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Abstract

Knowledge Editing (KE) enables the modifi-001
cation of outdated or incorrect information in002
large language models (LLMs). While exist-003
ing KE methods can only update isolated facts,004
they struggle to generalize these updates to005
multi-hop reasoning tasks that depend on the006
modified knowledge. Through an analysis of007
reasoning circuits—the neural pathways LLMs008
use for knowledge-based inference, we iden-009
tify that current layer-localized KE approaches010
fail to effectively integrate updated information011
into these reasoning pathways. To address this012
limitation, we propose CaKE (Circuit-aware013
Knowledge Editing), a novel method that fa-014
cilitates more effective integration of updated015
knowledge in LLMs. CaKE leverages metic-016
ulously curated data that enforces the model017
to utilize the modified knowledge, guiding the018
model to develop appropriate reasoning circuits019
for newly integrated knowledge. Experimental020
results show that CaKE enables more accurate021
and consistent use of updated knowledge across022
related reasoning tasks, leading to an average023
20% improvement in multi-hop accuracy on024
MQuAKE compared to existing KE methods.025

1 Introduction026

Large language models (LLMs) have demonstrated027

remarkable capabilities in diverse tasks (Yang et al.,028

2024a; Dubey et al., 2024; OpenAI, 2024; Guo029

et al., 2025), achieving performance that rivals or030

even exceeds human experts. However, their prac-031

tical deployment faces some critical limitations:032

parametric knowledge remains static after pretrain-033

ing, making it challenging to track evolving real-034

world information, and their propensity for halluci-035

nations undermines reliability. Knowledge editing036

(KE) has emerged as a promising solution to update037

models directly (Mitchell et al., 2021; Wang et al.,038

2024c; Jiang et al., 2025). Although existing KE039

methods achieve good results on simple factual up-040

dates (Yao et al., 2023; Zhang et al., 2024b), they041
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circuit-aware edit to improve the model’s multi-hop rea-
soning performance involving the updated knowledge.

also exhibit fundamental limitations: edits prop- 042

agate inconsistently through related knowledge 043

structures and downstream reasoning tasks (Cohen 044

et al., 2024; Qin et al., 2024; Yao et al., 2023); 045

excessive focus on surface-level pattern match- 046

ing (Hoelscher-Obermaier et al., 2023), and locality 047

issues for other unrelated knowledge and general 048

ability (Gu et al., 2024; Gupta et al., 2024). 049

Our work specifically addresses the poor perfor- 050

mance of edited models in downstream reasoning 051

tasks that involve the updated knowledge (Zhong 052

et al., 2023; Zhang et al., 2024d). Consider a 053

representative case in Figure 1: after editing ‘Ed- 054

die Mathews, citizenship, United States → United 055

Kingdom’, models correctly answer direct queries 056

but fail multi-hop reasoning like ‘The capital of 057

the country that Eddie Mathews was a citizen of 058

is?’ (still outputting ‘Washington D.C.’). Criti- 059

cally, this is not merely an editing artifact: vanilla 060

LLMs often correctly answer single-hop questions 061

while failing their multi-hop counterparts (Yang 062

et al., 2024c; Biran et al., 2024), suggesting deeper 063

architectural limitations in knowledge utilization. 064

We trace these limitations to a misalignment 065

between KE strategies and the inherent rea- 066

soning architectures of LLMs. To understand 067
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Figure 2: An overview of our work. (a) Analyze the multi-hop reasoning circuit in LLMs and identify the reasons
behind their failure in reasoning: weak signals and propagation failure. (b) Rethink the limitations of the most
popular editing paradigms from a circuit perspective. Both ROME-style (edits the early layers) and WISE-style
(edits the later layers) fail to propagate their modifications through the reasoning circuit. (c) CaKE leverages ad-hoc
features to curate reasoning tasks, guiding the LLM in constructing a reasoning circuit to process new knowledge.

