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Abstract

Given an instance of a scheduling problem where we want
to start executing jobs as soon as possible, it is advantageous
if a scheduling algorithm emits the first parts of its solution
early, in particular before the algorithm completes its work.
Therefore, in this position paper, we analyze core scheduling5

problems in regards to their enumeration complexity, i. e. the
computation time to the first emitted schedule entry (prepro-
cessing time) and the worst case time between two consecu-
tive parts of the solution (delay).
Specifically, we look at scheduling instances that reduce10

to ordering problems. We apply a known incremental sort-
ing algorithm for scheduling strategies that are at their core
comparison-based sorting algorithms and translate corre-
sponding upper and lower complexity bounds to the schedul-
ing setting. For instances with n jobs and a precedence DAG15

with maximum degree ∆, we incrementally build a topolog-
ical ordering with O(n) preprocessing and O(∆) delay. We
prove a matching lower bound and show with an adversary
argument that the delay lower bound holds even in case the
DAG has constant average degree and the ordering is emitted20

out-of-order in the form of insert operations.
We complement our theoretical results with experiments that
highlight the improved time-to-first-output and discuss re-
search opportunities for similar incremental approaches for
other scheduling problems.25

1 Introduction
Assigning resources to work packages (“jobs”) in a way that
optimizes an objective is a ubiquitous task in most indus-
trial settings. Naturally, it has been a scientific endeavor for
many years to develop efficient algorithms and to understand30

the limits of possible algorithmic solutions by proving lower
bounds on the time complexity of such scheduling problems
(Pinedo 2022; Brucker et al. 2023; Brucker 2007).

Most research has focused on a total-time complexity per-
spective: An algorithm is presented with an input instance to35

a scheduling problem, and the time complexity is analyzed
(or measured in case of experimental results) from the first
computation steps until the algorithm outputs the complete
solution. This approach makes it possible to employ com-
plex algorithmic strategies, but it also means that we cannot40

start to execute the schedule until the scheduling algorithm
terminates.

In contrast to this, we propose to analyze scheduling prob-
lems with an enumeration perspective: After some initial
preprocessing time, an enumeration algorithm has to emit 45

parts of the final solution with little delay in between consec-
utive solutions. In the case of scheduling algorithms, these
solution parts are schedule entries that specify when and on
which resource to execute a job. An algorithm that enumer-
ates the first entries of a schedule early on enables us to start 50

executing the schedule before it is finalized.
Note that this is different from the well-known online set-

ting: There, an algorithm does not see the whole input in-
stance but is presented with the jobs to be scheduled one
at a time and has to make an immediate scheduling deci- 55

sion (Albers 2009). This limitation is also present in both the
semi-online setting and in its generalization, scheduling with
advice, where the algorithm has access to additional infor-
mation on the input sequence or output properties (Dwibedy
and Mohanty 2022; Boyar et al. 2016). In contrast, our enu- 60

meration algorithms do have access to the complete input
and are free to decide which jobs to schedule next.

Finally, we want to highlight that enumerating solution
parts gives a head start to subsequent steps in a processing
pipeline. Therefore, the approach can be advantageous even 65

when the resulting total time of the enumeration algorithm is
worse than a classical total-time algorithm, as Lindner et al.
(2017) showed for a DNA sequencing application.

1.1 Our Contribution
Many basic scheduling variants can be solved by order- 70

ing jobs according to their precedence graph and/or sorting
available jobs according to a simple scheduling rule.

After formally introducing the concept of an enumeration
algorithm and basic notation in section 2 we tackle topolog-
ical orderings of precedence graphs in section 3. We discuss 75

why enumerating the solution in ascending order requires
known in-degrees and preprocessing time linear in the num-
ber of vertices. Regarding delay, we prove that enumerating
a topological ordering of a graph with maximum out-degree
∆+ both requires and is possible with Θ(∆+) delay. 80

In section 4 we apply both our algorithm for ascending
topological ordering enumeration as well as INCREMEN-
TALQUICKSELECT by Paredes and Navarro (2006) for in-
cremental sorting (see related work) to scheduling problems.
With these two algorithms we compute schedules that opti- 85



mize the maximum completion time (“makespan”) in three
different settings (single machine with either release times
or a precedence graph, flow shop with two machines) and
discuss how the results transfer to other scheduling variants.
We demonstrate the improved time-to-first-output with ex-90

periments on random instances of the three main settings.
As this position paper intends to spark further work on

schedule enumeration, we conclude in section 5 with a num-
ber of potential research directions.

