
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Linking Souls to Humans: Blockchain Accounts with Credible
Anonymity for Web 3.0 Decentralized Identity

Anonymous Author(s)

Abstract
A decentralized identity system that can provide users with self-
sovereign digital identities to facilitate complete control over their
own data is paramount toWeb 3.0. The account system on blockchain
is an ideal archetype for realizing Web 3.0 decentralized identity.
However, a disadvantage of such completely anonymous identity
system is that users can create multiple accounts without authenti-
cation to obfuscate their activities on the blockchain. In particular,
the current anonymous blockchain account system cannot accu-
rately register the social relationships and interactions between real
human users, given the amorphous mappings between users and
blockchain identities. This work proposes zkBID, a zero-knowledge
blockchain-account-basedWeb 3.0 decentralized identity scheme, to
overcome endemic mistrust in blockchain account systems. zkBID
links souls (blockchain accounts) to humans (users’ personhood
credentials) in a one-to-one manner to truly reflect the social re-
lationships and interactions between humans on the blockchain.
zkBID conceals the one-to-one relationships between blockchain
accounts and users’ personhood credentials for privacy protection
using zero-knowledge proofs and linkable ring signatures. Thus,
with zkBID, the users’ blockchain accounts are credibly anony-
mous. Importantly, zkBID is fully decentralized: all user-related
data are generated by users and verified by smart contracts on the
blockchain. We implemented zkBID and built a blockchain test
network for evaluation purposes. Our tests demonstrate the effec-
tiveness of zkBID and suggest proper ways to configure zkBID
system parameters.

CCS Concepts
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; Privacy-preserving protocols; Privacy protec-
tions; Social aspects of security and privacy.

Keywords
Web 3.0 Identity, Blockchain Accounts, Zero-knowledge Proofs,
Linkable Ring Signatures

1 Introduction
Digital identity is the basis for users to manage their digital assets
and interact with other users in the digital world [Windley 2005].
The development of digital identity has gone through three stages:
centralized identity, alliance identity, and decentralized identity.
Centralized identities are created by users but managed by applica-
tion providers. One user has to endure the complexity of managing
multiple identities and data-leak vulnerabilities in the multitude
of applications; Alliance identities are created by users but man-
aged by one or more large application providers. After obtaining
authorization from these large application providers, the identity
can be used to log into other applications without registering with
the other service providers. user data are in the hands of a few

large application providers, which will lead to the data hegemony;
Decentralized identities are created and managed by users and are
thus self-sovereign. Users maintain their identity information and,
when necessary, present a self-generated proof to each application
for identity confirmation. It is also widely taken that centralized
identity, alliance identity, and decentralized identity correspond to
the three eras of the Internet, i.e., Web 1.0, Web 2.0, and Web 3.0.

What makesWeb 3.0 a revolutionary transformation is that users
hold their data sovereignty, and the data is not appropriated by
application providers, as in Web 1.0 and Web 2.0. A decentralized
identity system with users’ self-sovereign digital identities is para-
mount to Web 3.0. Currently, the blockchain account system serves
as an archetype for a Web 3.0 decentralized identity system [Wang
et al. 2023].

On blockchain, users create and manage accounts on their own,
as self-sovereign identities, allowing them to handle digital assets
and interact with each other. The blockchain identity system has the
anonymity feature: nobody knows the true owner of the account,
since users can create accounts without registering with a central
agent. However, a large part of the economic value of activities on
blockchain comes from the relationships and interactions between
humans. As the anonymity, the interactions of these identities with
other users cannot be traced back to the single user in a simple man-
ner. In particular, the social interactions and relationships between
real users are obfuscated. To overcome it, Vitalik Buterin proposed a
conception of blockchain accounts as “soul” and a non-transferable
NFT called “soul-bound” tokens to build social relationships among
the accounts on the blockchain in [Weyl et al. 2022]. They illus-
trated how non-transferable soul-bound tokens could represent
the commitments, credentials, and affiliations of “souls” and thus
can encode the trust networks with economic activities to establish
provenance and reputation. However, a user can still create multiple
souls (accounts) on the blockchain to erase, transfer or hide rela-
tionships, and thus the blockchain account system with soul-bound
tokens still cannot reflect genuine relationships in human societies.

This paper proposes a Zero-Knowledge Blockchain-account-
based Web 3.0 decentralized IDentity scheme, named zkBID, to
overcome the drawbacks above. With zkBID, we can link souls
(blockchain accounts) to humans (users) in a one-to-one manner to
truly reflect the interactions and societal relationships of humans
on the blockchain. The mappings by zkBID between users and ac-
counts are i) decentralized with no involvement of a third-party
central agent; ii) privacy-preserving in that which identities are tied
to which accounts are hidden (i.e., anonymous); and iii) credible in
that each account’s credit on the blockchain will be mapped one-to-
one with the corresponding real-world user. Therefore, the accounts
created by zkBID are credibly anonymous on the blockchain after
the mapping process of zkBID.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

xx, xx, xx Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

This paper exploits zero-knowledge proofs, linkable ring sig-
natures, and blockchain smart contracts to construct zkBID. Our
contributions and approaches are summarized below:

1) We put forth a user-identity verification scheme using zero-
knowledge proofs in zkBID. We design the Personhood
credentials (PHCs) in the form of verifiable credentials and
use them as digital certificates claiming the one-to-one
association between users and real people identities. More-
over, we use a zero-knowledge proof algorithm to generate
proofs for the validity of PHCs on the user side. The zero-
knowledge proof enables a smart contract to verify the
identity’s validity and the identity’s uniqueness without
revealing the user’s identity information in PHC to the
verifying smart contract.

2) We construct the association of an verified user with their
blockchain account using a linkable ring signature in zk-
BID. That is, the association maps the user to a blockchain
account. A property of the linkable ring signature is that it
can conceal the signer (the user). Specifically, it obfuscates
the association so that, to others, a blockchain account is
associated with a large set of users rather than the signing
user. The association with the signer is invisible but can
be verified by a smart contract on the blockchain, and thus
our approach is privacy-preserving and the accounts after
mapping are still anonymous. We also utilize the linkability
of the linkable ring signature to ensure the uniqueness of
this association (i.e., the one-to-one association between
verified identities and accounts).

3) We implement zkBID in Python, Solidity and Go and de-
ploy it on a blockchain test network of Ethereum. We con-
duct functional and performance tests for zkBID over the
blockchain test network and analyze the results. Our tests
demonstrate zkBID’s effectiveness and suggest proper ways
to configure zkBID system parameters.

In a nutshell, zkBID enables credibly anonymous identity-account
mappings on blockchain. It is fully decentralized since all informa-
tion is generated by the users themselves and verified by the smart
contracts on the blockchain.

