
FuncGenFoil: Airfoil Generation and Editing Model
in Function Space

Jinouwen Zhang1∗ Junjie Ren1,2 Qianhong Ma1,8 Jianyu Wu1 Aobo Yang3
Yan Lu1,4 Lu Chen1,5 Hairun Xie6,7 Jing Wang6,8

Miao Zhang6 Wanli Ouyang1,4 Shixiang Tang1,4⋆
1 Shanghai Artificial Intelligence Laboratory 2 Fudan University

3 Hong Kong University of Science and Technology 4 The Chinese University of Hong Kong
5 State Key Lab of CAD&CG, Zhejiang University
6 Shanghai Aircraft Design and Research Institute

7 Innovation Academy for Microsatellites of CAS 8 Shanghai Jiao Tong University
∗zhangjinouwen@pjlab.org.cn ⋆tangshixiang@pjlab.org.cn

Abstract

Aircraft manufacturing is the jewel in the crown of industry, in which generat-
ing high-fidelity airfoil geometries with controllable and editable representations
remains a fundamental challenge. Existing deep learning methods, which typi-
cally rely on predefined parametric representations (e.g., Bézier curves) or discrete
point sets, face an inherent trade-off between expressive power and resolution
adaptability. To tackle this challenge, we introduce FuncGenFoil, a novel function-
space generative model that directly reconstructs airfoil geometries as function
curves. Our method inherits the advantages of arbitrary-resolution sampling and
smoothness from parametric functions, as well as the strong expressiveness of
discrete point-based representations. Empirical evaluations demonstrate that Func-
GenFoil improves upon state-of-the-art methods in airfoil generation, achieving a
relative 74.4% reduction in label error and a 23.2% increase in diversity on the
AF-200K dataset. Our results highlight the advantages of function-space modeling
for aerodynamic shape optimization, offering a powerful and flexible framework
for high-fidelity airfoil design.

1 Introduction

The airfoil inverse design problem serves as a central aspect of aircraft manufacturing. Traditionally,
given geometric requirements, engineers first select the most similar airfoils from well-known airfoil
datasets (e.g., NACA [8]) and rely on a trial-and-error strategy [51]. Considering the mission of the
aircraft, an initial airfoil design that meets these conditions is preliminarily created. Then, through
iterative rounds of physical analyses, such as aerodynamic and mechanical evaluations, the airfoil
is optimized to achieve improved performance until the specified requirements are met. In practice,
such direct design procedures are highly inefficient and time-consuming, often taking months. To
minimize development and design time, as well as associated costs, automated design methods have
been introduced as efficient alternatives in aircraft manufacturing engineering. In particular, machine
learning-based design and optimization techniques have gained significant attention. However,
before applying these algorithms to airfoil design, it is crucial to determine appropriate methods for
representing airfoils within these algorithms.

Existing methods for airfoil representation can generally be divided into two categories: parametric-
model-based approaches [61] and discrete-point-based methods [37, 49]. First, parametric-model-
based methods predefine function families, e.g., Bézier curves [7], Hicks-Henne curves, and NURBS,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(a) Airfoil as parametric curves (b) Airfoil as discrete points (c) Airfoil as function curves

Control points

Latent function

Figure 1: The conceptual difference between FuncGenFoil and previous airfoil representation methods. In
many previous approaches, airfoils are represented either as parametric models, as shown in (a), or as discrete
point-based models, as shown in (b). In contrast, (c) illustrates FuncGenFoil’s approach, where an airfoil is
treated as a continuous function mapped from a latent function, enabling a generative model in function space.

and leverage mathematical optimization techniques or generative models to determine the parameters
of these functions for generating a new airfoil. These methods rigorously preserve key geometric
properties of the defined function families, e.g., higher-order smoothness. Furthermore, such func-
tional representations of airfoils allow arbitrary sampling of control points in real manufacturing,
given engineering precision constraints. Despite these benefits, parametric-model-based methods
suffer from a significantly reduced design space; i.e., selecting a specific function family excludes
other possible shapes, thus limiting the upper bound of airfoil design algorithms. Second, discrete-
point-based methods directly generate multiple points to represent airfoil shapes. These methods
maximize the airfoil design space but cannot inherently maintain certain important mathematical
properties, e.g., continuity. Furthermore, they cannot directly generate control points at arbitrary
resolutions, as the number of generated points is typically fixed for each model after training.

To address the trade-offs between these two mainstream approaches, we ask: Can we design an
algorithm that leverages the advantages of both?

In this paper, we address this question by proposing FuncGenFoil, a novel function-space generative
model for airfoil representation (see Figure 1). Unlike previous data-driven generative methods in
finite-dimensional spaces, e.g., cVAE [25], cGAN [41], diffusion models [19], or flow matching
models [35], which directly generate discrete point outputs, we leverage recent advances in diffusion
and flow models defined in function space [13, 23, 32, 33, 42, 52] to produce infinite-dimensional
outputs as general continuous functions. Simultaneously, our approach models airfoil geometry using
Neural Operator architectures [1, 2, 27, 31], enabling the generation of diverse airfoils beyond the
design spaces of predefined geometric function families, thanks to its general operator approximation
capability. Our method combines the advantages of both parametric-model-based and discrete-point-
based approaches. Due to its intrinsic representation in function space, the generated airfoils are
continuous, and both training and sampling can be performed at arbitrary resolutions, facilitating
downstream optimization and manufacturing processes.

Specifically, we use the flow matching framework [35], an improved alternative to diffusion models,
and FNO [31], a resolution-free neural operator, as the backbone of our generative model to design
FuncGenFoil. During training, we perturb the airfoil into a noise function through straight flows and
let neural operators learn the airfoil’s deconstructed velocity via flow matching. During inference,
we reconstruct the airfoil by reversing the flow direction starting from a Gaussian process. Beyond
generation, our method also supports airfoil editing, generating new airfoils from an original airfoil by
conforming to certain geometric constraints. This can be accomplished by a few steps of fine-tuning
with no additional data other than the original airfoil. Constraints can be provided in various forms,
such as specifying contour points that the airfoil must pass through or setting geometric constraint
parameters, such as thickness.

In summary, our main contributions are threefold: (1) We propose generating airfoil shapes in
function space to achieve important properties for aircraft engineering, i.e., arbitrary-resolution
control point sampling and maximal design space; (2) We design FuncGenFoil, the first controllable
airfoil generative model in function space, which effectively incorporates neural operator architectures
into the generative modeling framework; and (3) We further enhance FuncGenFoil with airfoil editing
capabilities through minimal adaptations. Experimental results indicate that our proposed method

2

achieves state-of-the-art airfoil generation quality, reducing label error by 74.4% and increasing
diversity by 23.2% on the AF-200K dataset, as validated through aerodynamic simulation analysis.
In addition, our method is the first to successfully perform airfoil editing by fixing or dragging points
at arbitrary positions, achieving nearly zero MSE (less than 10−7).

2 Related Works

Generative Models. Generative models based on score matching [20, 55] and flow matching [34,
36, 57] have significantly advanced machine learning, achieving state-of-the-art results in areas such
as image generation [47], text generation [16], and video generation [21, 43]. However, most of
these models operate in finite-dimensional spaces and rely on fixed discretizations of the data. Such
formulations hinder transferability across discretizations and neglect function-level constraints (e.g.,
continuity, smoothness), motivating the need for generative modeling in function space.

Neural Architectures for Function Modeling. Designing neural architectures to handle function
spaces remains a major research challenge. Standard networks typically assume fixed-size inputs,
making them unsuitable for arbitrary resolutions. Implicit neural representations, such as SIREN [54],
harness random Fourier features [44] to represent continuous and differentiable objects through
position embeddings. Similarly, NeRF [40] treats input coordinates as continuous variables, offering
flexible resolution for function outputs. Neural operators [1, 2, 27, 31] and Galerkin transformers [5]
further generalize neural architectures to process sets of points as functional inputs, enabling function-
space learning. Recently, a neural operator with localized integral and differential kernels has been
introduced to improve its capability in capturing local features [38]. To handle complex and variable
geometries, the point cloud neural operator has been proposed, which adaptively processes point
cloud datasets [63].

