate and realistic lighting results.

Building on these advances, we present ComGS, a novel object-scene composition framework lever-
aging SOPs. Our solution operates in three stages: (1) Reconstruction, for relightable object and
scene reconstruction; (2) Editing, including lighting estimation and SOPs-based occlusion caching;
and (3) Rendering, covering object relighting and shadow casting. By combining reconstructed re-
lightable objects with estimated lighting, we achieve visual coherence and vivid shadows. SOPs
cache occlusion during the editing stage, enabling efficient calculation of plausible shadows during
rendering. For static object placements, our method achieves approximately 26 FPS rendering, with
an editing time of 36 seconds. We summarize our key contributions as follows:

• A complete 3D object–scene composition framework that ensures visual harmony and plau-
sible shadows, achieving 26 FPS rendering with an editing time of only 36 s.

• A novel inverse rendering pipeline using Surface Octahedral Probes (SOPs) for efficient
relightable object reconstruction, providing over 2× speedup compared to SOTA methods.

• Extensive evaluations on SynCom, public datasets, and phone captures that show +1.4 dB
PSNR, 21% higher 3D consistency, and 56% greater harmony over existing methods, high-
lighting our framework’s potential for immersive 3D applications.

2 RELATED WORK

Object-Scene Composition Most methods aim to combine foreground object images with back-
ground images. Some approaches (Niu et al., 2023; Zhou et al., 2024) focus specifically on achieving
visual harmony between foreground and background. Diffusion-based methods (Chen et al., 2024;
Zeng et al., 2024; Liang et al., 2024a) leverage generative models for flexible object placement and
harmonious appearance. Intrinsics- and physics-based methods (Careaga et al., 2023; Zhang et al.,
2025) decompose scene images into physical properties to enable photorealistic integration. Some
works extend to 3D object insertion (Tarko et al., 2019; Ye et al., 2024b; Jin et al., 2025), using
mesh-based representations or NeRF (Mildenhall et al., 2020), but they often rely on simplified
assumptions or focus mainly on appearance, leaving effects such as shadows and complex light-
ing largely unhandled. MV-CoLight (Ren et al., 2025) accomplishes object composition with a
feed-forward architecture, while its performance suffers from the domain gap of the training data.

2
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Figure 2: Realistic 3D Object–Scene Composition Pipeline. Our approach consists of 3 stages:
reconstruction (Sec. 3.1), where we reconstruct the Gaussian scene and relightable Gaussian object
from multi-view images; editing (Sec. 3.2), where we estimate scene lighting and cache occlusion
using Surface Octahedral Probes; and rendering (Sec. 3.3), where we perform splatting, object re-
lighting, shadow casting, and depth compositing. The pipeline achieves visually harmonious results
with realistic shadows and near-real-time performance.

Inverse Rendering Inverse rendering approaches built on mesh (Hasselgren et al., 2022; Dai et al.,
2025) and NeRF (Zhang et al., 2021a;b; 2022; Yao et al., 2022; Jin et al., 2023) have proven suc-
cessful. Recently, Gaussian Splatting (GS) (Kerbl et al., 2023) has enabled more efficient inverse
rendering (Jiang et al., 2024; Gao et al., 2024; Gu et al., 2025; Huang et al., 2025) thanks to its fast
rendering. However, inverse rendering still struggles with complex scenes due to incomplete scene
captures and challenging light transport. While some GS-based methods (Liang et al., 2024b; Chen
et al., 2025) attempt scene-level reconstruction, they often rely on simplified lighting assumptions,
resulting in inaccurate lighting decomposition and reduced realism in object-scene composition.

Lighting Estimation Early methods (Gardner et al., 2017; Wang et al., 2022a; Zhan et al., 2021;
Somanath & Kurz, 2021) estimate high dynamic range (HDR) environment maps from a single
low dynamic range (LDR) photo to relight virtual objects for scene blending. For spatially-varying
lighting, some methods predict per-pixel illumination (Li et al., 2020) or use 3D octree-based rep-
resentations (Wang et al., 2024). Recently, DiffusionLight (Phongthawee et al., 2024) leverages
pretrained diffusion models for improved generalization. However, relying on a single image often
leads to multi-view inconsistencies. While Lyu et al. (2023) integrate inverse rendering into diffu-
sion denoising for 360◦ illumination, their method relies on an explicit Mesh-based representation.

3 METHOD

We propose a realistic 3D object-scene composition pipeline, as shown in Figure 2. The pipeline
consists of three stages: reconstruction, editing, and rendering. Each stage is detailed as follows.

3.1 RECONSTRUCTION

Our reconstruction process is divided into two steps. For objects, we apply both steps to reconstruct
a relightable Gaussian object. For scenes, we perform only the first step for radiance field.

Multi-Target Rendering To achieve better geometry than 3DGS (Kerbl et al., 2023), 2D Gaussian
Splatting (2DGS) (Huang et al., 2024) employs surfels in 3D space as rendering primitives. Each
surfel is defined by center pi, quaternion qi for orientation, and scaling vector si for deformation.

To enable relightable 2D Gaussians, we further equip them with material parameters {ai, ri,mi} for
albedo, roughness, and metallic. Through 2DGS, we perform differentiable multi-target rendering
to generate G-buffers B in a single pass via alpha blending:

B =

N∑
i=1

Tiαibi, Ti =

i−1∏
j

(1− αj), (1)

3
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Figure 3: Inverse Rendering with Surface Octahedral Probes (SOPs). We utilize trained re-
lightable 2D Gaussians to generate GBuffers via splatting, followed by deferred physically based
rendering for a render image. Illumination is split into direct lighting from environment map, indi-
rect lighting and occlusion captured by textures in SOPs. Both the environment map and textures
are stored as octahedral textures. Low-discrepancy ray sampling with random rotation is used to
compute illumination at shading point, with indirect light and occlusion derived via KNN interpo-
lation from nearby probes. SOPs are initialized with ray tracing and optimized under its guidance,
avoiding intensive ray tracing per optimization iteration and boosting inverse rendering efficiency.

where bi = {ci, 1, di,ni,ai, ri,mi}, with ci as color, di as ray-surfel intersection depth and ni

as surfel normal. These G-buffers includes RGB buffer C, geometry buffers (W for weight, D for
depth, N for normal) and material buffers (A for albedo, R for roughness, and M for metallic). As
in prior works (Gao et al., 2024; Liang et al., 2024b), we use the unbiased depth D̃ = D/W .