1.2 Related Work95

The proposed enumeration perspective has already been
studied for core algorithmic problems on graphs and
(un)ordered sets:

When computing Single Source / All Pairs Shortest Dis-
tances in graphs, the order of enumerated solution parts100

plays a crucial role in the enumeration complexity (Casel
et al. 2024). Our lower bound on the delay of topological or-
dering follows a similar approach as in this work. We will,
however, show that the order of enumerated parts does not
influence the complexity of topological ordering enumera-105

tion.
Incremental Sorting is concerned with emitting the

elements of an input set in ascending order. Paredes
and Navarro (2006; 2010) developed the INCREMEN-
TALQUICKSELECT algorithm to solve this problem with op-110

timal preprocessing and delay and showed its practical use in
an experimental application to computing a minimum span-
ning tree. We apply this algorithm to enumerating schedules
to problems where sorting according to a simple rule yields
an optimal solution.115

Carmeli et al. (2022, Proposition 3.9) devised an enu-
meration variant of the Fisher-Yates Shuffle (Durstenfeld
1964) to derive random-permutation enumeration algo-
rithms from random-access enumeration algorithms in the
field of database queries.120

2 Enumeration Model and Notation
In the standard total-time model, an algorithm maps an input
to a solution that has to fulfill problem-specific correctness
and optimality criteria. Time complexity is analyzed/mea-
sured as the total time from the start (input is provided) to125

the termination (algorithm produces output).

Enumeration Problems We study algorithms that enu-
merate parts to a solution: Enumeration algorithms are pro-
vided with an input, perform initial computations and pre-
pare data structures in a preprocessing phase, and then, in130

the enumeration phase, emit a number of solution parts
without repetition.

The specific type and semantics of a solution part are
specified in a problem description, along with an optional
requirement on the order in which the parts have to be pro-135

duced. It is, however, a general requirement that the emitted
parts can be efficiently assembled to a complete solution that
has to fulfill the same criteria as in the standard model.

Time complexity is analyzed/measured in terms of the
preprocessing time the algorithm spends in the preprocess-140

ing phase and the worst-case delay the algorithm spends in

the enumeration phase before emitting the first / next solu-
tion part.

In this work we consider three types of enumeration prob-
lems: 145

Topological Ordering Enumeration The input is a di-
rected acyclic graph (DAG) G = (V,E) with n vertices
V = [n] = {1, 2, . . . , n}. For a vertex v we write δ+(v) for
the out-degree of v. We denote by ∆+ = maxv∈V δ+(v) the
maximum out-degree of the graph. A topological ordering 150

for G is a permutation π of its vertices, formalized as tuple
(π(1), π(2), . . . , π(n)), such that for all edges (u, v) ∈ E it
holds that π−1(u) < π−1(v).

An algorithm that solves the ascending topological order-
ing enumeration problem has to produce as solution parts the 155

individual entries π(1), π(2), . . . , π(n) in that order.

Incremental Sorting The input is a set X of elements
with a total order ⪯, the solution is a permutation π that
is sorted in ascending order according to ⪯.

An enumeration algorithm for this problem has to produce 160

the individual permutation entries π(1), π(2), . . . , π(n) in
the sorted order.

Schedule Enumeration Because scheduling of jobs hap-
pens in many different environments there are numerous
problem variants studied in the literature. Many of them are 165

commonly named according to a three field classification
scheme α|β|γ for the machine environment, problem char-
acteristics and objective function (Graham et al. 1979). We
summarize here the notions required for this paper and refer
for a more in-depth introduction to standard literature on the 170

topic (Brucker 2007; Pinedo 2022). In section 4, when we
apply our techniques, we will introduce the specific prob-
lem definitions.

