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Abstract

Linear neural network layers that are either equiv-
ariant or invariant to permutations of their inputs
form core building blocks of modern deep learn-
ing architectures. Examples include the layers of
DeepSets, as well as linear layers occurring in
attention blocks of transformers and some graph
neural networks. The space of permutation equiv-
ariant linear layers can be identified as the in-
variant subspace of a certain symmetric group
representation, and recent work parameterized
this space by exhibiting a basis whose vectors are
sums over orbits of standard basis elements with
respect to the symmetric group action. A parame-
terization opens up the possibility of learning the
weights of permutation equivariant linear layers
via gradient descent. The space of permutation
equivariant linear layers is a generalization of the
partition algebra, an object first discovered in sta-
tistical physics with deep connections to the repre-
sentation theory of the symmetric group, and the
basis described above generalizes the so-called
orbit basis of the partition algebra. We exhibit
an alternative basis, generalizing the diagram ba-
sis of the partition algebra, with computational
benefits stemming from the fact that the tensors
making up the basis are low rank in the sense that
they naturally factorize into Kronecker products.
Just as multiplication by a rank one matrix is far
less expensive than multiplication by an arbitrary
matrix, multiplication with these low rank tensors
is far less expensive than multiplication with ele-
ments of the orbit basis. Finally, we describe an
algorithm implementing multiplication with these
basis elements.
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1. Introduction
Invariance or equivariance to application-driven symme-
try groups has served as a guiding light for the design of
neural network architectures for over two decades, dating
back at least to the introduction of convolutional networks
(Fukushima, 1980). In the case where the underlying sym-
metries are permutations, several families of architectures
have appeared in the last five years: DeepSets (Zaheer et al.,
2018) (and its successors), neural networks operating on
graphs (where invariance to node permutations is a natural
desiderata) (Maron et al., 2018), and transformers (Vaswani
et al., 2017).

Permutation equivariant linear layers are linear maps
(Rn)⊗m → (Rn)⊗m

′
equivariant with respect to the sym-

metric group Σn acting “diagonally” on tensors on the do-
main and target (Section 2 includes background and more
detailed definitions). These include linear layers used in
DeepSets and some layers of transformers (for the later case
see (Kim et al., 2021), ((Bronstein et al., 2021), §5.4)) as
special cases and as such are a fundamental building block
for permutation equivariant/invariant models. Theorem 1 of
(Maron et al., 2018), which computes a basis for the vector
space parameterizing permutation equivariant linear layers,
opens up the possibility of learning these layers, i.e. treating
the parameters as weights and optimizing them with some
form of gradient descent.

There are good reasons related to computational efficiency
for avoiding the basis introduced in (Maron et al., 2018):
under a natural identification, permutation equivariant linear
layers can be identified as tensors living in (Rn)⊗(m+m′).
Just as multiplication by a rank one matrix of the form
uvT , where u and v are vectors, can be executed far faster
with sequential dot products than multiplication with an
arbitrary matrix, contraction with a tensor in (Rn)⊗(m+m′)

that decomposes as a Kronecker product, say u⊗ v where
u ∈ (Rn)⊗p, v ∈ (Rn)⊗p

′
and p+ p′ = m+m′, will gen-

erally be less expensive than contraction with an arbitrary
tensor in (Rn)⊗(m+m′) . Unfortunately, many of the basis
vectors found in ((Maron et al., 2018), Thm.1) lack such a
decomposition (an example is given in Appendix E).

Our main result, Theorem 4.3 below, exhibits an alternative
basis for permutation equivariant linear layers in which all
but one basis vector are explicitly constructed as Kronecker
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products. In this construction, we exploit the fact that the
direct sum of the vector spaces of permutation equivariant
linear layers, ranging from zero to infinity, forms an algebra
in which multiplication is the Kronecker product.

In the case where m = m′, this basis is known: permu-
tation equivariant layers (Rn)⊗m → (Rn)⊗m are exactly
the partition algebra, an object first discovered in the con-
text of statistical mechanics in the mid 1990s that has since
been extensively studied by mathematicians (Halverson &
Ram, 2005; Benkart & Halverson, 2017) , and the basis of
Theorem 4.3 is simply the “diagram basis” of the partition
algebra (that of (Maron et al., 2018), Thm. 1 is known as the
“orbit sum” basis). We view this connection as a beautiful
example of an idea that originated in physics and made its
way into deep learning architectures which are now being
applied to model physical phenomena, for example predict-
ing molecular geometry using the ZINC dataset (Sterling &
Irwin, 2015).