3.1.1 STEP 1: RADIANCE AND GEOMETRY RECONSTRUCTION

Loss We follow the rendering loss from (Kerbl et al., 2023):

Lrgb = L1(C, Ĉgt) + 0.2 · (1− SSIM(C, Ĉgt)), (2)

and apply depth-normal consistent regularization (Huang et al., 2024; Gao et al., 2024):

Ld2n = 1− (N · Nd), (3)

where Nd is devided from depth. For objects, we apply mask constraint (Gao et al., 2024) as:

Lmask = −K logW − (1−K) log (1−W), (4)

where K is provided mask, The total loss for the first step is:

L = Lrgb + λd2nLd2n + λmaskLmask. (5)

3.1.2 STEP 2: MATERIAL AND LIGHTING DECOMPOSITION

Deferred Physically Based Rendering From G-Buffers, we produce a PBR image in a deferred
shading manner. We first project the unbiased depth map D̃ into world space as shading points {x},
and then evaluate the rendering equation at these shading points:

Lo(ωo,x) =

∫
Ω

f(ωo, ωi,x)Li(ωi)(ωi · n)dωi, (6)

where n is the surface normal, f denotes the BRDF, Li and Lo are the incoming and outgoing
radiance from direction ωi and ωo, and Ω represents the hemisphere above the surface. We adopt a
simplified Disney BRDF model (Burley & Studios, 2012). We evaluate this integral via Monte Carlo
sampling by drawing Sr rays {ωi}Sr

i=1 from a low-discrepancy Hammersley point set, computed as:

Cpbr(x) =
2π

Sr

Sr∑
i

f(ωo, ωi,x)Li(ωi)(ωi · n). (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Illumination Modeling We model illumination as direct lighting Ldir and indirect lighting Lin,
combined through occlusion O:

Li(ωi) = (1−O(ωi))Ldir(ωi) + Lin(ωi). (8)

We set direct lighting as a learnable environment map, and the indirect lighting as the inter-reflection.
A straight-forward method to obtain occlusion and indirect lighting is to perform ray tracing on
Gaussian point cloud, similar to IRGS (Gu et al., 2025). However, ray tracing is computationally
intensive, resulting in low efficiency.

To address this, we propose Surface Octahedral Probes (SOPs) for efficient querying of indi-
rect lighting and occlusion. These probes are positioned near the surface, with their radiance and
occlusion textures {Lin, O} initialized via ray tracing. In implementation, we employ octahedral
textures (Praun & Hoppe, 2003) for their low memory footprint and minimal distortion.

Automatic Placement of SOPs Careless placement can mix SOPs with Gaussian points, causing
light-leaking artifacts. To mitigate this issue, we propose a placement strategy that positions SOPs
near the surface. We first render geometry buffers for all viewpoints, followed by Multi-View Depth
Fusion (Galliani et al., 2015) to generate a dense surface point cloud with normals. We then apply
Farthest Point Sampling (FPS) to obtain a uniform subsample of points. Finally, these points are
slightly offset along their normals to define the placement locations of SOPs.

Efficient Querying through SOPs At each shading point x, we efficiently query indirect lighting
and occlusion from SOPs via K-Nearest Neighbors (KNN) interpolation. As an example, the indirect
lighting at x is queried by first identifying neighboring SOPs k ∈ N(x) using Fixed Radius Nearest
Neighbors (FRNN) search, followed by interpolation:

Lin(x) =

∑
k ws(k)wb(k) · Lin(k)∑

k ws(k)wb(k)
, (9)

where ws and wb is the spatial and back-face weights, respectively. Given pk as the location of k-th
neighbor SOP, we define a direction vector as dk = pk − x. Then, the spatial weight is defined as:

ws =
1

∥dk∥
, (10)

which assign greater influence for SOPs closer to the shading point. And, the back-face weight (Ma-
jercik et al., 2019; McGuire et al., 2017) is defined as:

wb = 0.5 · (1 + dk

∥dk∥
· np) + 0.01, (11)

indicating greater contribution when the direction vector dk is more aligned with the normal np.

Loss We use a rendering loss similar to that in Eq. 2 for the PBR image Cpbr, denoted as Lpbr. For
material regularization, we adopt the Lambertian assumption (Yao et al., 2022) with a cost favoring
high roughness and low metallic values under non-view-dependent lighting:

Llam = L1(R, 1) + L1(M, 0). (12)

We also supervise SOPs’ textures {Lin, O} using the traced radiance Ltr and occlusion Otr:

Lsops = L1(Lin, Ltr) + L1(O,Otr). (13)

The final loss for the second step is:

L = Lpbr + λlamLlam + λsopsLsops + λd2nLd2n + λmaskLmask, (14)

3.2 EDITING

From reconstructed scene and relightable Gaussian object, the editing stage estimates scene lighting
and caches occlusion, bridging to relighting and real-time shadow computation during rendering.

5
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3.2.1 LIGHTING ESTIMATION

We assume that the object is small relative to the scene and that its placement affects only its own
appearance and nearby regions. Under this assumption, the challenging task of estimating lighting
in complex scenes can be reformulated as a more tractable environment map inpainting problem.

From a reconstructed Gaussian scene, we generate an
HDR environment map for the target placement loca-
tion (Figure 4). We first perform a 360° sweep around
the location to capture an incomplete RGB panorama,
a partial normal map, and an alpha mask of the recon-
structed regions. These inputs are processed by a fine-
tuned Stable Diffusion 2.1 (Rombach et al., 2022) model
to generate a complete environment map. For HDR,
we use an exposure value (EV)-conditioned prompting
scheme (Phongthawee et al., 2024): a base model is
trained at EV = 0 and fine-tuned with interpolated em-
beddings for different exposure levels. During inference,
we generate maps at EV = {−5,−2.5, 0} and fuse them
into an HDR environment map, which is then converted
to an octahedral texture for relighting and shadow com-
putation. More details are included in Appendix D.

HDR

EV = {-5, -2.5, 0}

M

HDR MergingM

Alpha

RGB

Normal
Fine-tuned

Stable Diffusion

Figure 4: Lighting Estimation. At
a given location, we create a partial
panoramic view via a 360° sweep of
the Gaussian scene, yielding an incom-
plete RGB image, normal map, and al-
pha mask of reconstructed areas. Then,
we use a fine-tuned Stable Diffusion to
infer a HDR environment map.

3.2.2 OCCLUSION CACHING AND SHADOW CASTING

The shadow cast by a newly placed object in the scene is determined by the occlusion O′ it intro-
duces. Computing O′ directly via ray tracing for every rendering is straightforward but computa-
tionally expensive. Instead, we cache the object-induced occlusion O′ using our proposed SOPs.