A scheduling input instance consists of n jobs identified
by j ∈ [n] to be scheduled for processing in a machine en- 175

vironment α, e. g. on a single machine (α = 1) or in a flow
shop on machine 1 first and then on machine 2 (α = F2).

Each job j consists of one or more operations o, each with
a processing time pj,o. A job can be processed on only one
machine at a time, no machine can process multiple jobs 180

simultaneously and we only consider the case without pre-
emption (processing an operation cannot be interrupted).

Additional information and/or requirements β might be
provided. Examples include release times rj and deadlines
dj per job, or a precedence relation given as DAG where the 185

edge (j, k) specifies that job j has to be completed before
work on job k can start.

A scheduling algorithm has to produce a schedule, i. e.
an assignment of jobs to processing intervals on machines.
The schedule has to optimize some objective function γ, e. g. 190

minimize Cmax, the completion time of the last job.
Enumerating such a schedule means emitting entries of

the form (j, i, s) that specify that job j is to be executed on
machine i in the time interval starting at time s. (We omit
i in the single machine setting.) In this work we will con- 195

sider the most natural version in which the entries have to be
enumerated in the order of increasing start time.



3 Topological Ordering Enumeration
Recall that for ascending topological ordering enumera-
tion an algorithm has to enumerate a topological ordering200

from π(1) to π(n). Especially regarding the applications to
scheduling that we have in mind, enumerating a topological
ordering in that way appears to be the most natural.

However, this restriction on the output order has implica-
tions on the complexity of the enumeration task at hand. If205

the input is a graph in the form of out-adjacency lists with-
out information on the in-degrees of vertices, one clearly
needs Ω(n + m) time in the worst case to identify a ver-
tex without in-coming arcs (source vertex) to be enumerated
as π(1). Given that computing a complete topological or-210

der via finish times of a depth first search is in O(n + m),
this rules out enumeration as a suitable tool for this setting.
We will, therefore, assume that each vertex in our input data
knows its in-degree, for example by having both in- and out-
adjacency lists with a size attribute per list. Without further215

information, we certainly still need Ω(n) preprocessing time
to identify source vertices.

Corollary 1. Ascending topological ordering enumeration
without in-degree information needs preprocessing time in
Ω(n+m). With known in-degrees but unknown source ver-220

tices preprocessing time is in Ω(n).

Once all source vertices are known (either by O(n) pre-
processing or by assuming that they are given additionally as
input), the classical iterative source removal algorithm can
enumerate a topological ordering with delay in O(∆+): The225

algorithm stores all current source vertices in a queue and
keeps track of the in-degree of all visited vertices in an ar-
ray D. In the enumeration phase, the algorithm repeats the
following until the queue is empty: It removes the first ver-
tex u from the queue. For each of u’s outgoing edges (u, v)230

it decrements the in-degree of vertex v and appends v to the
queue of source vertices should v’s degree reach 0. Then, the
algorithm emits u as solution part after O(δ+) ⊆ O(∆+)
steps.

Corollary 2. Ascending topological ordering enumeration235

with known in-degrees can be solved with preprocessing
time in O(n), delay in O(∆+) and space-complexity in
Θ(n). If the set of source-vertices is given as input, the
preprocessing time can be reduced to O(1) using lazy-
initialized memory.1240

The preprocessing for this enumeration is certainly op-
timal, but it is not apparent why the delay needs to be
O(∆+). Considering that O(n + m) suffices to compute
a whole topological ordering and n solution parts are pro-
duced, one could hope to improve the delay to the average245

degree of G. To properly study the possibility of such im-
provement, we consider a variation of the enumeration prob-
lem that does not require preprocessing. This allows to high-
light the worst-case delay. For this version, we will show that
delay in O(∆+) is optimal, and then discuss resulting impli-250

cations for ascending enumeration.

1For a detailed discussion of memory considerations in enumer-
ation see (Casel et al. 2024).