For the sake of concreteness we work over R throughout,
but all mathematical results in this paper apply over any
field, including the complex numbers C and the finite field
Z/2. This is not generality for generality’s sake, as the latter
is used in quantized neural networks.

The contributions of this paper include: (i) an explicit con-
struction of an alternative basis for the space of permutation
equivariant linear layers, (ii) verification that in the case
where the permutation equivariant linear layers are the par-
tition algebra, our basis coincides with the diagram basis,
and (iii) outlining an algorithm implementing multiplication
with these basis elements, and in the process showing they
recover the efficient operations of (Pan & Kondor, 2022).

For discussion of related work please see Appendix A.

2. Background
We fix a natural number n ∈ N. In applications, this is
the cardinality of the set on which a permutation equivari-
ant/invariant model operates. The vector space Rn comes
with a natural action of the symmetric group on n elements,
denoted Σn, permuting the basis vectors {e1, . . . , en}:

σ · ei = eσ(i) for σ ∈ Σn, i = 1, . . . , n. (2.1)

For each natural number m ∈ N the m-th tensor power

(Rn)⊗m = Rn ⊗ Rn ⊗ · · · ⊗ Rn︸ ︷︷ ︸
m times

(2.2)

is also a representation of Σn with the “diagonal” action,
defined for a σ ∈ Σn and basis tensor v1 ⊗ · · · ⊗ vm ∈
(Rn)⊗m as σ · (v1⊗ · · · ⊗ vm) := (σ · v1)⊗ · · · ⊗ (σ · vm).
Remark 2.3. When m = 0 we adopt the convention
(Rn)⊗m = R with the trivial Σn action.

We denote the vector space of all (not necessar-
ily equivariant) linear maps (Rn)⊗m → (Rn)⊗m

′

by Hom((Rn)⊗m, (Rn)⊗m
′
). A linear map ϕ ∈

Hom((Rn)⊗m, (Rn)⊗m
′
) is Σn-equivariant if and only if

ϕ(σ · v) = σ · ϕ(v) for all σ ∈ Σn, v ∈ (Rn)⊗m, and we
denote the vector space of such Σn-equivariant linear maps
Hom((Rn)⊗m, (Rn)⊗m

′
)Σn .

Problem 2.4. Parameterize Hom((Rn)⊗m, (Rn)⊗m
′
)Σn ,

for example by giving a basis for it as a subspace of
Hom((Rn)⊗m, (Rn)⊗m

′
).

The next two elementary results will be useful in what fol-
lows. Proofs are deferred to the appendix.

Lemma 2.5 (cf. (Halverson & Ram, 2005), §3).
Hom((Rn)⊗m, (Rn)⊗m

′
)Σn is isomorphic to the Σn-

invariant subspace of the tensor power (Rn)⊗(m+m′).

Corollary 2.6. The dimension of
Hom((Rn)⊗m, (Rn)⊗m

′
)Σn is a function of the sum

m+m′ (for fixed n). Moreover, given any parametrization
of the Σn-invariant subspace of (Rn)⊗l for some l ∈ N
there is a simple recipe to produce parametrizations of
Hom((Rn)⊗m, (Rn)⊗m

′
)Σn for all m+m′ = l.

Lemma 2.5 and Corollary 2.6 reduce Problem 2.4 to the
computation of the invariant subspace ((Rn)⊗l)Σn . Now we
give our notation for partitions. Given a tuple (i1, . . . , il) ∈
{1, . . . , n}l, define subsets S(i1, . . . , il)j ⊆ {1, . . . , l} for
j = 1, . . . , n by S(i1, . . . , il)j = {k ∈ {1, . . . , l} | ik =
j}. By construction these subsets are pairwise disjoint and
their union is {1, . . . , l}; thus, they form a set partition of
{1, . . . , l}, which we will denote by

Π(i1, . . . , il) = {S(i1, . . . , il)j | j = 1, . . . , n}. (2.7)

In this way we obtain a map from tuples (i1, . . . , il) ∈
{1, . . . , n}l to set partitions Π(i1, . . . , il) of {1, . . . , l}. The
next lemma shows that the partition Π(i1, . . . , il) uniquely
characterizes the Σn-orbit of (i1, . . . , il). For an illustration
of the lemma in an explicit example, see Appendix E.