Under the Lambertian scene assumption, the rendering equation (Eq. 6) simplifies to:

Lo ≈ fd

∫
Li(ωi)(ωi · n)dωi

. (15)

When an object is placed, the scene rendering becomes:

L′
o = fd

∫
Li(ωi)(1−O′(ωi))(ωi · n)dωi , (16)

where O′ is the object-induced occlusion cached by SOPs newly placed in the scene, distinct from
the self-occlusion O of the object in Eq. 8. The cast shadow is then derived as:

S =
L′
o

Lo
. (17)

To implement this, a potential shadow region is defined around the object placement location, with
size proportional to N times the object dimensions. Within this region, SOPs are distributed follow-
ing the Automatic Placement strategy (Sec. 3.1.2). Their occlusion textures are then precomputed
via ray tracing, enabling efficient shadow calculation during rendering.

3.3 RENDERING

We start by performing multi-target rendering (Sec. 3.1) to obtain the RGBD of the Gaussian scene.
Next, we relight the object using the estimated environment map (Sec. 3.2.1) and compute shadows
with cached occlusion (Sec. 3.2.2).

Both object relighting and shadow computation involve evaluating integrals, which we accelerate
via Monte Carlo importance sampling. The octahedral texture’s low distortion and roughly uniform
texel areas simplify defining the Probability Density Function (PDF) as:

PDF (ωi) =
1

4π
Ht ·Wt · I. (18)

where Ht, Wt, and I denote the height, width, and intensity of the texture, respectively.

6
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Table 1: Composition Performance on SynCom
Dataset. Objective metrics (PSNR, SSIM), subjective
metrics (3D consistency, Con.; harmony, Harm.), and
efficiency metrics (editing time, FPS) are reported.

PSNR↑ SSIM↑ Con.↑ Harm.↑ FPS↑ T(Edit)↓
DiffHarmony 22.436 0.825 3.125 2.929 0.01 -

ZeroComp 20.344 0.780 1.642 1.504 0.40 -
MV-CoLight 21.045 0.855 2.800 2.633 1.01 -

GS-IR 22.418 0.824 3.283 2.125 2.11 -
GI-GS 22.877 0.849 3.746 2.908 0.29 -
IRGS 22.417 0.799 3.496 2.883 0.03 -

DiffusionLight 21.842 0.841 1.913 2.171 0.02 -
Ours (Trace) 24.567 0.870 4.746 4.600 4.02 14.59
Ours (SOPs) 24.282 0.868 4.563 4.588 26.14 36.12

Empty Composition (Copper)

Editing 1 (Silver) Editing 2 (Red Matte)

Figure 5: Material Editing in real-world
composition, from copper to silver and red
matte. Please ZOOM IN for details.

Our relighting process begins by sampling a set of rays Sr from the probability density function
(PDF) in Eq. 18, followed by Monte Carlo integration of the rendering equation (Eq. 6). To account
for self-occlusion, we modulate the direct lighting Ldir(ωi) by the visibility factor (1 − O(ωi))
derived from the object’s SOPs, yielding Li(ωi) = (1 − O(ωi))Ldir(ωi). This adjusted term is
then used in the integration (Eq 7). As for indirect lighting Lin, we intentionally omit it due to its
prohibitive computational cost. Then, cast shadows are subsequently computed via Eq. 17, where the
occlusion O′ is interpolated from the SOPs placed in the scene using Efficient Querying (Sec. 3.1.2).
Finally, depth compositing is applied to produce a realistic 3D object-scene composition.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Reconstruction Details We set the octahedral environment map resolution to 256 × 256, and
SOPs’ texture resolutions to 16 × 16, using 128 sampling rays. SOPs number is set to 5k, with
an offset distance empirically set to 1% of the object’s size. At step 1, loss weights are λd2n =
λmask = 0.05, with other settings following 2DGS, training over 30k iterations. At step 2, learning
rates are 0.01 for environment map, albedo, roughness, and metallic, and 0.001 for SOPs textures,
initialized via 2D ray tracing; loss weights are {λlam, λsops} = {0.001, 1}, over 2k iterations.

Editing and Rendering Details The estimated environment map resolution is 1024 × 512, con-
verted to an octahedral texture at 512× 512. We define the scene within 6 times the object’s size as
the potential shadow region, placing 10k SOPs there. We sample 256 rays for rendering.

4.2 COMPOSITION PERFORMANCE

SynCom Dataset We create a synthetic dataset to evaluate 3D object-scene composition. Multi-
view images of 4 objects (bottle, horse, kettle, and toy), 4 scenes (artwall, attic, forest, room), and
their 16 compositions are rendered using the Blender Cycles Engine. The precise control of object
placement and camera settings in Blender ensures a highly reliable reference for evaluation. Further
details of our SynCom dataset are provided in Appendix A.

For the composition performance evaluation, we compare three distinct categories of approaches:

(1) Image Composition: Scene and object are first reconstructed using 2DGS (Huang et al., 2024),
synthesized for novel views, and then composed with a image composition algorithm, specifically
DiffHarmony (Zhou et al., 2024) and ZeroComp (Zhang et al., 2025). Although MV-CoLight (Ren
et al., 2025) is a two-stage method that first performs image composition and then addresses 3D
composition, we categorize it here for simplicity.

(2) Gaussian-based Inverse Rendering: Scene and object are reconstructed with Gaussian-based
inverse rendering methods, composited, and then rendered with PBR. Specifically, GS-IR (Liang
et al., 2024b), GI-GS (Chen et al., 2025) and IRGS (Gu et al., 2025) are selected for comparison.
Note that R3DG (Gao et al., 2024) is not included due to excessive memory usage on scenes, result-
ing in reconstruction failure.

7
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Table 2: Reconstruction performance on TensoIR.
Our method achieves accuracy comparable to SOTA ap-
proaches with at least 2× efficiency improvement.

Method NVS Albedo Relighting Training
PSNR↑ PSNR↑ PSNR↑ Time↓

NeRFactor 24.679 25.125 23.383 >100 h
InvRender 27.367 27.341 23.973 15 h
TensoIR 35.088 29.275 28.580 5 h
GS-IR 35.333 30.286 24.374 16.40 min
R3DG 38.423 31.926 29.766 47.80 min
IRGS 35.751 31.658 30.250 21.45 min
Ours 35.822 31.683 30.474 7.93 min

GS-IR IR-GS GT

DiffusionLight 1 DiffusionLight 2 Ours

Figure 6: Environment Maps Compar-
ison. GS-IR and IRGS fail in com-
plex scenes, DiffusionLight is viewpoint-
inconsistent, while our method yields su-
perior and consistent results.