For topological ordering enumeration (without the addi-
tion of ascending), we consider solution parts to be inser-
tion operations y1, y2, . . . , yn where each yi has the form
(v, p) ∈ V × (V ∪ {ε}): “In step i, insert vertex v (a) if 255

p = ε at the beginning of the current partial ordering or
(b) else after vertex p.”. We assume that the ordering is to
be written from left to right, thus after means right of. In-
sertion operations have to be feasible, meaning that every
vertex is inserted exactly once, and that instructions to insert 260

after some vertex p are preceded by instructions to insert ver-
tex p. Formally, any two instructions yi = (p, ·), yj = (·, p)
have to fulfill i < j.

Note that this is another way of enumerating n parts that
can be used to construct a topological ordering and that this 265

way is a generalization of the ascending enumeration intro-
duced before. The ascending restriction only adds that each
insertion happens at the end of the current partial order; thus
for all 2 ≤ i ≤ n with yi = (·, p) the previous operation
must be yi−1(p, ·). 270

For the generalized notion of topological ordering enu-
meration, a repeated depth-first search can be used to enu-
merate with delay in O(∆+) without preprocessing or addi-
tional knowledge about the input.
Theorem 3. Topological ordering enumeration can be 275

solved with delay in O(∆+) with Θ(n) lazy-initialized mem-
ory and space-complexity in Θ(n).

Proof. The algorithm tracks in a lazy-initialized boolean ar-
ray A of length n in field A[u] whether vertex u was vis-
ited by one of the searches. Uninitialized entries are read 280

as FALSE. It further maintains a queue Q to collect solution
parts for later output. This queue is filled as shown in Algo-
rithm 1.

Algorithm 1: Topological ordering enumeration
1 foreach v = 1 to n do
2 if A[v] ̸= TRUE then
3 visit(v, ε);

4 Function visit(v, parent):
5 enqueue(v, parent);
6 A[v] = TRUE;
7 forall (v, w) ∈ E do
8 if A[w] ̸= TRUE then
9 visit(w, v);

Note that Algorithm 1 is essentially a standard depth first
search augmented by line 5 that produces the solution parts 285

and fills Q. This queue will now be used by our enumeration
algorithm to emit solution parts while minimizing the worst
case delay.

Let c be some implementation specific constant. After
emitting a solution part (v, parent), the algorithm delays 290

the output of the next solution part from Q by c · δ+(v)
steps. Whenever the algorithm is required to emit an out-
put, Q must not be empty. We apply the accounting method
to prove this. For each credit unit, the algorithm can perform



a constant number of steps. As long as the credit stays posi-295

tive, Q is not empty.
Initially, the credit balance is ∆+, as the delay we want

to prove is in O(∆+). This pays for all computation steps
in the first iteration of the loop in line 1 until the first solu-
tion part is produced. Each time a solution part (v, parent)300

is enqueued in line 9, this part is charged δ+(v) ∈ O(∆+)
credit. This credit pays for all computation in the current re-
cursive invocation of visit and, (a) in case parent ̸= ε
for skipping v in a later iteration of the loop in line 1, (b)
in case parent = ε for the next iteration of the same loop305

that discovers an unvisited vertex. This implies that solu-
tion part pays for all computation associated to the visited
vertex, including checking its immediate descendants and
backtracking the DFS. As each invocation of visit im-
mediately enqueues a new solution part, the credit therefore310

stays positive.
Hence, the algorithm enumerates solution parts with delay

in O(∆+).
Whilst computing a topological ordering by running DFS

on all unvisited vertices is a standard algorithm, usually each315

vertex is inserted at the head of the ordering as soon as the
search fully processed all its descendants and backtracks
from them. Our Algorithm 1 deviates from that by insert-
ing vertices immediately when they are visited. However,
this does not change the main property of the DFS-based320

topological ordering: All descendants of a vertex are placed
to the right of it. We prove correctness of Algorithm 1 by
showing that all edges are forward edges in the joined order-
ing.