Lemma 2.8 (cf. (Jones, 1994) §1, (Benkart & Halverson,
2017) §5.2). The tuples (i1, . . . , il) and (i′1, . . . , i

′
l) lie in

the same Σn orbit if and only if they give rise to the same
partition of {1, . . . , l}, i.e. Π(i1, . . . , il) = Π(i′1, . . . , i

′
l).

The main theorem of (Maron et al., 2018) solves Prob-
lem 2.4 by exhibiting a basis described as follows: Let
P be a fixed set partition of of {1, . . . , l}, and define

eP =
∑

(i1,...,il):Π(i1,...,il)=P
ei1 ⊗ ei2 ⊗ · · · ⊗ eil

∈
(
(Rn

)
⊗l)Σn . (2.9)

Theorem 2.10 (((Maron et al., 2018), Thm.1)). The vec-
tors {eP | P is a set partition of {1, . . . , l}} form a basis of(
(Rn)⊗l

)Σn .

In Appendix B we provide intuition behind this construction.
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3. The tensor algebra T (Rn) and its
Σn-invariant subalgebra

The invariant subspaces
(
(Rn)⊗l

)Σn assemble to form an al-
gebra. Multiplication in this algebra can be interpreted as an
operation that produces “new permutation equivariant lay-
ers from old” by taking two permutation equivariant linear
layers (Rn)⊗m → (Rn)⊗m

′
and (Rn)⊗p → (Rn)⊗p

′
and

forming a third, (Rn)⊗(m+p) → (Rn)⊗(m′+p′), by taking
the tensor product.

Lemma 3.1. For any p, p′ ∈ N such that p+ p′ = l, there
is a natural bilinear map(

(Rn)⊗p
)Σn ×

(
(Rn)⊗p

′)Σn →
(
(Rn)⊗l

)Σn (3.2)

taking (v, w) 7→ v ⊗w. The direct sum
⊕

l∈N
(
(Rn)⊗l

)Σn

forms an R-algebra since the bilinear maps of Lemma 3.1
are associative and unital in a suitable sense.

4. A new-old basis for permutation
equivariant linear layers

For each partitionP of {1, . . . , l}, we let eP ∈
(
(Rn)⊗l

)Σn

be the basis element associated by Lemmas 2.8 and B.2. We
claim there is another way to generate basis elements from
partitions, with potential computational advantages: given
P = {S1, . . . , Sn}, there is a multilinear map

ΦP :

n∏
i=1

(
(

|Si|⊗
j=1

Rn)Σn

)
µ−→
(
(Rn)⊗l

)Σn

τ−→
(
(Rn)⊗l

)Σn

(4.1)

where µ is obtained from repeated use of the bilinear maps
from Lemma 3.1 and τ is a permutation of {1, . . . , l} (acting
on tensor factors) whose inverse arranges the sets Si in
successive contiguous blocks. 1 Within each (

⊗|Si|
j=1 Rn)Σn

there is a basis element e{{1,...,|Si|}} corresponding to the
partition with one set, i.e. a diagonal tensor. We define:

dP := ΦP(e{{1,...,|S1|}}, e{{1,...,|S2|}}, · · · , e{{1,...,|Sn|}}).

Remark 4.2. The choice of permutation of (labels of)
{1, . . . , l} used to define ΦP is irrelevant, as any two
choices differ by a sequence of permutations of the indi-
vidual S1, . . . , Sn, and e{Si} is invariant to permutations of
Si.

Theorem 4.3. The vectors{
dP | P is a set partition of {1, . . . , l}

}
are a basis

for
(
(Rn)⊗l

)Σn .

1Explicitly, if Si = {si1, . . . , si|Si|} then in Eq. (4.1)
we can use the permutation sending (1, . . . , l) 7→
(s11, . . . , s1|S1|, . . . , sn1, . . . , sn|Sn|)

As mentioned in the introduction, the space of permutation
equivariant linear layers (Rn)⊗m → (Rn)⊗m is a partition
algebra.

Proposition 4.4. In the m = m′ case, the basis for
Hom((Rn)⊗m, (Rn)⊗m)Σn constructed in Theorem 4.3 co-
incides with the diagram basis of the partition algebra de-
noted by “L∼” in (Jones, 1994).