this disconnect, we analyze how LLMs utilize068

knowledge in downstream reasoning tasks. Recent069

analysis suggests that knowledge is not merely070

statically stored but dynamically activated through071

specialized circuits (Yao et al., 2024; Biran072

et al., 2024). Our investigation (§2) reveals that073

multi-hop reasoning emerges from coordinated074

computing circuits: early layers gather entity075

and relation information, which is then routed to076

the last token position during the middle layers.077

Subsequently, later layers progressively complete078

reasoning steps using this information at the last079

token position (Figure 2 (a)). We then analyze the080

entity and relation information at the last token081

position in failed multi-hop reasoning cases. Our082

observations reveal that critical information either083

fails to be properly routed or exhibits a weak signal,084

preventing effective reasoning. This explains why085

current KE methods underperform (§3.1): they086

optimize for isolated parameter changes rather than087

circuit-level integration needed for compositional088

reasoning, as shown in Figure 2 (b).089

To bridge this fundamental gap, we propose090

Circuit-aware Knowledge Editing (CaKE) in091

§3.2. By explicitly aligning edits with the LLM’s092

native reasoning architecture, CaKE transforms093

static knowledge updates into generalizable094

knowledge learners—models that not only store095

static edited facts but also dynamically apply096

them in downstream reasoning tasks. Specifically,097

for the updated knowledge, we first design the098

circuit-aware tasks with ad-hoc features that099

require the LLM to utilize the new knowledge for 100

latent reasoning (in Figure 2 (c)). We then guide 101

the LLM in constructing the reasoning circuit for 102

the updated knowledge by training with the curated 103

data. Extensive experiments (§4) demonstrate the 104

effectiveness of CaKE, outperforming existing 105

knowledge editing methods on the multi-hop edit- 106

ing benchmarks MQuAKE on LLMs of different 107

sizes, including LLAMA3-8B-Instruct (Dubey 108

et al., 2024), Qwen2.5-7B-Instruct (Yang et al., 109

2024a), and LLAMA3-70B-Instruct. 110

2 Analyzing Reasoning Circuit in LLM 111

In this part, we integrate previous findings on multi- 112

hop reasoning and circuit analysis (Yao et al., 2024; 113

Biran et al., 2024; Yang et al., 2024b; Wang et al., 114

2024f) and factual recall (Merullo et al., 2024) to il- 115

lustrate how language models leverage knowledge 116

to tackle the multi-hop reasoning task. Based on 117

this, we can view the cause of the failure behind 118

them. We employ the WikiData subset proposed by 119

Biran et al. (2024) and name it HoppingTooLate, 120

which contains 82,021 two-hop queries. We de- 121

note each fact as a triplet (e, r, e′), where e is the 122

head entity, r is the relation, and e′ is the tail en- 123

tity. We view two-hop queries as (e1, r1, e2) and 124

(e2, r2, e3), where e1 is the source entity, e2 is the 125

bridge entity, and e3 is the target entity. We fo- 126

cus on the latent reasoning framework to evaluate 127

whether a model can output the expected answer e2 128

directly given the composite query (e1, r1, r2, ?). 129

In addition, we follow HoppingTooLate and define 130

2



Model Entity Patch Relation Patch

LLaMA3-8B-Ins. 85.35 56.20
Qwen2.5-7B-Ins. 97.29 55.40

Table 1: Activation Patching Success Rates (%).

t1 as the last token of the first-hop prompt and t2131

as the last token of the whole two-hop prompt.132

2.1 Multi-hop Reasoning Circuit133

Building on the insights from prior work (Biran134

et al., 2024; Yao et al., 2024), we can define a struc-135

tured circuit mechanism for multi-hop reasoning136

in transformer-based LLMs, as illustrated in Fig-137

ure 2(a). Our analysis reveals three distinct compu-138

tational phases: 1) The model processes the initial139

relation r1 and entity e1, encoding the bridge entity140

e2 in the final token position of the first prompt141

segment (t1). 2) Critical features, including e2 and142

the second relation, r2 are transferred to the last143

token position t2, preparing for final resolution. 3)144

The model computes the target e3 by resolving r2145

and e2, giving the result in the final token position.146

Hence, based on the linearity theory (Hernandez147

et al., 2024), multi-hop reasoning in LLM can be148

formalized as:149

Fn(Fn−1(en−1, rn−1), rn) (1)150

Each function Fn−1 produces a bridge entity en151

for subsequent computation, demonstrating how152

intermediate results propagate vertically through153

network layers.154

Evaluation To validate this circuit hypothesis,155

we conduct a causal analysis to determine whether156

modifying the variables in the function F leads157

to corresponding changes in the output. Our in-158

tervention strategy focuses on the critical last to-159

ken position for the second hop, where interme-160

diate variables are stored. Specifically, we con-161

sider: 1).Entity Patching: Replacing the represen-162

tation of e2 with an alternative entity epatch. For163

example, given the prompt ‘The official currency164

of the country where the Eiffel Tower is located165

is’, we substitute the representation of the bridge166

entity ‘France’ with ‘China’, expecting the out-167

put to change to ‘Renminbi’. 2).Relation Patching:168

Replacing the representation of r2 with an alterna-169

tive relation rpatch. For instance, given the same170

prompt, we substitute the representation of ‘offi-171

cial currency’ with ‘capital’, expecting the output172

to change to ‘Paris’. A successful patch (produc-173

ing F2(epatch, r2) or F2(e2, rpatch)) would confirm174

Model Metric
Correct Inconsistent Incorrect

Cases Layer Cases Layer Cases Layer

LLAMA3

e2 from t1 63.1% 6.3 75.2% 6.0 48.7% 8.2
e2 from t2 67.8% 13.2 59.8% 9.8 17.7% 21.1
r2 from t2 66.9% 14.0 49.0% 13.8 28.1% 13.7
e3 from t2 56.5% 18.8 22.7% 20.7 18.3% 18.0

Qwen2.5

e2 from t1 71.2% 4.3 74.1% 4.7 46.7% 5.1
e2 from t2 52.9% 7.9 63.7% 9.5 18.9% 13.5
r2 from t2 75.8% 8.1 75.2 % 10.4 44.8% 9.7
e3 from t2 71.2% 16.4 39.4% 17.4 25.2% 11.4

Table 2: The results of LLAMA3-8B-Instruct (32 layers)
and Qwen2.5-7B-Instruct (28 layers). Cases are the
percentage of data we can detect the information, and
Layer is the mean of the first layer in which we detect
the information.

the model’s reliance on these specific representa- 175

tions for reasoning. We conduct experiments on 176

LLAMA3-8B-Instruct and Qwen2.5-7B-Instruct 177

and employ PatchScope (Ghandeharioun et al., 178

2024) for targeted activation patching (detailed in 179

§B.1 and Figure 7). Table 1 shows that in both 180

the LLAMA3-8B and Qwen2.5-7B models, sub- 181

stituting variable representations at the last token 182

position leads to corresponding behavioral changes, 183

particularly in entity patching, where accuracy ex- 184

ceeds 80%. These results provide mechanistic evi- 185

dence for the reasoning circuit we identified before. 186

2.2 Circuit in Failure Phenomena 187

Then, we aim to understand why language mod- 188

els sometimes fail at multi-hop reasoning despite 189

successfully answering individual single-hop ques- 190

tions. For instance, a model may correctly answer 191

‘the capital of Russia’ with ‘Moscow’ and ‘the coun- 192

try of citizenship of Fyodor Dostoyevsky’ with ‘Rus- 193

sia’, yet fail to answer the multi-hop question ‘the 194

capital of the country of citizenship of Fyodor Dos- 195

toyevsky is’ correctly. To systematically analyze 196

this issue, we focus on the second hop of reason- 197

ing, as the model typically performs well on the 198

first hop. We categorize the data from the Hop- 199

pingTooLate dataset1 into three subsets based on 200

the model’s behavior: Correct: The model an- 201

swers both single-hop questions (e1, r1, e2) and 202

(e2, r2, e3) correctly, as well as the multi-hop ques- 203

tion (e1, r1, r2, ?). Inconsistent: The model an- 204

swers both single-hop questions correctly but fails 205

on the multi-hop question. However, some cases in 206

the Correct set contain the bridge entity e2 but have 207

a different subject e′1 and relation r′1, for which the 208

model correctly answers (e′1, r
′
1, r2, ?). This sug- 209

gests that while the model can leverage knowledge 210

1We filter out short-cut cases as done by Biran et al. (2024).
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in some contexts, it fails to generalize, indicating211