First note that root nodes of depth-first searches are al-325

ways inserted at the head of the ordering (cp. line 3). Sec-
ondly observe that, except for these root nodes, all other ver-
tices are inserted directly after their parent in the DFS tree
(cp. line 9). Therefore, whenever a call to visit on a ver-
tex v ends and the search backtracks, no further insertions330

will happen after v’s position in the current partial ordering.
For each edge (u, v) ∈ E there are two possible cases:

1. Vertex u is inserted into the ordering first. This implies
that v is visited as a descendant of u by the depth-first
search and therefore inserted directly after u or after one335

of u’s other descendants. Therefore, (u, v) is a forward
edge.

2. Vertex v is inserted into the ordering first. As (u, v) ∈ E
implies that u is not a descendant of v, the search com-
pletely backtracks to a parent of v or even to the root loop340

in line 1 and thus, according to the earlier observation, u
is later inserted left of v and (u, v) is a forward edge.

Thus, the algorithm produces a correct topological order-
ing of the input DAG.

This positive result can be matched with a corresponding345

lower bound by creating an adversarial input. For this, con-
sider the graph structure in Figure 1: For given k, the graph
consists of k vertices that form a fully connected DAG C,
a set B of k − 1 vertices that each add a bridge between a
pair of two consecutive vertices from C, and a path P of k2350

vertices that extends one of those bridges. The idea of the

lower bound proof is now to force any solution algorithm to
essentially fully process the fully connected DAG before it
can figure out, where the path of k2 vertices appears in the
ordering. 355

Theorem 4. Topological ordering enumeration cannot be
solved with delay in o(∆+), even if the graph has constant
average out-degree.

Proof. Assume some algorithm A was able to enumerate the
solution parts with delay in o(∆+) and consider the follow- 360

ing adversarial setup that is equivalent to receiving the input
graph as adjacency lists with attached in-degree information:
A is allowed to ask the adversary for (a) the next neighbor
of any vertex (and thereby iterate through its adjacency list)
and (b) the in- and out-degree of any vertex. 365

The adversary will, for arbitrary k, construct a graph with
the structure shown in Figure 1, that at its core consists of
a fully connected DAG C = {c1, . . . , ck}. Additionally, the
graph consists of k − 1 vertices B = {b1, . . . , bk−1}; each
bridge vertex bi has exactly one incoming edge from vertex 370

ci. All bridge vertices bi but one connect with their single
outgoing edge to vertex ci+1. The remaining bridge vertex bi
connects to a path of k2 vertices P = {p1, . . . , pk2} instead,
which in turn has an edge to ci+1.

Initially it is not fixed, after which bridge vertex this path 375

appears in the graph. Thus in order to identify this connec-
tion between path and core, an adversary can force the enu-
meration algorithm to explore all neighborhoods of the core
or to walk the whole path.

Without correct knowledge of this connection, it is not 380

possible to know between which two core vertices the path
needs to be placed in the topological ordering. If the algo-
rithm starts with solution parts that place some vertex of the
core or a bridge, it needs at least k(k−1)

2 + 2(k − 1) steps
before it can give the 2kth solution part that has to place 385

a vertex from the path. Identifying some connection on the
path to start building an order from there, on the other hand,
requires accessing more than k vertices before the first out-
put.

Note, that the graph has |V | = k + (k − 1) + k2 vertices 390

and |E| = k(k−1)
2 + 2(k − 1) + k2 edges and thus constant

average out-degree. Vertex c1 has the maximum out-degree
in the graph, thus ∆+ = δ+(c1) = k.

If we consider a setting for ascending topological ordering
enumeration without preprocessing where the source ver- 395

tices are given, the adversarial input in the proof of Theo-
rem 4 directly shows that the delay of O(∆+) from The-
orem 2 is optimal. During a preprocessing phase of O(n)
steps, an algorithm could however solve the adversarial in-
stance completely. 400

With a similar idea, we can however also show that de-
lay in the order of the average degree is not achievable for
ascending topological ordering enumeration even if prepro-
cessing time in O(n) is permitted.