By construction, the tensors of dP are factored Kronecker
products. In Appendix D, we describe an algorithm for
computing the Σn-equivariant map (Rn)⊗m → (Rn)⊗m

′

corresponding to multiplication with the tensor dP ∈
((Rn)⊗l)Σn . While we leave an analysis of computational
cost (e.g. in terms of FLOPs) to future work, the algorithm
shows the factorization of dP makes multiplying with them
computationally efficient (in particular more efficient than
the the elements eP , see Appendix E). The description in
Appendix D also shows that the dP recover the “sum/trans-
fer/broadcast” operations of (Pan & Kondor, 2022).

5. Conclusion and open questions
Theorem 4.3 provides a basis for permutation equivariant
linear layers designed to be computationally efficient, since
the tensors making up the basis are constructed as Kronecker
products. One practical avenue for future work would be
using the theorem to implement permutation equivariant
linear layers for any user-specified m,m′ (to the best of
our knowledge, the implementations of our references hard-
code paramterizations of Hom((Rn)⊗m, (Rn)⊗m

′
)Σn for

specific values of m,m′. Another direction would be to use
a presentation of the partition algebra using a subset of the
diagram basis as generators (see (Jones, 1994) §3, (Halver-
son & Ram, 2005) Thm 1.11) to obtain a relatively small
but still expressive subspace of the permutation equivariant
linear layers, as suggested in (Kim et al., 2021), §6.
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A. Related Work
In Appendix D, we show that the basis of Theorem 4.3 recovers the operations described in ((Pan & Kondor, 2022), §4-5).
Note however that while their work does prove that the set of “sum/transfer/broadcast” tensors, that they define, has the
same cardinality as the basis of ((Maron et al., 2018), Thm.1), it does not demonstrate that those “sum/transfer/broadcast”
tensors are linearly independent nor that they span the space of permutation equivariant linear layers.

By ((Pan & Kondor, 2022), Appendix), the basis of Theorem 4.3 also coincides with the one used in ((Maron et al., 2018),
Appendix). However, the latter authors also omit a proof of linear independence/spanning. The dimension of the space of
permutation-equivariant linear layers grows extremely rapidly with m+m′ and (for sufficiently large n) equals the Bell
number B(m+m′), see ((Maron et al., 2018), Thm.1). Thus while the case of m = m′ = 2 considered in their work may
have been tractable as a one-off case, those of higher m+m′ will not be.

The partition algebra was first discovered (independently) in (Martin, 1991; Jones, 1994). Its structure (in terms of generators
and relations) and connections with representation theory of the symmetric group was identified in (Halverson & Ram,
2005) (see also (Benkart & Halverson, 2017) for more recent developments). In the case m = m′, our Theorem 4.3 just
gives an explicit description of the aforementioned diagram basis in terms of Kronecker products of diagonal tensors.

After completing this work, we became aware of the recent article (Pearce-Crump, 2023), which also points out the
connection between permutation equivariant linear layers and partition algebras. This article has technical overlap with ours
in Section 2 (which overlap with multiple references for that matter), however it does not include our main results (those of
Sections 3 and 4), nor algorithms for multiplying with tensors representing permutation equivariant maps such as those of
Appendix D, nor connections with the operations of ((Pan & Kondor, 2022), §4-5).

B. Invariants of permutation representations
In this section, we give a concise proof of Theorem 2.10 using a couple of elementary pieces of representation theory and a
combinatorial lemma.

Definition B.1. LetG be a finite group and letX be a finite set with aG-action. The associated permutation representation,
denoted RX , is the vector space with one basis element ex for each x ∈ X and the G-action defined by g · ex = egx.

The Σn representation Rn is a permutation representation: Rn = R{1, . . . , n}. In general, if X1 and X2 are finite sets with
actions of a finite group G, then there is an isomorphism of G-representations R(X1 ×X2) = RX1 ⊗ RX2 (for essentially
the same reason that the basic tensors ei ⊗ ej for i = 1, . . . ,m, j = 1, . . . n form a basis for Rm ⊗ Rn). It follows that
(Rn)⊗l = R({1, . . . , n}l) is the permutation representation associated to the set {1, . . . , n}l with the “diagonal” Σn action.