Generative Models in Function Space. Early Neural Processes [14, 15] drew upon Gaussian
processes [46], and later methods such as GASP [11], Functa [10], and GANO [45] treat data as
function evaluations to enable discretization-independent learning. Energy-based and diffusion
models [13, 23, 32, 33, 42], along with flow-based approaches like FFM [24] and OpFlow [52],
further extend these ideas. Ultimately, developing comprehensive generative models in function space
requires defining suitable stochastic processes, score operators, and consistent neural mappings, along
with specialized training methods for numerical stability—challenges that remain largely unresolved.

Airfoil Design and Optimization. Airfoil design is essential for aircraft and wind turbines. Geometric
parameterization supports efficient shape modeling and optimization. Techniques such as Free-Form
Deformation (FFD) [12] and NURBS [48] are widely used in CAD/CAE tools [9, 18], but their
independent control points can cause instability, high dimensionality, and suboptimal solutions.
Modal methods, including Proper Orthogonal Decomposition [3], global modal [4], and compact
modal [30] approaches, reduce dimensionality by encoding global features, though they struggle with
large or detailed shape changes. Class-Shape Transformation (CST) [28] offers interpretable and
differentiable shapes but lacks flexibility for large deformations and is sensitive to parameter choices.
Therefore, a high-degree-of-freedom representation is needed for robust, nonlinear shape modeling.
Unlike general computer vision tasks [26, 56], engineering AI models are domain-specific and often
limited by sparse data. Generative models are advantageous here, as they can exploit unlabeled or
untested samples. In airfoil design, VAEs, GANs, and diffusion models [7, 29, 37, 58, 61, 62], along
with CFD-based mesh representations [59, 60], have been used to map latent spaces to airfoil shapes.
However, most existing methods model discrete airfoil points, limiting flexibility for downstream
applications.

3 FuncGenFoil: Function-Space Generative Model for Airfoils

In contrast to existing airfoil generation methods, FuncGenFoil is constructed as a function-space
generative model capable of producing airfoil geometries as continuous functions rather than discrete
points, thereby leveraging the advantages of both parametric-model-based and discrete-point-based
methods. In this section, we detail the processes for airfoil generation and editing tasks, respectively.

3

Condition variables & Time

P

Airfoil & Condition Embedding

C

ൈ 𝑁

QNeural
Operator

𝑢଴

𝑢ଵ

𝑣 ൌ 𝑢ଵ െ 𝑢଴
𝑣ఏ

+

𝑢௧ ൌ 𝑡 ൈ 𝑢ଵ ൅ ሺ1 െ 𝑡ሻ𝑢଴

ℒிெሺ𝑣, 𝑣ఏሻ
Generation Velocity

Airfoil

Gaussian Process

𝑢଴Gaussian Process 𝑢ଵAirfoil

Condition & Time
Embedding
(Optional)

ൈ 𝑇

න 𝜅ఏ 𝑥, 𝑦, 𝑢௜ 𝑊௩𝑢௜ሺ𝑦ሻ 𝑑𝑦
ஐ

Integral Operator

𝑊௩𝜎ሺ∇𝑢௜ 𝑦 ሻDifferential Operator

Neural Operator Layer

𝑢௜ሺ𝑦ሻ 𝜎 𝑢௜ାଵሺ𝑥ሻ

Linear Transform 𝑊௟𝑢௜ሺ𝑦ሻ

C Concatenation

P

Q

Up Linear
Projection

Down Linear
Projection

Figure 2: Top: Overview of FuncGenFoil’s neural network and training scheme. The model is a Fourier
Neural Operator designed for point cloud data, although any other neural operator capable of general-purpose
function-space approximation may be used. The model takes as input a function ut (point cloud data at an
arbitrary resolution d), optional design condition variables c, and the generation time t. It then processes this
input function consistently and outputs the current velocity operator vθ(ut, c, t) for calculating the flow matching
loss. Bottom: Inference with FuncGenFoil is conducted by first sampling a random latent function from a
Gaussian process and then reconstructing the airfoil by solving an ODE.

3.1 Airfoil Generation

Airfoil Parametrization. Since an airfoil curve (x, y) has circular topology, we introduce the
variable α ∈ [0, 1] as the domain of the function, denoting y(α) = f(x(α)) and x(α) = cos(2πα)+1

2 ,1
as shown in Figure 7. The entire FuncGenFoil framework is essentially an ordinary differential
equation (ODE)-based generative model that produces airfoil curve functions by solving an ODE
along continuous time t ∈ [0, 1] as u1 = u0 +

∫ t=1

t=0
vt dt, where u1 = y, starting from some latent

function u0.

Velocity Operator. The velocity operator vt gradually transforms a latent function u0 sampled from
a stochastic process P into an airfoil function u1 belonging to the target airfoil distribution Q. The
velocity operator is a key component, as it must handle function inputs consisting of point sets with
arbitrary resolution or positions. Specifically, the operator takes as input the partially generated airfoil
ut = [ut(α0), ut(α1), ut(α2), . . .] and outputs a velocity function corresponding to these positions,
[vt(α0), vt(α1), vt(α2), . . .]. We realize this by establishing a parameterized neural operator vθ with
model weights θ, constructed as a Neural Operator model capable of processing function-space data
at arbitrary resolutions in a single unified model, as shown in Figure 2. Specifically, FuncGenFoil
acts as a conditional continuous-time generative model, where the velocity operator vθ(ut, c, t) takes
the noised airfoil ut, optional conditioning variables c, and generation timestamp t as inputs, and
consistently outputs the deformation vt as a function. We train vθ(ut, c, t) using Operator Flow
Matching [53].

Training. We train vθ under the simplest denoising training process. Given an airfoil geometry u1,
we compute its corresponding noised sample at time t as follows:

ut|u0,u1
= t× u1 + (1− t)× u0 (1)

and then the ground-truth velocity vt(ut)|u0,u1
given u0 and u1 can be computed as:

vt(ut)|u0,u1
=

dut

dt
= u1 − u0. (2)

We can train vθ by matching the velocity operator using Flow Matching loss:

LFM = Et∼[0,1],ut

[
∥vt(ut)− vθ(ut, c, t)∥2

]
, (3)

1For the remainder of this paper, we omit the explicit dependence on α for clarity and convenience.

4

𝒕 ൌ 𝟏

𝒕 ൌ 𝟎

Neural Operator 𝑣ఏ

𝒕 ൌ 𝟏

𝒕 ൌ 𝟎

Neural Operator 𝑣ఏ

Latent function
𝑎ఏ ൌ 𝑢଴

𝑢ଵ 𝑢ଵᇱ
𝑢′ଵ ൌ 𝑎ఏ ൅ න 𝑣ఏሺ𝑢௧ሻ𝑑𝑡

ଵ

଴
ℒெ஺௉ሺ𝑢ଵఋ, 𝑢′ଵሻ

Init 𝑎ఏ

Init 𝑣ఏ
𝑢௧

𝑢଴

𝑢ଵఋ ൌ 𝑢ଵ ൅ 𝛿

𝑢଴ ൌ 𝑢ଵ ൅ න 𝑣ఏሺ𝑢௧ሻ𝑑𝑡
଴

ଵ

Origin Airfoil Edited Airfoil

Figure 3: Airfoil editing by FuncGenFoil. Given a original airfoil u1, an editing requirement δ and target airfoil
uδ
1. We first infer its latent function u0 reversely, and make it learnable as aθ . Then we sample a new airfoil u

′
1,

and conduct a regression in function space via maximum a posteriori estimation LMAP. After a few iterations of
fine-tuning, we can generate edited airfoil uδ

1 with high accuracy.

which according to Conditional Matching Theorem, has same gradients with Conditional Flow
Matching loss:

LCFM = Et∼[0,1],u0,u1

[
∥vt(ut)|u0,u1 − vθ(ut|u0,u1 , c, t)∥2

]
, (4)

∇θLFM(θ) = ∇θLCFM(θ). (5)
See more proofs in Chapter 4 of Flow Matching Guide and Code [36].

Inference. Given a trained velocity operator vθ, the inference process, i.e., airfoil generation process,
is equal to deriving airfoil geometry at time t = 1, denoted as u1, based on a latent coding u0 sampled
from the stochastic process P . P is assumed as a Gaussian Process GP(0,K) in this work, where
K is a covariance kernel function. Therefore, u1 could be derived by solving the generation ODE
numerically (e.g., using the Euler method) as follows:

u1 = u0 +

∫ t=1

t=0

vθ(ut, c, t) dt. (6)

Detailed implementations for training velocity operator and model inference are shown in Appendix B,
Algorithm 1 and Algorithm 2.