Theorem 5. Ascending topological ordering enumeration 405

on a graph with average out-degree ∆+ and maximum
out-degree ∆+ ∈ ω(∆+) cannot be solved with delay
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Figure 1: Structure of the adversary input graph.

in O(∆+), even with O(n) preprocessing and known in-
degrees.

Proof. Consider, as shown in Figure 2, a graph G of n =410

3k+2+p nodes that form a path that completely determines
the topological order. Denote the first k vertices as first core
group C1, then comes a bridge vertex b1, followed by the
second core group of k vertices C2, another bridge vertex
b2, the third core group of k vertices C3, followed by a path415

of p vertices. We will now insert additional edges that, as
before, an adversary can use to force an algorithm to inspect
too many vertices with high degree before being able to find
the path edge: All vertices in C1 connect to all in C2, all
in C2 connect to all in C3. Note that except for the source420

vertex, within each core group all vertices have identical out-
and in-degree, so an algorithm cannot distinguish them by
degree alone.

We now choose k = n0.6. The graph consists of m =
(2k(k + 1) + k) + 2 + (p − 1) = 2n1.2 + n − 1 edges425

and has an average out-degree of ∆+ ∈ Θ(n0.2). As the
adversary always can force an algorithm to inspect the com-
plete neighborhood of any vertex in C1 and C2, before the
algorithm can know the next vertex in the topological order,
any algorithm has to perform at least x ∈ Ω(k2) = Ω(n1.2)430

edge queries to fix the order of two vertices in C2. How-
ever, it can up to this point only emit y ∈ O(k) = O(n0.6)
solution parts from the first two core groups and b1. With
preprocessing in O(n) and a delay in the order of the av-
erage out-degree, we get a maximum of O(n) queries the435

algorithm can execute before running out of solution parts
to emit.

4 Application to Scheduling
We now apply the enumeration concept to scheduling prob-
lems, starting with variants that can be solved by means of440

incremental sorting and afterwards applying our algorithm
for ascending topological ordering enumeration.

Besides the theoretical analysis we also present experi-
mental results. We implemented all algorithms in Rust and
executed the experiments on a compute server with 256 GB 445

RAM and an Intel Xeon Silver 4314 CPU with 2.40 GHz.
For each size and parameter we show the average measure-
ments of 10 random instances and 5 runs each. As source
for randomness we used the linear congruential generator
by Bratley, Fox, and Schrage (1983) as presented in (Tail- 450

lard 1993). Further details to the instance generation are pre-
sented along with the individual problem statements.

4.1 Incremental Sorting
It is well known that finding a minimum element in a set of
size n requires Θ(n) steps and that comparison-based sort- 455

ing is in Θ(n log(n)). This implies that enumerating the ele-
ments of such a set in ascending order requires Ω(n) prepro-
cessing and Ω(log(n)) delay, as the first output is the mini-
mum element and there are n solution parts in total. Paredes
and Navarro (2006) introduced the INCREMENTALSELECT 460

algorithm that achieves these bounds and emits the kth solu-
tion part after O(n + k log(k)) steps. The same bounds are
met in the average case by their INCREMENTALQUICKSE-
LECT (IQS) algorithm, that performs better in practice.

We apply IQS to the problem of scheduling jobs with re- 465

lease times on a single machine, optimizing the maximum
completion time (1|rj |Cmax in standard notation). Schedul-
ing the jobs in order of non-decreasing release time without
idle time is optimal, as can be shown with a simple exchange
argument. An enumeration algorithm for this problem is ex- 470

pected to produce for each job j a tuple (j, sj), where sj
is the start time for the job on the single machine. An opti-
mal schedule can be enumerated in order of increasing sj by
keeping track of the maximum completion time c on the ma-
chine so far, sorting the jobs according to their release times 475

with IQS, and for each job j emitted by IQS producing the
solution part (j,max(rj , c)).

Corollary 6. An optimal schedule for an instance of
1|rj |Cmax with n jobs can be enumerated in order of
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Figure 2: Underlying structure of the adversary input graph for ascending topological ordering enumeration.
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increasing start times with O(n) preprocessing and with480

O(log(n)) delay.

