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ABSTRACT

We study the robustness of conformal prediction—a powerful tool for uncertainty
quantification—to label noise. Our analysis tackles both regression and classifica-
tion problems, characterizing when and how it is possible to construct uncertainty
sets that correctly cover the unobserved noiseless ground truth labels. With both
theory and experiments, we argue that conformal prediction with noisy labels con-
servatively covers the clean ground truth labels except in adversarial cases. This
leads us to believe that correcting for label noise is unnecessary except for patho-
logical data distributions or noise sources. In such cases, we can also correct for
noise of bounded size in the conformal prediction algorithm in order to ensure
correct coverage of the ground truth labels without score or data regularity.

1 INTRODUCTION

In most supervised classification and regression tasks, one would assume the provided labels reflect
the ground truth. In reality, this assumption is often violated; see (Cheng et al., 2022; Xu et al.,
2019; Yuan et al., 2018; Lee & Barber, 2022; Cauchois et al., 2022). For example, doctors labeling
the same medical image may have different subjective opinions about the diagnosis, leading to
variability in the ground truth label itself. In other settings, such variability may arise due to sensor
noise, data entry mistakes, the subjectivity of a human annotator, or many other sources. In other
words, the labels we use to train machine learning (ML) models may often be noisy in the sense that
these are not necessarily the ground truth. Quantifying the prediction uncertainty is crucial in high-
stakes applications in general, and especially so in settings where the training data is inexact. We aim
to investigate uncertainty quantification in this challenging noisy setting via conformal prediction,
a framework that uses hold-out calibration data to construct prediction sets that are guaranteed to
contain the ground truth labels; see (Vovk et al., 2005; Angelopoulos & Bates, 2021). In short, this
paper shows that conformal prediction typically yields confidence sets with conservative coverage
when the hold-out calibration data has noisy labels.

We adopt a variation of the standard conformal prediction setup. Consider a calibration data set
of i.i.d. observations {(Xi, Yi)}ni=1 sampled from an arbitrary unknown distribution PXY . Here,
Xi ∈ Rp is the feature vector that contains p features for the ith sample, and Yi denotes its response,
which can be discrete for classification tasks or continuous for regression tasks. Given the calibration
dataset, an i.i.d. test data point (Xtest, Ytest), and a pre-trained model f̂ , conformal prediction
constructs a set Ĉ(Xtest) that contains the unknown test response, Ytest, with high probability, e.g.,
90%. That is, for a user-specified level α ∈ (0, 1),

P
(
Ytest ∈ Ĉ(Xtest)

)
≥ 1− α. (1)

This property is called marginal coverage, where the probability is defined over the calibration and
test data.

In the setting of label noise, we only observe the corrupted labels Ỹi = g(Yi) for some corruption
function g : Y×[0, 1] → Y , so the i.i.d. assumption and marginal coverage guarantee are invalidated.
The corruption is random; we will always take the second argument of g to be a random seed U
uniformly distributed on [0, 1]. To ease notation, we leave the second argument implicit henceforth.
Nonetheless, using the noisy calibration data, we seek to form a prediction set Ĉnoisy(Xtest) that
covers the clean, uncorrupted test label, Ytest. More precisely, our goal is to delineate when it is
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possible to provide guarantees of the form

P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≥ 1− α, (2)

where the probability is taken jointly over the calibration data, test data, and corruption function
(this will be the case for the remainder of the paper). Our theoretical vignettes and experiments
suggest that in realistic situations, (2) is usually satisfied. That is, even with access only to noisy
labels, conformal prediction yields confidence sets that have conservative coverage on clean labels.
There are a few failure cases involving adversarial noise that we discuss, but in general we argue
that a user should feel safe deploying conformal prediction even with noisy labels.

MOTIVATIONAL EXAMPLE

As a real-world example of label noise, we conduct an image classification experiment where we
only observe one annotater’s label but seek to cover the majority vote of many annotators. For this
purpose, we use the CIFAR-10H data set, first introduced by Peterson et al. (2019); Battleday et al.
(2020); Singh et al. (2020), which contains 10,000 images labeled by approximately 50 annotators.
We calibrate using only a single annotator and seek to cover the majority vote of the 50. The single
annotator differs from the ground truth labels in approximately 5% of the images.

Using the noisy calibration set (i.e., a calibration set containing these noisy labels), we applied
vanilla conformal prediction as if the data were i.i.d, and studied the performance of the resulting
prediction sets. Details regarding the training procedure can be found in section 4.2. The fraction
of majority vote labels covered is demonstrated in Figure 1. As we can see, when using the clean
calibration set the marginal coverage is 90%, as expected. When using the noisy calibration set, the
coverage increases to approximately 93%. Figure 1 also demonstrates the prediction sets that are
larger when calibrating with noisy labels. This experiment demonstrates the main intuition behind
our paper: adding noise will usually increase the variability in the labels, leading to larger prediction
sets that retain the coverage property.

 
0.88

0.90

0.92

0.94

Co
ve

ra
ge

clean
noisy
nominal

• True label:
Cat

• Noisy:
{Cat, Dog}

• Clean:
{Cat}

• True label:
Car

• Noisy:
{Car, Ship, Cat}

• Clean:
{Car}

Figure 1: Effect of label noise on CIFAR-10. Left: distribution of average coverage on a clean
test set over 30 independent experiments evaluated on CIFAR-10H test data with target coverage
1 − α = 90%, using noisy and clean labels for calibration. We use a pre-trained resnet 18 model,
which has Top-1 accuracy of 93% and 90% on the clean and noisy test set, respectively. The gray
bar represents the interquartile range. Center and right: prediction sets achieved using noisy and
clean labels for calibration.

2 THEORETICAL ANALYSIS

In this section we show mathematically that under stylized settings and some regularity conditions,
the marginal coverage guarantee (1) of conformal prediction persists even when the labels used for
calibration are noisy; i.e., (2) holds. In Sections 3 and 4 we support this argument with realistic
experiments. Towards that end, we now give more details on the conformal prediction algorithm.

As explained in the introduction, conformal prediction uses a held-out calibration data set and a
pre-trained model to construct the prediction set on a new data point. More formally, we use the
model f̂ to construct a score function, s : X × Y → R, which is engineered to be large when the
model is uncertain and small otherwise.

Abbreviate the scores on each calibration data point as si = s(Xi, Yi) for each i = 1, ..., n.
Conformal prediction tells us that we can achieve a marginal coverage guarantee by picking
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q̂clean = s(⌈(n+1)(1−α)⌉) as the ⌈(n+1)(1−α)⌉-smallest of the calibration scores and constructing
the prediction sets as

Ĉ (Xtest) = {y ∈ Y : s (Xtest, y) ≤ q̂clean} .
We will introduce different score functions for both classification and regression as needed in the
following subsections.

In this paper, we do not allow ourselves access to the calibration labels, only their noisy versions,
Ỹ1, . . . , Ỹn, so we cannot calculate q̂clean. Instead, we can calculate the noisy quantile q̂noisy as the
⌈(n+1)(1−α)⌉-smallest of the noisy score functions, s̃i = s(Xi, Ỹi). The main formal question of
our work is whether the resulting prediction set, Ĉnoisy(Xtest) = {y : s(Xtest, y) ≤ q̂noisy}, covers
the clean label as in (2). We state this general recipe algorithmically for future reference:
Recipe 1 (Conformal prediction with noisy labels).