3.2 Airfoil Editing

The airfoil editing task enables the user to modify parts of the geometry of a given airfoil u1,
effectively generating a new airfoil geometry u

′

1 while preserving the user-edited sections, denoted as
uδ
1. We achieve this by finetuning the pretrained model via maximum a posteriori (MAP) estimation,

max p(u
′

1 | uδ
1) where p(u

′

1 | uδ
1) is a probabilistic model that constrains the optimized airfoil u

′

1
fulfilling the editing requirements and following the generation prior.

To achieve the constraint probability model, we disentangled it with Bayes’ Rule:

max
u
′
1

p(u
′

1 | uδ
1) =

p(uδ
1 | u′

1) · p(u
′

1)

p(uδ
1)

⇒ max
u
′
1

log p(uδ
1|u

′

1) + log p(u
′

1)− log p(uδ
1), (7)

where p(uδ
1 | u′

1) is a Gaussian measure, so its log term becomes a Mean Square Error (MSE)
between uδ

1 and u
′

1, constraining the user edited parts in u
′

1 keeping consistent with uδ
1. We can

sample u
′

1 through solving the velocity operator using Neural ODE method[6] and calculate log p(u
′

1)

at the same time using FFJORD method [17] with Hutchinson trace estimator [22]. p(u
′

1) is the prior
supported by the trained generative model. p(uδ

1) is the marginal likelihood, which does not depend
on u

′

1. The final optimization target could be written as:

max
u
′
1

1

2σ2

∑
i∈∆

(uδ,i
1 − u

′,i
1)2 + log p(u

′
1), (8)

where σ is noise scale for editing, ∆ denotes point indices in edited part uδ
1.

5

For more realistic generation results, the optimization does not directly adjust u
′

1; instead, we optimize
u

′

1 indirectly by fine-tuning the entire generative model for a few iterations. The fine-tuning process
is illustrated in Figure 3, while its details are provided in Alg. 3 in the Appendix. Specifically, we
first initialize u′

1 as a resample data of u1, by extracting its latent code, denoted as αθ, via the inverse
of our generative model and re-generating u

′

1 from this code. Then we treat Equation 8 as the loss
function to train θ of the velocity operator and αθ simultaneously. After the model training, the new
u

′

1 is the new edited generation results.

4 Experiments

4.1 Experimental Settings

Tasks. We evaluate two tasks within the airfoil inverse design problem: conditional airfoil generation
and freestyle airfoil editing. In the conditional generation task, the model is provided with a set of 11
geometric parameters describing the airfoil geometry. Detailed parameter definitions are provided in
Table 6 in the Appendix. The model must generate airfoils that satisfy these geometric constraints.
In the freestyle editing task, the model receives an original airfoil and a target modification, such as
adjusting the position of a specific point on the airfoil. The selected point can be located anywhere
on the airfoil surface. The model must generate an airfoil reflecting the specified modification.

Metrics. We adopt the metrics introduced in AFBench [37] to evaluate the generated airfoils:

Label Error measures the difference between the PARSEC parameters of the generated or edited
airfoil and the intended target parameters, calculated as σi = |p̂i − pi|, where σi is the label error
for the i-th parameter, p̂i is the i-th geometric parameter of the generated airfoil, and pi is the
corresponding target parameter. Smaller values indicate better alignment with target parameters. To
summarize all 11 label errors, we present both the arithmetic mean σ̄a and the geometric mean σ̄g for
absolute and relative average errors.

Diversity quantifies the variety among generated airfoils, calculated as D = 1
n

∑n
i=1 log det(LSi

),
where n is the number of subsets, and LSi

is the similarity matrix of the i-th subset, computed based
on Euclidean distances between airfoils within the subset. Higher values indicate greater diversity
among generated airfoils.

Smoothness measures the geometric smoothness of generated airfoils, calculated as:

M =

N∑
n=1

Distance(Pn, Pn−1Pn+1), (9)

where Pn is the n-th point, and Pn−1Pn+1 is the line segment connecting its adjacent points. The
function Distance(Pn, Pn−1Pn+1) computes the perpendicular distance from Pn to this line segment.
Smaller values indicate better geometric quality.

Datasets. To benchmark our method, we conduct experiments on three datasets: UIUC [50],
Supercritical Airfoil (Super), and AF-200K. UIUC contains 1,600 designed airfoil geometries. Super
focuses on supercritical airfoils and includes approximately 20,000 airfoil samples. AF-200K consists
of 200,000 highly diversified airfoil samples.

Baselines. We compare FuncGenFoil with baseline models proposed in AFBench [37], specifically
the conditional VAE (CVAE), conditional GAN (CGAN), the modified VAE with PARSEC parameters
and control keypoints (PK-VAE), as well as PK-GAN, PKVAE-GAN, the U-Net-based PK-DIFF,
and the transformer-based PK-DIT.

Implementation Details. On the AF-200K dataset, we trained for 2 million iterations with a batch
size of 2,048 using 8 NVIDIA 4090 GPUs. On the Supercritical Airfoil and the UIUC dataset, we
trained for 1 million iterations with a batch size of 1,024 on 4 single NVIDIA 4090 GPUs. We use
Gaussian processes with a Matérn kernel function (ν = 2.5, l = 0.03) as the prior. Other training
hyperparameters are detailed in Appendix C.

4.2 Main Results

Conditional Airfoil Generation. As shown in Table 1, FuncGenFoil outperforms the strongest
baseline method (PK-DIT) across all metrics. For label error, FuncGenFoil achieves reductions in

6

Table 1: Quantitative comparison between FuncGenFoil and baseline methods across different datasets for the
conditional generation task. Label error, diversity, and smoothness of generated airfoils are reported.

Method Dataset Label Error ↓ (10−3) D ↑ M ↓ (10−2)
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ̄a σ̄g

CVAE AF-200K 72.9 52.5 35.2 15900 99 95 29000 19.1 15.3 46 104 4131 149.2 -155.4 7.09
CGAN AF-200K 107 85.0 54.4 23200 143 137 59600 25.3 22.3 53 129 7596 217.6 -120.5 7.31
PK-VAE AF-200K 63.0 47.9 31.3 8620 66 64 17100 13.5 9.3 33 78 2375 106.0 -150.1 5.93
PK-GAN AF-200K 81.8 63.0 47.0 21030 120 117 32470 22.5 19.6 50 122 4922 179.5 -112.3 3.98
PKVAE-GAN AF-200K 56.8 31.7 31.0 5650 46 43 12000 9.1 5.1 28 63 1633 77.6 -129.6 2.89
PK-DIT AF-200K 11.2 32.3 15.4 1050 13 11.5 9790 0.5 0.5 23 24 997 23.5 -93.2 1.04
FuncGenFoil AF-200K 1.84 17.4 0.56 721 47.7 0.98 1676 0.45 0.65 160 174 255 14.9 -71.6 1.41

PK-VAE UIUC 80.7 20.9 12.2 12843 36.9 14.0 37263 1.7 1.9 94.8 109.9 4589 69.1 -93.5 7.29
PK-DIT UIUC 63.8 51.4 33.6 11830 87 84.9 25700 16.9 11.9 36 98 3456 129.8 -141.7 6.03
FuncGenFoil UIUC 11.6 11.8 0.38 698 23.5 0.56 12339 0.27 0.44 110.5 115.0 1210 15.1 -91.1 1.33

PK-VAE Super 10.8 17.5 2.3 1735.6 12.1 3.2 8131 3.5 1.4 98.3 80.6 918 28.4 -122.8 1.38
PK-DIT Super 52.0 35.0 24.0 3010 29 33.2 10500 8.3 2.6 27 33 1250 58.1 -123.4 1.97
FuncGenFoil Super 0.71 8.23 0.13 201.3 4.72 0.12 174.2 0.09 0.14 34.2 36.7 41.9 3.08 -103.9 1.01

Table 2: Quantitative evaluation of the FuncGenFoil model across different sampling super-resolutions for the
conditional generation task. The training resolution is 257.