The remainder of this paper is organized as follows. Section
2 provides the preliminaries. Section 3 presents the overview of
the zkBID’s framework and the design details of zkBID. Section 4
analyses the security of the zkBID. Section 5 delves into the system
test. Section 6 provides the discussion about related work. Section
7 concludes this paper.

2 Preliminaries
This section presents the technique preliminaries used to build our
zkBID.

2.1 Verifiable Credentials and Personhood
Credentials

Decentralized Identifiers (DIDs) proposed by the World Wide Web
Consortium (W3C) are a new type of identifier that allows verifiable
decentralized digital identity [W3C 2020]. Verifiable Credentials
(VCs) play a vital role in the utilization of DID [W3C 2024]. Within
the realm of VC, three primary roles come into play: the Issuer, the

Holder, and the Verifier. A Verifiable Credential is a statement made
by an Issuer regarding the Holder of the VC. The term "verifiable"
in VC signifies its credibility and integrity, as it is securely signed
by the Issuer using cryptography, allowing verification by a Veri-
fier. The VC specification outlines its data model as a JSON object,
encompassing metadata (such as the Issuer’s DID, issuance date,
and claim type), claims (comprising one or more assertions about
the Holder, including the Holder’s DID), and proofs (typically the
Issuer’s digital signatures).

There is an increasing concern that AIs are indistinguishable
from people online. Therefore, “personhood credentials” (PHCs)
[Adler et al. 2024], as a kind of digital credentials, have recently
been proposed to certify that users are real people, not AIs, in
online services. The operating of a PHC system is divided into two
processes, i.e., the enrollment process and the usage process. In the
enrollment process, a user is asked to prove that he is a real person
to a PHC issuer; the PHC issuer then issues a PHC to the user to
certify that the PHC issuer believes that the user applying a PHC is a
real person who has not received a PHC from them previously. PHC
issuers can be a range of trusted institutions, such as governments,
large companies or otherwise. In the usage process, a third-party
service provider can request evidence that a user holds a PHC as
part of some authorization process. PHC issusers can ensure that a
specific user who has not previously received a credential is a real
person from them through the following three main methods:

1) Existing Identity Documents: An issuer can choose a veri-
fication method that originates from a trusted source. For
instance, non-governmental issuers can issue PHCs based
on government-issued identity documents rather than de-
signing their own methods.

2) Biometric Information: By measuring persistent and unique
parts of a person (such as palms, irises, or fingerprints),
issuers can ensure that the user possessing human charac-
teristics is actually a real person rather than machine, and
each user is limited to registering only once.

3) Web of Trust: This method relies on social graph analysis
to distinguish the real person user and machine user, and
detect whether the user has received a credential before.

In the design of zkBID, we propose using the PHCs in the form
of VC as the identity credential of each human user (see Section 3).

2.2 zkSNARK
Zero-knowledge proofs are a cryptographic technique that proves
a statement’s validity without revealing any private information
about the statement. There are several types of zero-knowledge
proof algorithms. Among them, zero-knowledge succinct non-interactive
argument of knowledge (zkSNARK) is considered to be the most
practical, due to their succinct and non-interactive natures [Sun
et al. 2021]. First, the generated proof has a size of just several bytes,
and the proof can be verified in a short running time. Second, the
prover and verifier do not need to communicate synchronously
with each other during both proof generation and verification.

A zkSNARK algorithm is usually represented by an arithmetic
circuit that consists of the basic arithmetic operations of addition,
subtraction, multiplication, and division. An F-arithmetic circuit
is a circuit in which all inputs and all outputs are elements in

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Linking Souls to Humans: Blockchain Accounts with Credible Anonymity for Web 3.0 Decentralized Identity xx, xx, xx

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

a field F. Consider an F-arithmetic circuit 𝐶 that has an input
𝑥 ∈ F𝑛 , an auxiliary input 𝑤 ∈ Fℎ called a witness, and an out-
put 𝐶 (𝑥,𝑊) ∈ F𝑙 , where 𝑛,ℎ, 𝑙 are the dimensions of the input,
auxiliary input, and output, respectively. The arithmetic circuit sat-
isfiability problem of the F-arithmetic circuit 𝐶 is captured by the
relation: R𝐶 =

{
(𝑥,𝑊) ∈ F𝑛 × Fℎ : 𝐶 (𝑥,𝑊) = 0𝑙

}
, and its expres-

sion is L𝐶 =
{
𝑥 ∈ F𝑛 : ∃𝑊 ∈ Fℎ, s.t. 𝐶 (𝑥,𝑊) = 0𝑙

}
. A zkSNARK

algorithm consists of three algorithmic components [Sasson et al.
2014]:

■ (𝑃𝐾,𝑉𝐾) ← 𝐾𝐸𝑌𝐺𝐸𝑁

(
1𝜆,𝐶

)
is the key generation algo-

rithm that generates the proving key 𝑃𝐾 and the verifica-
tion key 𝑉𝐾 by using a predefined security parameter 𝜆
and an F-arithmetic circuit 𝐶 .

■ 𝜋 ← 𝑃𝑅𝑂𝑉𝐸 (𝑃𝐾, 𝑥,𝑊) is the proof generation algorithm
that generates a proof 𝜋 based on the proving key 𝑃𝐾 , the
input 𝑥 , and the witness𝑊 .

■ 1/0 ← 𝑉𝐸𝑅𝐼𝐹𝑌 (𝑉𝐾, 𝑥, 𝜋) is the proof verification algo-
rithm that outputs a decision to accept or reject 𝜋 using
𝑉𝐾 , 𝑥 and 𝜋 as the input.

In this work, we employ Groth16 [Groth 2016] as the zkSNARK
algrithm of zkBID for its fast verification process and compact
proofs. These properties are crucial for large-scale applications and
suitable for large blockchain networks.

2.3 Linkable Ring Signature
The concept of ring signature was introduced by Rivest [Rivest
et al. 2001]. A ring signature scheme allows the verifier to ascertain
that the signature was genuinely created by one of the members
within this predefined set, yet it does not provide sufficient infor-
mation to determine which specific member authored the signature.
Compared to classical ring signature, a linkable ring signature addi-
tionally allows any verifier to ascertain the fact that two signatures
were generated by the same signer [Liu and Wong 2005]. Therefor,
a linkable ring signature scheme includes four algorithmic compo-
nents (𝐺𝐸𝑁, 𝑆𝐼𝐺,𝑉𝐸𝑅, 𝐿𝐼𝑁𝐾) defined as follows:

■ (𝑝𝑘, 𝑠𝑘) ← 𝐺𝐸𝑁

(
1𝑘
)
is the key generation algorithm that

takes security parameter 𝑘 as the input and outputs a public
key 𝑝𝑘 and a private key 𝑠𝑘 .