reasoning gaps rather than missing knowledge. In-212

correct: The model answers both single-hop ques-213

tions correctly but fails on the multi-hop question214

in all contexts (e′1, r
′
1, e2). This implies a com-215

plete failure to employ the knowledge for multi-216

hop reasoning. To investigate these failure modes,217

we check whether the models construct the rea-218

soning circuit by monitoring key variables (e1, e2,219

and r2) at critical positions (t1 and t2) across the220

model’s layers. Our analysis reveals several inter-221

esting patterns, extending beyond the ‘hopping too222

late’ problem identified by Biran et al. (2024).223

We list the results in Table 2 (more details in224

Figure 10 in Appendix). For the correct subset, we225

observe strong evidence of the reasoning circuit226

functioning as expected: a large portion of e2 is227

detected at both t1 (e2 from t1) and t2 (e2 from228

t2) in both LLAMA3 and Qwen2.5 models. The229

model correctly uses the r2 and e2 information at230

t2 to produce the final answer e3. Contrastly, in the231

Incosistent subsets, we can find that despite detect-232

ing e2 and r2 at t2, the model often fails to produce233

the correct e3 answer (e3 from t2: only 22.7% in234

LLAMA3 and 39.4% in Qwen2.5 of cases we can235

detect at t2). We hypothesize that the e2 informa-236

tion, though present, may be insufficient to trigger237

the second-hop reasoning circuit, leading to the238

failure to execute the function F (e2, r2) effectively.239

What’s more, in the Incorrect subsets, we can find240

the needed e2 information is rarely detected at the241

t2 position (e2 from t2: Only 17.7% in LLAMA3242

and 18.9% in Qwen2.5). Even when e2 is detected,243

it typically emerges in much later layers (layer 21244

in LLAMA3 and layer 13.5 in Qwen2.5), making245

it too late to be effectively utilized for the second-246

hop computation, aligned with Biran et al. (2024)’s247

findings. We conjecture the model fails to propa-248

gate e2 to the t2 position, resulting in the variable249

e2 missing for conducting the F (e2, r2) function.250

Evaluation To test our hypothesis, we conduct251

interventions to enhance the information at the spe-252

cific positions to see if we can improve the model’s253

performance in these failure cases. We test three254

ways: back-patching the t1 and t2 position as Biran255

et al. (2024) did, which would enhance the infor-256

mation at the position, and cross-position patching257

the information from t1 to the t2 position, which258

explicitly propagates the information from t1 to t2259

(details in Figure 8 in Appendix). From the results260

in Figure 3, we can find a high success rate for261
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Figure 3: Results of the intervention on the failure cases
in multi-hop reasoning of LLAMA3 and Qwen2.5.

all the inconsistent and incorrect cases, but they 262

demonstrate different paradigms. For the inconsis- 263

tent cases, back-patching would lead to better per- 264

formance, while for the incorrect cases, patching 265

knowledge from the t1 to t2 usually shows better 266

outcomes. This proves our previous hypothesis that 267

for the incorrect cases, due to the propagation fail- 268

ure, the model fails to move the e2 to t2 position, 269

and manual routing via cross-patching can mitigate 270

the issue. Meanwhile, for inconsistent cases, ampli- 271

fication via back-patching compensates the weak 272

signal when valid e2 representations reach t2 but 273

lack sufficient magnitude for subsequent reasoning. 274

275

3 Circuits-aware Knowledge Editing 276

3.1 Rethinking KE from the Circuit View 277

Despite the success of current KE on single facts 278

benchmarks, from previous studies (Zhang et al., 279

2024d; Zhong et al., 2023), and our analysis in §4, 280

we can see that the edited model’s performance on 281

multi-hop reasoning tasks is often unsatisfactory. 282

Building on our previously identified circuit for 283

multi-hop reasoning, we rethink the reason why 284

current knowledge editing methods fail under multi- 285

hop reasoning circumstances. 286

Unified Editing Details When updating a piece 287

of knowledge (e, r, o → o′), the most popular 288

knowledge editing techniques would modify the 289

parameters that are responsible for the knowledge. 290

There are two kinds of paradigms: editing the Feed- 291

Forward Networks (FFN) in the early layers, such 292

as ROME (Meng et al., 2022) and MEMIT (Meng 293

et al., 2023) or modifying the later layers’ FFN 294

output, like WISE (Wang et al., 2024c) and T- 295

Patcher (Huang et al., 2023). In fact, some studies 296

have queried the effectiveness of these localization 297

settings (Chang et al., 2024; Hase et al., 2024) as 298

the localization area is not correlated to the perfor- 299

mance of the knowledge editing methods. Here, we 300
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Figure 4: The target answer token’s rank in the vocabu-
lary of different editing methods when editing the fact
‘The official language of Japan is Japanese → Korean.’

propose a unified view of the mechanisms and limi-301

tations from the circuit perspective. From Figure 2302

(c), these two editing paradigms can be achieved303

by a gated function G(x):304

FFNout(x) = Wx︸︷︷︸
Original term

+G(x) · δ(x)︸︷︷︸
Edit term

(2)305

306

G(x) =

{
1, x ∈ ein

0, otherwise
(3)307

ROME-style would modify the weight W with a308

perturbation ∆ and obtain a new weight W ′ =309

W +∆. Here, δ(x) = ∆x. When calculating the310

∆, ROME-style methods, apply the least squares311

estimation and null space constraint to make sure312

the ∆ is only activated by the corresponding en-313

tity representation ein and keep the original output314

for other representations. In parallel, WISE-style315

editing methods would directly introduce the new316

weight W ′ that would be activated by the related317

representation ein, and W ′ would encode the up-318

dated knowledge. Here, δ(x) = (W ′ − W )x.319

320
Defect from circuit view To see the editing321

mechanism better, we first compare the rank of the322

target answer at the last token position via MEMIT,323

WISE, and the original model in Figure 4. We324

edit the fact: ‘The official language of Japan is325

Japanese → Korean.’ From the figure, we can326

see that in the original model and MEMIT-edited327

model, the answer token is dealt with gradually328

through the mid-to-later layers, and MEMIT would329

make this happen in advance. The computation of330

the ROME-style method for the new knowledge331

recall is: F (ẽ, r) = o′, ẽ = e + ∆e, which mod-332

ifies the knowledge stored in the previous layer333

and gives us the new representation e′ for further334

computing. On the contrary, the WISE method335

would directly alter the information at the edited336

layer as we can see the sharp drop at layer 29. In 337

particular, the editing would take effect when the 338

added or updated parameters are activated by query 339

representation and work as F (e, r) = o′. 340

In single-hop knowledge editing, these kinds 341

of methods would give us the correct information, 342

but for the multi-hop cases, this would fail. As 343

shown in Figure 2 (b), both these layer-specific 344

editing methods cannot propagate the updated 345

knowledge to the reasoning circuit, leading to 346

unsatisfactory multi-hop reasoning performances. 347

An essential requirement for these methods is that 348

the gated function G(x) is activated by the specific 349

representation ein. However, under the multi-hop 350

reasoning scenario, the model would deal with dif- 351

ferent single-hop questions in different layers, like 352

the two-hop reasoning circuit in §2: for ROME- 353

style editing, if the new fact (e, r, o → o′) is the 354

second-hop question and the entity e appears after 355

the edited layers, the gated function would G(x) 356

not be activated and the model would still follow 357

the previous stale knowledge F (e, r) instead of 358

F (ẽ, r) and give us the wrong answer. Likewise, 359

the WISE-style editing would retain reliance on the 360

original knowledge when the new fact is finished 361

in the former layers as the first hop, bypassing the 362

edit function in later layers and cascading the error 363

in the subsequent reasoning. In conclusion, these 364

layer-specific editing methods cannot learn the new 365

knowledge generally to make the knowledge usable 366

in downstream reasoning tasks. 367

3.2 Proposed Method: CaKE 368

Inspired by previous analysis, we propose a 369

novel method, Circuit-aware Knowledge Editing 370

(CaKE), which enhances the model’s ability to up- 371

date and effectively utilize knowledge. CaKE com- 372

prises two key components: (1) generating circuit- 373

aware training data that explicitly requires reason- 374

ing with the updated knowledge, and (2) training 375

the model to construct robust reasoning circuits 376

that integrate the new knowledge. 377

Data Generation To ensure that the model builds 378

effective reasoning circuits, we address two criti- 379

cal challenges: preventing failure propagation and 380

mitigating weak signals (as identified in §2), while 381

ensuring that updated knowledge is properly in- 382

tegrated across different layers (as described in 383

§3.1). For each updated knowledge item, we con- 384

struct the following contexts to mitigate these is- 385

sues: (1) Original Narrative: We begin by gen- 386
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Method Model MQUAKE-CF MQUAKE-CF-v2 MQUAKE-T

H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑

Pre-edited

L
L

aM
A

3-
8B

-I
ns

79.0 27.0 78.4 28.6 71.0 5.3

LoRA 66.0 27.6 64.7 24.6 92.3 66.0
WISE 38.2 24.0 37.2 21.0 63.5 62.9

MeLLo 16.5 16.1 19.5 16.0 42.3 50.1
ROME 86.8 17.6 86.4 15.5 89.5 8.4
MEMIT 76.3 11.5 74.0 10.0 86.0 3.7

AlphaEdit 66.1 10.1 63.7 8.5 73.4 1.0
IFMET ♣ 81.9 23.2 75.3 36.5 82.1 46.1

CaKE(ours) 90.6 57.3 90.1 57.1 91.5 81.4

Pre-edited 75.6 34.7 76.8 37.7 60.1 15.6

LoRA

L
-7

0B

93.1 53.2 90.5 50.2 90.1 90.6
MeLLo 8.0 6.4 8.6 9.9 11.6 32.9

CaKE(ours) 93.5 65.4 93.3 63.3 91.1 94.6

Table 3: Comparison of CaKE with existing methods on MQuAKE for LLAMA3-8B-Instruct and LLAMA3-70B-
Instruct. The best results are highlighted in bold, while the second-best results are underlined. ♣ means the results
are based on our re-implementation since the original code is not open by the authors, and we will update it after the
source code is open. Due to the computational limitations, we just run the LoRA and MeLLo in 70B model.Results
for Qwen2.5-7B-Ins can be found in Table 6.

erating straightforward factual statements that ex-387

plicitly convey the updated information. For ex-388

ample, when updating the fact k: (PersonX, cit-389

izen_country, Switzerland → Japan), we use the390

narrative representation: ‘PersonX is a citizen of391

Japan’ and generate several paraphrases. These392

statements serve as the foundation for the model to393

learn the updated knowledge. (2) Circuit-aware394

Tasks: Next, we design specialized reasoning sce-395

narios that address the identified circuit-level chal-396

lenges, as illustrated in Figure 2(c). Moreover,397

to avoid introducing extraneous knowledge that398

could leak into downstream evaluations—and to399

test the generalization of our method (inspired by400

prior research (Zhang et al., 2024c))—we incorpo-401

rate ad-hoc features into these scenarios. These402

tasks link the fact with intermediate attributes or403

reasoning steps and fall into two categories: Late-404

layer Knowledge Integration: These tasks ensure405

that the updated knowledge is effectively learned406

in the later layers, alleviating issues such as weak407

signals and the limitations of ROME-style editing.408

For the fact k, we construct prompts like: ‘Sup-409

pose {random_entity_1} wears red clothes, {ran-410

dom_entity_2} wears blue clothes, and {PersonX}411

wears green clothes. The country of citizenship of412

the person in green is:’ Here, the model is expected413

to output ‘Japan,’ requiring it to employ the new414

fact k in later layers. Reasoning Circuit Enhance-415

ment: These tasks require the model to use the up- 416

dated knowledge for subsequent reasoning, thereby 417

mitigating propagation failure, weak signal, and 418

WISE-style’s limitations. Following the same fact 419

k: ‘In a book about countries, Japan is mentioned 420

on page 6 of the book, while China is mentioned 421

on page 72. On which page of the book is the coun- 422

try of citizenship of the {PersonX} shown?’ Here, 423

the model must first recall the updated citizenship 424

(Japan) and then use this information to determine 425

the correct page number (6). Furthermore, for each 426

knowledge type, we develop specific task templates 427

and leverage GLM-4-plus (GLM et al., 2024) to 428

generate data using randomly selected related enti- 429

ties (detailed in Appendix A). 430

Edit Training After obtaining the curated circuit- 431

aware data, we fine-tune the LLM using LoRA 432

across all layers, enabling the model to optimize its 433

internal knowledge organization. We minimize the 434

cross-entropy loss L between the model’s outputs 435

and the ground-truth tokens expressing the updated 436

fact: 437

L = E(x,y)∈D

− |y|∑
t=1

log p(yt | x, θLoRA)

 (4) 438

where θLoRA represents the LoRA parameters, x 439

is the input prompt, and y is the desired updated 440

output sequence. 441
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CSQA BBH MMLU GSM8k

LLaMA3-8B-Ins 76.09 67.89 63.83 75.20

MEMIT 76.08 67.88 63.82 75.21
ROME 72.98 61.37 62.95 74.59
CAKE 75.10 67.20 62.98 76.04

Qwen2.5-7B-Ins 82.31 33.39 71.80 82.26

MEMIT 82.39 37.37 71.80 81.96
ROME 72.57 34.22 63.38 72.21
CAKE 82.64 37.44 71.76 82.79

Table 4: Locality Performance on several general
benchmarks of CaKE and other editing methods.

4 Experiments442

4.1 Experiment Settings443

We mainly utilize the multi-hop reasoning knowl-444

edge editing dataset MQuAKE (Zhong et al., 2023),445

which considers different number of hops (from446

2 to 4) and different positions of the knowledge447

used in the multi-hop questions. We utilize three448

versions of the datasets: MQuAKE-CF-3k and449

MQuAKE-CF-3k-v2 are two subsets that contain450

different question types and editing hopping num-451

bers, and MQuAKE-T is a time-aware knowledge452

editing benchmark.453

Baselines and Models We consider sev-454

eral knowledge editing baselines, including:455

IFMET (Zhang et al., 2024d), AlphaEdit (Fang456

et al., 2024), ROME (Meng et al., 2022),457

MEMIT (Meng et al., 2023),WISE (Wang et al.,458

2024c) and MeLLo (Zhong et al., 2023). Here,459

AlphaEdit, ROME, and MEMIT are methods460

that edit the model’s parameters at early layers;461

WISE adds additional parameters at later layers,462

and IFMET edits both the early and later layers’s463

FFN to achieve better multi-hop reasoning464

performance. MeLLo is a prompt-based retrieval-465

augmented method. We conduct experiments on466

LLAMA-3-8B-Instruct, Qwen-2.5-7B-Instruct,467

and LLAMA-3-70B-Instruct.468

Evalutation Metric Following Zhong et al.469

(2023), we evaluate model performance using470

Multi-hop Accuracy (MAcc) and Hop-wise An-471

swering Accuracy (H-Acc). MAcc measures the472

accuracy of multi-hop question answering, while473

H-Acc assesses correctness at each reasoning step.474

Higher values indicate better performance. For KE,475

we also need to consider locality, which ensures476

edits do not affect unrelated knowledge and abili-477

ties. To assess this, we evaluate the model on gen-478

eral benchmarks, including CommonsenseQA (Tal-479
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Figure 5: Accuracies of different number hops and
edit-positions in MQuAKE-CF-3k-v2 on LLAMA3-8B-
Instruct.

mor et al., 2019), BigBenchHard (Suzgun et al., 480

2023), MMLU (Hendrycks et al., 2021), and 481

GSM8k (Cobbe et al., 2021). 482

4.2 Experiments Results 483

Main Results Table 3 summarizes our results. 484

Although current KE methods achieve high hop- 485

wise accuracy (H-Acc.), their performance on the 486

three versions of MQuAKE is quite low (with an 487

average accuracy of less than 20%). For example, 488

MEMIT and ROME achieve over 80% accuracy on 489

single-hop questions in MQuAKE-v2; however, 490

their accuracy on multi-hop reasoning drops to 491

only around 10%, indicating that the LLM fails 492

to effectively utilize the updated knowledge during 493

reasoning. In contrast, CaKE demonstrates signif- 494

icant improvements in multi-hop reasoning. On 495

the LLAMA3-8B-Instruct model, CaKE achieves 496

accuracies of 57.3, 57.2, and 81.5 on MQuAKE- 497

CF, MQuAKE-CF-v2, and MQuAKE-T, respec- 498

tively—outperforming all compared methods. Ad- 499

ditionally, IFMET, which also considers different 500

layers for multi-hop reasoning but neglects the in- 501

formation flow within the circuit, performs not as 502

well as CaKE . Moreover, when compared with 503

RAG-based methods such as MeLLo, CaKE also 504

yields better results. Furthermore, compared to 505

the baseline LoRA tuning methods that simply in- 506

corporate the raw knowledge, the improvements 507

observed with CaKE underscore the effectiveness 508

of our approach. Interestingly, while LoRA demon- 509

strates strong performance on the 70B model, re- 510

flecting enhanced learning capabilities in larger 511

models, CaKE still achieves an additional improve- 512

ment of approximately 10%. 513

Locality Performance In this section, we eval- 514

uate the model’s performance on general ability 515

benchmarks to ensure that acquiring new knowl- 516
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Figure 6: e2 and r2’s logits at t2 in models after different
knowledge editing methods.

edge does not compromise its overall capabili-517

ties. As shown in Table 4, CaKE achieves per-518

formance comparable to the original model on both519

the LLAMA3-8B and Qwen2.5-7B models.520

5 Analysis521

5.1 Position and Number of Hop522

We then examine the effects of the number of ed-523

its and the position of the updated knowledge in524

multi-hop scenarios, with results shown in Figure 5.525

Notably, even when the model is trained solely526

on two-hop questions, CaKE yields improvements527

across varying numbers of editing hops. The bene-528

fits are particularly pronounced for four-hop ques-529

tions, where methods like IFMET (designed only530

for two-hop scenarios) struggle. Besides, CaKE en-531

hances performance regardless of the position of532

the edited knowledge within the multi-hop ques-533

tions, demonstrating the generalizability of CaKE .534

5.2 Case Analysis535

In this part, we show the cases in which the CaKE536

helps the model learn the multi-hop reasoning537

circuit and other methods fail. For illustration,538

we consider the two-hop question: ‘The capital city539

of the country that Eddie Mathews was a citizen540

of is’. Here, the editing case is (Eddie Mathews,541

citizenship, United States → United Kingdom) and542

the updated model is expected to output ‘London’.543

However, CaKE gives the correct answer, while544

other methods fail: MEMIT gives us the ‘Moscow’,545

AlphaEdit gives us ‘Birmingham’, and LoRA gives546

us ‘not known’. To further understand these dif-547

ferences, we analyze the computing circuit of each548

method to determine whether the updated model549

successfully propagates the bridge entity e2 and550

relation r2 to the last token t2 position. Figure 6551

displays the logits of e2 and r2 at t2 for models552

edited by different methods. As shown, the bridge553

entity e2 in CaKE exhibits significantly stronger554

logits compared to those of AlphaEdit and MEMIT, 555

indicating that CaKE effectively constructs the rea- 556

soning circuit and propagates the necessary infor- 557

mation to the target position. Similarly, the r2 558

information is more prominent in CaKE , further 559

demonstrating its superiority in circuit construction 560

and information flow. 561

6 Related Work 562

How the knowledge in LLM is acquired and stored 563

has been a keep-going research topic recently 564

(Wang et al., 2024b). Current research (Zhou 565

et al., 2023) demonstrates most of the knowledge 566

is learned during the pretraining stage. After pre- 567

training, LLMs are anticipated to refresh their in- 568

ternal knowledge to keep pace with the evolving 569

world, and knowledge editing (Zhang et al., 2024b; 570

Jiang et al., 2024a; Sun et al., 2024; Hsueh et al., 571

2024; Powell et al., 2024; Wang et al., 2024a; 572

Rozner et al., 2024; Zhang et al., 2024a; Wang 573

et al., 2024g; Shi et al., 2024; Wang et al., 2025) 574

is a promising way to do this. Current knowledge 575

editing methods contain several ways: editing the 576

former layers’ MLP (Meng et al., 2022, 2023; Fang 577

et al., 2024), enhancing later layers’ MLP (Wang 578

et al., 2024e; Yao et al., 2022; Hartvigsen et al., 579

2023) and retrieving the fact as prompt (Jiang et al., 580

2024b; Zhong et al., 2023). These works are mainly 581

based on the previous knowledge mechanism of the 582

“black box” of neural models through (Ferrando 583

et al., 2024). However, these knowledge editing 584

methods always focus on the simple facts and often 585

fail on the downstream tasks, like the multi-hop 586

reasoning scenario. Our work focuses on the mech- 587

anism of the reasoning in LLM and improves the 588

generalization of the editing knowledge. 589

7 Conclusion 590

We present CaKE, a framework designed to align 591

knowledge editing with the inherent reasoning ar- 592

chitectures of LLMs. By examining the multi-hop 593

reasoning circuits within LLMs, we identify that ex- 594

isting knowledge editing methods fall short due to 595

their isolated parameter adjustments, which fail to 596

adequately propagate updated knowledge through 597

the model’s reasoning circuit. CaKE addresses this 598

gap by incorporating circuit-aware tasks that com- 599

pel the model to dynamically integrate and utilize 600

new knowledge during reasoning. Experimental re- 601

sults demonstrate that CaKE achieves generalizable 602

multi-hop knowledge editing. 603
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Limitation604

Dataset Our work primarily focuses on the fac-605

tual knowledge embedded in large language mod-606

els (LLMs) and their capacity for multi-hop rea-607

soning over these facts. We recognize that LLM608

reasoning also encompasses other domains—such609

as long-form mathematics and reverse-curse rea-610

soning—that merit further investigation.611

Reasoning Pattern As discussed in the previ-612

ous analysis, we concentrate on direct reasoning613

phenomena. Current LLMs have shown impres-614

sive capabilities in slow-thinking paradigms, in-615

cluding chain-of-thought and reflective reasoning.616

Beyond direct reasoning, enhancing the utilization617

of knowledge within these paradigms represents an618

important avenue for future research.619

Fine-grained Circuit Components Our analysis620

revealed relational information within the circuits;621

however, CaKE currently does not delve deeply622

into these relationships. We believe that a more623

focused investigation into these components is nec-624

essary. Additionally, while our study emphasizes625

general circuit behavior, developing a more con-626

cise and effective method for knowledge editing627

remains an exciting challenge for future work.628

Data Attribution Although we demonstrate the629

ability to construct reasoning circuits using curated630

data, the connection between a model’s acquired631

abilities in its parameters and its training data is632

still underexplored. A deeper understanding of this633

relationship could lead to more efficient training634

processes and the generation of higher-quality syn-635

thetic data.636
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Appendix1008

A Setting Detail1009

Dataset We list the details of the dataset in Ta-1010

ble 5.

Model Correct Inconsistent Incorrect

LLaMA3-8B-Ins. 1,005 1,032 1,240
Qwen2.5-7B-Ins. 241 252 275

Table 5: The dataset we used in the analysis/.

1011

Environment Setting We run our experiments1012

on 2 NVIDIA-A800 GPUs. For data generation,1013

we utilize glm-4-plus and glm-4-air and a total of1014

10,000,000 tokens (about 20 dollars) to generate1015

all synthetic data for the whole dataset. We use1016

LLM-Eval (Gao et al., 2024) to test the model’s1017

general performance.1018

Data Generation We first construct the question1019

template T for each relation type, and we list some1020

of them in Table 7. We then generate the data using1021

the following prompt:1022

Prompt for Constructing the circuit-aware data

Here are some question templates for the spe-
cific relation. As you can see, the question use
the knowledge in the input to conduct reason-
ing in different hops for multi-hop reasoning.
Please generate 3 different questions based on
the template. Please return a python json file.
{T } Here is the input question:

1023

B Implementation Detail1024

B.1 Analyzing Method1025

Patch Scope The process is carried out as fol-1026

lows. First, a source prompt, a source token, and a1027

source layer are provided. The prompt is processed1028

through the model’s forward computation, and the1029

hidden representation v of the source token at the1030

specified layer is extracted and stored. This rep-1031

resentation v is the focus of our investigation, as1032

we seek to determine whether it encodes a specific1033

entity. Next, we employ the same prompt used by1034

Ghandeharioun et al. (2024): “Syria: Syria is a1035

country in the Middle East. Leonardo DiCaprio:1036

Leonardo DiCaprio is an American actor. Sam-1037

sung: Samsung is a South Korean multinational1038

corporation. x” This prompt is passed through the1039

model, but the hidden representation of ‘x’ is re- 1040

placed with v at a chosen target layer. The forward 1041

computation then proceeds, and the resulting gen- 1042

erated text is analyzed to evaluate the effects of this 1043

substitution. We conduct different patch analyses 1044

and show them in Figure 7 and Figure 8. When 1045

we conduct back-patch and cross-patch, the source 1046

prompt and target prompt are the same. 1047

B.2 Editing Method 1048

We utilize EasyEdit (Wang et al., 2024d) to con- 1049

duct our editing experiments. For ROME, MEMIT, 1050

WISE, AlphaEdit, and MeLLo, we directly employ 1051

the original parameters provided by their respec- 1052

tive papers. Below, we introduce these methods in 1053

detail and describe our implementation. 1054

ROME and MEMIT ROME leverages causal 1055

analysis to identify knowledge within specific MLP 1056

layers and modifies the corresponding weight ma- 1057

trix using least squares approximation. It operates 1058

under the strong assumption that the MLP layers 1059

primarily store knowledge and injects new informa- 1060

tion into these layers iteratively using a Lagrangian 1061

remainder. In our experiments, we edit the 5th 1062

layer of both LLAMA3-8B-Instruct and Qwen2.5- 1063

7B-Instruct. 1064

Similarly, MEMIT assumes that the FFN layers 1065

function as a knowledge key-value store. It directly 1066

modifies the parameters of selected layers through 1067

least squares approximation. Unlike ROME, which 1068

updates a single layer, MEMIT is a multi-layer edit- 1069

ing algorithm capable of simultaneously updating 1070

hundreds or thousands of facts 1071

IFMET IFMET builds upon MEMIT by not only 1072

modifying earlier MLP layers in transformers but 1073

also adjusting later layers to enhance multi-hop 1074

reasoning for the edited knowledge. To ensure the 1075

updated knowledge propagates effectively, IFMET 1076

constructs an additional support set that reinforces 1077

learning in later layers. Based on our analysis in 1078

§2, we edit layers [17,18,19,20] for LLAMA3-8B- 1079

Instruct and layers [15,16,17,18] for Qwen2.5-7B- 1080

Instruct. 1081

WISE WISE represents a different approach to 1082

model editing, focusing on later layers instead of 1083

earlier ones. It modifies the model’s FFN output 1084

using a gating mechanism: 1085

FFNout(x) =

{
G(x) ·Wv′ if G(x) > ϵ,
G(x) ·Wv otherwise.

(5) 1086
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Method Model MQUAKE-CF MQUAKE-CF-v2 MQUAKE-T

H-Acc.↑ MAcc.↑ H-Acc.↑ MAcc.↑ Hop-wise.↑ MAcc.↑

Pre-edited

Q
w

en
2.

5-
7B

-I
ns

73.4 40.7 72.8 39.5 56.1 15.6

LoRA 35.1 24.9 36.5 25.9 25.0 28.6
WISE 41.2 9.8 26.5 8.0 50.2 36.5

MeLLo 35.5 7.8 34.5 7.6 52.7 56.5
ROME 75.4 10.7 73.4 8.8 86.7 17.7
MEMIT 82.6 11.1 83.4 9.6 88.9 18.5

AlphaEdit 73.8 12.6 75.1 10.5 82.2 17.2
IFMET ♣ 83.7 25.7 84.6 24.5 90.0 52.8

CaKE(ours) 90.6 61.4 90.3 63.05 95.5 87.8

Table 6: Comparison of CaKE with existing methods on MQuAKE on Qwen2.5-7B-Instruct. The best results
are highlighted in bold, while the second-best results are underlined. ♣ means the results are based on our own
implementation since the original code is not open by the authors, and we will update it after the source code is
open.

Knowledge Type Template Answer

{target_person} works
in the field of {target_field}

.

In a book related to different fields, Section A discusses {random_field},
Section B discusses {random_field}, and Section C discusses {target_field}.
If you want to learn about {target_person}’s field,
which section should you read?

The working field of {target_person}
is discussed in Section C.

In a biography book, Section A discusses the life of {random_person},
Section B discusses the life of {random_person},
and Section C discusses the life of {target_person}.
The field of the person in Section C is?

The person in Section C
works in the field of {target_field}.

{target_person} speaks
the language of {target_language}.

The following facts are known: 1. {target_person} wears red clothes.
2. {random_person} wears blue clothes.
3. {random_person} wears green clothes.
The language that the person in red clothes speaks is?

The language that the person in red clothes
speaks is {target_language}.

At a global company:
{target_language}-speaking employees work in Team A.
{random_language}-speaking employees work in Team B.
In which team would {target_person} work when he/she is at work?

{target_person} would work in
Team A when he/she is at work.

Table 7: Sample templates for generating the circuit-aware data.

Here, G(x) is a gate function that computes the ac-1087

tivation score of the hidden reprsentation: ∥A(x) ·1088

(Wv′ −Wv)∥2. If the gate is activated, the model1089

uses the updated knowledge to generate responses;1090

otherwise, it relies on the original knowledge. Dif-1091

ferent methods define the gate function differently,1092

but the core idea is to ensure that the updated mem-1093

ory aligns with relevant question representations.1094

MeLLo MeLLo is a non-parametric editing1095

method that modifies a model’s knowledge through1096

prompting rather than weight updates. It maintains1097

a memory of newly introduced facts and guides1098

the model to decompose multi-hop queries into1099

sub-questions. At each step, the model checks this1100

memory to verify whether its existing knowledge1101

contradicts the new facts. We follow the prompt1102

structure provided in the original MeLLo method.1103

However, in our experiments, we observe that the1104

model struggles to consistently adhere to the in-1105

tended reasoning pattern. 1106

CaKE We utilize the original LoRA (Hu et al., 1107

2022) and add parameters in both the FFN and at- 1108

tention module in the model. The hyperparameters 1109

are as follows: 1110

• epoch: [40, 50, 60] 1111

• batch size: [4] 1112

• learning rate: [1e-4] 1113

• rank: [8] 1114

• lora_alpha: [32] 1115

C More Analysis 1116

C.1 Concurrence or Reasoning? 1117

Studies such as Yang et al. (2024c); Ju et al. (2024); 1118

Hou et al. (2023); Zhang et al. (2024c) those that 1119

have discovered shortcuts in multi-hop reasoning. 1120

In the case of ((e1,
′′ , e2), (e2, r2, e3)) (i.e., the 1121

query without r1), the model predicts correctly 1122
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Figure 7: The way we test the function of the second
hop. If the model conducts the function at the later
layers, changing the representation would change the
output of the model.
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Figure 8: The way we conduct the backpatch and e1 to
e2. We substitute the hidden representations from the
source position to the target position.

due to a high correlation between e1 and e3. For1123

instance, given the query: “The capital city of1124

the country where the Eiffel Tower is located is...”1125

LLMs can sometimes provide the correct answer1126

even without the intermediate context (‘the coun-1127

try where the Eiffel Tower is located’). In our1128

analysis, we find that apart from the occurrence,1129

the LLM would also sometimes conduct latent rea-1130

soning, such as ‘latently conducting the r1 com-1131

pletion’. If the model gives the correct e3 for1132

((e1,
′′ , e2), (e2, r2, ?)) due to the occurrence, once1133

we edit the (e1, r1, e2 → e′2), the model would fail1134

to give us the new answer. We select the short-1135

cut data and conduct the editing in the first hop1136

(e1, r1, e2 → e′2) and then evaluate the model to1137

see whether the edited model would output up-1138

dated knowledge (e1, r1, r2, e′3). We conduct ex-1139

periments on LLAMA3-8B-Instruct with the Al-1140

phaEdit method and demonstrate that about 65% 1141

percent of cases would give us the updated knowl- 1142

edge for the multi-hop questions, showing that edits 1143

to intermediate hops (e.g., updating the country) 1144

can disrupt reasoning when relying on pre-existing- 1145

shortcuts and correctly give us the newly updated 1146

reasoning results. This means that the LLM itself 1147

does not simply answer the questions due to the 1148

high correlation between e1 and e3, but actually 1149

conducts the latent reasoning. 1150

C.2 Circuit Analysis 1151

We present the model’s critical information detec- 1152

tion results in Figure 10. The results indicate that 1153

knowledge is distributed across different layers, 1154

with incorrect cases appearing in later layers com- 1155

pared to correct and inconsistent cases. Determin- 1156

ing the optimal layer for editing remains challeng- 1157

ing, so we choose to adjust the model across all 1158

layers. In the future, we aim to refine our approach 1159

by performing more targeted edits. 1160

C.3 Failure Phenomenon 1161

In the multi-hop reasoning, we view several failure 1162

cases to see how the language model made mis- 1163

takes for reasoning and we see it as the circuit 1164

competition. Here, we find the LLM tends to give 1165

us a wrong answer for the middle cases of the dif- 1166

ferent entities that appeared in the middle steps. 1167

Take ‘The country that the creator of Hamlet was 1168

a citizen of’ as an example; the bridge entity here 1169

is ‘William Shakespeare’. We view ‘Hamlet’ as 1170

an entity that would influence the model to give us 1171

the results ‘Denmark’, which means the model has 1172

been distracted by other entities’ information. As 1173

shown in Figure 9, the model gives us the correct 1174

answer ‘England’ around layer 27 but output the 1175

wrong answer ‘Denmark’, which is actually the 1176

country of the ‘Hamlet’. 1177

C.4 Comparison with Chain-of-Thought 1178

Reasoning and Prompt Learning 1179

Instead of directly providing an answer, chain-of- 1180

thought (CoT) reasoning generates intermediate 1181

steps sequentially. As proposed by Yang et al. 1182

(2024c), CoT not only facilitates knowledge activa- 1183

tion in large language models but also transforms 1184

them into effective in-context reasoners. The CoT 1185

process builds a chain of relevant facts within the 1186

prompt context, where each step’s output serves 1187

as an in-context memory that subsequent steps can 1188

reference. This approach reduces the risk of losing 1189
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Figure 9: The failure case of the multi-hop reasoning.
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Figure 10: The distribution of the layers allows us to de-
tect the information from critical positions in the model
via patch_scope.

track of intermediate facts as the sequence length1190

increases, thereby promoting more coherent multi-1191

hop reasoning. Moreover, because a significant1192

portion of the model’s knowledge is stored in ear-1193

lier layers, CoT can better leverage these neurons1194

by decomposing complex questions into simpler1195

sub-questions. Consequently, the reasoning circuit1196

required for a single-hop inference is much simpler1197

than that for multi-hop reasoning. This observation1198

aligns with recent findings (Li et al., 2024), which1199

demonstrate that fast thinking without CoT leads1200

to larger gradients and greater gradient disparities1201

across layers compared to CoT. Nonetheless, in-1202

consistencies in the intermediate reasoning steps1203

still occur, highlighting potential areas for improve-1204

ment. We believe that further analysis is needed to1205

address these issues, and we leave this exploration1206

for future work.1207
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