1. Consider i.i.d. data points (X1, Y1), . . . , (Xn, Yn), (Xtest, Ytest), a corruption model g :
Y → Y , and a score function s : X × Y → R.

2. Compute the conformal quantile with the corrupted labels,

q̂noisy = Quantile

(
(n+ 1)(1− α)

n
, {s(Xi, Ỹi)}ni=1

)
,

where Ỹi = g(Yi).

3. Construct the prediction set using the noisy conformal quantile,

Ĉnoisy = {y : s(Xtest, y) ≤ q̂noisy}.

This recipe will produce valid prediction sets whenever the noisy score distribution stochastically
dominates the clean score distribution. The intuition is that the noise distribution ‘spreads out’ the
distribution of the score function such that q̂noisy is (stochastically) larger than q̂clean.
Theorem 1. Assume that P(s̃test ≤ t) ≤ P(stest ≤ t). Then,

P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≥ 1− α.

Furthermore, for any u satisfying P(s̃test ≤ t) + u ≥ P(stest ≤ t), then

P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≤ 1− α+

1

n+ 1
+ u.

In the following subsections, we present examples under which this schochastic dominance holds,
and conformal prediction with noisy labels succeeds in covering the true, noiseless label. The pur-
pose of these examples is to illustrate simple and intuitive statistical setups where Theorem 1 holds.
Under the hood, all proofs from Sections 2.1– 2.3 are applications of Theorem 1. Though the noise
can be adversarially designed to violate these assumptions and cause miscoverage (as in the impos-
sibility result Proposition 1), the evidence presented here suggests that in the majority of practical
settings, conformal prediction can be applied without modification. All proofs are in Appendix A1.

2.1 RANDOM CORRUPTIONS IN CLASSIFICATION

First we will examine a classification problem similar to our motivating example in Section 1, in
which the noisy label is randomly flipped ϵ fraction of the time. This noise model is well-studied in
the literature; see, for example, (Aslam & Decatur, 1996; Angluin & Laird, 1988; Ma et al., 2018;
Jenni & Favaro, 2018; Jindal et al., 2016; Yuan et al., 2018). Formally, in the setting of K-class
classification, we define the corruption model as follows:

gflip(y) =

{
y w.p 1− ϵ

Y ′ else,

where Y ′ is uniformly drawn from the set {1, ...,K}. Also consider the adaptive prediction sets
(APS) scores, first introduced by Romano et al. (2020),

sAPS (x, y) =
∑
y′∈Y

π̂y′ (x) I {π̂y′ (x) > π̂y (x)}+ π̂y (x) · U ′,
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where I is the indicator function, π̂y (x) is the estimated conditional probability P
(
Y = y | X = x

)
and U ′ ∼ Unif(0, 1). To make this non-random, a variant of the above where U ′ = 1 is often used.

The next proposition shows that for any classifier that ranks classes in the same order as P(Ỹ | X)
the APS score leads to valid coverage even when calibrated on noisy data.

Example 1. Let ĈAPS
noisy(Xtest) be constructed as in Recipe 1 with the corruption function gflip and

the score function sAPS (deterministic version) with any classifier that ranks the classes in the same
order as the oracle classifier π̂y(x) = P

(
Ỹ = y | X = x

)
. Then

1− α ≤ P
(
Ytest ∈ ĈAPS

noisy(Xtest)
)
≤ 1− α+

1

n+ 1
+ ϵ

K − 1

K
.

The APS score is one of two popular conformal methods for classification. The other score
from Vovk et al. (2005); Lei et al. (2013), is referred to as homogeneous prediction sets (HPS)
score, sHPS (x, y) = 1− π̂y (x), for some classifier π̂y (x) ∈ [0, 1]. The next proposition shows that
with access to an oracle classifier for the noisy label distribution π̂y(x) = P

(
Ỹ = y | X = x

)
,

conformal prediction covers the noiseless test label.

Example 2. Let ĈHPS
noisy(Xtest) be constructed as in Recipe 1 with the corruption function gflip where

ϵ ≤ (1− 1
K )2, and the score function sHPS with the oracle classifier π̂y(x) = P

(
Ỹ = y | X = x

)
.

Then

1− α ≤ P
(
Ytest ∈ ĈHPS

noisy(Xtest)
)
≤ 1− α+

1

n+ 1
+

ϵ2

1− ϵ
(K − 1).

It should be noted that the above theorem only requires knowledge of the noisy conditional distribu-
tion P

(
Ỹ | X

)
, so a model trained on a large amount of noisy data should approximately have the

desired coverage as well.

2.2 CONFORMALIZED QUANTILE REGRESSION WITH SYMMETRIC NOISE

Next we will analyze a regression task where the labels are continuous-valued and the corruption
function is

gsym(y) = y + Z

for some symmetric, unimodal, independent noise sample Z. We also assume that Y | X is symmet-
ric unimodal. We analyze the most common regression strategy, conformalized quantile regression
(CQR) as presented by Romano et al. (2019). Let the score function be

sCQR(x, y) := max{q̂αlo
(x)− y, y − q̂αhi

(x) , 0}. (3)

where q̂αlo
and q̂αhi

are estimates of the α/2 and 1− α/2 conditional quantiles respectively.

We will analyze the setting where q̂αlo
and q̂αhi

fall on the correct side of the true median of the
noisy distribution, an extremely weak assumption about the fitted model. In this case, conformalized
quantile regression achieves valid coverage even with noisy labels, as stated next.

Example 3. Let ĈCQR
noisy(Xtest) be constructed as in Recipe 1 with the corruption function gsym and

the score function sCQR where the estimated quantiles satisfy q̂αlo
(x) ≤ q1/2(x) ≤ q̂αhi

(x), where
q1/2(x) is the true median of Ỹ | X = x. Then

P
(
Ytest ∈ ĈCQR

noisy(Xtest)
)
≥ 1− α.

2.3 CONFORMALIZED UNCERTAINTY SCALARS

We next analyze the case of a score function using a single uncertainty scalar, û(x) > 0. In this
setting, conformal prediction will work whenever the noisy label distribution has the same mean as,
but heavier tails than, the ground truth label distribution.

We set the corruption function to be
gvi(y) = y + Z,
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where Z satisfies

P
(∣∣Y − E

[
Y | X = x

]∣∣ > t
∣∣∣X = x

)
≤ P

(∣∣Y + Z − E
[
Y | X = x

]∣∣ > t
∣∣∣X = x

)
.

This condition is satisfied in many statistical setups, including the case from the previous section,
where Y and Z are symmetric and Y is unimodal.

Also take the score function to be the normalized magnitude of the residual,

sRM(x, y) =
∣∣f̂(x)− y

∣∣/û(x).
The following result states that conformal prediction is robust to these conditions.