Dataset Resolution Label Error ↓ (10−3) D ↑ M ↓ (10−2)
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ̄a σ̄g

Super
257 0.71 8.23 0.13 201.3 4.72 0.12 174.2 0.09 0.14 34.2 36.7 41.9 3.08 -103.9 1.01
513 0.71 8.19 0.12 200.8 4.81 0.12 174.7 0.09 0.15 48.2 47.8 44.1 3.26 -97.5 0.52

1025 0.71 8.29 0.12 202.9 4.93 0.12 175.4 0.09 0.15 61.4 57.8 46.5 3.44 -91.1 0.37

arithmetic mean label error of 74.4% on AF-200K, 65.0% on UIUC, and 96.6% on Super. More
importantly, it also reduces the geometric mean label error by 36.6% on AF-200K, 88.4% on UIUC,
and 94.7% on Super. This substantial decrease in label error underscores the effectiveness of our
approach for generating airfoils that more precisely adhere to target geometric parameters. In terms
of diversity, FuncGenFoil demonstrates notable improvements, surpassing the best baseline methods
by 23.2%, 35.7%, and 15.8% on AF-200K, UIUC, and Super, respectively. This highlights the
model’s superior capability in capturing and generating a broader spectrum of valid airfoil designs.
Additionally, the generated airfoils exhibit enhanced surface smoothness, as evidenced by reductions
of 4.70 and 0.96 in smoothness values (10−2) on the UIUC and Super datasets, respectively. This
improvement is particularly crucial for aerodynamic performance, as smoother airfoil surfaces
contribute to reduced drag and improved flow characteristics. The limited coverage of the training
dataset constrains the model’s effectiveness to a specific operational range, which is detailed in
Table 9. A performance comparison between FuncGenFoil and classical methods is provided in
Appendix D.1.

Table 3: Quantitative evaluation of the airfoil editing
task across different editing scales. Mean squared error
(MSE) between generated and target airfoils and smooth-
ness of generated airfoils are reported.

Dataset Edit Scale MSE ↓ (10−7) M ↓ (10−2)

Super

0.0001 2.41 1.16
0.0002 2.45 1.15
0.0004 2.75 1.15
0.0008 4.32 1.26
0.0016 15.5 1.35
0.0032 61.7 1.49

Freestyle Airfoil Editing. Table 3 shows av-
erage performance over 300 editing cases us-
ing FuncGenFoil. In each case, the model ad-
justs 2 to 4 randomly selected positions on the
airfoil surface to target locations over 10 fine-
tuning steps, with editing scales ranging from
1 × 10−4 to 3.2 × 10−3. Results demonstrate
that FuncGenFoil achieves accurate airfoil edit-
ing with minimal errors (less than 2.75×10−7

MSE) and high surface smoothness (less than
1.16 × 10−2 smoothness value) after only a
few fine-tuning steps if the edit scale is less than
4 × 10−4. The edit error increases at an accel-
erating rate with larger edits but remains relatively low overall. Figure 4 illustrates example editing
requirements and corresponding generated airfoils during the fine-tuning stage, demonstrating that
our model effectively completes freestyle editing tasks by generating accurate airfoils according to
user-specified edits.

Any-Resolution Airfoil Generation. One of the key advantages of FuncGenFoil is its ability
to generate airfoils at any resolution while maintaining high generation quality. This is achieved

7

Constraints
Origin airfoil
Edited airfoil

(A) (C)

(B) (D)

(E)

(F)

(G)

(H)

Figure 4: Examples of eight different FuncGenFoil instances performing airfoil editing over 20 training iterations.
The orange points and sections represent the editing requirements as constraints; the gray region is the original
airfoil, while the blue region shows the generated edited airfoil. The results demonstrate that the generated
airfoil quickly adapts to the editing requirements within a few iterations, achieving a natural and smooth function
regression. The editing scheme can be completely customized according to the user’s preference.

Wings in Dataset Generated wings

Lift-to-Drag Ratio Lift-to-Drag Ratio

D
en

si
ty

Figure 5: Left: Comparison of the lift-to-drag ratio histograms for CRM wings in the original dataset and the
samples generated by our FuncGenFoil model. Right: Visualization of the pressure coefficient for the generated
CRM wings, obtained through aerodynamic simulation.

by representing airfoils as functions and learning resolution-independent function transformations,
enabling flexible and consistent airfoil generation across different scales. To evaluate high-resolution
generation, we use the model trained on the Supercritical Airfoil dataset at a resolution of 257 and
sample new airfoils at resolutions of 513 and 1025. We then assess these higher-resolution airfoils
using the same metrics as in the conditional generation task. The results are presented in Table 2. We
observe consistent generation quality at 2× and even 4× the training resolution, with a maximum
increase of 4.6×10−3 in average label error, a decrease of 12.8 in diversity, and an increase of
0.64×10−2 in smoothness value.

Aerodynamic Simulation. To further assess the physical properties of the generated airfoils and
validate the effectiveness of our method, we analyze their aerodynamic performance using the
NASA Common Research Model (CRM) 2 and perform Reynolds-Averaged Navier-Stokes (RANS)
computational fluid dynamics (CFD) simulations on the generated samples. The CRM dataset contains
135,000 CRM wing geometries along with their corresponding aerodynamic performance, computed
using the RANS CFD solver ADflow [39]. We pretrain the FuncGenFoil model on all 135,000
CRM wing geometries and generate 500 new CRM wing geometries for RANS CFD evaluation.
We analyze the lift-to-drag ratio (L/D) of these newly generated geometries and compare them
with the original dataset, as shown in Figure 5. Our results indicate that the L/D distribution of the
generated samples closely aligns with that of the original dataset, with the highest density occurring
around L/D = 19, demonstrating the model’s ability to learn and generate physically plausible
wing geometries. Additionally, we visualize the coefficient of pressure contours for selected CFD
cases in Figure 5. These visualizations confirm that FuncGenFoil can generate airfoils with diverse
aerodynamic performance characteristics.

4.3 Ablation Study

Kernels of Gaussian Process. The type of Gaussian process kernel used as a prior in the model
influences the function space into which the data is diffused. We perform ablation experiments across
several kernel types, including the white noise kernel, the Matérn kernel with smoothness parameter
ν ∈ [1.5, 2.5, 3.5], and the radial basis function (RBF) kernel. We measure the geometric mean σ̄g

2https://commonresearchmodel.larc.nasa.gov/

8

https://commonresearchmodel.larc.nasa.gov/

White Noise
Matérn 𝜈 ൌ 1.5
Matérn 𝜈 ൌ 2.5
Matérn 𝜈 ൌ 3.5
RBF

𝟑. 𝟓𝟎

𝟑. 𝟑𝟎

𝟑. 𝟏𝟑
𝟑. 𝟎𝟖

𝟐. 𝟗𝟔
𝟐. 𝟗𝟑

𝟑. 𝟑𝟎

𝟑. 𝟏𝟎

𝟐. 𝟗𝟎

𝟑. 𝟓𝟎

𝟑. 𝟑𝟎

𝟑. 𝟏𝟎

𝟐. 𝟗𝟎

l ൌ 0.02
l ൌ 0.03

l ൌ 0.01

l ൌ 0.04
l ൌ 0.06𝟑. 𝟐𝟎

𝟐. 𝟗𝟖 𝟐. 𝟗𝟔

𝟑. 𝟏𝟏

 𝟑. 𝟒𝟒 32, 𝜈 ൌ 2.5
32, 𝜈 ൌ 3.5
64, 𝜈 ൌ 2.5
64, 𝜈 ൌ 3.5

128, 𝜈 ൌ 2.5
128, 𝜈 ൌ 3.5

𝟑. 𝟓𝟎

𝟒. 𝟎𝟎

𝟑. 𝟎𝟎

𝟐. 𝟓𝟎

𝟐. 𝟎𝟎

𝟒. 𝟓𝟎

𝟐. 𝟏𝟖 𝟐. 𝟐𝟖

𝟑. 𝟎𝟖 𝟐. 𝟗𝟔

𝟒. 𝟐𝟐 𝟒. 𝟏𝟔

(A) ௚ under diverse smoothness (B) ௚ under diverse characteristic length (C) ௚ under diverse Fourier mode

Figure 6: (A): Comparison of the geometric mean error σ̄g using kernels of different smoothness but same
characteristic length l = 0.03. (B): Comparison of the geometric mean error σ̄g using Matérn kernel ν = 3.5
with different characteristic length l. (C): Comparison of the geometric mean error σ̄g using different Fourier
mode in FNO using Matérn kernel of same l = 0.03.

Table 5: Quantitative experiments on the impact of ODE solver and time step on sampling quality.