Note that – similarly to sorting – it takes Ω(n) time to find
the potentially single job that can be executed first, which
proofs a matching lower bound to the preprocessing time.
It is open, however, whether we can also show a matching485

lower bound on the delay, as sorting by release times is suf-
ficient but not necessary to solve 1|rj |Cmax (Lindner et al.
2017).

Corollary 6 easily translates to other problem variants
with similar scheduling rules, such as the earliest due date490

first rule for minimizing maximum lateness on a single ma-
chine in the presence of deadlines (1|dj |Lmax).

Our second example concerns scheduling n jobs in a flow
shop with 2 machines: Each job j consists of two operations
with processing times pj,1, pj,2 and has to be processed first495

on machine 1 for pj,1 time units and later for pj,2 time units
on machine 2. We again strive to minimize the maximum
completion time (F2||Cmax in standard notation). This goal
is achieved by scheduling all jobs in the same order on both
machines, starting with the jobs j with pj,1 ≤ pj,2 ordered500

by increasing pj,1, followed by the remaining jobs in order
of decreasing pj,2 (Johnson 1954).

The same approach yields an enumeration algorithm that

emits for each job and each machine a schedule entry with
the respective start time: In the preprocessing phase, the al- 505

gorithm splits the jobs according to the comparison of pro-
cessing times on the two machines. It also initializes two
IQS instances, one that sorts the first jobs by increasing
pj,1 and one for sorting the second jobs by decreasing pj,2.
The enumeration phase consists again of keeping track of 510

the maximum completion times on the two machines so far
and scheduling the jobs as emitted by the sorting algorithms.
This order already guarantees that schedule entries per ma-
chine are sorted by start time. In order to sort the entries by
start time overall, the enumeration algorithm can buffer the 515

computed solution parts in a queue per machine and, after
each delay, emit the solution part from the head of the queue
with smaller start time.

Corollary 7. An optimal schedule for an instance of
F2||Cmax with n jobs can be enumerated in order of in- 520

creasing start times with O(n) preprocessing and with
O(log(n)) delay.

The similar job shop setting with two machines and at
most two operations per job (J2|nj ≤ 2|Cmax) can be re-
duced to computing several optimal schedules for F2||Cmax 525

(Jackson 1956). Adapted to the enumeration setting this re-
duction also transfers the time bounds of Corollary 7 to the



more complex job shop.
For our experiments we generated processing times uni-

formly at random from {1, . . . , 99} (cp. (Taillard 1993)).530

Release times are chosen uniformly at random from
{0, . . . , T

2 }, where T is the total processing time of all jobs.
Figure 3 shows the runtime measurements. In both ex-

periments we compared the performance of our IQS based
enumeration algorithm to a total-time scheduling algorithm535

based on the pattern-defeating quicksort algorithm from the
Rust standard library (Rust Foundation 2023). As expected,
the highly optimized standard implementation is roughly
two to three times as fast as our unoptimized IQS imple-
mentation in the total time comparison. The enumeration al-540

gorithm however clearly comes ahead when comparing the
time-to-first-output, that is produced after about 1

6 th of the
total time of the standard algorithm.

4.2 Incremental Topological Ordering
As an application of the ascending topological ordering545

enumeration, we consider scheduling jobs on a single ma-
chine with precedence constraints in the form of a DAG
(1|prec|Cmax in standard notation). Any schedule without
idle time that respects the precedence constraints is optimal
in this setting. Thus scheduling in any topological order is550

sufficient. On top of the algorithm for ascending topological
ordering enumeration from section 3 we only have to keep
track of the total processing time of the already scheduled
jobs to enumerate solution tuples (j, sj) for each job j and
its start time sj .555

Corollary 8. An optimal schedule for an instance of
1|prec|Cmax with n jobs and maximum out-degree ∆+ can
be enumerated in order of increasing start times with O(n)
preprocessing and with O(∆+) delay.