Lemma B.2 (cf. (Jones, 1994) §1, (Benkart & Halverson, 2017) §5.2). Let G be a finite group and let X be a finite set
with a G-action. Then there is a natural vector space isomorphism R(X/G)

'−→ (RX)G, where X/G are the orbits of X ,
defined as follows: for each orbit Gx ∈ X/G, send the basis vector eGx to

∑
x′∈Gx ex′ .

In particular, to compute ((Rn)⊗l)Σn , and thus by Corollary 2.6 the spaces of permutation equivariant linear layers
(Rn)⊗m → (Rn)⊗m

′
for all m+m′ = l, all we need to do is compute the orbits of the diagonal Σn action on {1, . . . , n}l

— and that is precisely the content of Lemma 2.8.

C. Proofs
Proof of Lemma 2.5. In general, for any two real vector spaces V,W there is an isomorphism V ∨ ⊗W ' Hom(V,W )
sending a basic tensor λ⊗ w to the linear map ϕ : V →W defined by ϕ(v) = λ(v) · w. In our case, this shows that

Hom((Rn)⊗m, (Rn)⊗m
′
) '

(
(Rn)⊗m

)∨ ⊗ (Rn)⊗m
′
. (C.1)

As (Rn)⊗m is a real representation of the finite group Σn it admits an equivariant Euclidean inner product: the natural,
explicit one to use is simply defined on standard basis tensors as

〈ei1 ⊗ · · · ⊗ eim , ej1 ⊗ · · · ⊗ ejm〉 =

m∏
k=1

δikjk . (C.2)
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Such an inner product is equivalent to an isomorphism (Rn)⊗m '
(
(Rn)⊗m

)∨
by the map v 7→ 〈v,−〉. Hence

Hom((Rn)⊗m, (Rn)⊗m
′
) ' (Rn)⊗m ⊗ (Rn)⊗m

′
= (Rn)⊗(m+m′) (C.3)

and taking invariants on both sides completes the proof.

Proof of Corollary 2.6. Lemma 2.5 gives us an invertible map from
(
(Rn)⊗(m+m′)

)Σn to Hom((Rn)⊗m, (Rn)⊗m
′
)Σn .

Then the parameterization basis of (Rn)⊗l is mapped to a parametrization basis of Hom((Rn)⊗m, (Rn)⊗m
′
)Σn .

Proof of Lemma B.2. We note that the lemma is essentially ((Serre, 1977) Ex. 2.6 (a)). A
∑
x∈X cxx ∈ RX lies in the

invariant subspace (RX)G if and only if for each g ∈ G∑
x∈X

cxx = g ·
∑
x∈X

cxx =
∑
x∈X

cxgx =
∑
x∈X

cg−1xx (C.4)

where in the last step we have reindexed the sum. The condition that cx = cg−1x for all g ∈ G, x ∈ X says precisely that
the coefficients cx are constant on G-orbits. In other words, if cGx is the common value of the cx′ as x′ runs over the orbit
Gx then ∑

x∈X
cxx =

∑
Gx∈X/G

cGx
∑
x′∈Gx

ex′ (C.5)

showing that the map defined in Lemma B.2 is surjective. It is clearly injective, since for example the orbit sums
∑
x′∈Gx ex′

are pairwise orthogonal.

Proof of Lemma 2.8. Since the proof of Lemma 2.8 for any l is identical to its proof in the l-even case considered by prior
work on partition algebras, we omit a proof and instead provide references where the l-even case is discussed: see ((Jones,
1994) §1), ((Halverson & Ram, 2005) §3) and ((Benkart & Halverson, 2017) §5.1).

Proof of Lemma 3.1. We note that in the essence of this proof is the same as the proof that a product of symmetric
polynomials is symmetric.

Tensor (i.e. Kronecker) product defines a bilinear map

(Rn)⊗p × (Rn)⊗p
′
→ (Rn)⊗l (C.6)

sending (v, w) to v ⊗ w. Taking Σn-invariants gives a map(
(Rn)⊗p × (Rn)⊗p

′)Σn →
(
(Rn)⊗l

)Σn
. (C.7)

Finally there is an inclusion
(
(Rn)⊗p

)Σn ×
(
(Rn)⊗p

′)Σn ⊆
(
(Rn)⊗p × (Rn)⊗p

′)Σn since the left hand side consists of
pairs of tensors (v, w) invariant to the action of independent permutations σ, τ ∈ Σn as (σ · v, τ · w), and this condition is
stronger than invariance to the diagonal action of a single permutation σ as (σ · v, σ · w).