ODE Solver Time Steps Label Error ↓ (10−3) D ↑ M ↓ (10−2)
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ̄a σ̄g

Euler
10 0.71 8.23 0.13 201.3 4.72 0.12 174.2 0.09 0.14 34.2 36.7 41.9 3.08 -103.9 1.01
50 0.62 3.61 0.07 92.5 2.08 0.06 96.8 0.06 0.07 14.5 15.7 20.6 1.60 -107.6 0.99
100 0.67 3.13 0.09 83.9 1.84 0.08 90.6 0.07 0.06 12.3 13.1 18.7 1.55 -106.4 0.99

Midpoint
10 0.68 5.29 0.08 161.3 3.12 0.08 178.9 0.06 0.09 21.4 22.4 35.8 2.17 -105.1 1.00
50 0.75 3.82 0.12 137.9 2.34 0.10 153.4 0.08 0.06 14.1 14.9 29.8 1.97 -103.3 0.99
100 0.82 3.94 0.14 125.7 2.22 0.13 137.4 0.08 0.07 14.4 14.2 27.2 2.06 -101.6 0.99

RK4
10 15.9 46.3 1.21 4406 25.7 1.24 4795 1.17 1.68 333 396 911 36.6 -67.5 3.05
50 0.92 7.63 0.24 482.7 5.55 0.22 511.8 0.16 0.19 39.3 41.3 99.1 4.68 -92.9 1.07
100 0.82 5.65 0.18 160.6 3.21 0.17 170.8 0.10 0.12 22.0 22.8 35.1 2.78 -96.9 1.00

under different smoothness, characteristic length, and Fourier mode settings, as shown in Figure 6.
We observe that FunGenfoil benefits from employing smoother kernels, which enhance both the
smoothness and accuracy of the generated airfoils. This effect arises because the parameter ν
primarily controls the smoothness of the function space, and the RBF kernel corresponds to the case
ν → ∞. Additionally, we find that there exists an optimal characteristic length at l = 0.03 for the
kernel. In our experiments, FunGenfoil does not exhibit improved performance with an increased
number of Fourier modes. This phenomenon may be due to the predominantly low-frequency
characteristics of supercritical airfoils, such that adding higher modes in the FNO layer introduces
unnecessary model complexity. More detailed experimental results are provided in Table 11 in the
Appendix.

Table 4: Ablation study on the effect of dif-
ferent latent variable initialization methods
for the airfoil editing task.

Edit scale MSE↓(10−7)
w/ ODE inv. w/o ODE inv.

0.0001 2.42 (↓83.88) 86.3
0.0002 2.46 (↓84.14) 86.6
0.0004 2.75 (↓84.85) 87.6

Editing with Prior via ODE Inversion. In Table 4, we
compare MSE of constraint condition calculations in the
airfoil editing task using two initialization schemes: (1)
using the latent variables obtained through ODE inversion
of the original airfoil as the prior, and (2) using a zero
prior u0 = 0 without ODE inversion. Both schemes
are fine-tuned with the same number of iterations. The
ODE inversion-based prior significantly reduces the MSE
compared to the zero prior, with a maximum reduction
of 84.85. This underscores the importance of incorporat-
ing original airfoil information during the initialization
process.

ODE Numerical Method. Model inference involves solving an ordinary differential equation (ODE),
and the choice of numerical integration scheme affects its performance. Using the same velocity
operator vθ trained on the supercritical airfoil dataset and sampling from a Gaussian prior with a
Matérn kernel (ν = 2.5, l = 0.03), we evaluate FuncGenFoil across various time step sizes and
ODE solvers (Euler, midpoint, and fourth-order Runge-Kutta (RK4) methods). Results in Table 5
show that FuncGenFoil benefits from larger time steps using Euler method. However, RK4 may
degrade performance at excessively small step sizes, potentially because the model enters regions
where the velocity operator is inadequately trained.

9

5 Conclusion and Limitations

In this work, we tackle the critical challenge of generating high-fidelity airfoil geometries that effec-
tively balance expressiveness, smoothness, and resolution flexibility. We introduce FuncGenFoil, a
function-space generative model leveraging neural operators and flow matching, which represents
airfoils as continuous, smooth geometries without resolution constraints while preserving the ex-
pressiveness of data-driven methods. Comprehensive experimental results show that FuncGenFoil
outperforms state-of-the-art techniques in terms of label error, diversity, and smoothness, highlighting
its potential for high-fidelity airfoil design. Furthermore, the generated wing geometries have been
validated through aerodynamic simulations. This work paves the way for more efficient, scalable,
and versatile airfoil generation, with significant applications in aerodynamic shape optimization for
aircraft manufacturing.

As for limitations, although we have taken a step toward general object shape modeling in function
space, the focus of this paper is primarily on airfoils or aircraft wings, which have relatively simple
geometries and smooth surfaces yet are highly significant for aerodynamic performance. Thus, our
current approach has limitations regarding the scope of geometry. In future studies, if we aim to
extend our method to modeling entire aircraft or dealing with objects of general shapes, substantial
theoretical work and experimental analysis will be required, especially when a suitable coordinate
system is unavailable for describing complex, irregular, or non-smooth geometries. This direction is
part of our ongoing efforts.

Acknowledgements

Funding: This work was supported by the Shanghai Artificial Intelligence Laboratory, the JC STEM
Lab of AI for Science and Engineering, funded by The Hong Kong Jockey Club Charities Trust,
the Research Grants Council of Hong Kong (Project No. CUHK14213224), the Natural Science
Foundation of China (No. U23A2069), the AI for Science Seed Program of Shanghai Jiao Tong
University (Project No. 2025AI4S-HY02), and the AI for Science Program, Shanghai Municipal
Commission of Economy and Informatization (No. 2025-GZL-RGZN-BTBX-01010).

Support and Collaboration: We thank the team at Shanghai Aircraft Design and Research Institute
and Shanghai Jiao Tong University for their valuable discussions and continued support.

References
[1] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi

Li, Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial
differential equations. In ICLR 2020 Workshop on Integration of Deep Neural Models and
Differential Equations, 2019.

[2] Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi,
and Anima Anandkumar. Neural operators for accelerating scientific simulations and design.
April 2024.

[3] Gal Berkooz, Philip Holmes, and John L. Lumley. The proper orthogonal decomposition in the
analysis of turbulent flows. Annual Review of Fluid Mechanics, 1993.

[4] Olivier Brüls, Pierre Duysinx, and Jean-Claude Golinval. The global modal parameterization
for non-linear model-order reduction in flexible multibody dynamics. International journal for
numerical methods in engineering, 2007.

[5] Shuhao Cao. Choose a transformer: Fourier or galerkin. NIPS, 34:24924–24940, 2021.

[6] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, NIPS, volume 31. Curran Associates, Inc., 2018.

[7] Wei Chen and Mark Fuge. Béziergan: Automatic generation of smooth curves from interpretable
low-dimensional parameters, 2021.

10

[8] Russell M Cummings, William H Mason, Scott A Morton, and David R McDaniel. Applied com-
putational aerodynamics: A modern engineering approach, volume 53. Cambridge University
Press, 2015.

[9] III Dannenhoffer, John F. An overview of the engineering sketch pad. In AIAA SciTech 2024
Forum, Orlando, FL, January 2024.

[10] Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum.
From data to functa: Your data point is a function and you can treat it like one. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
ICML, Proceedings of Machine Learning Research. PMLR, 2022.

[11] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of
functions. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, AISTATS.
PMLR, 2022.

[12] Gerald E. Farin. Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, 2002.

[13] Giulio Franzese, Giulio Corallo, Simone Rossi, Markus Heinonen, Maurizio Filippone, and
Pietro Michiardi. Continuous-time functional diffusion processes. NeurIPS, 36, 2024.

[14] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional neural processes.
In Jennifer Dy and Andreas Krause, editors, ICML, Proceedings of Machine Learning Research.
PMLR, 2018.

[15] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali
Eslami, and Yee Whye Teh. Neural processes, 2018.

[16] Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching. In NeurIPS, 2024.

[17] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In ICML, 2019.

[18] Andrew S. Hahn. Vehicle sketch pad: A parametric geometry modeler for conceptual aircraft
design. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, 2010.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin, editors, NIPS, volume 33, pages
6840–6851. Curran Associates, Inc., 2020.

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NIPS,
33:6840–6851, 2020.

[21] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, NeurIPS, volume 35, pages 8633–8646. Curran Associates, Inc., 2022.