Example 4. Let ĈRM
noisy be constructed as in Recipe 1 with the score function sRM using the oracle

model f̂(x) = E[Ỹi | Xi = x] and the corruption function gvi. Then

P
(
Ytest ∈ ĈRM

noisy(Xtest)
)
≥ 1− α.

This example summarizes the practical intuition that if Y has lighter tails than Y +Z, then conformal
prediction will be conservative (see Corollary 3 in Appendix A1 for a statement in terms of tail
bounds).

2.4 DISCLAIMER: DISTRIBUTION-FREE RESULTS

Though the coverage guarantee holds in many realistic cases, we have also given examples where
conformal prediction fails to cover. Indeed, in the general case, conformal prediction will fail to
cover, and must be adjusted to account for the size of the noise. The following proposition makes
it clear that for any nontrivial noise distribution, there exists a score function that breaks naı̈ve
conformal.

Proposition 1 (Coverage is impossible in the general case.). Take any Ỹ
d

̸= Y . Then there exists a
score function s that yields P

(
Ytest ∈ Ĉnoisy(Xtest)

)
< P

(
Ytest ∈ Ĉ(Xtest)

)
.

The above proposition says that for any noise distribution, there exists an adversarially chosen score
function that will disrupt coverage. Furthermore, as we discuss in Appendix A1, with noise of a
sufficient magnitude, it is possible to get arbitrarily bad violations of coverage.

Next, we discuss how to adjust the threshold of conformal prediction to account for noise of a known
size, as measured by total variation (TV) distance from the clean label.

Corollary 1 (Corollary of Barber et al. (2022)). Let Ỹ be any random variable satisfying
DTV(Y, Ỹ ) ≤ ϵ. Take α′ = α + n

n+1ϵ. Letting Ĉnoisy(Xtest) be the output of Recipe 1 with
any score function at level α′ yields

P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≥ 1− α.

We discuss this strategy more in Appendix A1—the algorithm implied by Corollary 1 may not be
particularly useful, as the TV distance is a badly behaved quantity that is also difficult to estimate.

As a final note, if the noise is bounded in TV norm, then the coverage is also not too conservative.

Corollary 2 (Corollary of Barber et al. (2022) Theorem 3). Let Ỹ be any random variable satisfying
DTV(Y, Ỹ ) ≤ ξ. Letting Ĉnoisy(Xtest) be the output of Recipe 1 with any score function at level α
yields

P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≤ 1− α+

1

n+ 1
+

n

n+ 1
ξ.

3 SYNTHETIC EXPERIMENTS

3.1 CLASSIFICATION

In this section, we focus on multi-class classification problems, where we study the validity of
conformal prediction using different types of label noise distributions, described below.
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Figure 2: Effect of label noise on synthetic multi-class classification data. Performance of con-
formal prediction sets with target coverage 1 − α = 90%, using a noisy training set and a noisy
calibration set. Left: Marginal coverage; Right: Average size of predicted sets. The results are
evaluated over 100 independent experiments and the gray bar represents the interquartile range.

Class-independent noise. This noise model, which we call uniform flip, randomly flips the
ground truth label with probability ϵ, defined formally by the class corruption function gflip+ in (A6).
We analyzed this setting in depth in Section 2.1, and proved that the coverage achieved by an oracle
classifier is guaranteed to increase.

Class-dependent noise. In contrast to uniform flip noise, here we consider a more challeng-
ing setup in which the probability of a label to be flipped depends on the ground truth class label Y .
Such a noise label is often called Noisy at Random (NAR) in the literature, where certain classes
are more likely to be mislabeled or confused with similar ones. Let T be a row stochastic transition
matrix of size K×K such that Ti,j is the probability of a point with label i to be swapped with label
j. In what follows, we consider three possible strategies for building the transition matrix T . (1)
Confusion matrix (Algan & Ulusoy, 2020): we define T as the oracle classifier’s confusion
matrix, up to a proper normalization to ensure the total flipping probability is ϵ. We provide a theo-
retical study of this case in Appendix A1.3. (2) Rare to most frequent class (Xu et al.,
2019): here, we flip the labels of the least frequent class with those of the most frequent class. This
noise model is not uncommon in medical applications: imagine a setting where only a small fraction
of the observations are abnormal, and thus likely to be annotated as the normal class. If switching
between the rare and most frequent labels does not lead to a total probability of ϵ, we move to the
next least common class, and so on.

To set the stage for the experiments, we generate a synthetic data with K = 10 classes as fol-
lows. The features X ∈ Rd follow a standard multivariate Gaussian distribution of dimen-
sion d = 100. The conditional distribution of Y | X is multinomial with weights wj(x) =

exp((x⊤B)j)/
∑K

i=1 exp((x
⊤B)i), where B ∈ Rd×K whose entries are sampled independently

from the standard normal distribution. In our experiments, we generate a total of 60, 000 data points,
where 50, 000 are used to fit a classifier, and the remaining ones are randomly split to form calibra-
tion and test sets, each of size 5, 000. The training and calibration data are corrupted using the label
noise models we defined earlier, with a fixed flipping probability of ϵ = 0.05. Of course, the test set
is not corrupted and contains the ground truth labels. We apply conformal prediction using both the
HPS and the APS score functions, with a target coverage level 1−α of 90%. We use two predictive
models: a two-layer neural network and an oracle classifier that has access to the conditional distri-
bution of Ỹ | X . Finally, we report the distribution of the coverage rate as in (2) and the prediction
set sizes across 100 random splits of the calibration and test data. As a point of reference, we repeat
the same experimental protocol described above on clean data; in this case, we do not violate the
i.i.d. assumption required to grant the marginal coverage guarantee in (1).

The results are depicted in Figure 2. As expected, in the clean setting all conformal methods achieve
the desired coverage of 90%. Under the uniform flip noise model, the coverage of the or-
acle classifier increases to around 94%, supporting our theoretical results from Section 2.1. The
neural network model follows a similar trend. Although not supported by a theoretical guarantee,
when corrupting the labels using the more challenging confusion matrix noise, we can see
a conservative behavior similar to the uniform flip. By contrast, under the rare to most
frequent class noise model, we can see a decrease in coverage, which is in line with our dis-
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Figure 3: Response-independent noise. Performance of conformal prediction intervals with target
coverage 1 − α = 90%, using a noisy training set and a noisy calibration set. Left: Marginal cov-
erage; Right: Length of predicted intervals (divided by the average clean length) using symmetric,
asymmetric and biased noise with a varying magnitude. The results are evaluated over 50 inde-
pendent experiments, with error bars showing one standard deviation. The standard deviation of Y
(without noise) and the square root of E [Var [Y | X]] are both approximately 2.6.

claimer from Section 2.4. Yet, observe how the APS score tends to be more robust to label noise
than HPS, which emphasizes the role of the score function.

In Appendix A2.1 we provide additional experiments with adversarial noise models that more ag-
gressively reduce the coverage rate. Such adversarial cases are more pathological and less likely to
occur in real-world settings, unless facing a malicious attacker.

3.2 REGRESSION

Similarly to the classification experiments, we study two types of noise distributions.