■ 𝜎 ← 𝑆𝐼𝐺

(
1𝑘 , 1𝑛,𝑚, 𝐿, 𝑠𝑘

)
is the signing algorithm that

takes security parameter 𝑘 , ring size 𝑛, private key 𝑠𝑘 , a
ring of 𝑛 public keys 𝐿 = {𝑝𝑘𝑖 |𝑖 = 1, 2, · · · , 𝑛 } including
the signer’s own public key (i.e., 𝑝𝑘𝑖 = 𝑝𝑘 for some 𝑖) , and
message𝑚 as the input and outputs a signature 𝜎 .

■ 1/0 ← 𝑉𝐸𝑅

(
1𝑘 , 1𝑛,𝑚, 𝐿, 𝜎

)
is the signature verification

algorithm that takes security parameter 𝑘 , ring size 𝑛, a
ring of 𝑛 public keys 𝐿, message 𝑚, and signature 𝜎 as
the input and outputs 1 or 0 to indicate accept or reject
respectively.

■ 1/0 ← 𝐿𝐼𝑁𝐾

(
1𝑘 , 1𝑛,𝑚1,𝑚2, 𝜎1, 𝜎2, 𝐿1, 𝐿2

)
is the linkabil-

ity check algorithm that takes parameter 𝑘 , ring size 𝑛, two
different rings of 𝑛 public keys 𝐿1, 𝐿2, two messages𝑚1,𝑚2,
two signatures𝜎1,𝜎2, such that𝑉𝐸𝑅

(
1𝑘 , 1𝑛,𝑚1, 𝐿1, 𝜎1

)
= 1,

𝑉𝐸𝑅

(
1𝑘 , 1𝑛,𝑚2, 𝐿2, 𝜎2

)
= 1, as the input, and returns 1 or

0 for linked or unlinked, respectively.
A linkable ring signature scheme satisfies the properties of cor-

rectness, unforgeability, signer ambiguity, and linkability [Noether
et al. 2016; Wang et al. 2008]. We will explain the properties of
signer ambiguity and linkability here, as they are relevant to our
design goals. Signer Ambiguity: Given a valid signature, the proba-
bility that any attacker can correctly guess the real signer, when
the attacker has 𝑡 private keys of the ring 𝐿 and there are 𝑛 public
keys in the 𝐿, is not greater than 1/(𝑛 − 𝑡). Linkability: If a signer
(with the same private key) signs messages𝑚1 and𝑚2, producing
signatures 𝜎1 and 𝜎2, any verifier can verify if 𝜎1 and 𝜎2 were signed
by the same signer.

In this paper, we use a linkable ring signature scheme named
Multilayered Linkable Spontaneous Anonymous Group Signature
(MLSAGS) proposed by Noether in [Noether et al. 2016]. Compared
to other algorithms, MLSAGS has a lower technical complexity in
achieving linkability, making it suitable for implementing on smart
contracts. In MLSAGS, a key image 𝑦0 is computed from the private
key and public key of the signer as 𝑦0 ← 𝑠𝑘 ∗ 𝐻𝑝 (𝑝𝑘), where ∗
is the multiplication operator of finite-field polynomials, 𝐻𝑝 is a
deterministic hash function that maps a point to another point on
the elliptic curve. Since the key image 𝑦0 is unique for a signer with
the pair of (𝑠𝑘, 𝑝𝑘), and all the signatures produced by the same
signer are prepended with the same key image, these signatures by
the same signer are linkable even if the selected public keys in the
ring change.

3 Scheme Design
We exploit the zkSNARK algorithm, the linkable ring signature, and
smart contracts of blockchain to realize the scheme design of zkBID.
This section first overviews the overall design, and then gives the
details on the design.

3.1 Design Overview
The design goal of zkBID is to connect each user’s real-person iden-
tity credential to a unique blockchain account on the Ethereum
blockchain, ensuring the confidentiality of the credential informa-
tion and its association with the blockchain account. As a result,
these blockchain accounts are deemed credibly anonymous, and
are called “soul accounts”.

We leverage PHCs issued by some trusted institutions (such as
governments and large companies) as the users’ real-person identi-
ties, and design a corresponding arithmetic circuit of zkSNARK to
generate ZK proofs from the PHCs as the registration information.
By storing solely the ZK proofs of the PHCs on the blockchain
rather than the exact contents of the PHCs, user identity privacy is
preserved while still enabling verification.

We link the hash of each verified PHC to a unique blockchain
account (i.e., the soul account) in a one-to-one manner. In order to
hide the one-to-one correspondence between the PHC hash and the
soul account, we use linkable ring signatures to certify accounts
with credible anonymity. First, we associate the hash of each verified
PHC hash with a seed public key on the blockchain. Then, we apply
linkable ring signatures with a set of seed public keys to certify
each soul account. Thus, although the association between the PHC

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

xx, xx, xx Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Human

 user PHC

Seed

public key

Soul

account
PHC hash

Figure 1: Themapping relationship between the user identity
(the PHC and the PHC hash), and the seed public key, and
the soul account.

Smart

Contract

Smart

Contract

Smart

Contract

Smart

Contract

UserUser UserUserUserUserUserUser UserUserUserUser

WalletWallet

Zero-Knowledge Proof Linkable Ring Signature

 Registration-information

Generation

User-identity

Verification

Soul-account

Certification

Issuer

PHC

PHC

p),(seedPHC pkhash

),(seedpkp),(soulseed addrsig

)addr,(soulseedpk

Figure 2: The overall operational flow of the IVAC process.

hash and the seed public key is visible on the blockchain, the link
from the soul account to the PHC hash and the seed public key is
invisible. Fig. 1 illustrates the mapping relationship between the
user identity (the PHC and the PHC hash), and the seed public
key, and the soul account, where the dotted line represents the on-
chain invisible relationship and the arrow represents the one-way
computation relationship.

zkBID generates the soul accounts with credible anonymity for
users via the process that fulfills privacy-preserving identity infor-
mation generation, identity verification, and identity-to-account
mapping over the Ethereum blockchain. We refer to this process as
the on-chain identity verification and account certification (IVAC)
process. Fig. 2 illustrates the operational flow of the IVAC process.
We give the design details of the three sub-processes of IVAC in
the following.

3.2 Registration-information Generation
The primary function of the registration-information generation
sub-process is to generate the registration information that will be
used in the next sub-process. In zkBID, we leverage PHCs issued by
some trusted institutions (such as governments and large compa-
nies) as the users’ real-person identities, and design a corresponding
arithmetic circuit of zkSNARK to generate zero-knowledge proof
from the PHC as the privacy-preserving registration information
without disclosing the exact contents contained in the PHC.