(3) Variants of Our Pipeline: (a) DiffusionLight, which estimates illumination from a single RGB
image via the DiffusionLight (Phongthawee et al., 2024); (b) Our (Trace), which employs computa-
tionally intensive ray tracing on Gaussians to generate shadows; (c) Our (SOPs), which utilizes our
proposed SOPs to cache occlusion and achieve efficient shadow rendering.

We report both objective and subjective metrics in Table 1. For objective evaluation, Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are computed against the ground truth.
Subjective evaluation is based on a Mean Opinion Score (MOS) survey, where 40 participants rate
3D consistency (Con.) and harmony (Harm.) of the compositions from 1 (poor) to 5 (excellent).
Editing time and rendering frame rate are also reported.

We show the composition results of all methods in Figure 7. Across both objective and subjective
metrics, as well as overall rendering performance, our methods Our (Trace) and Our (SOPs) con-
sistently outperform competing approaches, delivering harmonious compositions and, importantly,
realistic shadows. In particular, Our (Trace) yields smoother shadows but at a lower rendering speed,
whereas Our (SOPs) achieves comparable quality while sustaining a significantly higher frame rate.

Real-World Datasets Beyond synthetic datasets, we further validate our pipeline for realistic 3D
object-scene composition on real-world data.

For public datasets, we selected four objects from the BlendedMVS dataset (Yao et al., 2020),
namely Bull, Sculpture, Bell, and Egg, and obtained their object masks using SAM2 (Ravi et al.,
2024). In addition, we selected four scenes from the Tanks and Temples dataset (Knapitsch et al.,
2017): Ignatius, Caterpillar, Courtroom, and Playground. The composition results are shown in
Figure 11. Figures 5 and Figure 12 further illustrate the capability of our method to achieve multi-
view consistent object material editing.

We further evaluated our pipeline on real-world captured sequences. We used a smartphone to
record four sequences, including two objects, Figurine and Box, and two scenes, an outdoor Court-
yard and an indoor Hall. Sample images and the corresponding camera poses, reconstructed using
COLMAP (Schonberger & Frahm, 2016), are presented in Figure 13. Figure 14 shows the resulting
3D object-scene compositions from these smartphone-captured sequences.

These results demonstrate that our approach generalizes effectively to real-world data, producing
harmonious compositions with realistic shadows.

4.3 RECONSTRUCTION PERFORMANCE

Although our main focus is realistic 3D object–scene composition, we also assess reconstruction
accuracy on TensoIR (Jin et al., 2023) and our SynCom-Object dataset. As shown in Table 2, our
approach achieves accuracy comparable to state-of-the-art methods while delivering the fastest re-
construction, thanks to the proposed SOPs. R3DG attains the highest novel view synthesis accuracy
due to its lack of indirect lighting supervision, but this causes incorrect indirect lighting and bright
spot artifacts in relighting, as shown in Figure 19. Compared with IRGS, our method avoids expen-
sive per-point ray tracing through efficient KNN interpolation and trains on the full image instead
of random pixel sampling. Quantitative results on SynCom-Object (Table 4) further validate the
accuracy and efficiency of our method. Additional results are provided in Appendix C.
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Figure 7: Object-scene composition results on SynCom dataset. Our methods, Ours (Trace) and
Ours (SOPs), outperform others in realistic object-scene composition, producing harmonious visu-
als and realistic shadows. Ours (Trace) offers slightly better quality but at a lower rendering frame
rate. DiffHarmony and ZeroComp, based on image-level harmonization or composition, struggles
with scene-object occlusion. Inverse rendering methods like GS-IR and IRGS deviate from real
lighting in complex scenes: GS-IR’s coarse model lacks harmony, while IRGS, though more de-
tailed, fails to render realistic shadows. DiffusionLight generates shadows in some cases but suffers
from instability due to inconsistent single-image estimations across different viewpoints.
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4.4 LIGHTING ESTIMATION PERFORMANCE

We present environment maps estimated by different methods in Figure 6. Inverse rendering ap-
proaches, such as GS-IR and IRGS, struggle to capture the intricate lighting transports in com-
plex scenes. This difficulty is further exacerbated by the incomplete coverage of captured views.
Learning-based methods such as DiffusionLight, rely on a single input image and often produce
inconsistent lighting estimations across different viewpoints. By contrast, our method leverages the
reconstructed scene radiance field, enabling both higher-quality lighting estimation and multi-view
consistent object–scene composition. Further results are presented in Appendix D.

5 DISCUSSION

Assumptions and Failure Cases 3D object-scene composition is a highly challenging problem,
and we rely on several assumptions (Ye et al., 2024b; Wang et al., 2022b) to make it tractable.

• The inserted object is relatively small and affects only the local area of the scene.

• The scene is predominantly Lambertian, allowing a reasonable approximation of shadows.

These assumptions naturally limit the applicability of our approach. As illustrated in Figure 8, two
representative failure cases highlight these limitations.

In the first case, the object fails to cast a remote shadow,
which is due to the first assumption. In the second case,
we modify the table in the room scene from our SynCom
dataset to be highly specular, which prevents our method
from accurately modeling mirror-like reflections. This
failure stems from both the second assumption and the
limitations of the 2DGS-based reconstruction stage (Sec-
tion 3.1.1), which struggles with reflective scenes.

(a) Remote shadow (b) Mirror reflection

Figure 8: Failure cases. We failed to
cast remote shadow and model mirror-
like reflections.

SOPs Placement In our experiments, we place SOPs using a heuristic approach to reduce light
leaking, by slightly offsetting each SOP along the surface normal. In all experiments, this offset is
set to 1% of the object size. This is validated to some extent in Figure 20 and Table 5, and we did
not observe any noticeable failures or severe light leaks in all our experiments. We also find that
the shadow quality improve as the number of SOPs and the resolution of their textures increase in
Figure 15. Building on these insights, future work could explore adaptive SOP placement strategies
to achieve better fidelity with fewer SOPs, and reduce memory usage.

Incremental SOP Updates Our pipeline naturally handles camera motion, since SOPs cache oc-
clusion in scene space and can be reused across views. When the inserted object moves, changes in
visibility and lighting require recomputing SOPs. Developing efficient incremental update strategies
for moving objects remains challenging and is an interesting direction for future work.

Single-View Scenes Our method relies on multi-view 3D reconstruction, but extending it to single-
image inputs is an interesting direction for future work.

