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Abstract

Compositionality, the notion that the meaning of an expression is constructed from1

the meaning of its parts and syntactic rules, permits the infinite productivity of2

human language. For the first time, artificial language models (LMs) are able3

to match human performance in a number of compositional generalization tasks.4

However, much remains to be understood about the computational mechanisms5

underlying these abilities. We take a high-level geometric approach to this problem,6

relating the degree of compositionality in a dataset to the intrinsic dimensionality7

of their representations under an LM, a measure of feature complexity. We find that8

the degree of dataset compositionality is reflected in the intrinsic dimensionality of9

data representations, where greater combinatorial complexity of the data results in10

higher representational dimensionality. Finally, we compare linear and nonlinear11

methods of computing dimensionality, showing that they capture different but12

complementary aspects of compositional complexity.13

1 Introduction14

By virtue of compositionality, few syntactic rules and a finite lexicon can generate an unbounded15

number of sentences [11]. That is, language, though seemingly high-dimensional, can be explained16

using relatively few degrees of freedom. A great deal of effort has been made to test whether17

neural language models (LMs) exhibit human-like compositionality [23, 4]. We take a geometric18

perspective towards this question, asking how an LM’s representational structure reflects and supports19

compositional understanding over the course of training.20

If an LM is a good model of language, we expect its internal representations to exhibit the low-21

dimensional structure of the latter. That is, representations should reflect the manifold hypothesis,22

or the notion that real-life, high-dimensional data lie on a low-dimensional manifold [20]. The23

dimension of this manifold, or intrinsic dimension (ID), is then the minimal number of degrees of24

freedom required to describe it without information loss [20, 8].25
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The manifold hypothesis has been attested for linguistic representations: LMs indeed compress26

inputs to an ID orders-of-magnitude lower than their extrinsic dimension [7, 9, 34]. However, despite27

their conceptual similarity, no work has explicitly linked the degree of linguistic compositionality to28

representational ID. To bridge this gap, we provide initial experimental insights into the relationship29

between compositional complexity of inputs and the ID of their representations. In a series of30

controlled experiments on the Pythia family of language models [6] and a carefully designed synthetic31

dataset, we confirm that (1) LMs represent linguistic inputs on low-dimensional, nonlinear manifolds,32

and (2) representational ID predictably reflects degree of input compositionality.33

2 Background34

Compositionality It has long been a topic of debate whether neural networks also exhibit human-35

like compositionality when processing natural language [16, 33, 28]. This debate has fueled an36

extensive line of empirical exploration aimed at assessing the compositionality of neural networks37

in language modeling via synthetic data [5, 25, 3]. After the recent introduction of large language38

models with human-level linguistic capability, researchers have shown via mechanistic interpretability39

analyses that LMs often extract individual word meanings from early layer multi-layer perceptron40

modules, and compose them via upper-layer self-attention heads to construct semantic representations41

for multi-word expressions [21, 19]. Our work takes a different approach to understand language42

model compositionality by connecting it with the geometric properties of a model’s embedding space.43

Manifold hypothesis Deep learning problems are often considered high-dimensional, but research44

suggests that they are governed by low-dimensional structures. In computer vision, studies have45

demonstrated that common learning objectives and natural image data reside on low-dimensional46

manifolds [27, 30, 34, 31]. Similarly, the learning dynamics of neural LMs have been shown to occur47

within low-dimensional parameter subspaces [1, 35]. The nonlinear, low-dimensional structure that48

emerges in the semantic space of these models likely follows from the training objective of predicting49

sequential observations [32], which can simplify transfer learning to new tasks and datasets [9].50

3 Setup51

Models We evaluate pre-trained Transformer-based LMs of sizes ∈ {70m, 140m, 1.4b, 6.9b, 12b}52

from the Pythia family [6]. Models were trained on the causal language modeling task on The Pile, a53

natural language corpus comprising encyclopedic text, books, social media, code, and reviews [17].54

Dataset As we investigate compositional generalization of the LM, we construct a dataset consisting55

of nonce sentences from a toy grammar. To create the grammar, we set 12 semantic categories and56

randomly sample a 50-word vocabulary for each category, where the categories’ vocabularies are57

disjoint. The categories include 6 adjective types (quality, nationality, size, color, texture), 2 noun58

types (job, animal) and 1 verb type. We use a simple, fixed syntax by ordering the word categories:59

The [quality1.ADJ][nationality1.ADJ][job1.N] [action1.V] the [size1.ADJ][texture.ADJ]
[color.ADJ][animal.N] then [action2.V] the [size2.ADJ][quality2.ADJ][nationality2.ADJ]
[job2.N].