PHCs are a technical framework, in which the issuer can is-
sue a digital credential to certify that the holder of this credential

{
 “id”: “ http://example.edu/credentials/27”,
 “issuer”: “id: PHC: beedf671ebcc456e12ec62”,
 “type”: [“PersonhoodCredentail”],
 “issuanceDate”: ”2024-09-14 T02: 22: 00Z”,
 “expirationDate”: “2024-12-14 T02: 22:00Z”,
 “credentialSubject”: {
 ‘’id”: “id: PHC: ebafc1f671ebbc278r16ce12”,
 “type”: “EdDSAVerificationKey”
 "publicKeyMultibase”: “zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV”
 }
 “proof”: {
 “type”: “EdDSAVerificationKey”,
 “publicKeyMultibase”: “cl3l2ATLLmv6gmLSam3uVAjZplishwDwnZn76leXxpPV”,
 “signature”: “……”
 }
}

Figure 3: An example of PHC designed in the form of VC.

is a real person and not previously registered. In zkBID, we de-
sign the format of PHCs in the form of VC, and an example is
shown in Fig. 3. A PHC in zkBID comprises the following three
significant fields: the public key of the PHC holder (i.e., the user)
𝑝𝑘ℎ𝑜𝑙𝑑𝑒𝑟 : credentialSubject.publicKeyMultibase, the public
key of the PHC issuer 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 : proof.publicKeyMultibase, and
the signature signed by the issuer over the entire PHC 𝑠𝑖𝑔𝑖𝑠𝑠𝑢𝑒𝑟 :
proof.signature.

As demonstrated in Protocol 1, to ensure privacy-preserving, the
user’s identity information is generated from their PHC as a zero-
knowledge proof using a zkSNARK program. The user locally exe-
cutes the zkSNARK’s proving algorithm 𝑧𝑘𝑆𝑁𝐴𝑅𝐾.𝑃𝑅𝑂𝑉𝐸 (𝑃𝐾, 𝑥,𝑊)
to generate the proof. The public input 𝑥 is composed of ℎ𝑎𝑠ℎ𝑃𝐻𝐶 ,
𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 and 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 , where ℎ𝑎𝑠ℎ𝑃𝐻𝐶 is the hash of the PHC,
𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 is the signature signed by the private key corresponding
to the holder public key recorded in the PHC (i.e., 𝑝𝑘ℎ𝑜𝑙𝑑𝑒𝑟 in the
PHC), and 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 is the public key of the PHC issuer. The private
witness𝑊 is composed of the original PHC data 𝑃𝐻𝐶 . As illustrated
in Fig. 4, the arithmetic circuit of the zkSNARK program checks the
validity and the ownership of the PHC according to the following
steps:

• Fist, the arithmetic circuit computes the hash of 𝑃𝐻𝐶 and
check if ℎ𝑎𝑠ℎ𝑃𝐻𝐶 in the public input is equal to the com-
puted hash to ensure that ℎ𝑎𝑠ℎ𝑃𝐻𝐶 is actually computed
from 𝑃𝐻𝐶 in the private input𝑊 .

• Second, the arithmetic circuit extracts the public key of
the holder 𝑝𝑘ℎ𝑜𝑙𝑑𝑒𝑟 from 𝑃𝐻𝐶 , and verifies the signature
𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 with the public key 𝑝𝑘ℎ𝑜𝑙𝑑𝑒𝑟 , to ensure that the
user owns 𝑃𝐻𝐶 .

• Third, the arithmetic circuit extracts the signature of the is-
suer 𝑠𝑖𝑔𝑖𝑠𝑠𝑢𝑒𝑟 from 𝑃𝐻𝐶 and verifies the signature 𝑠𝑖𝑔𝑖𝑠𝑠𝑢𝑒𝑟
with 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 , to validate 𝑃𝐻𝐶 .

If the above check steps all are passed, the arithmetic circuit outputs
TRUE with a ZK proof 𝜋 ; otherwise, it outputs FALSE. With the out-
put of TRUE, the zkSNARK proving algorithm eventually produce
the ZK proof 𝜋 for that the statement of “The PHC hash ℎ𝑎𝑠ℎ𝑃𝐻𝐶 is
computed from 𝑃𝐻𝐶 , and the signature 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 is generated using
the private key corresponding to the public key 𝑝𝑘ℎ𝑜𝑙𝑑𝑒𝑟 contained
in 𝑃𝐻𝐶 , and the signature 𝑠𝑖𝑔𝑖𝑠𝑠𝑢𝑒𝑟 is generated using the private
key corresponding to the public key 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 contained in 𝑃𝐻𝐶” is
true without revealing the exact data contents of 𝑃𝐻𝐶 .

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Linking Souls to Humans: Blockchain Accounts with Credible Anonymity for Web 3.0 Decentralized Identity xx, xx, xx

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Protocol 1 Generation of ZK proof on the user’s PHC
Input: ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 , 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 , 𝑃𝐻𝐶

Setup: (𝑃𝐾,𝑉𝐾) ← zkSNARK. KEYGEN(1𝜆,𝐶)
Generate proof:
𝑥 ← (ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 , 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟)
𝑊 ← 𝑃𝐻𝐶

𝜋 ← zkSNARK. PROVE(𝑃𝐾, 𝑥,𝑊)
return : 𝜋

circuit input circuit logic circuit output

secret

input
PHC

public

input

ℎ𝑎𝑠ℎ𝑃𝐻𝐶

𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟

𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟

Compute the
hash of PHC

Extract 𝑝𝑘ℎ𝑜𝑙𝑑𝑒𝑟
from PHC

Check if they are equal

Extract 𝑠𝑖𝑔𝑖𝑠𝑠𝑢𝑒𝑟
from PHC

Verify the signature

𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟with 𝑝𝑘ℎ𝑜𝑙𝑑𝑒𝑟

Verify the signature

𝑠𝑖𝑔𝑖𝑠𝑠𝑢𝑒𝑟with 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟

output result

Figure 4: The block diagram of the arithmetic circuit in the
zkSNRAK algorithm.

3.3 User-Identity Verification
The primary function of the user-identity verification sub-process
is to verify the user’s real-person identity by verifying the ZK proof
of the user’s identity (generated from the PHC) and to prevent
the user from repeatedly registering by checking that the hash of
user’s PHC is not used. A user-identity verification contract on the
blockchain performs these functions in this sub-process.