Response-independent noise. We consider an additive noise of the form: Ỹ = Y + c ·Z, where c
is a parameter that allows us to control the noise level. The noise component Z is a random variable
sampled from the following distributions. (1) Symmetric light tailed: standard normal
distribution; (2) Symmetric heavy tailed: t-distribution with one degree of freedom; (3)
Asymmetric: standard gumbel distribution, normalized to have zero mean and unit variance; and
(4) Biased: positive noise formulated as the absolute value of #2 above.

Response-dependent noise. Analogously to the class-dependent noise from Section 3.1, we de-
fine more challenging noise models as follows. (1) Contractive: this corruption pushes the
ground truth response variables towards their mean. Formally, Ỹi = Yi −

(
Yi − 1

n

∑n
i=1 Yi

)
· U ,

where U is a random uniform variable defined on the segment [0,0.5], and n is the number of
calibration points. (2) Dispersive: this noise introduces some form of a dispersion effect on
the ground truth response, which takes the opposite form of the contractive model, given by
Ỹi = Yi +

(
Yi − 1

n

∑n
i=1 Yi

)
· U .

Having defined the noise models, we turn to describe the data generating process. We simulate a
100-dimensional X whose entries are sampled independently from a uniform distribution on the
segment [0, 5]. Following Romano et al. (2019), the response variable is generated as follows:

Y ∼ Pois(sin2(X̄) + 0.1) + 0.03 · X̄ · η1 + 25 · η2 · 1 {U < 0.01} , (4)
where X̄ is the mean of the vector X , and Pois(λ) is the Poisson distribution with mean λ. Both
η1 and η2 are i.i.d. standard Gaussian variables, and U is a uniform random variable on [0, 1]. The
right-most term in (4) creates a few but large outliers. Figure A2 in the appendix illustrates the effect
of the noise models discussed earlier on data sampled from (4).

We apply conformal prediction with the CQR score for each noise model as follows.1 First, we
fit a quantile random forest model on 8, 000 noisy training points; we then calibrate the model

1In our experiments, we use the original score from Romano et al. (2019) that can have negative values in
contrast to the score defined in (3) as the former is more likely to be used in practice. Formally, the score we
apply is sCQR(x, y) := max{q̂αlo (x)− y, y − q̂αhi (x)}.
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Figure 4: Dispersive versus contractive noise regression experiment. Performance of conformal
prediction intervals with target coverage 1 − α = 90%, using a noisy training set and a noisy
calibration set. Left: Marginal coverage; Right: Length of predicted intervals. The results are
evaluated over 50 independent experiments and the gray bar represents the interquartile range.

using 2, 000 fresh noisy samples; and, lastly, test the performance on additional 5, 000 clean,
ground truth samples. The results are summarized in Figures 3 and 4. Observe how the predic-
tion intervals tend to be conservative under symmetric, both for light- and heavy-tailed noise
distributions, asymmetric, and dispersive corruption models. Intuitively, this is because
these noise models increase the variability of Y ; in Example 3 we prove this formally for any
symmetric independent noise model, whereas here we show this result holds more generally even
for response-dependent noise. By contrast, the prediction intervals constructed under the biased
and contractive corruption models tend to under-cover the response variable. This should not
surprise us: following Figure A2(c), the biased noise shifts the data ‘upwards’, and, consequently,
the prediction intervals are undesirably pushed towards the positive quadrants. Analogously, the
contractive corruption model pushes the data towards the mean, leading to intervals that are
too narrow. Figure A5 in the appendix illustrates the scores achieved when using the different noise
models and the 90%’th empirical quantile of the CQR scores. This figure supports the behaviour
we see in Figures A3, 3 and A4: over-coverage is achieved when q̂noisy is larger than q̂clean, and
under-coverage is obtained when q̂noisy is smaller.

In Section A2.2 of the Appendix we study the effect of the predictive model on the coverage prop-
erty, for all noise models. To this end, we repeat similar experiments to the ones presented above,
however, we now fit the predictive model on clean training data; the calibration data remains noisy.
We also provide an additional adversarial noise model that reduces the coverage rate, but is unlikely
to appear in real-world settings. Figures A3 and A4 in the appendix depict a similar behaviour for
most noise models, except the biased noise for which the coverage requirement is not violated.
This can be explained by the improved estimation of the low and high conditional quantiles, as these
are fitted on clean data and thus less biased.

4 REAL DATA EXPERIMENTS

4.1 REGRESSION: AESTHETIC VISUAL RATING

In this section, we present a real-world application with continuous response, using Aesthetic Visual
Analysis (AVA) data set, first presented by Murray et al. (2012). This data set contains pairs of
images and their aesthetic scores in the range of 1 to 10, obtained by approximately 200 annotators.
Following Kao et al. (2015); Talebi & Milanfar (2018); Murray et al. (2012), the task is to predict
the average aesthetic score of a given test image. Therefore, we consider the average aesthetic score
taken over all annotators as the clean, ground truth response. The noisy response is the average
aesthetic score taken over 10 randomly selected annotators only.

We examine the performance of conformal prediction using both CQR and the residual magnitude
score—the score from Section 2.3 with û(x) = 1. We follow Talebi & Milanfar (2018) and take a
transfer learning approach to fit the predictive model. Specifically, for feature extraction, we use a
VGG-16 model—pre-trained on the ImageNet data set—whose last (deepest) fully connected layer
is removed. Then, we feed the output of the VGG-16 model to a linear fully connected layer to
predict the response. We trained two different models: a quantile regression model for CQR and a
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Figure 5: Results for real-data regression experiment: predicting aesthetic visual rating. Per-
formance of conformal prediction intervals with 90% marginal coverage based on a VGG-16 model
using a noisy training set. We compare the residual magnitude score and CQR methods with both
noisy and clean calibration sets. Left: Marginal coverage; Right: Interval length. The results are
evaluated over 30 independent experiments and the gray bar represents the interquartile range.

classic regression model for conformal with residual magnitude score. The models are trained on
34, 000 noisy samples, calibrated on 7, 778 noisy holdout points, and tested on 7, 778 clean samples.
Further details regarding the training strategy are in Appendix A2.3.

Figure 5 portrays the marginal coverage and average interval length achieved using CQR and resid-
ual magnitude scores. As a point of reference, this figure also presents the performance of the two
conformal methods when calibrated with a clean calibration set; as expected, the two perfectly attain
90% coverage. By constant, when calibrating the same predictive models with a noisy calibration
set, the resulting prediction intervals tend to be wider and to over-cover the average aesthetic scores.

4.2 CLASSIFICATION: OBJECT RECOGNITION

We return to the classification experiment in Section 1. The CIFAR-10H data set contains the same
10,000 images as CIFAR-10, but with labels from a single annotator instead of a majority vote of
50 annotators. We fine-tune a ResNet18 model pre-trained on the clean training set of CIFAR-10,
which contains 50,000 samples. Then we randomly select 2,000 observations from CIFAR-10H for
calibration. The test set contains the remaining 8,000 samples, but with CIFAR-10 labels.