60

The vocabularies are found in Appendix D. The syntax is chosen so that sentences are grammatical61

and that adjective order complies with the accepted order for English [12]. Although the syntactic62

structure and vocabulary items are likely seen during training, words are sampled independently for63

each category without considering the sentence’s global semantic coherence. Therefore, sentences64

are unlikely seen during training. When encountering them for the first time, a frozen LM must65

successfully construct their meanings from the meanings of their parts, or compositionally generalize.66

Controlling compositionality We are interested in two types of compositionality: (1) combina-67

torial dataset complexity, where a dataset is more compositional if it contains more unique word68

combinations; (2) sentence-level compositional semantics, where sentence meaning is composed, via69

syntax, from word meanings.70

First, to control for dataset compositionality, we couple the values of k word positions for k = 1 · · · 4.71

When k positions are coupled, the sequence’s atomic units are sets of k contiguous words, constraining72
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Figure 1: Mean dimensionality over model size. Mean nonlinear Id (left) and linear d (right) over
layers is shown for increasing LM hidden dimension D. While the nonlinear Id does not depend on
extrinsic dimension D (flat lines), the PCA d scales roughly linearly in D. Curves are averaged over
5 random seeds, shown with ± 1 SD.

the number of degrees of freedom to l/k where l = 12 is the number of variable words in the sequence.73

For instance, in the 1-coupled setting, words are sampled independently, thus 12 degrees of freedom;74

if 2-coupled, bigrams are sampled independently, hence 6 degrees of freedom. Increasing k maintains75

the dataset’s unigram distribution, but constrains its combinatorial complexity.76

Second, to investigate compositional semantics, we randomly shuffle the words in each sequence.77

This destroys syntactic coherence, and in turn, the composed meaning of the sentence; it instead78

preserves distributional properties like sequence length and unigram frequencies. Then, LM behavior79

on grammatically sane vs. shuffled sequences proxies compositional vs. lexical-only semantics.80

Dimensionality estimation We are interested in whether the geometry of representations reflects81

their underlying degree of compositionality. In particular, we consider representations in the residual82

stream of the Transformer [14]. Because sequence lengths vary, in line with prior work [9], we83

aggregate over the sequence by taking the last token representation, as it is the only to attend to the84

entire context. For each layer and dataset, we compute both a nonlinear and a linear measure of85

dimensionality, which have key conceptual differences. The nonlinear Id is the number of degrees of86

freedom, or latent features, needed to describe the underlying representation manifold [8, 2, 15]. This87

differs from the linear effective dimensionality d, or the dimension of the minimal linear subspace88

needed to contain the set of representations. Throughout, we will use dimensionality to refer to both89

nonlinear and linear estimates. When appropriate, we will specify Id as the nonlinear ID, d as the90

linear effective dimension, and D as the extrinsic dimension, or hidden dimension of the model.91

We report the nonlinear Id using the popular TwoNN estimator of 15, and we estimate the linear92

effective dimensionality d using Principal Component Analysis [24] with a variance cutoff of 99%.93

Though in the main paper we focus on TwoNN and PCA, we also tested the Maximum Likelihood94

Estimator of [26] and the Participation Ratio [32]. For mathematical details, see Appendix C.95

4 Results96

We find representational dimensionality to reflect compositionality in ways that are predictable across97

model scale. First, we demonstrate that linear and nonlinear dimensionality measures behave differ-98

ently across model scale. Then, we show that dimensionality reflects the degree of compositionality99

of its inputs, highlighting the difference between nonlinear and linear measures. For brevity, we focus100

on model sizes 410m, 1.4b, and 6.9b in the main text, with full results in the appendix.101

Nonlinear and linear ID scale differently with model size Like in previous work [7, 34, 10,102

22, 13], we confirm that inputs are represented in a nonlinear manifold with orders-of-magnitude103

lower dimension than the ambient dimension. In particular, we find that Id ∼ O(10) across models104

sizes (see Figure 1 left). We find, moreover, that larger models tend to have higher representational105

dimensionality, but that the scaling is not uniform. Figure 1 shows that while the linear d scales106

linearly with hidden dimension D, nonlinear Id instead stabilizes to the mentioned range ∼ O(10)107
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Figure 2: Dimensionality over layers. Nonlinear Id (top) and linear d (bottom) over layers are
shown for three sizes: 410m, 1.4b, and 6.9b (left to right). Each color corresponds to a coupling
length k ∈ 1 · · · 4. Solid curves denote sane sequences, and dotted curves denote shuffled sequences.
For all models, lower k results in higher Id and d for both normal and shuffled settings. For all
models, shuffling results in lower Id but higher d. Curves are averaged over 5 random seeds, shown
with ±1 SD.

regardless of extrinsic dimension. This result highlights key differences in how linear and nonlinear108

dimensions are recruited: LMs globally distribute representations to occupy d ∝ D dimensions of109

the space, but locally constrains their shape to a low-dimensional (Id) manifold.110