6 CONCLUSIONS

In this study, we tackle the challenge of realistic 3D object-scene composition, seamlessly inte-
grating objects into scenes with visual harmony and physically plausible shadowing. We propose
ComGS, organized into three stages: reconstruction, edit, and rendering. In the reconstruction
stage, we reconstruct relightable Gaussian objects and the scene’s Gaussian radiance field. Surface
Octahedral Probes (SOPs) are introduced to accelerate object reconstruction without compromising
accuracy. In the edit stage, within the context of object-scene composition, we simplify complex
scene lighting estimation to a local lighting completion problem at the object placement site, solved
via a fine-tuned diffusion model. SOPs are also used to cache occlusion caused by the inserted
objects. In the rendering stage, we perform object relighting and shadow computation, combining
results through depth compositing to produce the final object-scene composition. Our framework
enables near-real-time rendering with vivid and physically plausible shadows.
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A DETAILS OF SYNCOM DATASET

A.1 OVERVIEW

The task of realistic 3D object–scene composition aims to reconstruct objects and scenes separately
from two sets of multi-view images, and then integrate the reconstructed 3D objects into the 3D
scenes in a visually harmonious manner. Realism here means that the composed objects match the
scene in appearance and produce physically plausible shadows.

To enable quantitative evaluation, we introduce SynCom (Synthetic Composition), a synthetic
dataset designed for this task. Compared to real-world data, synthetic data offers precise control
over object placement and camera setting, ensures accurate ground-truth for the composed scenes,
and provides high reproducibility, all of which facilitate reliable quantitative assessment. Below, we
provide a detailed description of the SynCom dataset.

A.2 DATA SOURCE

Figure 9: Assets collected from BlenderKit, serving as the data source for our SynCom dataset,
comprising four objects (bottle, horse, kettle, toy) and four scenes (artwall, attic, forest, room).

We collect 4 object assets and 4 scene assets from BlenderKit1, all under permissive licenses. The
assets are shown in Figure 9. The object assets are designated as bottle, horse, kettle, and toy,
while the scenes are labeled as artwall, attic, forest, and room. To facilitate camera placement
and approximate realistic environments, we perform careful manual editing of the scenes, adjusting
layouts and enriching content.

A.3 SYNCOM DATASET

Our SynCom dataset is organized into three distinct collections: object, scene and composition. We
render the dataset using the Cycles engine in Blender2 to achieve high physical realism, particularly
accurate global illumination and shadow effects.

Object Collection This collection is created by rendering each of the four objects individually.
The objects are illuminated using freely available 1K-resolution HDRIs from PolyHaven3 as envi-
ronment maps. The collection is divided into a training set and a testing set. The training set focuses
on the upper hemisphere of each object, with 200 camera positions randomly sampled around this
region. The testing set comprises 100 images captured from three distinct latitude circles around

1https://www.blenderkit.com/
2https://www.blender.org/
3https://polyhaven.com/
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the object. For all images, cameras point toward the object center, and the resolution is fixed at
800× 800 pixels.

Scene Collection This collection focuses on rendering each of the four scenes individually. To
create high-fidelity and complex scenes, we start with 4 scenes sourced from BlenderKit and modify
them by adding, removing, or altering elements. This process results in 4 distinct environments with
real-world-like complexity: 3 indoor settings (artwall, attic, room) and 1 outdoor setting (forest).

The process of rendering scenes is inherently more complex than rendering individual objects. Cap-
turing a scene requires moving the camera inside it, which can lead to occlusion by the scene’s
structures or even cause the camera to intersect with them, resulting in invalid views. To prevent
this, We employ a virtual auxiliary ellipsoid, with scales and center carefully adjusted along each
axis, so that its upper surface remains clear of the scene’s structures. Cameras are then placed on
the ellipsoid’s surface to capture the scene. Compared to a spherical boundary, an ellipsoid provides
greater flexibility in accommodating the diverse shapes and layouts of different environments.

For the training set, 144 camera positions are randomly sampled from cells of a uniform grid on the
ellipsoid’s surface, with all cameras pointing toward its center. For the test set, 72 camera positions
are sampled along a spiral path on a slightly smaller, concentric ellipsoid. All images are captured
at a resolution of 1280× 720 pixels.

Composition Collection This collection combines the four objects with the four scenes, yielding
16 distinct object–scene pairs. Each object is manually positioned with specified 3D location, ori-
entation, and scale, and these placement parameters are recorded for later use. The ground truth for
each composition is obtained by rendering the scene after object placement. To ensure controlled
evaluation, all composite scenes are rendered from the same 72 test viewpoints as their correspond-
ing empty scenes.

Leveraging the controllability of synthetic data, these renderings provide a reliable benchmark for
assessing realistic object–scene composition and related tasks such as object insertion, novel-view
synthesis, and inverse rendering.

Object Collection Scene Collection Composition Collections

toy room toy in room

horse forest horse in forest

Figure 10: Samples selected from the SynCom dataset. The three columns from left to right
correspond to the Object, Scene, and Composition collections. The precise control over cameras
and the highly controllable scene illumination in synthetic data enable alignment between empty
and composed scenes, facilitating quantitative evaluation of realistic 3D object–scene composition.
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(d) Egg in Playground

Figure 11: 3D object-scene composition on public datasets. We select four scenes (Ignatius,
Caterpillar, Courtroom and Playground) from the Tanks and Temples dataset and four objects (Bull,
Sculpture, Bell and Egg) from the BlendedMVS dataset. Starting from the multi-view images pro-
vided by these datasets, we perform 3D object–scene composition using our pipeline, achieving
harmonious composition of objects into the scenes along with physically plausible cast shadows.
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B MORE RESULTS ON COMPOSITION

B.1 PUBLIC DATASETS

In addition to our synthetic SynCom dataset, we also evaluate our method on public datasets. Specif-
ically, we select several scenes from the Tanks and Temples (Knapitsch et al., 2017) and several
objects from the BlendedMVS (Yao et al., 2020), with object masks obtained using SAM2 (Ravi
et al., 2024). Our method is then applied to perform 3D object–scene composition on these data, as
shown in Figure 11. For more intuitive visualizations, please see the supplementary video.

Material Editing We further demonstrate multi-view consistent material editing of objects in Fig-
ure 12. For a clearer visualization of these results, we refer readers to our supplementary video.