Lemma C.8. Let V be a real vector space and let

{vα ∈ V |α ∈ A} (C.9)

be a set of vectors in V indexed by a partially ordered set A. Suppose that for every α ∈ A there exists a linear functional
λα : V → R with the property that

λα(vα) 6= 0 and λα(vβ) = 0 unless β � α, (C.10)

where � denotes the partial order on A. Then, {vα ∈ V |α ∈ A} is linearly independent.
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Proof. Consider an equation of the form ∑
α∈A

cαvα = 0 (C.11)

where all but finitely many of the cα are 0. Suppose towards contradiction that some cα 6= 0, and let

B = {α ∈ A | cα 6= 0} ⊆ A. (C.12)

By hypothesis, B is a nonempty finite partially ordered set, and as such it has at least one minimal element, i.e. an α∗ ∈ B
such that if α ∈ B and α � α∗ then α = α∗. It follows that λα∗(vα) = 0 for α ∈ B \ {α∗}, hence applying λα∗ to
Eq. (C.11) results in

cα∗λα∗(vα∗) = 0 (C.13)

and thus cα∗ = 0 (since λα∗(vα∗) 6= 0), a contradiction.

Lemma C.14. For any set partition P of {1, . . . , l} the vector dP is the sum of the eJ = ej1 ⊗ · · · ⊗ ejl over all indices
J = (j1, . . . , jl) that are constant on every set occurring in the partition P — equivalently, dP =

∑
P�Q eQ whereQ � P

if and only if Q refines the partition P .

Proof. After permuting the l tensor factors, we may reduce to the case where P has the form

P =

n∐
i=1

{
∑
j<i

pj + 1, . . . ,
∑
j<i

pj + pi} (C.15)

where p1, . . . , pn ∈ N and
∑n
i=1 pi = l. Then by direct calculation

dP =

n∑
j1,...,jn=1

ej1, . . . , j1︸ ︷︷ ︸
p1 times

⊗ ej2, . . . , j2︸ ︷︷ ︸
p2 times

⊗ · · · ⊗ ejn, . . . , jn︸ ︷︷ ︸
pn times

, (C.16)

and evidently the indices (j1, . . . , j1︸ ︷︷ ︸
p1times

, . . . , jn, . . . , jn︸ ︷︷ ︸
pntimes

) occurring in the sum are exactly those constant on each of the sets

{
∑
j<i pj + 1, . . . ,

∑
j<i pj + pi}.

Proof of Theorem 4.3. Since both the eP and the dP are indexed by set partitions of {1, . . . , l} into at most n non-empty
subsets they have the same cardinality, and we already know the eP are a basis for

(
(Rn)⊗l

)Σn . Thus, it will suffice to
show the dP are linearly independent. We will prove this by exhibiting a set of linear functionals

{λP :
(
(Rn)⊗l

)Σn → R | P is a set partition of {1, . . . , l}} (C.17)

such that
λP(dP) 6= 0 and λP(dQ) = 0 unless Q � P, (C.18)

where Q � P if and only if Q refines the partition P , satisfying the properties of Lemma C.8 below. Explicitly, for each
partition P choose an index IP = (i1, . . . , il) ∈ {1, . . . , n}l such that P is the partition associated to IP as in Lemma 2.8,
and let eIP = ei1 ⊗ · · · ⊗ eil ∈ (Rn)⊗l. Equivalently, eIP is one of the standard basis vectors for (Rn)⊗l occurring in the
orbit sum defining eP . Then define λP as dot product with eIP :

λP(v) = 〈eIP , v〉 for v ∈
(
(Rn)⊗l

)Σn
. (C.19)

First, since by definition IP is constant on each set of the partition P , our characterization of dP in Lemma C.14 gives
〈eIP , dP〉 = 1. Next, if Q 6� P , then since Q doesn’t refine P writing

P = {S1, . . . , Sn} and Q = {T1, . . . , Tn} (C.20)

there must be a non-empty Ti such that Ti 6⊆ Sj for all j. Since Ti ⊆
⋃
j Sj , there must be distinct Sj , Sk ∈ P with

Sj ∩ Ti 6= ∅, Sk ∩ Ti 6= ∅. By design the index IP takes distinct values on Sj and Sk, but for every eJ = ej1 ⊗ · · · ⊗ ejl
occurring in dQ with non-zero coefficient the index J is constant on Ti. Thus 〈eIP , dQ〉 = 0.