First, the key generation algorithm of the linkable ring signature
scheme,MLSAGS, is executed to generate a key pair (𝑝𝑘𝑠𝑒𝑒𝑑 , 𝑠𝑘𝑠𝑒𝑒𝑑),
which is called the seed key pair. Then, the ZK proof 𝜋 , the public
input of the zkSNARK program (ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 and 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟)
and the seed public key 𝑝𝑘𝑠𝑒𝑒𝑑 are encapsulated in the data field of
a transaction, and the transaction is sent to the on-chain address of
the contract to trigger the execution of the user-identity verification
contract. Although the exact PHC is not sent, the contract still can
verify the ownership and validity of the PHC by verifying 𝜋 . And the
contract prevents the user from repeatedly registering by checking
that there is no more than one seed public key for the same identity
(i.e., checking that the hash of the PHC is not recorded in the
contract for registration previously). As demonstrated in Protocol
2, when the user-identity authentication contract is triggered by
the transaction, the contract executes the following steps one by
one:

• The contract gets the public key of the PHC issuer 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟
predefined in the contract and checks if this predefined one
is the same as the the public key of the PHC issuer contained
in the public input of zkSNARK sent by the transaction.

• The contract passes the public input (ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟
and 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟) and the ZK proof 𝜋 as the input parameters to
run the zkSNARK’s verifying function 𝑧𝑘𝑆𝑁𝐴𝑅𝐾.𝑉𝐸𝑅𝐼𝐹𝑌 .

• The contract traverse its on-chain storage space to see
whether ℎ𝑎𝑠ℎ𝑃𝐻𝐶 has previously been recorded.

If all the steps above pass, this user is deemed a newly authenticated
user. The hash of PHC ℎ𝑎𝑠ℎ𝑃𝐻𝐶 and the seed public key 𝑝𝑘𝑠𝑒𝑒𝑑

Protocol 2 User-identity verification smart contract
Input: 𝜋,ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 , 𝑝𝑘𝑠𝑒𝑒𝑑
Authentication:
𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 ← GetIssuerPK()
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ← zkSNARK.VERIFY(𝑉𝐾,ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑝𝑘𝑖𝑠𝑠𝑢𝑒𝑟 , 𝜋)
if 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ≠ 1 then

return "Verification failed"
end if
𝑠𝑡𝑜𝑟𝑒𝑑 ← Traverse(ℎ𝑎𝑠ℎ𝑃𝐻𝐶)
if 𝑠𝑡𝑜𝑟𝑒𝑑 ≠ 0 then

return "Already registered"
end if
Store(ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑝𝑘𝑠𝑒𝑒𝑑)
return : "Authentication succeed"

are treated as valid and they are recorded by the smart contract
onto the blockchain as a key-value pair (ℎ𝑎𝑠ℎ𝑃𝐻𝐶 , 𝑝𝑘𝑠𝑒𝑒𝑑). The
hash ℎ𝑎𝑠ℎ𝑃𝐻𝐶 will be used to prevent from duplicate registration
with the same PHC without disclosing the exact contents of the
PHC. The seed account’s public key 𝑝𝑘𝑠𝑒𝑒𝑑 recorded by the smart
contract is a certificate for the user to create a privacy-preserving
and credibly anonymous identity (account) over the blockchain in
the soul account certification sub-process.

3.4 Soul Account Certification
The main function of the soul account certification sub-process is
to certify that the soul account is one-to-one associated with a legal
seed public key already registered on the blockchain. First, the soul
account is generated as an ordinary Ethereum blockchain account.
Then, the association of the soul account with the seed account
is locally established by the user using the linkable ring signature
algorithm. Finally, the soul account and the linkable ring signature
are sent to the soul account certification contract on the blockchain
to verify the established association. The verified soul account is a
privacy-preserving and credible identity that enables the user to
act on the blockchain in an credibly anonymous way.

For soul account certification, first, the user generates a soul
account denoted by a triple that includes the account address, the
public key, and the private key: (𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 , 𝑝𝑘𝑠𝑜𝑢𝑙 , 𝑠𝑘𝑠𝑜𝑢𝑙). Then, the
user selects a group of seed public keys from all current legal seed
public keys, including the user’s own seed public key 𝑝𝑘𝑠𝑒𝑒𝑑 , to form
a ring of seed public keys 𝐿. The user computes a key image𝑦0 based
on his/her seed key pair (𝑝𝑘𝑠𝑒𝑒𝑑 , 𝑠𝑘𝑠𝑒𝑒𝑑):𝑦0 ← 𝑠𝑘𝑠𝑒𝑒𝑑 ∗𝐻𝑝 (𝑝𝑘𝑠𝑒𝑒𝑑).
After that, the user generates a linkable ring signature in which the
message to be signed is the address of the soul account 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 .
The seed private key of the user 𝑠𝑘𝑠𝑒𝑒𝑑 , the key image 𝑦0 and
the ring of the selected seed public keys 𝐿 are used to sign the
message using the linkable ring signature scheme in [Noether et al.
2016]. The signing process 𝜎 ← 𝑆𝐼𝐺 (1𝑘 , 1𝑛, 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 , 𝐿, 𝑠𝑘𝑠𝑒𝑒𝑑) is
shown in Fig. 5. Note that the produced signature has the form of
𝜎 = (𝑦0, · · ·), where𝑦0 is the tag tied to the seed private key, 𝑠𝑘𝑠𝑒𝑒𝑑 ,
to prevent multiple registrations of the same seed public key.

After that, the user constructs a transaction to trigger the user-
soul-account certification contract. As shown in Protocol 3, the soul-
account certification contract is executed to verify the correctness

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

xx, xx, xx Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Linkable Ring
Signature Verifier
(Smart Contract)

 the selected L-1 public
keys from the recorded

seed public keys

the seed public key of
the user

the key image

the seed private key of
the user

the address of the soul
account of the user

Linkable Ring
Signature
Producer

Signature Generation

the address of the soul
account of the user

the
signature

the ring
of L public

keys

the ring

False

True

Signature Verification

Figure 5: The illustration of the generation and verification
process of a linkable ring signature.

and the uniqueness of the linkable ring signature𝜎 = (𝑦0, · · ·) using
the signed message 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 and the ring of the selected seed public
keys 𝐿. Firstly, the smart contract will execute verification func-
tion of the linkable ring signature, 𝐿𝑅𝑆.𝑉𝐸𝑅(1𝑘 , 1𝑛, 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 , 𝐿, 𝜎)
to check if the 𝜎 is valid. Secondly, the smart contract will check
whether 𝜎.𝑦0 is previously stored on the smart contract by the
function 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝜎.𝑦0). If these checks are passed, the verified
address of the soul account 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 and the key image 𝑦0 will
be recorded in the on-chain storage of the soul account certifi-
cation contract. In this way, the certification of the soul account,
(𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 , 𝑝𝑘𝑠𝑜𝑢𝑙 , 𝑠𝑘𝑠𝑜𝑢𝑙), is finished.