View 1 View 2 View 3 View 4

Original
(Copper)

Edit. 1
(Silver)

Edit. 2
(Stone)

Edit. 3
(Red Matte)

Edit. 4
(Red Glossy)

Figure 12: Material Editing. Our reconstructed objects are represented as relightable Gaussian
point clouds, enabling flexible material editing. By adjusting the albedo, metallic, and roughness
properties, we demonstrate material modifications of object from original copper to silver, stone,
red matte, and red glossy. The edited results remain consistent across multiple viewpoints.

(e) Figurine (f) Box (g) Courtyard (h) Hall

Figure 13: Smartphone-Captured Objects and Scenes. Top row: sample images of our captured
objects and scenes. Bottom row: corresponding camera pose visualizations.
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B.2 SMARTPHONE-CAPTURED DATA

We capture separate videos of scenes (i.e., an outdoor courtyard and an indoor hall) and objects (i.e.,
a figurine and a box) using an iPhone 16 Pro. Objects were placed under soft lighting and captured
following a systematic spiral camera trajectory, which ensures sufficient viewpoint coverage for
reconstruction. Figure 13 shows sample images along with visualizations of the captured camera
poses, providing an overview of our real-world data collection setup.

Multi-view images of each are independently extracted from their respective videos via frame sam-
pling, while object masks are obtained with SAM2 (Ravi et al., 2024). Our method is then applied
to perform 3D object–scene composition. As shown in Figure 14, even on challenging smartphone-
captured data, our approach produces harmonious appearances and realistic shadows. For a clearer
and more vivid demonstration, please refer to the supplementary video.

View 1 View 2 View 1 View 2
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(a) Figurine in Courtyard (b) Box in Hall

Figure 14: Qualitative results on smartphone-captured data. Our approach enables 3D ob-
ject–scene composition with harmonious appearances and realistic shadows, even on challenging
smartphone-captured data.

B.3 MEMORY CONSUMPTION OF SOPS

We evaluate the GPU memory consumption of our SOPs on the Bottom in Room scene from the
SynCom dataset. The results for different numbers of SOPs are summarized in Table 3.

The memory usage with 20K SOPs is comparable to
the ray-tracing baseline, which requires maintaining a
BVH structure. This indicates a moderate overhead
introduced by our method. The mild growth in mem-
ory consumption as the number of SOPs increases
suggests that the memory is dominated by the Gaus-
sian point cloud, which consists of a large number of
Gaussians with high-dimensional attributes.

Table 3: GPU memory usage comparison
under different numbers of SOPs.

Setting Memory (GB)
Ray Tracing (Baseline) 4.4
SOPs Num. = 10,000 4.3
SOPs Num. = 20,000 4.4
SOPs Num. = 40,000 4.5

B.4 ABLATION ON NUMBERS OF SOPS AND TEXTURE RESOLUTION

We analyze the influence of the number of SOPs and the probe texture resolution within our com-
position pipeline. Our baseline configuration uses 10k SOPs at a resolution of 16, and is compared
against setups with fewer (5k) and more (20k) SOPs, as well as lower (8) and higher (32) texture
resolutions.

As illustrated in Figure 15, reducing the number of SOPs to 5k or the resolution to 8 introduces
visible shadow aliasing and loss of fine details. Specifically, at a resolution of 8, the angular sampling
over the full 360 degrees becomes too coarse, resulting in inadequate shadow representation and
significant directional errors. A resolution of 16, by contrast, yields visually acceptable results.
Increasing either the number of SOPs or the texture resolution beyond the baseline values reduces
aliasing and improves the overall shadow quality.
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Num.=10k, Res.=16 Num.=5k, Res.=16 Num.=20k, Res.=16

Ray Tracing Num.=10k, Res.=8 Num.=10k, Res.=32
Figure 15: Influence of the Number of SOPs and Texture Resolution. A resolution of 16 provides
visually acceptable results, while a resolution of 8 causes significant directional errors due to coarse
angular sampling. Increasing the number of SOPs beyond 10k further reduces aliasing.

B.5 SELF-OCCLUSION

Figure 16 presents two composition results for illustrating the effect of modeling self-occlusion.
One result is generated without incorporating self-occlusion, and the other is produced by our full
method, which models self-occlusion by modulating direct illumination using the visibility factor
1−O(ωi) computed from the object’s SOPs (see Section 3.3). Incorporating self-occlusion provides
additional shading cues that contribute to a more realistic 3D object-scene composition.

(a) Without self-occlusion (b) With self-occlusion (c) Ground Truth
Figure 16: Effect of Self-Occlusion. Comparison of compositions without and with self-occlusion
modeling. Incorporating self-occlusion further enhances the composition’s harmony and realism.

B.6 MULTI-OBJECT COMPOSITION

(a) Without inter-object occlusion (b) With inter-object occlusion
Figure 17: Multi-object Composition in a Scene. Our approach enables multi-object composition
through sequential placement.
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Our approach supports multi-object composition through a sequential procedure. Although simul-
taneous placement of multiple objects is not supported, we address this by inserting objects one
after another. After placing the first object, the modified scene is rendered from multiple views and
reconstructed using Stage 1 of our method. This reconstructed scene then serves as the base scene
for inserting the next object. Figure 17 demonstrates that this sequential strategy allows our method
to successfully compose multiple objects and model partial inter-object occlusion between them.

B.7 SHADOW FROM MULTIPLE LIGHT SOURCES

(a) With a light source (b) With two light sources
Figure 18: Shadows from Multiple Lights. Our method correctly composites shadows in overlap-
ping regions, producing darker, additive shadows when multiple light sources are present.

Our method naturally handles scenes with multiple light sources, producing shadows that cor-
rectly composite in overlapping regions. To validate this, we conducted an experiment on the Ket-
tle in Room scene by manually adding a secondary point light to the predicted environment map.

After introducing the additional light, the shadows cast by the original light become less pronounced
due to the increase in overall illumination. In areas where shadows from both light sources overlap,
a darker, composite shadow emerges, demonstrating the expected additive effect of multiple light
sources. The results are illustrated in Figure 18.

C MORE RESULTS ON RECONSTRUCTION

C.1 RECONSTRUCTION PERFORMANCE ON SYNCOM-OBJECT

We also conducted experiments on our SynCom object dataset. We report MAE for normals, PSNR
for NVS and albedo, and PSNR, SSIM, and LPIPS for relighting, along with training time. For NVS
and albedo, only PSNR is presented due to the negligible differences in SSIM and LPIPS across most
methods. Results are presented in Tables 4. Our approach achieves accuracy comparable to SOTA
methods, and in some cases slightly surpasses them, while enabling 2× faster reconstruction.