It is possible to extend this algorithm to the slightly more560

complex scenario with additional release times for the n
jobs (1|prec, rj |Cmax). A solution algorithm for this set-
ting combines the non-decreasing release time approach of
1|rj |Cmax with a topological ordering: The respective next
job to be scheduled is one with minimal release time among565

all available jobs without unfulfilled precedences. We again
use the iterative source removal algorithm for the topological
order, but do not remove any source, but one with minimal
release time. By using a Strict Fibonacci Heap (Brodal, La-
gogiannis, and Tarjan 2012) to manage all available source570

vertices, the algorithm can find and remove such a source in
O(log(n)) time and insert the up to ∆+ new sources after
the removal in constant time per insert operation.
Corollary 9. An optimal schedule for an instance of
1|prec, rj |Cmax with n jobs and maximum out-degree ∆+575

can be enumerated in order of increasing start times with
O(n) preprocessing and with O(∆+ + log(n)) delay.

We generate the random DAGs for our experiments in the
G(n, p) model (Gilbert 1959) by choosing for a fixed ver-
tex order every forward edge with probability p uniformly580

at random and shuffling the vertices afterwards. Our exper-
iments use, for fast access to both outgoing and incoming
edges, two adjacency arrays with vertex offsets as data struc-
ture (cp. Kammer and Sajenko 2019).
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Figure 4: Total time for the total-time algorithm (DFS finish
times) compared to the total time and time-to-first-output of
our enumeration algorithm for 1|prec|Cmax with edge prob-
ability p = 1

4 .

Figure 4 shows runtime measurements for scheduling jobs 585

based on a dense precedence graph (p = 1
4 ) by means of

topological ordering. In the total-time comparison, the al-
gorithm based on DFS finish times is again faster than our
enumeration algorithm. For the tested instance sizes of up
to 105 jobs with roughly 2.5 · 109 edges, the average time- 590

to-first-output measured in milliseconds and averaged with
double floating point precision is 0; similarly the measured
delay is close to 0. These observations become even more
pronounced for sparser graphs.

5 Conclusions and Research Directions 595

In this paper we demonstrated the theoretical and practical
potential of an enumeration perspective on scheduling prob-
lems. Given the plethora of problem variants in the schedul-
ing literature it is an interesting and wide open question,
which variants admit for efficient enumeration algorithms. 600

Interesting candidates to look at are scheduling problems
with a non-trivial polynomial time algorithm. One example
is minimizing the number of late jobs on a single machine.
The Moore-Hodgson Algorithm (Moore 1968) starts with an
earliest due date first ordering and from that rejects jobs un- 605

til the remaining jobs all meet their deadline. It is unclear
whether a schedule for this setting could be enumerated ef-
ficiently in ascending order, as rejecting jobs is in a way the
opposite of fixing and emitting early solution parts.

Another direction might be the comparison of differ- 610

ent restrictions to precedence graphs. For example, some
scheduling problems seem to profit from the restriction to
series-parallel precedence graphs by making use of a series-
parallel-decomposition (Lawler 1978). However, a first in-
spection of such graphs seems to indicate that such a de- 615

composition cannot be enumerated efficiently.
The enumeration concept can also be applied to approx-

imative scheduling. Simple, sorting-based list scheduling
rules again transfer nicely to enumeration algorithms: The



LPT rule (largest processing time first) for minimizing max-620

imum completion time for parallel machines (P ||Cmax)
yields the same approximation ratios as in the offline algo-
rithm (Graham 1969). Better approximation ratios are pos-
sible in the offline setting through a reduction to bin packing
(Coffman, Garey, and Johnson 1978). Given the offline na-625

ture of the reduction it seems unlikely that the same duality
holds in the enumeration setting.

Finally, we would like to investigate the gained advantage
by enumerating schedules in a processing pipeline. Of par-
ticular interest here is the concept of conditional scheduling,630

where the result of executed jobs determines which subse-
quent nodes in the precedence graph are to be run and which
are discarded (Melani et al. 2015). Whilst basic list schedul-
ing provides acceptable approximation factors in this set-
ting, enumerating a schedule could benefit from a feedback635

loop: While the schedule is still being enumerated, the al-
ready scheduled jobs can run in parallel and their results can
then serve as additional input to the scheduling algorithm.
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