Since the key image generated by the seed public key and the
seed private key is unique, one seed key pair can only generate one
valid linkable ring signature for the certification, thus ensuring a
strict one-to-one association of a soul account with the seed key
pair. Moreover, since the association is established using linkable
ring signatures, although anyone can verify the association, they
cannot tell which seed public key in the ring produces this sig-
nature. Therefore, the soul account is uniquely tied to the user’s
identity but can still preserve privacy at the same time. The certified
soul accounts can be used on the blockchain as the credible and
accountable representatives of users’ identities to conduct various
activities.

4 Security Analysis
In this section, we will conduct a comprehensive analysis of the
security of the zkBID protocol. The zkBID protocol has been metic-
ulously designed to to satisfy the following security properties:

1) Identity Uniqueness: The protocol prevents malicious at-
tackers from repetitive registration, that is, an user cannot
register for multiple soul accounts.

2) Unforgeability: The protocol prevents malicious attackers
from pretending an honest user to certify a new soul ac-
count.

Protocol 3 User-soul-account certification smart contract
Input: 𝜎, 𝐿, 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙
Certification:
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ← LRS.VER(1𝑘 , 1𝑛, 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙 , 𝐿, 𝜎)
if 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ≠ 1 then

return "Verification failed"
end if
𝑠𝑡𝑜𝑟𝑒𝑑 ← Traverse(𝜎.𝑦0)
if 𝑠𝑡𝑜𝑟𝑒𝑑 ≠ 0 then

return "Already certified"
end if
Store(𝜎.𝑦0, 𝑎𝑑𝑑𝑟𝑠𝑜𝑢𝑙)
return : "Certification succeed"

3) Anonymity: The protocol prevents malicious attackers from
detecting the association between the user identity (PHC)
and the soul account.

Malicious attackers may target the zkBID protocol from various
dimensions. To construct a framework for the security analysis of
the zkBID protocol, We set several preconditions:

• preconditions 1: Malicious attackers are computational
adversaries with polynomial time constrains.

• preconditions 2: Verifiers are honest and will not collude
with malicious attackers to accept false verification requests
as valid ones.

• preconditions 3: Each user can only obtain one PHC from
the issuer.

The setups of precondition 1 are commonly acceptable. Since
the verifiers of zkBID protocol are smart contracts deployed on the
blockchain, including the user-identity authentication and the user-
soul-account certification smart contracts, we consider precondition
2 to be reasonable with the support of blockchain security. As
mentioned in Section 2, issuers have various schemes to limit users
from registering multiple PHCs, making precondition 3 acceptable
as well. Meanwhile, the security of Groth16 and that of MLSAGS
have been established in their papers [Groth 2016; Noether et al.
2016]. Therefore, we assume that the Groth16 and MLSAGS are
secure. By considering these preconditions and already established
securities of the cryptographic building blocks, we identify the
following important attack vectors and analyse how zkBID can
avoid them to maintain its security.

4.1 Sybil Attack
Malicious attackers, having already obtained a certified soul ac-
count, may attempt to have a new soul account using the same
PHC or seed public key. For that purpose, malicious attackers have
two possible methods: 1) Attackers may use the same PHC to as-
sociate with a new seed public key, then uses this new seed public
key to certify a new soul account. 2) Attackers may use the seed
public key that has already been used to directly certify a new soul
account.

Analysis: We present the analysis about the above two kinds of
sybil attack as follows.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Linking Souls to Humans: Blockchain Accounts with Credible Anonymity for Web 3.0 Decentralized Identity xx, xx, xx

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1) In the process of certifying a new seed account, the user-
identity verification smart contract will verify the registration infor-
mation as demonstrated in Protocol 2. The verification requires that
the hash of the provided PHC has not been previously stored. Due
to the collision-resistance property of hash algorithms [Bakhtiari
et al. 1995], each PHC can only generate one unique hash value.
Furthermore, as mentioned in Section 3, the arithmetic circuit of
zkSNARK will check that the PHC hash provided is indeed com-
puted from the private input𝑊 containing the whole data of the
PHC. Owing to the soundness property of zkSNARKs [Groth 2016],
attackers can successfully pass the verification via a falsified hash
with a negligible probability.

2) When certifying a new soul account, as specified in Protocol
3, the user-soul-account certification contract checks whether the
key image 𝑦0 included in the input linkable ring signature has been
previously used. If it has, the verification will fail. Based on the
linkability of linkable ring signatures [Noether et al. 2016], attackers
are unable to construct two valid signatures with different key
images using the same seed private key.

Consequently, it is impossible to register two seed accounts using
the same PHC or seed public key.

4.2 Linkage Attack
Malicious attackers can establish a linkage between the user’s iden-
tity (the PHC hash) and the soul account by compromising the
actual signer of the ring signature stored on the blockchain.

Analysis: Based on the signer ambiguity property of linkable
ring signatures [Noether et al. 2016], attackers possessing 𝑡 private
keys from the ring 𝐿 have only a probability of 1/(𝑛-𝑡) in correctly
identifying the true signer. Hence, it becomes infeasible for attack-
ers to establish a linkage between the user’s identity and the soul
account.

4.3 Forgery Attack
Malicious attackers may pretend honest users by forging signa-
tures to obtain soul accounts. There are two possible methods by
which attackers can achieve this goal: 1) Assuming attackers have
access to an honest user’s PHC, the attackers may forge the user’s
signature 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 to generate a valid zkSNARK proof. By passing
the verification of the user-identity authentication contract, the
attackers can obtain a registered seed public key and use this seed
public key to certify a new soul account. 2) Since the seed public
keys registered of honest users are publicly stored on blockchain,
if attackers can forge a valid linkable ring signature 𝑠𝑖𝑔𝑠𝑒𝑒𝑑 of an
honest user, they would be able to certify a new soul account.

Analysis: We present the analysis about the above two kinds of
forgery attack as follows.

1) According to the unforgeability property of the EdDSA algo-
rithm [Josefsson and Liusvaara 2017] and the soundness property
of zkSNARKs, attackers cannot forge 𝑠𝑖𝑔ℎ𝑜𝑙𝑑𝑒𝑟 of any honest user
or create valid zkSNARK proof without valid signature.

2) According to the unforgeability property of linkable ring sig-
natures [Noether et al. 2016], attackers are incapable of forging a
valid signature of any registered seed account.

Consequently, the zkBID protocol is secure against forgery at-
tacks.

5 Experimental Evaluations
In this section, we present the results of experiments conduced
on our zkBID prototype system. We set up a test network for the
Ethereum blockchain, consisting of six full Ethereum nodes running
on the proof-of-work consensus protocol, hosted on Alibaba Cloud.
Each node runs a Go-Ethereum [Ethereum Foundation [n. d.]] client.
We adopted a fully connected network topology between the nodes,
with each node having an independent IP address. One more user
node hosted on Alibaba Cloud is connected to one Ethereum node
and runs the user-side functions. All the Ethereum nodes and the
user node in our experiments are equipped with an Ubuntu 20.04
operating system, an Intel(R) Core(TM) i7-10700 CPU@ 2.90GHz,
and 48GB RAM.