Table 4: Quantitative results on the SynCom-Obj dataset. Our method achieves accuracy comparable
to the state of the art while delivering over 2× higher efficiency.

Normal NVS Albedo Relighting TrainingMethod
MAE↓ PSNR↑ PSNR↑ PSNR↑ SSIM↑ LPIPS↓ Time(min)↓

GS-IR (Liang et al., 2024b) 1.801 40.534 27.409 22.150 0.951 0.041 15.51
R3DG (Gao et al., 2024) 1.510 41.364 27.992 28.646 0.967 0.036 40.62
IRGS (Gu et al., 2025) 0.990 39.250 28.596 29.752 0.970 0.039 21.99

Ours 1.044 39.700 28.840 29.601 0.975 0.027 7.42

C.2 ABLATION ON SOPS INITIALIZATION

To assess the robustness of the heuristic offset used for SOPs initialization, we perform an ablation
study by applying different placement offsets (0%, 1%, and 2% of the object size) on the Toy scene
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GS-IR R3DG IRGS Ours GT

Render

Albedo

Roughness

Metallic

Env.map

AO

Indirect

Relit.1

Relit.2

Figure 19: Qualitative Results on TensoIR Dataset. Our method achieves effective relightable
object reconstruction, enabling satisfactory relighting. In contrast, GS-IR’s oversimplified lighting
assumptions lead to inaccurate decomposition. R3DG lacks supervision on indirect lighting, leading
to unnatural indirect lighting and bright spot artifacts in relighting.
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from the SynCom dataset. Quantitative results are summarized in Table 5. It can be observed that
the 1% offset consistently yields the best performance across all metrics, including material albedo
estimation, rendering fidelity, and relighting quality.

In addition, we include visual comparisons of relighting and ambient occlusion under different off-
sets in Figure 20. The visual results demonstrate that the 0% offset leads to noticeable light leakage
in both occlusion and relighting, whereas the 1% setting produces clean and stable outcomes. Based
on these findings, we adopt the 1% offset strategy uniformly in all experiments reported in this work,
and we did not observe any notable failures under this configuration.

Relighting (0%) AO (0%) Relighting (1%) AO (1%) Relighting (2%) AO (2%)

Figure 20: Comparison of relighting and ambient occlusion (AO) under different SOPs initial-
ization offsets. The 0% offset introduces noticeable light leakage, while the 1% setting produces
clean and stable results.

Table 5: Quantitative ablation study on the SOPs initialization offset.

Offset Albedo PSNR Rendering PSNR Relight PSNR
0% 33.222 37.204 30.449
1% 33.304 37.265 31.324
2% 33.130 37.202 31.281

D DETAILS OF LIGHTING ESTIMATION

D.1 QUESTION STATEMENT

Since the scene’s geometry and radiance field have already been reconstructed, and our task only re-
quires local illumination around the inserted object for relighting and shadow casting, the inherently
complex problem of lighting estimation in the full scene can be significantly simplified. Specifi-
cally, we reformulate it as environment lighting estimation at a designated location, conditioned on
the reconstructed 3D Gaussian radiance field. Our solution proceeds in three steps:

• Panoramic Projection. The reconstructed radiance field is projected onto a panoramic
sphere centered at the object placement location. This is achieved through 360◦ ray tracing
from the location, producing a partial local environment map comprising an RGB image, a
normal map, and an alpha mask that distinguishes reconstructed from missing regions.

• Panorama Completion. To complete the partial panoramas, we fine-tune Stable Diffusion
2.1 (Rombach et al., 2022). In addition to the RGB images and mask channels, the corre-
sponding normal maps are also fed into the network to provide geometric guidance during
inference, which yields slightly improved performance, as shown in Table 6.

• HDR Expansion. Finally, the completed panoramas are extended to high dynamic range.
We adopt an EV-conditioned prompting strategy (Phongthawee et al., 2024), fine-tuning
the model to generate LDR panoramas at exposure values of –5, –2.5, and 0. These outputs
are subsequently fused into a single, comprehensive HDR environment map.

D.2 TRAINING DATASET

As discussed in Section D.1, the main challenge of our task lies in Panorama Completion. Compared
with conventional natural image completion, our task has two distinctive characteristics:

• Panoramic input: the input images are panoramas rather than ordinary perspective images.
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Text2Light (Indoor) Poly Haven (Indoor) Laval (Indoor)

Text2Light(Ourdoor) Poly Haven(Ourdoor) Our Mask

Figure 21: HDR environment maps and a Gaussian mask from our training dataset. We lever-
age publicly available environment maps from PolyHaven and synthesize a large, diverse set of HDR
environment maps using the text-to-light model, Text2Light (Chen et al., 2022). Gaussian masks are
generated from publicly reconstructed Gaussian scenes and exhibit artifacts typical of Gaussian radi-
ance fields, such as needle artifacts, which are similar to those encountered in practical applications.
This carefully curated dataset is well suited for training our panorama completion model.

• Gaussian-derived masks: the masks are traced from the Gaussian scene and exhibit
unique Gaussian characteristics, such as needle-like artifacts.

To better adapt the network to this setting, our fine-tuning step relies on two key resources: (1) a
sufficiently large and diverse collection of panoramic RGB images, and (2) a substantial set of masks
generated from Gaussian scenes. Training samples are constructed by pairing each RGB image with
a mask. Figure 21 illustrates representative panoramas and masks from our dataset. In the following,
we provide a detailed account of how these data are obtained.

HDR environment maps Following DiffusionLight (Phongthawee et al., 2024), we used
Text2Light (Chen et al., 2022) to generate numerous HDR panoramas from text descriptions. We use
Large Language Models (LLMs) to generate textual descriptions. To ensure diversity and minimize
prompt similarity, we adopt a multi-LLM strategy. Specifically, we employ three distinct LLMs:
ChatGPT4 , Grok5 , and Gemini6 . Each model produces 500 descriptions for indoor scenes and 500
for outdoor scenes. In addition, we incorporate HDR environment maps from public repositories
such as Polyhaven and the Laval Indoor HDR (Gardner et al., 2017).

After curation and removing corrupted files, our final collection totals 5991 HDR environment maps,
with 3938 indoor and 2053 outdoor scenes. We then randomly partitioned this collection into train-
ing and valid sets following an 8:2 ratio, resulting in 4792 and 1199 maps, respectively. For each
map, we further obtain corresponding normal maps by using an off-the-shelf StableNormal (Ye et al.,
2024a) model to infer these cues.