[22] M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics - Simulation and Computation, 1990.

[23] Gavin Kerrigan, Justin Ley, and Padhraic Smyth. Diffusion generative models in infinite
dimensions. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors, AISTATS,
volume 206 of Proceedings of Machine Learning Research, pages 9538–9563. PMLR, 25–27
Apr 2023.

[24] Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Functional flow matching. In
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, 2024.

[25] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

11

[26] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023.

[27] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: learning maps between function
spaces with applications to pdes. J. Mach. Learn. Res., 24(1), January 2023.

[28] B. M. Kulfan. Universal parametric geometry representation method. Journal of Aircraft, 2008.

[29] Jichao Li, Xiaosong Du, and Joaquim RRA Martins. Machine learning in aerodynamic shape
optimization. Progress in Aerospace Sciences, 134:100849, 2022.

[30] Jichao Li and Mengqi Zhang. Adjoint-free aerodynamic shape optimization of the common
research model wing. AIAA Journal, 2021.

[31] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric
partial differential equations. In ICLR, 2021.

[32] Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzade-
nesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal,
Arash Vahdat, and Anima Anandkumar. Score-based diffusion models in function space, 2025.

[33] Jen Ning Lim, Sebastian Vollmer, Lorenz Wolf, and Andrew Duncan. Energy-based models for
functional data using path measure tilting. In AISTATS, 2023.

[34] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In ICML, 2023.

[35] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[36] Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky
T. Q. Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code.
arXiv preprint arXiv:2412.06264, 2024.

[37] Jian Liu, Jianyu Wu, Hairun Xie, Guoqing Zhang, Jing Wang, Wei Liu, Wanli Ouyang, Junjun
Jiang, Xianming Liu, Shixiang Tang, et al. Afbench: A large-scale benchmark for airfoil design.
In NeurIPS 2024 Dataset and Benchmark Track, 2024.

[38] Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyar Azizzadenesheli,
and Anima Anandkumar. Neural operators with localized integral and differential kernels. In
ICLR 2024 Workshop on AI4DifferentialEquations In Science, 2024.

[39] Charles A. Mader, Gaetan K. W. Kenway, Anil Yildirim, and Joaquim R. R. A. Martins.
ADflow—an open-source computational fluid dynamics solver for aerodynamic and multidisci-
plinary optimization. Journal of Aerospace Information Systems, 2020.

[40] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[41] Mehdi Mirza. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[42] Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, and Sven Wang. Infinite-dimensional
diffusion models, 2023.

[43] Adam Polyak, Amit Zohar, and Andrew Brown et al. Movie gen: A cast of media foundation
models, 2024.

[44] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. NIPS, 20,
2007.

12

[45] Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar
Azizzadenesheli. Generative adversarial neural operators. TMLR, 2022.

[46] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on
machine learning. Springer, 2003.

[47] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pages 10684–10695, 2022.

[48] I. J. Schoenberg. Spline functions and the problem of graduation. Proceedings of the National
Academy of Sciences of the United States of America, 52(4):947–950, October 1964.

[49] Vinothkumar Sekar, Mengqi Zhang, Chang Shu, and Boo Cheong Khoo. Inverse design of
airfoil using a deep convolutional neural network. AIAA Journal, 2019.

[50] Michael S Selig. Uiuc airfoil database. 1996.

[51] Prashant Sharma, Bhupendra Gupta, Mukesh Pandey, Arun Kumar Sharma, and Raji Nareliya
Mishra. Recent advancements in optimization methods for wind turbine airfoil design: A review.
Materials Today: Proceedings, 2021.

[52] Yaozhong Shi, Angela F Gao, Zachary E Ross, and Kamyar Azizzadenesheli. Universal
functional regression with neural operator flows. In NeurIPS 2024 Workshop on Bayesian
Decision-making and Uncertainty, 2024.

[53] Yaozhong Shi, Zachary E. Ross, Domniki Asimaki, and Kamyar Azizzadenesheli. Stochastic
process learning via operator flow matching, 2025.

[54] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

[55] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021.

[56] Peng Su, Kun Wang, Xingyu Zeng, Shixiang Tang, Dapeng Chen, Di Qiu, and Xiaogang Wang.
Adapting object detectors with conditional domain normalization. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16,
pages 403–419. Springer, 2020.

[57] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jar-
rid Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based
generative models with minibatch optimal transport. TMLR, 2024. Expert Certification.

[58] Zhen Wei, Edouard R. Dufour, Colin Pelletier, Pascal Fua, and Michaël Bauerheim. Diffairfoil:
An efficient novel airfoil sampler based on latent space diffusion model for aerodynamic shape
optimization. In AIAA AVIATION FORUM AND ASCEND, 2024.

[59] Zhen Wei, Benoît Guillard, Pascal Fua, Vincent Chapin, and Michaël Bauerheim. Latent
representation of computational fluid dynamics meshes and application to airfoil aerodynamics.
AIAA Journal, 2023.

[60] Zhen Wei, Aobo Yang, Jichao Li, Michaël Bauerheim, Rhea P. Liem, and Pascal Fua. Deepgeo:
Deep geometric mapping for automated and effective parameterization in aerodynamic shape
optimization. In AIAA AVIATION FORUM AND ASCEND, 2024.

[61] Hairun Xie, Jing Wang, and Miao Zhang. Parametric generative schemes with geometric
constraints for encoding and synthesizing airfoils. Engineering Applications of Artificial
Intelligence, 2024.

[62] Aobo Yang, Jinouwen Zhang, Jichao Li, and Rhea Liem. Data-driven aerodynamic shape
optimization and multi-fidelity design exploration using conditional diffusion-based geometry
sampling method. In ICAS, 2024.

13

[63] Chenyu Zeng, Yanshu Zhang, Jiayi Zhou, Yuhan Wang, Zilin Wang, Yuhao Liu, Lei Wu, and
Daniel Zhengyu Huang. Point cloud neural operator for parametric pdes on complex and
variable geometries. arXiv preprint arXiv:2501.14475, 2025.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction can accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address the limitation of our work in the section of limitation of this paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: Proof for theoretical result are all given or referenced properly in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]

Justification: All codes and data are provided and can be obtained via open access. We
provide detailed instructions to faithfully reproduce the main experimental results. See
readme file in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are given in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The metrics of all experiments in this paper is tiny and will not affect main
results. Considering the size of the table, we decided not to provide error bars. All results
can be reproduced running the evaluation code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the computer resources we use in Experi-
ment Settings section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform Ethics Guide lines of NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Code and data used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

19

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve potential risks incurred by study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for formatting purposes in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

x

y

Airfoil Curve
(x(α), y(α))

Airfoil y(x)
α= 0 (start)
α= 1 (end)

x

Cosine Projection from Unit Circle
x(α) =

cos(2πα) + 1

2

Airfoil y(x)
Projection lines

α

Parameterization of Airfoil y(α)

Airfoil y(α)

α= 0 (start)
α= 1 (end)

0.0

0.2

0.4

0.6

0.8

1.0

α

Figure 7: Illustration of the airfoil curve parameterization employed in FuncGenFoil.

Index Symbol Geometric Meaning

1 Rle leading edge radius
2 Xup upper crest position x
3 Yup upper crest position y
4 Zxxup upper crest curvature
5 Xlo lower crest position x
6 Ylo lower crest position y
7 Zxxlo lower crest curvature
8 Yte trailing edge position
9 ∆Yte trailing thickness

10 αte trailing edge angle up
11 βte trailing edge angle down

(a) PARSEC parameters and its geometric meaning.

X=1

X

Y

Rle
Xup

Yup

Zxxup

Xlo

Ylo

Zxxlo

Yte

∆Yte
𝛼te 𝛽te

(b) Demonstration of PARSEC parameters.

Table 6: Eleven PARSEC parameterization in airfoil design.

A Problem Setting for Airfoil Generation

A.1 Airfoil Parametrization

In this paper, we perform a circular parameterization of the airfoil curves, as illustrated in Figure 7.
Specifically, we project a unit circle onto the x-axis and adopt the angle α as the function domain.
The parameterized airfoil function begins at the trailing edge on the suction side, where α = 0,
and ends at the trailing edge on the pressure side, where α = 1. In this manner, we transform the
airfoil data from a circular topology into a well-defined functional form suitable for reconstruction by
generative models.