Our zkBID prototype deploys the user-identity verification and
soul-account certification smart contracts, both implemented in
Solidity, on the Ethereum test network. The zkSNARK algorithm
employed in this system is Groth16. The setup and proof generation
for Groth16 are all accomplished on the Circom 2 platform [iden3
2024]. For linkable ring signatures, the system utilizes MLSAGS.
We implemented the key generation and signing algorithms for
MLSAGS in Python, while the MLSAGS signature verification con-
tract was developed in Solidity. To assess the performance of the
prototype system, we evaluated it across six key metrics:

• ZK Proof Generation Time: The time consumed to generate
an ZKP in the Groth16 proving algorithm.

• ZK Proof Size: The number of bytes used to construct an
ZKP in the Groth16 proving algorithm.

• ZK Proof Verification Costs: The amount of gas required to
execute the user-identity verification smart contract on the
blockchain to verify the ZKP.

• Arithmetic Circuit Size: The number of R1CS constraints
contained in the arithmetic circuits used by Groth16.

• MLSAGS Signature Generation Time: The time consumed
to generate a linkable ring signature of MLSAGS.

• MLSAGS Signature Verification Costs: The amount of gas re-
quired to execute the user-soul-account certification smart
contract on the blockchain to verify a linkable ring signa-
ture of MLSAGS.

We first conducted experiments to evaluate the zkSNARK algo-
rithm, Groth16, as applied in zkBID. Specifically, we employed a
single arithmetic circuit to verify a batch of multiple PHCs and
measured key performance metrics such as the ZK proof gener-
ation time, ZK proof size, ZK proof verification cost, and circuit
size for different batch sizes of PHCs across varying batch sizes. As
shown in Fig. 6 (a), although the circuit size increases with the batch
size of PHCs, the proof size remains constant (192 Bytes), which
highlights the advantage of Groth16. Fig. 6 (b) shows that both the
ZK proof generation time and the ZK proof verification costs in
Groth16 increase linearly with the batch size of PHCs. Due to the
limitation on Ethereum’s contract size, verification contracts with
batch sizes of 64 and above cannot be deployed on-chain. There-
fore, 6 (b) only presents the gas costs for verifying the batch of
PHCs with sizes below 32. We can see from 6 (b) when a batch
contains only one PHC, the proof verification costs is 215.7K gas.
The proof verification costs rises to 1040.0K gas when the batch
contains 32 PHCs. Moreover, we can compute that in average the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

xx, xx, xx Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 2 4 8 16 32 64 12
8

PHC Batch Size

185

190

195

200

Si
ze

/ B
yt

es

(a)
ZK Proof Size

1 2 4 8 16 32 64 12
8

PHC Batch Size

20

40

60

80

100

G
as

/ 1
0k

(b)
ZK Proof Verification Costs

0

50

100

150

200

C
on

st
ra

in
ts

/ 1
0k

Arithmetic Circuit Size

0

10000

20000

30000

40000

50000

Ti
m

e
/m

s

ZK Proof Generation Time

Figure 6: The costs of Groth16: (a) the number of R1CS con-
straints contained in the arithmetic circuits and bytes used
to construct an ZKP; (b) the amount of gas required to verify
the ZKP and the time consumed to generate the ZKP.

12 4 8 16 32 64 12
8

Ring Size

0

200

400

600

G
as

/ 1
0k

0

1000

2000

3000

4000

5000

6000
Ti

m
e

/m
s

MLSAGS Signature Verification Costs
MLSAGS Signature Generation Time

Figure 7: The amount of gas required to verify the signature
of MLSAGS and the time consumed to generate the signature
of MLSAGS.

gas consumption used to verify one PHC is 32.5K when the batch
size is 32, which represents an approximate 7X gas consumption
reduction compared to the individual verification of each PHC.

Additionally, We then conduct experiments to investigate the
linkable ring signature algorithm of MLSAGS used in zkBID. Fig. 7
presents the MLSAGS signature generation time and gas consump-
tion for on-chain signature verification with respect to different
ring size 𝐿. Both the signature generation time and the signature
verification costs exhibit a linear relationship with the ring size.
For each additional seed public key in the ring, the signature gen-
eration time increases by approximately 40 milliseconds, while the
signature verification cost rises by roughly 57,000 gas, both are
acceptable in practice.

6 Related Work
There exist various approaches that leverage ZKP for privacy-
preserving decentralized identity systems on the blockchain. For
instance, Niya et al. [Niya et al. 2019] introduced TradeMap, an
anonymous KYC (Know Your Customer) platform compliant with
FINMA regulations, while Pauwels et al. [Pauwels et al. 2022] ap-
plied a ZKP-based KYC system to DeFi protocols. Aydar et al. [Aydar
et al. 2019] and Singh et al. [Singh et al. 2020] proposed blockchain-
based digital identity verification frameworks enabling users to
access services without revealing sensitive attributes. Abraham et

Work Design Goals
DG1 DG2 DG3 DG4

[Niya et al. 2019]
[Pauwels et al. 2022]
[Aydar et al. 2019]
[Singh et al. 2020]

[Abraham et al. 2020]
[Rathee et al. 2022]
[Zhang et al. 2024]
[Kim and Ryou 2023]

zkBID
Table 1: Evaluating schemes against design goals.

al. [Abraham et al. 2020] extended the self-sovereign identity (SSI)
model to support credential revocation and offline verification. In a
similar vein, Rathee et al. [Rathee et al. 2022] introduced the ZEBRA
scheme, utilizing zkSNARKs for cost-effective on-chain anonymous
credential verification. Zhang et al. [Zhang et al. 2024] proposed a
ZKP identity authentication protocol applicable to energy trading.
Additionally, Kim et al. [Kim and Ryou 2023] presented a digital
identity authentication system for the metaverse that combines
Soulbound Tokens (SBTs) and Decentralized Identifiers (DIDs) for
KYC processes, ensuring privacy and compliance through ZKPs.
Table I offers a comparative analysis of our zkBID solution with
these approaches based on the key design goals giveb below.

DG1: Technology Flexibility: The solution is adaptable and not
limited to any specific technology, such as a particular ZKP
algorithm or blockchain.

DG2: Identity Anonymity: No entity or individual can ascertain
or derive the identity of a user from their on-chain activities.

DG3: Identity Credible: Each identity’s can credibly be connected
with the corresponding real-world user.

DG4: Privacy-preserving document storage: Identity documents
are stored confidentially and are not publicly visible.