Representational ID reflects input compositionality Representational dimensionality preserves111

relative data combinatorial complexity. Figure 2 shows Id and d over LM layers for k = 1...4112

coupling lengths (different colors). For both sane and shuffled settings, both Id and d increase113

predictably with input complexity: the highest curves correspond to the 1-coupled dataset, or 12114

degrees of freedom, while the lowest correspond to the 4-coupled dataset, or 3 degrees of freedom.115

Now, we consider sequence-level compositional semantics. See Figure 2 again for the dimensionality116

over layers in sane (solid curves) and shuffled (dotted curves) settings. Intriguingly, nonlinear and117

linear dimensionalities of shuffled examples show opposing patterns: compared to the sane text,118

shuffled text Id generally decreases and is compressed to a small range, while d increases. These119

diverging patterns do not necessarily contradict each other, however. We interpret the discrepancy in120

line with Recanatesi et al. [32]. Predictive coding requires an LM to encode the vast space of inputs121

and outputs, as well as extract latent semantic features to support the former. Recanatesi et al. [32]122

argue that encoding all possible sequences makes use of the global representation space RD; instead,123

encoding semantic relationships between sequences, i.e., latent features, occurs via local correlations124

that give rise to a Id-dimensional manifold. In our setting, randomly permuting words in a length-l125

sequence increases the implied input space by a factor of ∼ l!, which puts an upward pressure on d.126

But, permuting words destroys the semantics of the sequence, exerting a downward pressure on Id.127

5 Discussion128

We have studied the computational mechanism of LM compositionality from a geometric perspective.129

Using a carefully designed synthetic dataset, we found strong relationships between the composition-130

ality of linguistic expressions and the geometric complexity of their representations. In particular,131

dataset combinatorial compositionality is positively correlated to both nonlinear and linear dimension-132

ality. On the other hand, sequences with high semantic compositionality exhibit high nonlinear Id but133

4



a low linear d. Crucially, nonlinear complexity measures have been underexplored in the literature134

compared to linear ones; we demonstrate their empirical differences, highlighting a need to further135

investigate nonlinear measures to proxy feature learning in deep neural models. We hypothesize that136

linear d proxies a dataset’s implied size, and nonlinear Id its meaningful semantic variability.137

Limitations Our analysis is limited to the Pythia family of models. Though it has been suggested138

that causal LMs have similar representational geometry [29, 10], experiments on a wider range of139

LMs and grammars, as well as theoretical work, will be necessary to draw general conclusions.140
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A Computing resources252

All experiments were run on a cluster with 12 nodes with 5 NVIDIA A30 GPUs and 48 CPUs each.253

Extracting LM representations took a few wall-clock hours per model-dataset computation. ID254

computation took approximately 0.5 hours per model-dataset computation. Taking parallelization255

into account, we estimate the overall wall-clock time taken by all experiments, including failed runs,256

preliminary experiments, etc., to be of about 10 days.257

B Assets258

Pythia https://huggingface.co/EleutherAI/pythia-6.9b-deduped; license: apache-2.0259

scikit-dimension https://scikit-dimension.readthedocs.io/en/latest/; license: bsd-260

3-clause261

PyTorch https://scikit-learn.org/; license: bsd262

C ID Estimation263

TwoNN Estimator A number of methods have been proposed to estimate the nonlinear ID of high-264

dimensional point clouds [8]. State-of-the-art ID estimators work by exploiting known relationships265

between points in d-dimensions, then fitting d using maximum likelihood estimation from data. We266

considered the commonly used TwoNN estimator of 15, which has been found to highly correlate to267

other state-of-the-art estimators [9, 8].268

The TwoNN method works as follows. In brief, points on the underlying manifold are assumed to269

follow a locally homogeneous Poisson point process. Local, in this case, refers to neighborhoods270

about each point x which encompass x’s first and second nearest neighbors. Let r(i)k be the Euclidean271

distance between point xi and its kth nearest neighbor. Then, under the mentioned assumptions, the272

distance ratios µi := r
(i)
1 /r

(i)
2 follow the cumulative distribution function F (µ) = 1− µ−Id . Finally,273

Id is numerically estimated from data.274
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Maximum Likelihood Estimator In addition to TwoNN, we considered Levina and Bickel [26]’s275

Maximum Likelihood Estimator (MLE), a similar, nonlinear measure of Id. MLE has been used276

in prior works on representational geometry such as [7, 9, 30], and similarly models the number of277

points in a neighborhood around a reference point x to follow a Poisson point process. For details278

we refer to the original paper [26]. Like past work [15, 9], we found MLE and TwoNN to be highly279

correlated, producing results that were nearly identical: compare Figure 1 left to Figure E.3 left, and280