Figure 1 illustrates results obtained by applying conformal prediction with the APS score. We can
see that (i) we obtain the exact desired coverage when using the clean calibration set; and (ii) when
calibrating on noisy data, the constructed prediction sets over-cover the clean test labels. This is
because the sets tend to be larger when calibrating on noisy data, as seen in Figure A6.

5 DISCUSSION

Related work. Conformal prediction was first proposed by Vladimir Vovk and collaborators (Vovk
et al., 1999; 2005). Recently there has been a body of work studying the statistical properties of
conformal prediction (Lei et al., 2018; Barber, 2020) and its performance under deviations from
exchangeability (Tibshirani et al., 2019; Podkopaev & Ramdas, 2021; Barber et al., 2022). Label
noise independently of conformal prediction has been well-studied; see, for example Angluin &
Laird (1988); Tanno et al. (2019); Frénay & Verleysen (2013). To our knowledge, conformal predic-
tion under label noise has not been previously analyzed. The closest work to ours is that of Cauchois
et al. (2022) studying conformal prediction with weak supervision, which could be interpreted as a
type of noisy label.

Future directions. Our work raises many new questions. First, one can try and define a score
function that is more robust to label noise, continuing the line of Gendler et al. (2021); Frénay &
Verleysen (2013); Cheng et al. (2022). Second, an important remaining question is whether or not
conformal risk control (Angelopoulos et al., 2021; 2022) more generally is also robust to label noise.
Lastly, it would be interesting to analyze the robustness of alternative conformal methods such as
cross-conformal and jackknife+ (Vovk, 2015; Barber et al., 2021) that do not require data-splitting.
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Appendices
A1 MATHEMATICAL PROOFS

Theorem 1. Our assumption states that

P(s̃test ≤ t) ≤ P(stest ≤ t).

Note that the probability is only taken over s̃test. Since q̂noisy is constant (measurable) with respect
to this probability, we have that, for any α ∈ (0, 1),

P(stest ≤ q̂noisy) ≥ P(s̃test ≤ q̂noisy) ≥ 1− α.

This implies that Ytest ∈ Ĉnoisy(Xtest) with probability at least 1 − α, completing the proof of the
lower bound.

Regarding the upper bound, by the same argument,

P(stest ≤ q̂noisy) ≤ P(s̃test ≤ q̂noisy) + u ≤ 1− α+
1

n+ 1
+ u.

A1.1 APS SCORE

Lemma A1. Let f̂y(x) = f̂(Y = y | X = x) be any classifier that ranks the classes in the same
order as the oracle model, i.e., one satisfying, for all y ̸= y′,

f̂y(x) ≥ f̂y′(x) ⇐⇒ π̂y(x) ≥ π̂y′(x). (A1)

Let s be the (deterministic) APS conformal score with model f̂ ,

s(x, y) =
∑
y′∈Y

f̂y′(x)1
{
f̂y′(x) ≥ f̂y(x)y

}
.

Consider the corruption function gflip. Then,

P(s(X,Y ) ≤ t) ≥ P(s(X, Ỹ ) ≤ t).

Proof of Lemma A1. For notational convenience, assume the classes are ordered such that f̂y(x)
is decreasing in y. Fix x ∈ X , let pk = P(Y = k | X = x) and let us use the shorthand
π̂k = P(Ỹ = k | X = x). Finally, draw (X,Y, Ỹ ) from their joint distribution P.

Notice that in this context, the assumption (A1) simply states that π̂k is sorted from greatest to least.
Furthermore, by the definition of gflip,

π̂k = pk(1− (K − 1)ϵ/K) + (1− pk)ϵ/K = pk(1− ϵ) + ϵ/K. (A2)

This implies that π̂k and pk have the same ordering, and therefore, that the entries pk are also
decreasing in k. In the ensuing argument, this fact will be crucial.

Starting with the law of total probability,

P(s(x, Ỹ ) ≤ t | X = x) =
∑
k∈Y

π̂k1 {s(x, k) ≤ t} =
∑

k:s(x,k)≤t

π̂k. (A3)

Take k∗ = |{k : s(x, k) ≤ t}|; if k∗ = 0, the proof becomes trivial by noticing that P(s(x, Ỹ ) ≤
t | X = x) = 0 ≤ P(s(x, Y ) ≤ t | X = x) and applying the tower property. Therefore, we
continue the proof in the case that k∗ ≥ 1. Because s(x, k) is monotone in k, we can rewrite the last
expression as ∑

k:s(x,k)≤t

π̂k =

k∗∑
k=1

π̂k.
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Applying (A2) and using the fact that pk is sorted in decreasing order yields

k∗∑
k=1

π̂k = (1− ϵ)

k∗∑
k=1

pk + k∗ϵ/K =

k∗∑
k=1

pk + ϵ

(
k∗/K −

k∗∑
k=1

pk

)
.

Next we will critically use the fact that p is sorted from greatest to least. This sorting implies that
(p1 + . . .+ pk) ≥ k/K for all k (if this failed at any k, we would have (p1 + . . .+ pK) < 1, which
is impossible). Applying this fact at the k∗th index,

k∗∑
k=1

pk + ϵ

(
k∗/K −

k∗∑
k=1

pk

)
≤

k∗∑
k=1

pk, (A4)

as the term multiplied by ϵ is negative. Reversing the steps from (A3), one can rewrite the limits of
the sum as an indicator function, which by law of total probability yields the CDF of the scores,

k∗∑
k=1

pk =
∑

k:s(x,k)≤t

pk =
∑
k∈Y

pk1 {s(X, k) ≤ t} = P(s(x, Y ) ≤ t | X = x). (A5)

We have so far proved that

P(s(x, Ỹ ) ≤ t | X = x) ≤ P(s(x, Y ) ≤ t | X = x);

taking expectations on both sides yields the conclusion,

P(s(X, Ỹ ) ≤ t) ≤ P(s(X,Y ) ≤ t).

Proof of Example 1. To complete the proof of the lower bound it suffices to show that P(s(X,Y ) ≤
t) ≥ P(s(X, Ỹ ) ≤ t). We prove this in Lemma A1.

For the coverage upper-bound, combining (A4) and (A5), witness that

P(s(x, Ỹ ) ≤ t | X = x) =

k∗∑
k=1

pk + ϵ

(
k∗/K −

k∗∑
k=1

pk

)

= P(s(x, Y ) ≤ t | X = x) + ϵ

(
k∗/K −

k∗∑
k=1

pk

)
.

We can lower-bound this expression by realizing that k∗/K −
∑k∗

k=1 pk takes values no lower than
−(K − 1)/K. Therefore,

P(s(x, Ỹ ) ≤ t | X = x) + ϵ
K − 1

K
≥ P(s(x, Y ) ≤ t | X = x).

Applying the tower property and noting that by the standard conformal argument Vovk et al. (2005),
gives P(s(x, Ỹ ) ≤ t) ≥ 1− α+ 1/(n+ 1) yields

1− α+
1

n+ 1
+ ϵ

K − 1

K
≥ P(s(x, Y ) ≤ t).

A1.2 HPS SCORE

Proof of Example 2. For proof with the HPS function, we consider the following corruption model:

gflip+(y) =

{
y w.p 1− ϵ

Y ′ else,
(A6)

where Y ′ is uniformly drawn from the set {1, ...,K} \ Y . This is the same as gflip, but rescaled so
that ϵ in gflip corresponds to ϵ(K − 1)/K in gflip+.
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Consider the corrupted oracle nonconformity score s(x, y) = 1 − P(Ỹ | X). By definition of this
score function, we can explicitly write the probability mass functions of s̃i and si as follows:

P (s̃i = t | X) =

K∑
j=1

P
(
Ỹ = j |X

)
1

{
t = 1− P(Ỹ = j |X)

}
and

P (si = t | X) =

K∑
j=1

P
(
Y = j |X

)
1

{
t = 1− P(Ỹ = j |X)

}
.

Note that these two distributions are supported on the same discrete set, D =
{
1−P(Ỹ = j |X), j =

1, ...,K
}

. Applying the definition of our corruption model and rearranging yields

P(Ỹ = j |X) = (1− K

K − 1
ϵ)P(Y = j |X) +

ϵ

K − 1
. (A7)

Using this fact and the law of total probability, we can write

P (si ≤ q)− P (s̃i ≤ q) =
∑
t∈D
t≤q

K∑
j=1

(
P(Y = j |X)− P(Ỹ = j |X)

)
1

{
t = 1− P(Ỹ = j |X)

}
(A8)

=
ϵK

K − 1

∑
t∈D
t≤q

K∑
j=1

(
P(Y = j |X)− 1

K

)
1

{
P(Y = j |X) =

1− ϵ
K−1 − t

1− K
K−1ϵ

}

=
ϵK

K − 1

∑
t∈D
t≤q

(
1− ϵ

K−1 − t

1− K
K−1ϵ

− 1

K

)
,

where the last step holds because each summand is nonzero at exactly one value of j.

To prove the lower bound, we will show that P (si ≤ q) − P (s̃i ≤ q) ≥ 0. It suffices to show that
each summand in the last line of (A8) is positive. This is trivially true when t > 1 − ϵ/(K − 1)

because by (A7), we have that infj P(Ỹ = j |X) ≥ ϵ/(K − 1), and thus q = 1. To complete the
proof, our goal is to show that if t ≤ 1− ϵ/(K − 1) and ϵ ≤ 1− 1/K, then

1− ϵ
K−1 − t

1− K
K−1ϵ

≥ 1

K
.

Rearranging terms in the above expression gives

1− 1

K
≥ t.

This is implied directly by combining the two bounds t ≤ 1 − ϵ/(K − 1) and ϵ ≤ 1 − 1/K. This
completes the proof of the lower bound.

To prove the upper bound, we need to show that

P (si ≤ q)− P(s̃i ≤ q) ≤ ϵKmin(⌊1/(1− q)⌋,K)

K − 1

(
1− ϵ

K−1

1− K
K−1ϵ

− 1

)
.

The last line of (A8) can be rewritten as

ϵK

K − 1

∑
t∈D
t≤q

(
1− ϵ

K−1 − t

1− K
K−1ϵ

− 1

K

)
=

ϵK

K − 1
|{t ∈ D : t ≤ q}|

(
1− ϵ

K−1

1− K
K−1ϵ

− 1

K

)
− ϵK

K − 1

∑
t∈D
t≤q

t

≤ ϵK2

K − 1

(
1− ϵ

K−1

1− K
K−1ϵ

− 1

)
=

ϵ2 K
K−1

1− K
K−1ϵ

K.

where the inequality upper-bounded the cardinality by K and the last term by 0.

To recover the statement in the main paper, one can rewrite this final expression with ϵ(K − 1)/K
substituted in wherever the term ϵ appears. Rearranging terms then gives the result.
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A1.3 CONFUSION MATRIX

The confusion matrix noise model is more realistic than the uniform flip. However, there exists a
score function that causes conformal prediction to fail for any non-identity confusion matrix. We
define the corruption model as follows: consider a matrix T in which (T )i,j = P(Ỹ = j | Y = i).

gconfusion(y) =


1 w.p. T1,y

. . .

K w.p. TK,y.

Example 5. Let Ĉnoisy be constructed as in Recipe 1 with any score function s and the corruption
function gconfusion. Then,

P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≥ 1− α.

if and only if for all classes j ∈ {1, . . . ,K},
K∑

j′=1

P(Ỹ = j′ | Y = j)P(s̃ ≤ t | Ỹ = j′) ≥ P(s ≤ t | Y = j).

The proof is below. In words, the necessary and sufficient condition is for the noise distribu-
tion/confusion matrix P(Ỹ = j′ | Y = j) to place sufficient mass on those classes j′ whose
quantiles which are larger than P(s ≤ t | Y = j). However, without assumptions on the model and
score, the conditional probabilities are unknown, so it is impossible to say which noise distributions
will preserve coverage.

Proof. By law of total probability, P(s ≤ t) = E [P(s ≤ t | Y = j)] =
∑K

j=1 wjP(s ≤ t | Y = j).
But under the noisy model, we have instead that

P(s̃ ≤ t) = E
[
P(s̃ ≤ t | Ỹ = j′)

]
=

K∑
j=1

K∑
j′=1

wjP(Ỹ = j′ | Y = j)P(s̃ ≤ t | Ỹ = j′).

We can write

P(s ≤ t)−P(s̃ ≤ t) =

K∑
j=1

K∑
j′=1

wjP(Ỹ = j′ | Y = j)P(s̃ ≤ t | Ỹ = j′)−
K∑
j=1

wjP(s ≤ t | Y = j).

Combining the sums and factoring, the above display equals

K∑
j=1

wj

 K∑
j′=1

(
P(Ỹ = j′ | Y = j)P(s̃ ≤ t | Ỹ = j′)

)
− P(s ≤ t | Y = j)

 .

We can factor this expression as
K∑
j=1

wjP(s ≤ t | Y = j)

K∑
j′=1

(
P(Ỹ = j′ | Y = j)

P(s̃ ≤ t | Ỹ = j′)

P(s ≤ t | Y = j)
− 1

K

)
.

The stochastic dominance condition holds uniformly over all choices of base probabilities wj if and
only if for all j ∈ [K],

K∑
j′=1

P(Ỹ = j′ | Y = j)P(s̃ ≤ t | Ỹ = j′) ≥ P(s ≤ t | Y = j).

Notice that the left-hand side of the above display is a convex mixture of the quantiles P(s̃ ≤ t |
Ỹ = j′) for j′ ∈ [K]. Thus, the necessary and sufficient condition is for the noise distribution
P(Ỹ = j′ | Y = j) to place sufficient mass on those classes j′ whose quantiles which are larger
than P(s ≤ t | Y = j). But of course, without assumptions on the model and score, the latter are
unknown, so it is impossible to say which noise distributions will preserve coverage.
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A1.4 CQR SCORE

Proof of Example 3. We will show that P (s̃ ≤ q | X = x) ≤ P (s ≤ q | X = x). Notice that we
will only prove for the case where q ≥ 0 since according to the score function, for q ≤ 0 both
probabilities are equal to zero. Formally,

P (s̃ ≤ q | X = x) = P (max{q̂αlo
(x)− Y − Z, Y + Z − q̂αhi

(x)} ≤ q | X = x)

= P (q̂αlo
(x)− Y − Z ≤ q, Y + Z − q̂αhi

(x) ≤ q | X = x)

= P (q̂αlo
(x)− q ≤ Y + Z ≤ q̂αhi

(x) + q | X = x)

= 1− P (Y + Z ≥ q̂αhi
(x) + q | X = x)− P (Y + Z ≤ q̂αlo

(x)− q | X = x) .