A.2 Design Parameters of Airfoil Geometry

We adopted the same design condition parameters as provided in AFBench [37], as shown in Table 6.
The parameters listed below—including the leading-edge radius, the curvature at the maximum
thickness of the upper and lower surfaces, and the trailing-edge angle of the airfoil—were obtained
via curve fitting. Note that our implementation of the trailing-edge angle calculation slightly differs
from that of AFBench, as we found the original approximation method not invariant to increased
sampling precision. Specifically, AFBench employs B-spline curves for interpolation at the trailing
edge and calculates its gradient at the endpoint, which becomes unstable as resolution increases. In
contrast, our method assumes the last 2% length of the airfoil curve near the trailing edge is nearly
straight, and uses linear regression to determine the angle.

22

Algorithm 1 Model Training.
Input: data resolution d, data u1, design condition variables c (optional).
Parameter: Gaussian process GP(0,K) for sampling u0.
Output: velocity operator vθ .
1: while training... do
2: sample t ∼ [0, 1], u0 ∼ GP(0,K) at resolution d and get {u0,i}.
3: Compute vt at resolution d and get {vt,i}.
4: Compute ut at resolution d and get {ut,i}.
5: Compute vθ(ut, c, t) at resolution d and get {vθ,i}.
6: Minimize ∥{vθ,i} − {vt,i}∥2.
7: Compute gradient and update θ.
8: end while
9: return vθ .

Algorithm 2 Model Inference.
Input: sampling resolution d, sampling time steps T and steps length dt, latent function u0 (optional), design
condition variables c (optional).
Parameter: Gaussian process GP(0,K) for sampling u0.
Output: airfoil {yi} at resolution d.
1: Let t = 0, u0 ∼ GP(0,K) at resolution d and get {u0,i}.
2: while t ≤ 1 do
3: Compute vθ(ut, c, t) at resolution d and get {vθ,i}.
4: Compute {ut+dt,i} = {ut,i} + {vθ,idt}.
5: t = t + dt.
6: end while
7: return {yi} = {u1,i}

B Algorithm Implementation Details

The algorithm for training the airfoil generative model is presented in Algorithm 1, and the inference
procedure using a trained model is described in Algorithm 2. In our implementation, we employed
Optimal Flow Matching and utilized a Gaussian process with specific kernel functions, such as the
RBF kernel or the Matérn kernel, in the latent space of the generative model.

C Training Details

In most of the experiments, we followed the hyperparameters listed in the Table 7 below to train the
models, including both the pre-training and fine-tuning stages. On the AF-200K dataset, we increased
the maximum number of iterations to 2000000 and the batch size to 2048. For the number of time
steps used to solve the ODE, we use 10 steps for relative balance between fast sampling speed and
good performance, except for the fine-tuning stage, where we used 10 steps for training efficiency.

To provide a comprehensive analysis of the model’s computational requirements, we evaluate its
performance relative to the point-based PK-DIT model. Table 8 details this comparison, presenting
the wall-clock training time, per-sample inference latency, and peak GPU memory usage. All
benchmarks were conducted on a single desktop machine equipped with an NVIDIA RTX 4090 and
an Intel i9-13900K.

D More Experiments

D.1 Comparison with a Classical Optimization Method

To establish a performance benchmark, we compare our method against a classical, optimization-
based approach for airfoil reconstruction. This benchmark is designed to estimate the near-optimal
accuracy achievable with a standard parametric representation.

The classical method represents the airfoil using a NURBS curve with 24 control points. To create
a best-case scenario for this method, the optimization for each of the 3825 target airfoils in the

23

Algorithm 3 Model Finetuning (Airfoil Editing).
Input: pretrained neural operator vθ , original airfoil function u1 (optional) or latent function u0 (optional),
editing requirement δ, editing resolution d, sampling time steps T and steps length dt.
Parameter: Gaussian process GP(0,K) for sampling u0, noise level σ.
Output: new airfoil {yi} at resolution d.
1: Inversely sample original airfoil function {u1,i} through vθ and get its latent function {u0,i}.
2: Set {aθ,i} = {u0,i}.
3: while finetuning... do
4: Sample {u

′
1,i} through vθ from {aθ,i}.

5: Compute LMAP.
6: Compute gradient and update θ.
7: end while
8: Sample {u

′
1,i} through vθ from {aθ,i}.

9: return {yi} = {u
′
1,i}

Table 7: Training hyperparameters and model parameters in conditional airfoil generation tasks

Training hyperparameters Value

Max learning rate 5 × 10−6

Batch size 1024
Batch size (AF-200K) 2048
Optimizer (pre-training and fine-tuning) Adam
Optimizer scheduler Cosine Annealing
Warmup iterations 2000
Max training iterations 1000000
Max training iterations (AF-200K) 2000000
ODE solver time steps 10
ODE solver type Euler

Model parameters Value

Fourier neural operator layers 6
Fourier neural operator modes 64
Fourier neural operator hidden channels 256
Gaussian process kernel Matérn
Kernel noise scale n 1
Kernel order ν 2.5
Kernel characteristic length l 0.03

test dataset was initialized with control points configured to match the average airfoil shape. This
starting point is already very close to the final target, ensuring stable and rapid convergence. For each
target, the optimization was performed using the Adam optimizer for 100 steps with a learning rate
of 3× 10−4, continuing until the Mean Squared Error (MSE) plateaued. The total computation cost
for fitting the entire test set was approximately 20 GPU-hours on an NVIDIA A800 GPU.

The results of this comparison are summarized in Table 10. As expected, the NURBS fitting baseline
performs exceptionally well, closely approaching what might be considered a practical upper bound
on accuracy for a 24-parameter representation. FuncGenFoil’s accuracy is competitive with this
strong baseline. Analyzing the geometric errors reveals that the NURBS fitting method excels at
the trailing edge, likely because the control points can effectively constrain this region. However,
FuncGenFoil demonstrates superior performance at the leading edge. The classical method struggles
with the high curvature of the leading edge, where the 24 control points lack the flexibility to capture
the geometry accurately.

It is crucial to highlight a fundamental difference in the problem setup that heavily favors the classical
method. Its optimization begins from a well-conditioned starting point, whereas generative models
like FuncGenFoil or PK-DIT must learn to construct airfoils from a state of maximum entropy (i.e.,
pure Gaussian noise)—a significantly more challenging task. We note that the classical optimization
process is delicate; initializing the control points more randomly often caused the optimization to
become unstable and diverge.

24

Table 8: Time cost comparison of different generative models.

Model Wall-clock for
1 000 epochs

NFEs at
test time Mean inference time GPU memory

at test
PK-DIT (score matching) ≈ 10 h 50 (DDIM) 220 ms ≈ 200 MB
FuncGenFoil (flow matching) < 6 h 10 50 ms ≈ 200 MB

Table 9: Effective ranges of the 11 geometric parameters for supercritical dataset.
Index Parameter Minimum Maximum

1 leading edge radius 0.0073 0.0140
2 upper crest position x 0.3960 0.5200
3 upper crest position y 0.0592 0.0784
4 upper crest curvature -0.4580 -0.2100
5 lower crest position x 0.3180 0.4100
6 lower crest position y -0.0589 -0.0414
7 lower crest curvature 0.3730 0.8050
8 trailing edge position -0.0001 0.0001
9 trailing thickness 0.0020 0.0075

10 trailing edge angle up -0.5514 -0.2254
11 trailing edge angle down -0.4477 -0.1397

Therefore, this experiment should not be interpreted as a direct comparison. Instead, it provides a
reference for the best-case reconstruction performance of a model-free parametric method under ideal
optimization conditions.

D.2 More Ablations Experiments

We conduct a comprehensive ablation study on the choice of Gaussian process kernel types, model
modes of Fourier Neural Operators, and characteristic lengths, as shown in Table 11 for the Matérn
kernel, Table 12 for the radial basis function (RBF) kernel, and Table 13 for the white noise kernel,
which is commonly used in diffusion or flow models in finite-dimensional spaces. In general,
appropriate selections of these settings can significantly enhance model performance. Specifically,
the Gaussian prior should exclude function spaces where the data is unlikely to reside, making the
prior space as restricted as possible to facilitate effective model training. For example, a dataset with
high smoothness is unlikely to belong to the function space generated by a white noise prior but is
more plausibly sampled from a Gaussian prior with an RBF kernel.