7 Conclusion
This work introduces zkBID, a decentralized Web 3.0 identity solu-
tion on the blockchain that leverages zero-knowledge proofs, link-
able ring signatures, and smart contracts. By addressing anonymity
challenges in current blockchain account systems while safeguard-
ing user identity privacy, zkBID employs an identity verification
framework based on zero-knowledge proofs and a mapping system
using linkable ring signatures. Identity verification in zkBID uti-
lizes the recent personhood credentials to ensure the legitimacy and
uniqueness of the registered identities. Through a zero-knowledge
proof algorithm, users can generate proof for their identities from
personhood credentials securely. The one-to-one mapping of ver-
ified identities to blockchain accounts in zkBID is protected by
linkable ring signatures, enhancing user privacy. These signatures
also ensure the uniqueness of the mappings. We developed a zkBID
prototype and tested it on a 6-node blockchain network on Alibaba
Cloud, demonstrating its functionality and performance. Compar-
ative analysis with existing blockchain based identity solutions
highlights the distinct advantages of zkBID.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Linking Souls to Humans: Blockchain Accounts with Credible Anonymity for Web 3.0 Decentralized Identity xx, xx, xx

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
Andreas Abraham, Stefan More, Christof Rabensteiner, and Felix Hörandner. 2020.

Revocable and offline-verifiable self-sovereign identities. In 2020 IEEE 19th Interna-
tional Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 1020–1027.

Steven Adler, Zoë Hitzig, Shrey Jain, Catherine Brewer, Wayne Chang, Renée DiResta,
Eddy Lazzarin, Sean McGregor, Wendy Seltzer, Divya Siddarth, et al. 2024. Per-
sonhood credentials: Artificial intelligence and the value of privacy-preserving
tools to distinguish who is real online. arXiv preprint arXiv:2408.07892 (2024).
https://doi.org/10.48550/arXiv.2408.07892

Mehmet Aydar, Serkan Ayvaz, and Salih Cemil Cetin. 2019. Towards a Blockchain
based digital identity verification, record attestation and record sharing system.
arXiv preprint arXiv:1906.09791 (2019).

Shahram Bakhtiari, Reihaneh Safavi-Naini, Josef Pieprzyk, et al. 1995. Cryptographic
hash functions: A survey. Technical Report. Citeseer.

Ethereum Foundation. [n. d.]. go-ethereum: Official Go implementation of the
Ethereum protocol. https://github.com/ethereum/go-ethereum. Accessed: 2024-10-
14.

Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In Annual
international conference on the theory and applications of cryptographic techniques.
Springer, 305–326.

iden3. 2024. Circom. https://github.com/iden3/circom. Accessed: 2024-10-14.
Simon Josefsson and Ilari Liusvaara. 2017. Edwards-curve digital signature algorithm

(EdDSA). Technical Report.
Geunyoung Kim and Jaecheol Ryou. 2023. Digital Authentication System in Avatar

Using DID and SBT. Mathematics 11, 20 (2023), 4387.
Joseph K Liu and Duncan S Wong. 2005. Linkable ring signatures: Security models

and new schemes. In Computational Science and Its Applications–ICCSA 2005: In-
ternational Conference, Singapore, May 9-12, 2005, Proceedings, Part II 5. Springer,
614–623.

Sina Rafati Niya, Sebastian Allemann, Arik Gabay, and Burkhard Stiller. 2019.
TradeMap: a FINMA-compliant anonymous management of an end-2-end trad-
ing market place. In 2019 15th International Conference on Network and Service
Management (CNSM). IEEE, 1–5.

Shen Noether, Adam Mackenzie, et al. 2016. Ring confidential transactions. Ledger 1
(2016), 1–18.

Pieter Pauwels, Joni Pirovich, Peter Braunz, and Jack Deeb. 2022. zkKYC in DeFi: An
approach for implementing the zkKYC solution concept in Decentralized Finance.
Cryptology ePrint Archive (2022).

Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and Dawn
Song. 2022. ZEBRA: SNARK-based Anonymous Credentials for Practical, Private
and Accountable On-chain Access Control. Cryptology ePrint Archive (2022).

Ronald L Rivest, Adi Shamir, and Yael Tauman. 2001. How to leak a secret. In Interna-
tional conference on the theory and application of cryptology and information security.
Springer, 552–565.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and privacy. IEEE, 459–474.

Kalpana Singh, Omar Dib, Clément Huyart, and Khalifa Toumi. 2020. A novel credential
protocol for protecting personal attributes in blockchain. Computers & Electrical
Engineering 83 (2020), 106586.

Xiaoqiang Sun, F. Richard Yu, Peng Zhang, Zhiwei Sun, Weixin Xie, and Xiang Peng.
2021. A Survey on Zero-Knowledge Proof in Blockchain. IEEE Network 35, 4 (2021),
198–205. https://doi.org/10.1109/MNET.011.2000473

W3C. 2020. Decentralized Identifiers (DIDs) v1.0. https://www.w3.org/TR/did-core/.
accessed: 2020-02-06.

W3C. 2024. Verifiable Credentials Data Model v2.0. [Online]. Available: https://www.
w3.org/TR/vc-data-model-2.0/. Accessed: May 15, 2024.

Lingling Wang, Guoyin Zhang, and Chunguang Ma. 2008. A survey of ring signature.
Frontiers of Electrical and Electronic Engineering in China 3 (2008), 10–19.

Taotao Wang, Shengli Zhang, Qing Yang, and Soung Chang Liew. 2023. Account
service network: a unified decentralized web 3.0 portal with credible anonymity.
IEEE Network 37, 6 (2023), 101 – 108.

E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. 2022. Decentralized Society: Finding
Web3’s Soul. Available at SSRN 4105763 (2022).

Phillip J Windley. 2005. Digital Identity: Unmasking identity management architecture
(IMA). O’Reilly Media, Inc.

Peng Zhang, Peilin Wu, Yuhong Liu, Ye Chen, Yuanliang Li, Jun Yan, and Mohsen
Ghafouri. 2024. Toward a Blockchain-Based, Reputation-Aware Secure Transactive
Energy Market. Blockchains 2, 1 (2024), 61–78.

9

https://doi.org/10.48550/arXiv.2408.07892
https://github.com/ethereum/go-ethereum
https://github.com/iden3/circom
https://doi.org/10.1109/MNET.011.2000473
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Verifiable Credentials and Personhood Credentials
	2.2 zkSNARK
	2.3 Linkable Ring Signature

	3 Scheme Design
	3.1 Design Overview
	3.2 Registration-information Generation
	3.3 User-Identity Verification
	3.4 Soul Account Certification

	4 Security Analysis
	4.1 Sybil Attack
	4.2 Linkage Attack
	4.3 Forgery Attack

	5 Experimental Evaluations
	6 Related Work
	7 Conclusion
	References