Similarly,

P (s ≤ q | X = x) = 1− P (Y ≥ q̂αhi
(x) + q | X = x)− P (Y ≤ q̂αlo

(x)− q | X = x) .

According to Lemma A2,

1− P (Y + Z ≥ q̂αhi
(x) + q | X = x)− P (Y + Z ≤ q̂αlo

(x)− q | X = x)

≤ 1− P (Y ≥ q̂αhi
(x) + q | X = x)− P (Y ≤ q̂αlo

(x)− q | X = x) ,

under the assumption that
q̂αlo

(x) ≤ q1/2(x) ≤ q̂αhi
(x) ,

where q1/2(x) is the true median of Ỹ | X = x. By the law of total probability this inequality holds
also without conditioning on X .

Lemma A2. Suppose Y has a density that is unimodal and symmetric around 0 and Z is symmetric,
i.e., Z has the same distribution as −Z. Suppose further that Y and Z are independent. Then for
any q > 0,

P(Y + Z ≤ −q) ≥ P(Y ≤ −q)

and
P(Y + Z ≥ q) ≥ P(Y ≥ q).

Proof of Lemma A2.

P(Y + Z ≤ −q) = E [P(Y + Z ≤ −q | |Z| = z)]

= E
[
1

2
P(Y ≤ −q − z) +

1

2
P(Y ≤ −q + z)

]
= P(Y ≤ −q) + E

[
1

2
(P(Y ≤ −q − z)− P(Y ≤ −q)) +

1

2
(P(Y ≤ −q + z)− P(Y ≤ −q))

]
= P(Y ≤ −q) + E

[
1

2
(P(Y ≤ −q + z)− P(Y ≤ −q))− 1

2
(P(Y ≤ −q)− P(Y ≤ −q − z))

]
= P(Y ≤ −q) + E

[
1

2
P(−q < Y ≤ −q + z)− 1

2
P(−q − z < Y ≤ −q)

]
︸ ︷︷ ︸

≥0

≥ P(Y ≤ −q).

Above, the expectations are over z ≥ 0 which we take to be a random variable with the same
distribution as |Z|. The final inequality follows from the fact that the density of Y is unimodal.

The proof for the upper tail is similar and we omit it.
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A1.5 NORMALIZED RESIDUAL MAGNITUDE SCORE

Proof of Example 4. Equation 2.3 directly implies

P
(∣∣Y −E

[
Y | X = x

]∣∣/û(x) > t
∣∣∣X = x

)
≤ P

(∣∣Y +Z−E
[
Y | X = x

]∣∣/û(x) > t
∣∣∣X = x

)
,

since û(x) > 0 and both probabilities are X-conditional. Furthermore, since we are using the oracle
model f̂ = E

[
Y | X = x

]
, this is identical to the statement

P(sRM
test ≤ t) ≥ P(s̃RM

test ≤ t).

The above statement says that the clean score distribution is stochastically dominated by the noisy
score distribution. Since q̂noisy is independent of sRM

test and s̃RM
test, we know

P(sRM
test ≤ q̂noisy) ≥ P(s̃RM

test ≤ q̂noisy) ≥ 1− α.

This completes the argument.

The following is a direct corollary of Example 4.

Corollary 3. Suppose the Ỹi are drawn I.I.D. Ỹi = Yi + Zi. Assume there exist constants c and C
such that

P(|Yi−E[Yi|Xi]| ≤ t) ≥ 1−c exp(−Ct2) and P(|Yi+Zi−E[Yi|Xi]| ≤ t) ≤ 1−c exp(−Ct2).

Then
P(sn+1 ≤ q̂) ≥ 1− α.

There is nothing special about the sub-Gaussian tail decay in the above corollary; any tail decay
conditions will work if they can be chained together.

A1.6 DISTRIBUTION-FREE RESULTS

Proof of Proposition 1. For convenience, assume the existence of probability density functions p̃
and p for Ỹ and Y respectively (these can be taken to be probability mass functions if Y is discrete).
Also define the multiset of Y values E = {Y1, ..., Yn} and the corresponding multiset of Ỹ values
Ẽ. Take the set

A = {y : p̃(y) > p(y)}.

Since Y
d

̸= Ỹ , we know that the set A is nonempty and P(Ỹ ∈ A) = δ1 > P(Y ∈ A) = δ2 ≥ 0.
The adversarial choice of score function will be s(x, y) = 1 {y ∈ Ac}; it puts high mass wherever
the ground truth label is more likely than the noisy label. The crux of the argument is that this design
makes the quantile smaller when it is computed on the noisy data than when it is computed on clean
data, as we next show.

Begin by noticing that, because s(x, y) is binary, q̂clean is also binary, and therefore q̂clean > t ⇐⇒
q̂clean = 1. Furthermore, q̂clean = 1 if and only if |E ∩A|

∣∣ < ⌈(n+ 1)(1− α)⌉. Thus, these events
are the same, and for any t ∈ (0, 1],

P (q̂clean ≥ t) = P
(∣∣E ∩ A

∣∣ < ⌈(n+ 1)(1− α)⌉
)
.

By the definition of A, we have that P
(∣∣E∩A

∣∣ < ⌈(n+1)(1−α)⌉
)
> P

(∣∣Ẽ∩A
∣∣ < ⌈(n+1)(1−

α)⌉
)

. Chaining the inequalities, we get

P (q̂clean ≥ t) > P
(∣∣Ẽ ∩ A

∣∣ < ⌈(n+ 1)(1− α)⌉
)
= P (q̂ ≥ t) .

Since sn+1 is measurable with respect to E and Ẽ, we can plug it in for t, yielding the conclusion.

17



Under review as a conference paper at ICLR 2023

Remark 1. In the above argument, if one further assumes continuity of the (ground truth) score
function and P(Ỹ ∈ A) = P(Y ∈ A) + ρ for

ρ = inf
{
ρ′ > 0 : BinomCDF(n, δ1, ⌈(n+ 1)(1− α)⌉ − 1) +

1

n
<

BinomCDF(n, δ2 + ρ′, ⌈(n+ 1)(1− α)⌉ − 1)
}
,

then
P(sn+1 ≤ q̂) < 1− α.

In other words, the noise must have some sufficient magnitude in order to disrupt coverage.

Proof of Corollary 1. This a consequence of the TV bound from Barber et al. (2022) with weights
identically equal to 1.

Unfortunately, getting such a TV bound requires a case by case analysis. It’s not even straightfor-
ward to get a TV bound under strong Gaussian assumptions.

Proposition 2 (No general TV bound). Assume Y ∼ N (0, τ2) and Ỹ = y + Z, where Z ∼
N (0, σ2). Then DTV(Y, Ỹ )

τ→0→ 1.

Proof.

TV(N (0, τ2),N (0, τ2 + σ2)) =

∞∫
−∞

∣∣∣e−x2/τ2

− e−x2/(τ2+σ2)
∣∣∣dx τ→0→ 1.

A2 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A2.1 SYNTHETIC CLASSIFICATION: ADVERSARIAL NOISE MODELS

In contrast with the noise distributions presented in Section 3.1, here we construct adversarial noise
models to intentionally reduce the coverage rate.

1. Most frequent confusion: we extract from the confusion matrix the pair of classes
with the highest probability to be confused between each other, and switch their labels until
reaching a total probability of ϵ. In cases where switching between the most common pair
is not enough to reach ϵ, we proceed by flipping the labels of second most confused pairs
of labels, and so on.

2. Wrong to right: wrong predictions during calibration cause larger predictions sets
during test time. Hence making the model think it makes less mistakes then actual during
calibration can lead to under-coverage during test time. Here, we first observe the model
predictions over the calibration set, and then switch the labels only of points that were
misclassified. We switch the label to the class that is most likely to be the correct class
according to the model, hence making the model think it was correct. We switch a suit-
able amount of labels in order to reach a total switching probability of ϵ (this noise model
assumes there are enough wrong predictions in order to do so).

3. Optimal adversarial: we describe here an algorithm for building the worst possible
label noise for a specific model using a specific non-conformity score. This noise will
decrease the calibration threshold at most and as a result, will cause significant under-
coverage during test time. To do this, we perform an iterative process. In each iteration we
calculate the non-conformity scores of all of the calibration points with their current labels.
We calculate the calibration threshold as in regular conformal prediction and then, from the
points that have a score above the threshold, we search for the one that switching its label
can reduce its score by most. We switch the label of this point to the label that gives the
lowest score and then repeat the iterative process with the new set of labels. Basically, at
every step we make the label swap that will decrease the threshold by most.
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Figure A1: Effect of label noise on synthetic multi-class classification data. Performance of
conformal prediction sets with target coverage 1− α = 90%, using a noisy training set and a noisy
calibration set with adversarial noise models. Left: Marginal coverage; Right: Average size of
predicted sets. The results are evaluated over 100 independent experiments.

In these experiments we apply the same settings as described in Section 3.1 of the main manuscript
and present the results in Figure A1. We can see that the optimal adversarial noise causes
the largest decrease in coverage as one would expect. The most-frequent-confusion noise
decreases the neural network coverage to approximately 89%. The wrong-to-right noise de-
creases the coverage to around 85% with the HPS score and to around 87% with the APS score.
This gap is expected as this noise directly reduces the HPS score. We can see that the optimal worst
case noise for each score function reduces the coverage to around 85% when using that score. This
is in fact the maximal decrease in coverage possible theoretically, hence it strengthens the optimally
of our iterative algorithm.

A2.2 SYNTHETIC REGRESSION: ADDITIONAL RESULTS

Here we first illustrate in Figure A2 the data we generate in the synthetic regression experiment and
the different corruptions we apply.

In Section 3.2 of the main manuscript we apply some realistic noise models and examine the per-
formance of conformal prediction using CQR score with noisy training and calibration sets. Here
we construct some more experiments using the same settings, however we train the models using
clean data instead of noisy data. Moreover, we apply an additional adversarial noise model that
differs from those presented in Section 3.2 in the sense that it is designed to intentionally reduce the
coverage level.

Wrong to right: an adversarial noise that depends on the underlying trained regression model.
In order to construct the noisy calibration set we switch 7% of the responses as follows: we randomly
swap between outputs that are not included in the interval predicted by the model and outputs that
are included.

Figures A3 and A4 depict the marginal coverage and interval length achieved when applying the
different noise models. We see that the adversarial wrong to right noise model reduces the
coverage rate to approximately 83%. Moreover, these results are similar to those achieved in Sec-
tion 3.2, except for the conservative coverage attained using biased noise, which can be explained
by the more accurate low and high estimated quantiles.

Lastly, in order to explain the over-coverage or under-coverage achieved for some of the different
noise models, as depicted in Figures 3 and 4, we present in Figure A5 the CQR scores and their
90%’th empirical quantile. Over-coverage is achieved when the noisy scores are larger than the clean
ones, for example, in the symmetric heavy tailed case, and under-coverage is achieved
when the noisy scores are smaller.
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Figure A2: Illustration of the generated data with different corruptions. (a): Clean samples.
(b): Samples with symmetric heavy-tailed noise. (c): Samples with asymmetric noise. (d): Samples
with biased noise. Noise magnitude is set to 0.1. (e): Samples with contractive noise. (f): Samples
with dispersive noise.
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Figure A3: Response-independent noise. Performance of conformal prediction intervals with tar-
get coverage 1 − α = 90%, using a clean training set and a noisy calibration set. Left: Marginal
coverage; Right: Length of predicted intervals (divided by the average clean length) using symmet-
ric, asymmetric and biased noise with a varying magnitude. Other details are as in Figure 3.
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Figure A4: Response-dependent noise. Performance of conformal prediction intervals with tar-
get coverage 1 − α = 90%, using a clean training set and a noisy calibration set. Left: Marginal
coverage; Right: Length of predicted intervals. The results are evaluated over 50 independent ex-
periments.
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Figure A5: Illustration of the CQR scores. (a): Clean training and calibration sets. (b): Symmetric
heavy-tailed noise. (c): Biased noise. Noise magnitude is set to 0.1. (d): Contractive noise. Other
details are as in Figure 3.

A2.3 REGRESSION: AESTHETIC VISUAL RATING

Herein, we provide additional details regarding the training of the predictive models for the real
world regression task. As explained in Section 4.1, we trained two different models in this exper-
iment. The first is a quantile regression model for CQR. Here we trained the model for 70 epochs
using ’SGD’ optimizer with a batch size of 128 and an initial learning rate of 0.001 decayed every
20 epochs exponentially with a rate of 0.95 and a frequency of 10. We applied dropout regular-
ization to avoid overfitting with a rate of 0.2. The second model is a classic regression model for
conformal with residual magnitude scores. Here we trained the model for 70 epochs using ’Adam’
optimizer with a batch size of 128 and an initial learning rate of 0.00005 decayed every 10 epochs
exponentially with a rate of 0.95 and a frequency of 10. The dropout rate in this case is 0.5.
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Figure A6: Effect of label noise on CIFAR-10. Distribution of average prediction set sizes over
30 independent experiments evaluated on CIFAR-10H test data using noisy and clean labels for
calibration. Other details are as in Figure 1

A2.4 CLASSIFICATION: OBJECT RECOGNITION EXPERIMENT

Here we provide additional results of the classification experiment with CIFAR-10H explained in
Section 4.2. We apply conformal prediction with the APS score. The marginal coverage achieved
when using noisy and clean calibration sets are depicted in Figure 1. Figure A6 illustrates the
average prediction set sizes that are larger when using noisy data for calibration and thus lead to
higher coverage level.
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