Figure E.1 top to Figure E.2 top).281

Participation Ratio For our primary linear measure of dimensionality d, we computed PCA and282

took the number of components that explain 99% of the variance. In addition to PCA, we computed283

the Participation Ratio (PR), defined as (
∑

i λi)
2/(

∑
i λ

2
i ) [18]. We found PR to give results that284

were incongruous with intuitions about linear dimensionality. In particular, it produced a lower285

dimensionality estimate than the nonlinear estimators we tested; see, e.g., Figure E.3, where the PR-d286

for sane text is less than that of TwoNN. This contradicts the mathematical relationship that Id ≤ d ≤287

D. This may be because, empirically, PR-d corresponded to explained variances of 60− 80%, which288

are inadequate to describe the bounding linear subspace for the representation manifold. Therefore,289

while we report the mean PR-d over model size in Figure E.3 and the dimensionality over layers in290

Figure E.2 for completeness, we do not attempt to interpret them.291

D Toy Grammar292

The grammar is composed of sentences of the form293

The [quality1.ADJ][nationality1.ADJ][job1.N] [action1.V] the [size1.ADJ][texture.ADJ]
[color.ADJ][animal.N] then [action2.V] the [size2.ADJ][quality2.ADJ][nationality2.ADJ]
[job2.N].

294

Each category, colored and enclosed in brackets, is sampled from a vocabulary of 50 possible words,295

listed in the table below:296

Category Words
job1 teacher, doctor, engineer, chef, lawyer, plumber, electrician,

accountant, nurse, mechanic, architect, dentist, programmer,
photographer, painter, firefighter, police, pilot, farmer, waiter,
scientist, actor, musician, writer, athlete, designer, carpenter,
librarian, journalist, psychologist, gardener, baker, butcher, tailor,
cashier, barber, janitor, receptionist, salesperson, manager, tutor,
coach, translator, veterinarian, pharmacist, therapist, driver,
bartender, security, clerk

job2 banker, realtor, consultant, therapist, optometrist, astronomer,
biologist, geologist, archaeologist, anthropologist, economist,
sociologist, historian, philosopher, linguist, meteorologist,
zoologist, botanist, chemist, physicist, mathematician, statistician,
surveyor, pilot, steward, dispatcher, ichthyologist, oceanographer,
ecologist, geneticist, microbiologist, neurologist, cardiologist,
pediatrician, surgeon, anesthesiologist, radiologist, dermatologist,
gynecologist, urologist, psychiatrist, physiotherapist, chiropractor,
nutritionist, personal trainer, yoga instructor, masseur,
acupuncturist, paramedic, midwife

animal dog, cat, elephant, lion, tiger, giraffe, zebra, monkey, gorilla,
chimpanzee, bear, wolf, fox, deer, moose, rabbit, squirrel,
raccoon, beaver, otter, penguin, eagle, hawk, owl, parrot,
flamingo, ostrich, peacock, swan, duck, frog, toad, snake, lizard,
turtle, crocodile, alligator, shark, whale, dolphin, octopus,
jellyfish, starfish, crab, lobster, butterfly, bee, ant, spider, scorpion
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color red, blue, green, yellow, purple, orange, pink, brown, gray, black,
white, cyan, magenta, turquoise, indigo, violet, maroon, navy,
olive, teal, lime, aqua, coral, crimson, fuchsia, gold, silver,
bronze, beige, tan, khaki, lavender, plum, periwinkle, mauve,
chartreuse, azure, mint, sage, ivory, salmon, peach, apricot,
mustard, rust, burgundy, mahogany, chestnut, sienna, ochre

size1 big, small, large, tiny, huge, giant, massive, microscopic,
enormous, colossal, miniature, petite, compact, spacious, vast,
wide, narrow, slim, thick, thin, broad, expansive, extensive,
substantial, boundless, considerable, immense, mammoth,
towering, titanic, gargantuan, diminutive, minuscule, minute,
hulking, bulky, hefty, voluminous, capacious, roomy, cramped,
confined, restricted, limited, oversized, undersized, full, empty,
half, partial

size2 lengthy, short, tall, long, deep, shallow, high, low, medium,
average, moderate, middling, intermediate, standard, regular,
normal, ordinary, sizable, generous, abundant, plentiful, copious,
meager, scanty, skimpy, inadequate, sufficient, ample, excessive,
extravagant, exorbitant, modest, humble, grand, majestic,
imposing, commanding, dwarfed, diminished, reduced, enlarged,
magnified, amplified, expanded, contracted, shrunken, swollen,
bloated, inflated, deflated

nationality1 American, British, Canadian, Australian, German, French, Italian,
Spanish, Japanese, Chinese, Indian, Russian, Brazilian, Mexican,
Argentinian, Turkish, Egyptian, Nigerian, Kenyan, African,
Swedish, