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Abstract

Knowledge Editing (KE) enables the modifi-
cation of outdated or incorrect information in
large language models (LLMs). While exist-
ing KE methods can only update isolated facts,
they struggle to generalize these updates to
multi-hop reasoning tasks that depend on the
modified knowledge. Through an analysis of
reasoning circuits—the neural pathways LLMs
use for knowledge-based inference, we iden-
tify that current layer-localized KE approaches
fail to effectively integrate updated information
into these reasoning pathways. To address this
limitation, we propose CaKE (Circuit-aware
Knowledge Editing), a novel method that fa-
cilitates more effective integration of updated
knowledge in LLMs. CaKE leverages metic-
ulously curated data that enforces the model
to utilize the modified knowledge, guiding the
model to develop appropriate reasoning circuits
for newly integrated knowledge. Experimental
results show that CaKE enables more accurate
and consistent use of updated knowledge across
related reasoning tasks, leading to an average
20% improvement in multi-hop accuracy on
MQuAKE compared to existing KE methods.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in diverse tasks (Yang et al.,
2024a; Dubey et al., 2024; OpenAl, 2024; Guo
et al., 2025), achieving performance that rivals or
even exceeds human experts. However, their prac-
tical deployment faces some critical limitations:
parametric knowledge remains static after pretrain-
ing, making it challenging to track evolving real-
world information, and their propensity for halluci-
nations undermines reliability. Knowledge editing
(KE) has emerged as a promising solution to update
models directly (Mitchell et al., 2021; Wang et al.,
2024c; Jiang et al., 2025). Although existing KE
methods achieve good results on simple factual up-
dates (Yao et al., 2023; Zhang et al., 2024b), they
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also exhibit fundamental limitations: edits prop-
agate inconsistently through related knowledge
structures and downstream reasoning tasks (Cohen
et al., 2024; Qin et al., 2024; Yao et al., 2023);
excessive focus on surface-level pattern match-
ing (Hoelscher-Obermaier et al., 2023), and locality
issues for other unrelated knowledge and general
ability (Gu et al., 2024; Gupta et al., 2024).

Our work specifically addresses the poor perfor-
mance of edited models in downstream reasoning
tasks that involve the updated knowledge (Zhong
et al.,, 2023; Zhang et al., 2024d). Consider a
representative case in Figure 1: after editing ‘Ed-
die Mathews, citizenship, United States — United
Kingdom’, models correctly answer direct queries
but fail multi-hop reasoning like ‘The capital of
the country that Eddie Mathews was a citizen of
is?’ (still outputting ‘Washington D.C.”). Criti-
cally, this is not merely an editing artifact: vanilla
LLMs often correctly answer single-hop questions
while failing their multi-hop counterparts (Yang
et al., 2024c; Biran et al., 2024), suggesting deeper
architectural limitations in knowledge utilization.

We trace these limitations to a misalignment
between KE strategies and the inherent rea-
soning architectures of LLMs. To understand
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Figure 2: An overview of our work. (a) Analyze the multi-hop reasoning circuit in LLMs and identify the reasons
behind their failure in reasoning: weak signals and propagation failure. (b) Rethink the limitations of the most
popular editing paradigms from a circuit perspective. Both ROME-style (edits the early layers) and WISE-style
(edits the later layers) fail to propagate their modifications through the reasoning circuit. (c) CaKE leverages ad-hoc
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this disconnect, we analyze how LLMs utilize
knowledge in downstream reasoning tasks. Recent
analysis suggests that knowledge is not merely
statically stored but dynamically activated through
specialized circuits (Yao et al., 2024; Biran
et al., 2024). Our investigation (§2) reveals that
multi-hop reasoning emerges from coordinated
computing circuits: early layers gather entity
and relation information, which is then routed to
the last token position during the middle layers.
Subsequently, later layers progressively complete
reasoning steps using this information at the last
token position (Figure 2 (a)). We then analyze the
entity and relation information at the last token
position in failed multi-hop reasoning cases. Our
observations reveal that critical information either
fails to be properly routed or exhibits a weak signal,
preventing effective reasoning. This explains why
current KE methods underperform (§3.1): they
optimize for isolated parameter changes rather than
circuit-level integration needed for compositional
reasoning, as shown in Figure 2 (b).

To bridge this fundamental gap, we propose
Circuit-aware Knowledge Editing (CaKE) in
§3.2. By explicitly aligning edits with the LLM’s
native reasoning architecture, CaKE transforms
static knowledge updates into generalizable
knowledge learners—models that not only store
static edited facts but also dynamically apply
them in downstream reasoning tasks. Specifically,
for the updated knowledge, we first design the
circuit-aware tasks with ad-hoc features that

require the LLM to utilize the new knowledge for
latent reasoning (in Figure 2 (c)). We then guide
the LLM in constructing the reasoning circuit for
the updated knowledge by training with the curated
data. Extensive experiments (§4) demonstrate the
effectiveness of CaKE, outperforming existing
knowledge editing methods on the multi-hop edit-
ing benchmarks MQuAKE on LLMs of different
sizes, including LLAMAS3-8B-Instruct (Dubey
et al., 2024), Qwen2.5-7B-Instruct (Yang et al.,
2024a), and LLAMAZ3-70B-Instruct.

2 Analyzing Reasoning Circuit in LLM

In this part, we integrate previous findings on multi-
hop reasoning and circuit analysis (Yao et al., 2024;
Biran et al., 2024; Yang et al., 2024b; Wang et al.,
2024f) and factual recall (Merullo et al., 2024) to il-
lustrate how language models leverage knowledge
to tackle the multi-hop reasoning task. Based on
this, we can view the cause of the failure behind
them. We employ the WikiData subset proposed by
Biran et al. (2024) and name it HoppingTooLate,
which contains 82,021 two-hop queries. We de-
note each fact as a triplet (e, r, '), where e is the
head entity, r is the relation, and ¢’ is the tail en-
tity. We view two-hop queries as (e1, 71, e2) and
(ea, 72, €3), where e is the source entity, es is the
bridge entity, and e3 is the target entity. We fo-
cus on the latent reasoning framework to evaluate
whether a model can output the expected answer e
directly given the composite query (e1, 71,72, 7).
In addition, we follow HoppingTooLate and define



Model

LLaMA3-8B-Ins.
Qwen2.5-7B-Ins.

Entity Patch  Relation Patch

85.35 56.20
97.29 55.40

Table 1: Activation Patching Success Rates (%).

t1 as the last token of the first-hop prompt and to
as the last token of the whole two-hop prompt.

2.1 Multi-hop Reasoning Circuit

Building on the insights from prior work (Biran
et al., 2024; Yao et al., 2024), we can define a struc-
tured circuit mechanism for multi-hop reasoning
in transformer-based LLMs, as illustrated in Fig-
ure 2(a). Our analysis reveals three distinct compu-
tational phases: 1) The model processes the initial
relation 7 and entity e, encoding the bridge entity
ez in the final token position of the first prompt
segment (¢1). 2) Critical features, including e and
the second relation, r9 are transferred to the last
token position to, preparing for final resolution. 3)
The model computes the target e3 by resolving 7o
and eq, giving the result in the final token position.
Hence, based on the linearity theory (Hernandez
et al., 2024), multi-hop reasoning in LLLM can be
formalized as:

Fn(Fn—l(en—l’Tn—l)’Tn) (1)

Each function F,_; produces a bridge entity e,
for subsequent computation, demonstrating how
intermediate results propagate vertically through
network layers.

Evaluation To validate this circuit hypothesis,
we conduct a causal analysis to determine whether
modifying the variables in the function F' leads
to corresponding changes in the output. Our in-
tervention strategy focuses on the critical last to-
ken position for the second hop, where interme-
diate variables are stored. Specifically, we con-
sider: 1).Entity Patching: Replacing the represen-
tation of ep with an alternative entity e,qscn. For
example, given the prompt ‘The official currency
of the country where the Eiffel Tower is located
is’, we substitute the representation of the bridge
entity ‘France’ with ‘China’, expecting the out-
put to change to ‘Renminbi’. 2).Relation Patching:
Replacing the representation of ro with an alterna-
tive relation 7,4:.,. For instance, given the same
prompt, we substitute the representation of ‘offi-
cial currency’ with ‘capital’, expecting the output
to change to ‘Paris’. A successful patch (produc-
ing F5(epatch, 12) of Fa(ea, Tpaten)) would confirm

Correct Inconsistent Incorrect

Model Metric Cases Layer Cases Layer Cases Layer
es fromt; 63.1% 63  752% 60 487% 82
ey fromty 67.8% 132 598% 98 177% 21.1
LLAMA3 ro fromty 669% 140 49.0% 13.8 28.1% 13.7
ez fromty 56.5% 188  22.7% 20.7 183% 18.0
ey fromt; 712% 43 T41% 47 467% 5.1
Qwen2.5 ey fromty 529% 79 63.7% 95 189% 135
’ ro fromty, 75.8% 8.1 752% 104 448% 9.7
ez fromty 712% 164 394% 174 252% 114

Table 2: The results of LLAMA3-8B-Instruct (32 layers)
and Qwen2.5-7B-Instruct (28 layers). Cases are the
percentage of data we can detect the information, and
Layer is the mean of the first layer in which we detect
the information.

the model’s reliance on these specific representa-
tions for reasoning. We conduct experiments on
LLAMAS3-8B-Instruct and Qwen2.5-7B-Instruct
and employ PatchScope (Ghandeharioun et al.,
2024) for targeted activation patching (detailed in
§B.1 and Figure 7). Table 1 shows that in both
the LLAMA3-8B and Qwen2.5-7B models, sub-
stituting variable representations at the last token
position leads to corresponding behavioral changes,
particularly in entity patching, where accuracy ex-
ceeds 80%. These results provide mechanistic evi-
dence for the reasoning circuit we identified before.

2.2 Circuit in Failure Phenomena

Then, we aim to understand why language mod-
els sometimes fail at multi-hop reasoning despite
successfully answering individual single-hop ques-
tions. For instance, a model may correctly answer
‘the capital of Russia’ with ‘Moscow’ and ‘the coun-
try of citizenship of Fyodor Dostoyevsky’ with ‘Rus-
sia’, yet fail to answer the multi-hop question ‘the
capital of the country of citizenship of Fyodor Dos-
toyevsky is’ correctly. To systematically analyze
this issue, we focus on the second hop of reason-
ing, as the model typically performs well on the
first hop. We categorize the data from the Hop-
pingTooLate dataset' into three subsets based on
the model’s behavior: Correct: The model an-
swers both single-hop questions (e, 71, e2) and
(e2, 72, €3) correctly, as well as the multi-hop ques-
tion (e1,71,72,7). Inconsistent: The model an-
swers both single-hop questions correctly but fails
on the multi-hop question. However, some cases in
the Correct set contain the bridge entity ey but have
a different subject ¢/ and relation 7/, for which the
model correctly answers (€, 7], 72,7). This sug-
gests that while the model can leverage knowledge

'We filter out short-cut cases as done by Biran et al. (2024).



in some contexts, it fails to generalize, indicating
reasoning gaps rather than missing knowledge. In-
correct: The model answers both single-hop ques-
tions correctly but fails on the multi-hop question
in all contexts (e},7],e2). This implies a com-
plete failure to employ the knowledge for multi-
hop reasoning. To investigate these failure modes,
we check whether the models construct the rea-
soning circuit by monitoring key variables (e, e2,
and r9) at critical positions (¢; and ) across the
model’s layers. Our analysis reveals several inter-
esting patterns, extending beyond the ‘hopping too
late’ problem identified by Biran et al. (2024).

We list the results in Table 2 (more details in
Figure 10 in Appendix). For the correct subset, we
observe strong evidence of the reasoning circuit
functioning as expected: a large portion of ey is
detected at both t1 (e from ¢1) and t2 (ey from
t2) in both LLAMA3 and Qwen2.5 models. The
model correctly uses the 5 and ey information at
to to produce the final answer e3. Contrastly, in the
Incosistent subsets, we can find that despite detect-
ing eo and 79 at t9, the model often fails to produce
the correct e3 answer (e3 from to: only 22.7% in
LLAMAZ3 and 39.4% in Qwen2.5 of cases we can
detect at t2). We hypothesize that the e; informa-
tion, though present, may be insufficient to trigger
the second-hop reasoning circuit, leading to the
failure to execute the function F'(eq, r9) effectively.
‘What’s more, in the Incorrect subsets, we can find
the needed e, information is rarely detected at the
to position (eg from to: Only 17.7% in LLAMA3
and 18.9% in Qwen2.5). Even when e5 is detected,
it typically emerges in much later layers (layer 21
in LLAMA3 and layer 13.5 in Qwen2.5), making
it too late to be effectively utilized for the second-
hop computation, aligned with Biran et al. (2024)’s
findings. We conjecture the model fails to propa-
gate ey to the ¢y position, resulting in the variable
e missing for conducting the F'(eg, r2) function.

Evaluation To test our hypothesis, we conduct
interventions to enhance the information at the spe-
cific positions to see if we can improve the model’s
performance in these failure cases. We test three
ways: back-patching the ¢; and ¢2 position as Biran
et al. (2024) did, which would enhance the infor-
mation at the position, and cross-position patching
the information from ¢; to the 2 position, which
explicitly propagates the information from ¢; to to
(details in Figure 8 in Appendix). From the results
in Figure 3, we can find a high success rate for
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Figure 3: Results of the intervention on the failure cases
in multi-hop reasoning of LLAMA3 and Qwen2.5.

all the inconsistent and incorrect cases, but they
demonstrate different paradigms. For the inconsis-
tent cases, back-patching would lead to better per-
formance, while for the incorrect cases, patching
knowledge from the ¢; to to usually shows better
outcomes. This proves our previous hypothesis that
for the incorrect cases, due to the propagation fail-
ure, the model fails to move the es to o position,
and manual routing via cross-patching can mitigate
the issue. Meanwhile, for inconsistent cases, ampli-
fication via back-patching compensates the weak
signal when valid e representations reach ¢y but
lack sufficient magnitude for subsequent reasoning.

3 Circuits-aware Knowledge Editing

3.1 Rethinking KE from the Circuit View

Despite the success of current KE on single facts
benchmarks, from previous studies (Zhang et al.,
2024d; Zhong et al., 2023), and our analysis in §4,
we can see that the edited model’s performance on
multi-hop reasoning tasks is often unsatisfactory.
Building on our previously identified circuit for
multi-hop reasoning, we rethink the reason why
current knowledge editing methods fail under multi-
hop reasoning circumstances.

Unified Editing Details When updating a piece
of knowledge (e,r,0 — 0o'), the most popular
knowledge editing techniques would modify the
parameters that are responsible for the knowledge.
There are two kinds of paradigms: editing the Feed-
Forward Networks (FFN) in the early layers, such
as ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023) or modifying the later layers’ FFN
output, like WISE (Wang et al., 2024c) and T-
Patcher (Huang et al., 2023). In fact, some studies
have queried the effectiveness of these localization
settings (Chang et al., 2024; Hase et al., 2024) as
the localization area is not correlated to the perfor-
mance of the knowledge editing methods. Here, we
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Figure 4: The target answer token’s rank in the vocabu-
lary of different editing methods when editing the fact
‘The official language of Japan is Japanese — Korean.’

propose a unified view of the mechanisms and limi-
tations from the circuit perspective. From Figure 2
(c), these two editing paradigms can be achieved
by a gated function G(x):

FFNoy (%) = &/,5 +4(x)- d(x) (2

Original term Edit term
1, xee;
G(x) =19~ " )
0, otherwise

ROME-style would modify the weight W with a
perturbation A and obtain a new weight W/ =
W + A. Here, §(x) = Ax. When calculating the
A, ROME-style methods, apply the least squares
estimation and null space constraint to make sure
the A is only activated by the corresponding en-
tity representation e;,, and keep the original output
for other representations. In parallel, WISE-style
editing methods would directly introduce the new
weight W' that would be activated by the related
representation e;,,, and W’ would encode the up-
dated knowledge. Here, d(x) = (W' — W)x.

Defect from circuit view To see the editing
mechanism better, we first compare the rank of the
target answer at the last token position via MEMIT,
WISE, and the original model in Figure 4. We
edit the fact: ‘The official language of Japan is
Japanese — Korean.” From the figure, we can
see that in the original model and MEMIT-edited
model, the answer token is dealt with gradually
through the mid-to-later layers, and MEMIT would
make this happen in advance. The computation of
the ROME-style method for the new knowledge
recall is: F(é,r) = o/,é = e + Ae, which mod-
ifies the knowledge stored in the previous layer
and gives us the new representation €’ for further
computing. On the contrary, the WISE method
would directly alter the information at the edited

layer as we can see the sharp drop at layer 29. In
particular, the editing would take effect when the
added or updated parameters are activated by query
representation and work as F'(e,r) = o'.

In single-hop knowledge editing, these kinds
of methods would give us the correct information,
but for the multi-hop cases, this would fail. As
shown in Figure 2 (b), both these layer-specific
editing methods cannot propagate the updated
knowledge to the reasoning circuit, leading to
unsatisfactory multi-hop reasoning performances.
An essential requirement for these methods is that
the gated function G(x) is activated by the specific
representation e;,. However, under the multi-hop
reasoning scenario, the model would deal with dif-
ferent single-hop questions in different layers, like
the two-hop reasoning circuit in §2: for ROME-
style editing, if the new fact (e,r,0 — o) is the
second-hop question and the entity e appears after
the edited layers, the gated function would G(x)
not be activated and the model would still follow
the previous stale knowledge F'(e,r) instead of
F(e,r) and give us the wrong answer. Likewise,
the WISE-style editing would retain reliance on the
original knowledge when the new fact is finished
in the former layers as the first hop, bypassing the
edit function in later layers and cascading the error
in the subsequent reasoning. In conclusion, these
layer-specific editing methods cannot learn the new
knowledge generally to make the knowledge usable
in downstream reasoning tasks.

3.2 Proposed Method: CaKE

Inspired by previous analysis, we propose a
novel method, Circuit-aware Knowledge Editing
(CaKE), which enhances the model’s ability to up-
date and effectively utilize knowledge. CaKE com-
prises two key components: (1) generating circuit-
aware training data that explicitly requires reason-
ing with the updated knowledge, and (2) training
the model to construct robust reasoning circuits
that integrate the new knowledge.

Data Generation To ensure that the model builds
effective reasoning circuits, we address two criti-
cal challenges: preventing failure propagation and
mitigating weak signals (as identified in §2), while
ensuring that updated knowledge is properly in-
tegrated across different layers (as described in
§3.1). For each updated knowledge item, we con-
struct the following contexts to mitigate these is-
sues: (1) Original Narrative: We begin by gen-



Method  Model |  MQUAKE-CF | MQUAKE-CF-v2 | MQUAKE-T
| H-Ace.t MAcc.t | H-Ace.t  MAce.t | H-Ace.t  MAce.t
Pre-edited | 790 270 | 784 286 | 710 53
LoRA 2 66.0 27.6 64.7 24.6 92.3 66.0
WISE = 38.2 24.0 37.2 21.0 63.5 62.9
MeLLo % 16.5 16.1 19.5 16.0 423 50.1
ROME § 86.8 17.6 86.4 155 89.5 8.4
MEMIT < 76.3 115 74.0 10.0 86.0 3.7
AlphaEdit — 66.1 10.1 63.7 8.5 73.4 1.0
IFMET * 81.9 232 75.3 36.5 82.1 46.1
CaKE(ours) 90.6 57.3 90.1 57.1 91.5 81.4
Pre-edited 75.6 34.7 76.8 377 60.1 15.6
LoRA m 93.1 53.2 90.5 50.2 90.1 90.6
MeLLo = 8.0 6.4 8.6 9.9 11.6 329
CaKE(ours) = 93.5 65.4 93.3 63.3 91.1 94.6

Table 3: Comparison of CaKE with existing methods on MQuUAKE for LLAMA3-8B-Instruct and LLAMA3-70B-
Instruct. The best results are highlighted in bold, while the second-best results are underlined. & means the results
are based on our re-implementation since the original code is not open by the authors, and we will update it after the
source code is open. Due to the computational limitations, we just run the LoORA and MeLLo in 70B model.Results

for Qwen2.5-7B-Ins can be found in Table 6.

erating straightforward factual statements that ex-
plicitly convey the updated information. For ex-
ample, when updating the fact k: (PersonX, cit-
izen_country, Switzerland — Japan), we use the
narrative representation: ‘PersonX is a citizen of
Japan’ and generate several paraphrases. These
statements serve as the foundation for the model to
learn the updated knowledge. (2) Circuit-aware
Tasks: Next, we design specialized reasoning sce-
narios that address the identified circuit-level chal-
lenges, as illustrated in Figure 2(c). Moreover,
to avoid introducing extraneous knowledge that
could leak into downstream evaluations—and to
test the generalization of our method (inspired by
prior research (Zhang et al., 2024c))—we incorpo-
rate ad-hoc features into these scenarios. These
tasks link the fact with intermediate attributes or
reasoning steps and fall into two categories: Late-
layer Knowledge Integration: These tasks ensure
that the updated knowledge is effectively learned
in the later layers, alleviating issues such as weak
signals and the limitations of ROME-style editing.
For the fact k, we construct prompts like: ‘Sup-
pose {random_entity_1} wears red clothes, {ran-
dom_entity_2} wears blue clothes, and { PersonX}
wears green clothes. The country of citizenship of
the person in green is:’ Here, the model is expected
to output ‘Japan,” requiring it to employ the new
fact k in later layers. Reasoning Circuit Enhance-

ment: These tasks require the model to use the up-
dated knowledge for subsequent reasoning, thereby
mitigating propagation failure, weak signal, and
WISE-style’s limitations. Following the same fact
k: ‘In a book about countries, Japan is mentioned
on page 6 of the book, while China is mentioned
on page 72. On which page of the book is the coun-
try of citizenship of the { PersonX} shown?’ Here,
the model must first recall the updated citizenship
(Japan) and then use this information to determine
the correct page number (6). Furthermore, for each
knowledge type, we develop specific task templates
and leverage GLM-4-plus (GLM et al., 2024) to
generate data using randomly selected related enti-
ties (detailed in Appendix A).

Edit Training After obtaining the curated circuit-
aware data, we fine-tune the LLLM using LoRA
across all layers, enabling the model to optimize its
internal knowledge organization. We minimize the
cross-entropy loss £ between the model’s outputs
and the ground-truth tokens expressing the updated
fact:

lyl

L=Exyyep |- Zlogp(yt | X, OLorA)
t=1

“

where 0 ,ra represents the LoRA parameters, x
is the input prompt, and y is the desired updated
output sequence.



CSQA BBH MMLU GSMS8k

LLaMA3-8B-Ins  76.09 67.89  63.83 75.20
MEMIT 76.08 67.88  63.82 75.21
ROME 7298 61.37 6295 74.59
CAKE 75.10  67.20  62.98 76.04
Qwen2.5-7B-Ins 8231 3339  71.80 82.26
MEMIT 82.39 3737  71.80 81.96
ROME 72.57 3422  63.38 72.21
CAKE 82.64 3744 7T71.76 82.79

Table 4: Locality Performance on several general
benchmarks of CaKE and other editing methods.

4 Experiments

4.1 Experiment Settings

We mainly utilize the multi-hop reasoning knowl-
edge editing dataset MQuAKE (Zhong et al., 2023),
which considers different number of hops (from
2 to 4) and different positions of the knowledge
used in the multi-hop questions. We utilize three
versions of the datasets: MQuAKE-CF-3k and
MQuAKE-CF-3k-v2 are two subsets that contain
different question types and editing hopping num-
bers, and MQuUAKE-T is a time-aware knowledge
editing benchmark.

Baselines and Models We consider sev-
eral knowledge editing baselines, including:
IFMET (Zhang et al., 2024d), AlphaEdit (Fang
et al.,, 2024), ROME (Meng et al.,, 2022),
MEMIT (Meng et al., 2023),WISE (Wang et al.,
2024c) and MeLLo (Zhong et al., 2023). Here,
AlphaEdit, ROME, and MEMIT are methods
that edit the model’s parameters at early layers;
WISE adds additional parameters at later layers,
and IFMET edits both the early and later layers’s
FFN to achieve better multi-hop reasoning
performance. MeLLo is a prompt-based retrieval-
augmented method. We conduct experiments on
LLAMA-3-8B-Instruct, Qwen-2.5-7B-Instruct,
and LLAMA-3-70B-Instruct.

Evalutation Metric Following Zhong et al.
(2023), we evaluate model performance using
Multi-hop Accuracy (MAcc) and Hop-wise An-
swering Accuracy (H-Acc). MAcc measures the
accuracy of multi-hop question answering, while
H-Acc assesses correctness at each reasoning step.
Higher values indicate better performance. For KE,
we also need to consider locality, which ensures
edits do not affect unrelated knowledge and abili-
ties. To assess this, we evaluate the model on gen-
eral benchmarks, including CommonsenseQA (Tal-

CAKE MEMIT

Position Analysis IFMET LoRA Hop Number Analysis

post 3

Figure 5: Accuracies of different number hops and
edit-positions in MQuAKE-CF-3k-v2 on LLAMA3-8B-
Instruct.

mor et al., 2019), BigBenchHard (Suzgun et al.,
2023), MMLU (Hendrycks et al., 2021), and
GSMS8k (Cobbe et al., 2021).

4.2 Experiments Results

Main Results Table 3 summarizes our results.
Although current KE methods achieve high hop-
wise accuracy (H-Acc.), their performance on the
three versions of MQuUAKE is quite low (with an
average accuracy of less than 20%). For example,
MEMIT and ROME achieve over 80% accuracy on
single-hop questions in MQuAKE-v2; however,
their accuracy on multi-hop reasoning drops to
only around 10%, indicating that the LLM fails
to effectively utilize the updated knowledge during
reasoning. In contrast, CaKE demonstrates signif-
icant improvements in multi-hop reasoning. On
the LLAMA?3-8B-Instruct model, CaKE achieves
accuracies of 57.3, 57.2, and 81.5 on MQuAKE-
CF, MQuAKE-CF-v2, and MQuAKE-T, respec-
tively—outperforming all compared methods. Ad-
ditionally, IFMET, which also considers different
layers for multi-hop reasoning but neglects the in-
formation flow within the circuit, performs not as
well as CaKE . Moreover, when compared with
RAG-based methods such as MeLLo, CaKE also
yields better results. Furthermore, compared to
the baseline LoRA tuning methods that simply in-
corporate the raw knowledge, the improvements
observed with CaKE underscore the effectiveness
of our approach. Interestingly, while LoORA demon-
strates strong performance on the 70B model, re-
flecting enhanced learning capabilities in larger
models, CaKE still achieves an additional improve-
ment of approximately 10%.

Locality Performance In this section, we eval-
uate the model’s performance on general ability
benchmarks to ensure that acquiring new knowl-
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Figure 6: e5 and 75’s logits at t2 in models after different
knowledge editing methods.

edge does not compromise its overall capabili-
ties. As shown in Table 4, CaKE achieves per-
formance comparable to the original model on both
the LLAMA3-8B and Qwen2.5-7B models.

5 Analysis
5.1 Position and Number of Hop

We then examine the effects of the number of ed-
its and the position of the updated knowledge in
multi-hop scenarios, with results shown in Figure 5.
Notably, even when the model is trained solely
on two-hop questions, CaKE yields improvements
across varying numbers of editing hops. The bene-
fits are particularly pronounced for four-hop ques-
tions, where methods like IFMET (designed only
for two-hop scenarios) struggle. Besides, CaKE en-
hances performance regardless of the position of
the edited knowledge within the multi-hop ques-
tions, demonstrating the generalizability of CaKE .

5.2 Case Analysis

In this part, we show the cases in which the CaKE
helps the model learn the multi-hop reasoning
circuit and other methods fail. For illustration,
we consider the two-hop question: ‘The capital city
of the country that Eddie Mathews was a citizen
of is’. Here, the editing case is (Eddie Mathews,
citizenship, United States — United Kingdom) and
the updated model is expected to output ‘London’.
However, CaKE gives the correct answer, while
other methods fail: MEMIT gives us the ‘Moscow’,
AlphaEdit gives us ‘Birmingham’, and LoRA gives
us ‘not known’. To further understand these dif-
ferences, we analyze the computing circuit of each
method to determine whether the updated model
successfully propagates the bridge entity es and
relation 7, to the last token ¢y position. Figure 6
displays the logits of es and 7y at to for models
edited by different methods. As shown, the bridge
entity eo in CaKE exhibits significantly stronger

logits compared to those of AlphaEdit and MEMIT,
indicating that CaKE effectively constructs the rea-
soning circuit and propagates the necessary infor-
mation to the target position. Similarly, the 7o
information is more prominent in CaKE , further
demonstrating its superiority in circuit construction
and information flow.

6 Related Work

How the knowledge in LLM is acquired and stored
has been a keep-going research topic recently
(Wang et al., 2024b). Current research (Zhou
et al., 2023) demonstrates most of the knowledge
is learned during the pretraining stage. After pre-
training, LLMs are anticipated to refresh their in-
ternal knowledge to keep pace with the evolving
world, and knowledge editing (Zhang et al., 2024b;
Jiang et al., 2024a; Sun et al., 2024; Hsueh et al.,
2024; Powell et al., 2024; Wang et al., 2024a;
Rozner et al., 2024; Zhang et al., 2024a; Wang
et al., 2024¢; Shi et al., 2024; Wang et al., 2025)
is a promising way to do this. Current knowledge
editing methods contain several ways: editing the
former layers” MLP (Meng et al., 2022, 2023; Fang
et al., 2024), enhancing later layers’ MLP (Wang
et al., 2024e; Yao et al., 2022; Hartvigsen et al.,
2023) and retrieving the fact as prompt (Jiang et al.,
2024b; Zhong et al., 2023). These works are mainly
based on the previous knowledge mechanism of the
“black box” of neural models through (Ferrando
et al., 2024). However, these knowledge editing
methods always focus on the simple facts and often
fail on the downstream tasks, like the multi-hop
reasoning scenario. Our work focuses on the mech-
anism of the reasoning in LLM and improves the
generalization of the editing knowledge.

7 Conclusion

We present CaKE, a framework designed to align
knowledge editing with the inherent reasoning ar-
chitectures of LLMs. By examining the multi-hop
reasoning circuits within LLMs, we identify that ex-
isting knowledge editing methods fall short due to
their isolated parameter adjustments, which fail to
adequately propagate updated knowledge through
the model’s reasoning circuit. CaKE addresses this
gap by incorporating circuit-aware tasks that com-
pel the model to dynamically integrate and utilize
new knowledge during reasoning. Experimental re-
sults demonstrate that CaKE achieves generalizable
multi-hop knowledge editing.



Limitation

Dataset Our work primarily focuses on the fac-
tual knowledge embedded in large language mod-
els (LLMs) and their capacity for multi-hop rea-
soning over these facts. We recognize that LLM
reasoning also encompasses other domains—such
as long-form mathematics and reverse-curse rea-
soning—that merit further investigation.

Reasoning Pattern As discussed in the previ-
ous analysis, we concentrate on direct reasoning
phenomena. Current LLMs have shown impres-
sive capabilities in slow-thinking paradigms, in-
cluding chain-of-thought and reflective reasoning.
Beyond direct reasoning, enhancing the utilization
of knowledge within these paradigms represents an
important avenue for future research.

Fine-grained Circuit Components Our analysis
revealed relational information within the circuits;
however, CaKE currently does not delve deeply
into these relationships. We believe that a more
focused investigation into these components is nec-
essary. Additionally, while our study emphasizes
general circuit behavior, developing a more con-
cise and effective method for knowledge editing
remains an exciting challenge for future work.

Data Attribution Although we demonstrate the
ability to construct reasoning circuits using curated
data, the connection between a model’s acquired
abilities in its parameters and its training data is
still underexplored. A deeper understanding of this
relationship could lead to more efficient training
processes and the generation of higher-quality syn-
thetic data.
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Appendix
A Setting Detail

Dataset We list the details of the dataset in Ta-
ble 5.
Model Correct Inconsistent Incorrect
LLaMA3-8B-Ins. 1,005 1,032 1,240
Qwen2.5-7B-Ins. 241 252 275

Table 5: The dataset we used in the analysis/.

Environment Setting We run our experiments
on 2 NVIDIA-A800 GPUs. For data generation,
we utilize glm-4-plus and glm-4-air and a total of
10,000,000 tokens (about 20 dollars) to generate
all synthetic data for the whole dataset. We use
LLM-Eval (Gao et al., 2024) to test the model’s
general performance.

Data Generation We first construct the question
template 7 for each relation type, and we list some
of them in Table 7. We then generate the data using
the following prompt:

Prompt for Constructing the circuit-aware data

Here are some question templates for the spe-
cific relation. As you can see, the question use
the knowledge in the input to conduct reason-
ing in different hops for multi-hop reasoning.
Please generate 3 different questions based on
the template. Please return a python json file.
\{7'} Here is the input question:

J

B Implementation Detail

B.1 Analyzing Method

Patch Scope The process is carried out as fol-
lows. First, a source prompt, a source token, and a
source layer are provided. The prompt is processed
through the model’s forward computation, and the
hidden representation v of the source token at the
specified layer is extracted and stored. This rep-
resentation v is the focus of our investigation, as
we seek to determine whether it encodes a specific
entity. Next, we employ the same prompt used by
Ghandeharioun et al. (2024): “Syria: Syria is a
country in the Middle East. Leonardo DiCaprio:
Leonardo DiCaprio is an American actor. Sam-
sung: Samsung is a South Korean multinational
corporation. x” This prompt is passed through the
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model, but the hidden representation of ‘x’ is re-
placed with v at a chosen target layer. The forward
computation then proceeds, and the resulting gen-
erated text is analyzed to evaluate the effects of this
substitution. We conduct different patch analyses
and show them in Figure 7 and Figure 8. When
we conduct back-patch and cross-patch, the source
prompt and target prompt are the same.

B.2 Editing Method

We utilize EasyEdit (Wang et al., 2024d) to con-
duct our editing experiments. For ROME, MEMIT,
WISE, AlphaEdit, and MeLLo, we directly employ
the original parameters provided by their respec-
tive papers. Below, we introduce these methods in
detail and describe our implementation.

ROME and MEMIT ROME leverages causal
analysis to identify knowledge within specific MLP
layers and modifies the corresponding weight ma-
trix using least squares approximation. It operates
under the strong assumption that the MLP layers
primarily store knowledge and injects new informa-
tion into these layers iteratively using a Lagrangian
remainder. In our experiments, we edit the 5th
layer of both LLAMA3-8B-Instruct and Qwen2.5-
"/B-Instruct.

Similarly, MEMIT assumes that the FFN layers
function as a knowledge key-value store. It directly
modifies the parameters of selected layers through
least squares approximation. Unlike ROME, which
updates a single layer, MEMIT is a multi-layer edit-
ing algorithm capable of simultaneously updating
hundreds or thousands of facts

IFMET [IFMET builds upon MEMIT by not only
modifying earlier MLP layers in transformers but
also adjusting later layers to enhance multi-hop
reasoning for the edited knowledge. To ensure the
updated knowledge propagates effectively, IFMET
constructs an additional support set that reinforces
learning in later layers. Based on our analysis in
§2, we edit layers [17,18,19,20] for LLAMA3-8B-
Instruct and layers [15,16,17,18] for Qwen2.5-7B-
Instruct.

WISE WISE represents a different approach to
model editing, focusing on later layers instead of
earlier ones. It modifies the model’s FFN output
using a gating mechanism:

G(x) - Wy
g(X) - W,

if G(x) > e,
otherwise.

FFNout (X) = { )



Method  Model |  MQUAKE-CF | MQUAKE-CF-v2 | MQUAKE-T
| H-Ace.t  MAcce.t | H-Ace.t MAcc.t | Hop-wise.t MAcc.t

Pre-edited | 734 40.7 | 728 395 | s6.1 15.6

LoRA 2 35.1 249 36.5 259 25.0 28.6

WISE = 41.2 9.8 26.5 8.0 50.2 36.5
MeLLo 5 35.5 7.8 34.5 7.6 52.7 56.5
ROME o 75.4 10.7 734 8.8 86.7 17.7
MEMIT g 82.6 11.1 83.4 9.6 88.9 185
AlphaEdit 4 73.8 12.6 75.1 10.5 82.2 17.2
IEMET * 83.7 25.7 84.6 245 90.0 52.8
CaKE(ours) 90.6 61.4 90.3 63.05 95.5 87.8

Table 6: Comparison of CaKE with existing methods on MQUAKE on Qwen2.5-7B-Instruct. The best results
are highlighted in bold, while the second-best results are underlined. & means the results are based on our own
implementation since the original code is not open by the authors, and we will update it after the source code is

open.

Knowledge Type Template

Answer

In a book related to different fields, Section A discusses {random_field},

Section B discusses {random_field}, and Section C discusses {target_field}.
If you want to learn about {target_person}’s field,

{target_person} works

. . I
in the field of {target_field) which section should you read?

The working field of {target_person}
is discussed in Section C.

The field of the person in Section C is?

In a biography book, Section A discusses the life of {random_person},
Section B discusses the life of {random_person},
and Section C discusses the life of {target_person}.

The person in Section C
works in the field of {target_field}.

The following facts are known: 1. {target_person} wears red clothes.

2. {random_person} wears blue clothes.

{target_person} speaks

3. {random_person} wears green clothes.
The language that the person in red clothes speaks is?

The language that the person in red clothes
speaks is {target_language}.

the language of {target_language}. Ata global company:

{target_language }-speaking employees work in Team A.
{random_language }-speaking employees work in Team B.

{target_person} would work in
Team A when he/she is at work.

In which team would {target_person} work when he/she is at work?

Table 7: Sample templates for generating the circuit-aware data.

Here, G(x) is a gate function that computes the ac-
tivation score of the hidden reprsentation: ||.A(x) -
(W, — W) ||2. If the gate is activated, the model
uses the updated knowledge to generate responses;
otherwise, it relies on the original knowledge. Dif-
ferent methods define the gate function differently,
but the core idea is to ensure that the updated mem-
ory aligns with relevant question representations.

MeLLo MeLLo is a non-parametric editing
method that modifies a model’s knowledge through
prompting rather than weight updates. It maintains
a memory of newly introduced facts and guides
the model to decompose multi-hop queries into
sub-questions. At each step, the model checks this
memory to verify whether its existing knowledge
contradicts the new facts. We follow the prompt
structure provided in the original MeLLo method.
However, in our experiments, we observe that the
model struggles to consistently adhere to the in-
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tended reasoning pattern.

CaKE We utilize the original LoRA (Hu et al.,
2022) and add parameters in both the FFN and at-
tention module in the model. The hyperparameters
are as follows:

* epoch: [40, 50, 60]
batch size: [4]
learning rate: [1e-4]
rank: [8]
lora_alpha: [32]

C More Analysis

C.1 Concurrence or Reasoning?

Studies such as Yang et al. (2024c); Ju et al. (2024);
Hou et al. (2023); Zhang et al. (2024c) those that
have discovered shortcuts in multi-hop reasoning.
In the case of ((e1,”,e2), (e2,72,e3)) (i.e., the
query without rl), the model predicts correctly
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Figure 7: The way we test the function of the second
hop. If the model conducts the function at the later
layers, changing the representation would change the
output of the model.
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Figure 8: The way we conduct the backpatch and e; to
eo. We substitute the hidden representations from the
source position to the target position.

due to a high correlation between e; and e3. For
instance, given the query: “The capital city of
the country where the Eiffel Tower is located is...”
LLMs can sometimes provide the correct answer
even without the intermediate context (‘the coun-
try where the FEiffel Tower is located’). In our
analysis, we find that apart from the occurrence,
the LLM would also sometimes conduct latent rea-
soning, such as ‘latently conducting the r1 com-
pletion’. If the model gives the correct e3 for
((e1,” ,e2), (e2,72,7)) due to the occurrence, once
we edit the (e, r1, e2 — €5), the model would fail
to give us the new answer. We select the short-
cut data and conduct the editing in the first hop
(e1,71,e2 — €5) and then evaluate the model to
see whether the edited model would output up-
dated knowledge (e1, 71,72, €5). We conduct ex-
periments on LLAMA3-8B-Instruct with the Al-
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phaEdit method and demonstrate that about 65%
percent of cases would give us the updated knowl-
edge for the multi-hop questions, showing that edits
to intermediate hops (e.g., updating the country)
can disrupt reasoning when relying on pre-existing-
shortcuts and correctly give us the newly updated
reasoning results. This means that the LLM itself
does not simply answer the questions due to the
high correlation between el and €3, but actually
conducts the latent reasoning.

C.2 Circuit Analysis

We present the model’s critical information detec-
tion results in Figure 10. The results indicate that
knowledge is distributed across different layers,
with incorrect cases appearing in later layers com-
pared to correct and inconsistent cases. Determin-
ing the optimal layer for editing remains challeng-
ing, so we choose to adjust the model across all
layers. In the future, we aim to refine our approach
by performing more targeted edits.

C.3 Failure Phenomenon

In the multi-hop reasoning, we view several failure
cases to see how the language model made mis-
takes for reasoning and we see it as the circuit
competition. Here, we find the LLM tends to give
us a wrong answer for the middle cases of the dif-
ferent entities that appeared in the middle steps.
Take “The country that the creator of Hamlet was
a citizen of’ as an example; the bridge entity here
is ‘William Shakespeare’. We view ‘Hamlet’ as
an entity that would influence the model to give us
the results ‘Denmark’, which means the model has
been distracted by other entities’ information. As
shown in Figure 9, the model gives us the correct
answer ‘England’ around layer 27 but output the
wrong answer ‘Denmark’, which is actually the
country of the ‘Hamlet’.

C.4 Comparison with Chain-of-Thought
Reasoning and Prompt Learning

Instead of directly providing an answer, chain-of-
thought (CoT) reasoning generates intermediate
steps sequentially. As proposed by Yang et al.
(2024c¢), CoT not only facilitates knowledge activa-
tion in large language models but also transforms
them into effective in-context reasoners. The CoT
process builds a chain of relevant facts within the
prompt context, where each step’s output serves
as an in-context memory that subsequent steps can
reference. This approach reduces the risk of losing
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Figure 9: The failure case of the multi-hop reasoning.
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Figure 10: The distribution of the layers allows us to de-
tect the information from critical positions in the model
via patch_scope.

track of intermediate facts as the sequence length
increases, thereby promoting more coherent multi-
hop reasoning. Moreover, because a significant
portion of the model’s knowledge is stored in ear-
lier layers, CoT can better leverage these neurons
by decomposing complex questions into simpler
sub-questions. Consequently, the reasoning circuit
required for a single-hop inference is much simpler
than that for multi-hop reasoning. This observation
aligns with recent findings (Li et al., 2024), which
demonstrate that fast thinking without CoT leads
to larger gradients and greater gradient disparities
across layers compared to CoT. Nonetheless, in-
consistencies in the intermediate reasoning steps
still occur, highlighting potential areas for improve-
ment. We believe that further analysis is needed to
address these issues, and we leave this exploration
for future work.
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