Mask from Gaussian Splatting Scenes We process various publicly available scenes (Barron
et al., 2022) to obtain their 2D Gaussian representations and randomly select multiple points within
them. From each point, we perform a 360◦ panoramic trace of the scene’s radiance field. We then
retain only the resulting alpha maps as masks for our dataset construction.

Assuming the scenes are Manhattan-aligned with the Z-axis pointing upwards, panoramic views of
reconstructed Gaussian scenes often exhibit missing data in the upper hemisphere. To make our
training data more representative of this scenario and to emphasize Gaussian artifacts, we apply a
random-region dropout strategy during tracing. Specifically, before tracing, we exclude Gaussian
primitives within a randomly oriented solid angle from the trace point. This generates sharper and
more challenging mask boundaries, better reflecting real-world conditions.

4https://chat.openai.com/
5https://x.ai/
6https://deepmind.google/models/gemini/
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D.3 TRAINING DETAILS

Our Lighting Estimation model is fine-tuned from the pre-trained Stable Diffusion 2.1 (Rombach
et al., 2022). We employ an EV-conditioned prompting strategy (Phongthawee et al., 2024) to gen-
erate environment map completions corresponding to specified Exposure Values (EVs). Finally, the
outputs generated under different EVs (e.g., -5, -2.5, 0) are fused into a single, comprehensive HDR
environment map. Our training process is divided into two main steps. The first step aims to adapt
the model for LDR panorama completion. Then the second step further fine-tunes the model to be
conditioned on EV prompts, enabling direct control over the exposure of the generated results.

Step 1: Fine-tuning on LDR Panorama Completion. In the first step, the model input is formed
by concatenating the partial RGB image, its corresponding normal map and alpha mask, at a resolu-
tion of 512× 1024 pixels. To guide the completion process, we use a fixed prompt: ”A realistic 360
degree panoramic [indoor/outdoor] scene, overexposed, bright”. We manually specify the indoor
or outdoor token based on the scene type to help the model better distinguish and adapt to the sig-
nificant content disparities between indoor (e.g., ceilings and lights) and outdoor (e.g., sky and sun)
scenes, particularly in the upper regions of the panorama.

To enhance the model’s generalization and robustness, we apply two data augmentation techniques
to the input HDR data: random rotation and random EV adjustment. Note that the EV adjustment
here serves only as data augmentation. The model is trained to produce an output with the same EV
as the augmented input, with no explicit EV conditioning. We train this step by tasking the model
with a v-prediction objective, minimizing an L1 loss between the prediction and the ground truth.

Step 2: EV-Conditioned Fine-tuning The core of the second step is the introduction of EV-
conditioned prompting strategy. We dynamically generate prompts for arbitrary EV by linearly
interpolating the text embeddings of two base prompts. Specifically, we define a base prompt em-
bedding ξb for EV=0 (the prompt used in step 1) and a dark prompt embedding ξd for EVmin = −5
(by replacing ”overexposed, bright” with ”underexposed, dark”). The target prompt embedding for
a given EV is then computed as ξev = ξb + (ev/EVmin)(ξd − ξb).

To create the training pairs, we first take an original HDR environment map Iorg and apply a random
EV shift to it, resulting in an augmented map Iaug with EVaug . Then, we apply a second, randomly
sampled conditional exposure value, denoted as EVgt, and generate the corresponding ground truth
image Igt for supervision. The model is trained to adjust the exposure from the input EVaug to the
target EVgt. All other training settings remain the same as in step 1.

Implementation Details We train our model using the AdamW optimizer with β1 = 0.9, β2 =
0.999, and a weight decay of 0.01. The learning rate follows a constant schedule with a linear
warmup of 500 steps. We train step 1 for 65 epochs with a learning rate of 1 × 10−4 and fine-tune
step 2 for 20 epochs with a reduced learning rate of 5× 10−6. The batch size is 8 for both steps. All
models are implemented in PyTorch and run on NVIDIA A6000 (48GB) GPUs. step 1 training uses
4 GPUs and takes approximately 6.5 hours, while step 2 runs on 2 GPUs for about 3 hours.

D.4 ABLATIONS

We conduct ablation studies on our lighting estimation method. First, we investigate the impact
of scene completeness, measured by the effective area of the mask, on lighting estimation. Sec-
ond, we examine the effect of including surface normal information as an additional input channel.
We adopt the widely used evaluation protocol with an array of spheres from prior lighting estima-
tion works (Gardner et al., 2017; 2019). The evaluation metrics include scale-invariant Root Mean
Square Error (si-RMSE), Angular Error, and normalized RMSE.

Ablations on Scene Completeness. Following the method described in Section D.2, we generate
5,000 masks and group them according to the proportion of their valid coverage area. Specifically,
the masks are divided into three groups: 40–60%, 60–80%, and 80–100%, and the statistics of
each group are analyzed. Masks with less than 40% coverage are excluded, as such cases typically
correspond to insufficient scene images or suboptimal object placement, making them unlikely to
reflect practical usage. We then evaluate the model’s performance across these three groups using
the protocols described above. The results in Table 6 show that the accuracy of lighting estimation
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Table 6: Ablations on Lighting Estimation. Performance improves with higher mask coverage, and
incorporating the normal map enhances lighting estimation by providing explicit geometric cues.

Scale-invariant RMSE ↓ Angular Error ↓ Normalized RMSE ↓
coverage 40-60% 0.066 6.037 0.103
coverage 60-80% 0.060 5.599 0.089
coverage 80-100% 0.052 4.967 0.074
w/o Normals 0.067 0.061 0.100
with Normals 0.065 0.058 0.098

consistently increases with higher effective coverage. This trend is expected, since larger coverage
provides more informative scene data for the model to infer illumination. These findings suggest
that, in practical usage, capturing the scene as completely as possible is beneficial for achieving
more reliable and accurate lighting estimation.

Ablations on Geometric Information. We compare two model settings: our full model, where
the UNet input is a concatenation of the RGB image, normal map, and alpha mask; and an ablated
version (w/o Normal Map), where the normal map is omitted from the input. To ensure a fair com-
parison, both models were trained from scratch using identical training data and hyperparameters.
Their performance is then evaluated using the same protocols and metrics. As shown in Table 4,
incorporating the normal map leads to more accurate lighting estimation, which can be attributed to
the additional structural information provided by the normals.

E LLM USAGE STATEMENT

We use ChatGPT, a large language model developed by OpenAI, to polish the language of our
manuscript. The model is not involved in research ideation, experimental design, data analysis, or
the drawing of conclusions. The authors take full responsibility for the content of the paper.
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