Proof of Proposition 4.4. This follows from Lemma C.14 and ((Jones, 1994) p. 263) (see also (Benkart & Halverson, 2017)
§4.2-3).
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D. An algorithm for multiplication with the tensors dP

In this section we describe how to apply one of the tensors dP ∈
(
(Rn)⊗(m+m′)

)Σn ' Hom((Rn)⊗m, (Rn)⊗m
′
)Σn

appearing in Theorem 4.3 to a tensor v ∈ (Rn)⊗m. We will work in the usual bases for these tensor products, and use
notation of the form

v =

n∑
i1,...,im=1

vi1...imei1 ⊗ · · · ⊗ eim . (D.1)

Given another tensor

w =

n∑
j1,...,jl=1

wj1...jlej1 ⊗ · · · ⊗ ejl ∈ (Rn)⊗l (D.2)

and ordered tuples of indices T and S with set(T ) ⊆ {1, . . . ,m}, set(S) ⊆ {1, . . . , l} and tuple length d ≤ min{m, l},
we will use the notation dot(v, w, (S, T )) to denote the tensor contraction operation implemented in PyTorch as
tensordot(v, w,dims = (S, T )) (Paszke et al., 2019). The special case where T = (m,m− 1, . . . ,m− d+ 1), S =
(1, . . . , d) will be abbreviated as dot(v, w, d). We refer to the documentation at https://pytorch.org/docs/stable/index.html
for further details.

Unravelling Lemma 2.5, we see that our goal is to calculate dot(v, dP ,m). The point we wish to make is that for many
partitions P this can be accomplished with multiple contractions over fewer than m indices, and moreover the contractions
occurring can be replaced with sums and indexing operations.

The contraction dot(v, dP ,m) is invariant to permutations of the tensor factors of v and the first m tensor factors of dP .
Moreover, we are free to permute the last m′ factors of dP provided we apply the inverse permutation to the m′ factors of
dot(v, dP ,m). These two observations allow us to reduce to the case where P has the form

(

a∐
i=1

Si)
∐

(

b∐
i=1

Ti)
∐

(

c∐
i=1

Bi) (D.3)

where

• a+ b+ c = n,
• the Si are consecutive and contiguous sets of indices in {1, . . . ,m} beginning at 1 and ending at say p,
• the Bi are consecutive and contiguous sets of indices in {m+ 1, . . . ,m+m′} beginning at say p+ p′ and ending at
m+m′, and

• the Ti partition {p, p+1, . . . , p+p′}, and moreover they decompose as Ti = T ′i +T ′′i where T ′1, . . . , T
′
b are consecutive

and contiguous sets of indices in {p + 1, . . . ,m} and T ′′b , . . . , T
′′
1 are consecutive and contiguous sets of indices in

{p+ p′ + 1, . . . ,m+m′}.

It follows that

dP = e{{1,...,|S1|}} ⊗ · · · ⊗ e{{1,...,|Sa|}}

⊗Ψ(e{{1,...,|T1|}} ⊗ · · · ⊗ e{{1,...,|Tb|}})

⊗ e{{1,...,|B1|}} ⊗ · · · ⊗ e{{1,...,|Bc|}}

(D.4)

where Ψ permutes tensor factors according to a certain permutation of {p, p+ 1, . . . , p+ p′} (the one separating each Ti
into the subsets T ′i , T

′′
i ).

We now make repeated use of two simple calculations: first,

dot(v, w, d) = dot(v, w′, d)⊗ w′′whenever w = w′ ⊗ w′′ where w′ has ≥ d indices. (D.5)

That is, w′′ can be extracted from the dot. On the other hand,

dot(v, w, d) = dot(dot(v, w′, d′), w′′, d− d′)whenever w = w′ ⊗ w′′ where w′ has d′ ≤ d indices (D.6)

In particular, Eq. (D.5) applies to the factors eBi
in Eq. (D.4), giving

dot(v, dP ,m)

= dot(v, e{{1,...,|S1|}} ⊗ · · · ⊗ e{{1,...,|Sa|}} ⊗Ψ(e{{1,...,|T1|}} ⊗ · · · ⊗ e{{1,...,|Tb|}}),m)

⊗ e{{1,...,|B1|}} ⊗ · · · ⊗ e{{1,...,|Bc|}}.

(D.7)
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An explicit calculation shows that the tensor operation x 7→ x⊗ e{1,...,p} simply creates a tensor with p more indices than x
and places copies of x along indices of the form . . . , i, i, . . . , i︸ ︷︷ ︸

p times

, with zeros elsewhere. Thus once

dot(v, e{{1,...,|S1|}} ⊗ · · · ⊗ e{{1,...,|Sa|}} ⊗Ψ(e{{1,...,|T1|}} ⊗ · · · ⊗ e{{1,...,|Tb|}}),m)

is computed, multiplication with the e{{1,...,|Bi|}} can be accomplished efficiently with indexing operations.2

Equation (D.6) shows that contraction with the e{{1,...,|Si|}} can be carried out “one i at a time,” from left to right. Based on
our conventions for dot, a contraction dot(v, e{{1,...,p}}, p) yields a tensor with m−p indices, with (i1, . . . , im−p)-th entry

n∑
j=1

vi1...im−p j . . . j︸ ︷︷ ︸
p times

(D.8)

Hence these contractions can be implemented with index operations and summation.3

Finally, the tensor Ψ(eT1
⊗ · · · ⊗ eTb

) must be dealt with. We claim that dot with this tensor is a transfer operation as
described in ((Pan & Kondor, 2022) §5). Indeed, they define transfer operations as those corresponding to sets in the
partition P having non-empty intersection with both {1, . . . ,m} and {m+ 1, . . . ,m+m′}, which is exactly the role played
by the Ti. Since we have already addressed how to multiply with the e{{1,...,|Si|}} and e{{1,...,|Bi|}} we may as well assume
for simplicity that dP = Ψ(e{{1,...,|T1|}} ⊗ · · · ⊗ e{{1,...,|Tb|}}). Then,

dot(v,Ψ(e{{1,...,|T1|}} ⊗ · · · ⊗ e{{1,...,|Tb|}}))i1 . . . i1︸ ︷︷ ︸
|T ′′1 | times

... ib . . . ib︸ ︷︷ ︸
|T ′′

b
| times

= vi1 . . . i1︸ ︷︷ ︸
|T ′1| times

... ib . . . ib︸ ︷︷ ︸
|T ′

b
| times

. (D.9)

Clearly, this is essentially an indexing operation.4

E. Examples

We look at the case where m = m′ = 1 and n ≥ 2. Here the space of permutation equivariant linear layers is
(
(Rn)⊗2

)Σn ,
i.e. matrices invariant under simultaneous permutation of rows and columns, and these corresponding to equivariant maps
Rn → Rn by matrix-vector multiplication.

E.1. Partitions associated with index tuples

The simplest case of Lemma 2.8 occurs when l = 2. Here, given (i1, i2) ∈ {1, . . . , n}2 the associated set partition is

Π(i1, i2) =

{
{{1, 2}} if i1 = i2

{{1}, {2}} if i1 6= i2
(E.1)

Let P1 = {{1, 2}} and P2 = {{1}, {2}}. Then viewing tensors in Rn ⊗ Rn as n× n matrices,

eP1
=
∑
i

ei ⊗ ei = In and

eP2
=
∑
i 6=j

ei ⊗ ej = 11T − I
(E.2)

where I is the n× n identity matrix and 1 = [1, . . . , 1]T the 1s vector.

2Observe that in contrast Kronecker multiplication with a general tensor w′′ with p entries would require np scalar multiplications per
entry of x, so e.g. if x has q indices np+q scalar multiplications in total.

3Observe that Eq. (D.6) reduces the cost of tensor contraction from roughly nd to nd′ + nd−d′ multiplications and additions. In the
special case where w′ = e{1,...,d′} the term nd′ effectively drops to n.

4In other words, rather than performing n
∑
|T ′i | multiplications and additions, we are just copying arrays.
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E.2. Ranks of basis vectors

Observe that 11T−I is not a Kronecker product uvT . Indeed, it has rank n, since det(−I+11T ) = (1+1T (−I)1)det(I) =
(1− n)n 6= 0, whereas any uvT has rank 1.

On the other hand, the basis of Theorem 4.3 is

dP1
= I and dP2

= 11T (E.3)

and 11T is of course rank 1. This is of course the basis used in DeepSets (Zaheer et al., 2018) (I is the identity map, 11T is
the vector sum multiplied by 1).
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