In Table 12, we observe that the RBF kernel exhibits a similar tendency to the Matérn kernel, with
both achieving optimal performance at the characteristic length 0.03. As for the white noise kernel
in Table 13, since its characteristic length is effectively 0, we studied the influence of the noise scale
n over the range [1.0, 2.0, 4.0]. We found that excessively large diffusion white noise negatively
impacts model performance, likely because such noise scales project the function into a larger white
noise space, making it more difficult for the neural operator to learn the intrinsic dynamics.

D.3 Generated Airfoil Examples

Figure 8 showcases a variety of airfoil geometries generated by FuncGenFoil models. These models
were trained on datasets of supercritical airfoils, demonstrating their capability to produce diverse
and plausible shapes.

E Societal Impacts

This work will accelerate research in AI for Science and Engineering and generally has positive social
impacts. On the other hand, AI models for engineering design and optimization could accelerate
technological diffusion within society, potentially raising issues related to intellectual property or
unauthorized technology transfer to entities or individuals intending to design specific engineering
products or construct items harmful to society.

25

Table 10: Performance Comparison: Classical Optimization vs. FuncGenFoil. The classical "NURBS fitting"
method is initialized close to the target, representing a near-optimal benchmark.

Dataset Algo. Label Error (×10−3) ↓
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ̄a σ̄g

Super NURBS fitting 10.8 17.4 4.5 64.5 9.79 3.56 113.2 1.53 1.72 0.065 0.106 20.6 3.97
FuncGenFoil 0.71 8.23 0.13 201.3 4.72 0.12 174.2 0.09 0.14 34.2 36.7 41.9 3.08

Table 11: FuncGenFoil model performance with different FNO mode and Matérn kernel for conditional airfoil
generation.

Modes ν l
Label Error ↓ (10−3) D ↑ M ↓ (10−2)

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ̄a σ̄g

32

2.5

0.01 0.62 6.06 0.09 200.4 3.58 0.09 185.3 0.07 0.12 26.7 29.1 41.1 2.51 -105.6 1.02
0.02 0.52 5.10 0.10 97.4 3.26 0.11 107.0 0.08 0.12 26.2 27.6 24.3 2.22 -105.7 0.99

0.03 0.54 4.78 0.11 82.3 3.00 0.11 93.2 0.09 0.12 26.0 27.7 21.6 2.18 -105.6 0.99

3.5

0.01 0.63 5.64 0.09 158.3 3.46 0.08 156.9 0.07 0.12 27.6 29.2 34.7 2.41 -105.8 1.01
0.02 0.48 5.08 0.10 89.4 3.12 0.10 97.5 0.08 0.12 26.8 28.2 22.8 2.18 -105.9 0.99

0.03 0.53 5.17 0.11 83.5 2.90 0.11 89.5 0.10 0.14 29.4 30.7 22.0 2.28 -105.2 0.99

64

1.5

0.01 0.82 8.57 0.10 370.2 5.21 0.09 342.5 0.08 0.12 36.3 37.5 72.9 3.30 -104.0 1.09
0.02 0.65 8.26 0.13 222.9 4.97 0.11 219.6 0.08 0.13 37.4 35.9 48.2 3.12 -103.6 1.04
0.03 0.71 8.18 0.14 183.7 4.82 0.12 207.2 0.09 0.14 34.6 36.6 43.3 3.13 -104.0 1.02

2.5

0.01 0.80 8.77 0.10 291.2 5.23 0.10 277.6 0.08 0.12 35.8 37.7 59.8 3.20 -103.7 1.06
0.02 0.68 8.66 0.13 192.4 4.78 0.11 182.8 0.09 0.12 36.2 37.8 42.2 3.06 -103.5 1.02
0.03 0.71 8.23 0.13 201.3 4.72 0.12 174.2 0.09 0.14 34.2 36.7 41.9 3.08 -103.9 1.01

3.5

0.01 0.88 8.80 0.11 269.3 5.26 0.09 248.9 0.08 0.12 36.5 38.0 55.3 3.20 -103.4 1.05
0.02 0.72 8.52 0.11 177.1 4.84 0.11 174.6 0.08 0.13 33.2 37.4 39.7 2.98 -103.6 1.02
0.03 0.66 7.80 0.12 161.1 4.54 0.11 164.2 0.09 0.15 35.1 38.3 37.5 2.96 -103.4 1.01
0.04 0.82 8.19 0.13 170.0 4.45 0.13 159.7 0.09 0.16 36.6 34.8 37.7 3.11 -103.6 1.01
0.06 0.87 8.82 0.16 183.0 5.01 0.13 183.9 0.10 0.17 41.8 41.2 42.3 3.44 -102.8 1.02
0.12 1.39 10.7 0.20 261.0 6.23 0.15 230.3 0.12 0.19 53.4 44.9 55.3 4.27 −99.9 1.05

128

2.5

0.01 1.09 10.4 0.11 708.5 7.13 0.10 613.5 0.09 0.11 40.7 41.1 129.3 4.16 -102.8 1.27
0.02 1.15 10.0 0.11 577.5 6.83 0.11 570.2 0.09 0.14 37.8 42.3 113.3 4.14 -103.4 1.20
0.03 1.05 10.1 0.12 598.0 6.48 0.14 487.7 0.09 0.15 36.9 40.1 107.3 4.22 -103.0 1.23

3.5

0.01 1.04 10.3 0.10 628.9 7.05 0.09 576.8 0.08 0.12 39.3 42.0 118.7 4.05 -102.9 1.23
0.02 0.93 9.94 0.12 560.6 6.81 0.10 484.6 0.09 0.15 41.5 40.8 104.1 4.05 -103.2 1.19
0.03 1.11 9.93 0.11 548.2 6.49 0.12 520.3 0.09 0.16 38.6 39.0 105.8 4.16 -103.1 1.23

Table 12: FuncGenFoil model performance with different RBF kernel for conditional airfoil generation.

Modes l
Label Error ↓ (10−3) D ↑ M ↓ (10−2)

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ̄a σ̄g

64

0.001 1.26 7.60 0.09 1224 5.34 0.07 1046 0.06 0.08 24.9 28.6 213 3.68 -103.7 1.42
0.01 0.77 8.67 0.12 223.6 5.05 0.09 174.7 0.08 0.12 35.2 37.1 47.0 3.06 -103.6 1.03
0.02 0.62 8.33 0.12 162.2 4.59 0.11 165.9 0.09 0.17 38.0 42.5 38.4 3.04 -103.2 1.01
0.03 0.66 7.80 0.12 147.9 4.43 0.12 154.2 0.09 0.15 33.2 37.9 35.1 2.93 -103.6 1.00
0.04 0.84 8.79 0.13 197.1 4.59 0.12 168.4 0.09 0.17 35.8 37.9 41.3 3.20 -103.2 1.02
0.06 1.15 9.97 0.15 220.3 6.21 0.14 215.5 0.10 0.16 38.3 44.2 48.7 3.73 -99.9 1.05
0.12 1.12 10.9 0.17 230.5 7.71 0.17 265.6 0.11 0.18 40.0 42.3 54.4 4.14 −95.1 1.08

Table 13: FuncGenFoil model performance with white noise kernel of different noise scale n for conditional
airfoil generation.

Modes n
Label Error ↓ (10−3) D ↑ M ↓ (10−2)

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ̄a σ̄g

64
1 1.15 7.18 0.09 913.8 5.16 0.07 964.5 0.06 0.08 26.2 26.1 176.8 3.44 -104.7 1.39
2 1.46 7.98 0.10 1274 5.94 0.08 1268 0.08 0.10 30.6 32.4 238.3 4.17 -102.7 1.64
4 2.27 9.14 0.12 2015 7.24 0.11 2059 0.09 0.14 41.5 41.4 379.7 5.61 -99.9 2.09

26

Figure 8: A diverse set of airfoil geometries generated by FuncGenFoil models trained on supercritical airfoil
data.

27

	Introduction
	Related Works
	FuncGenFoil: Function-Space Generative Model for Airfoils
	Airfoil Generation
	Airfoil Editing

	Experiments
	Experimental Settings
	Main Results
	Ablation Study

	Conclusion and Limitations
	Problem Setting for Airfoil Generation
	Airfoil Parametrization
	Design Parameters of Airfoil Geometry

	Algorithm Implementation Details
	Training Details
	More Experiments
	Comparison with a Classical Optimization Method
	More Ablations Experiments
	Generated Airfoil Examples

	Societal Impacts

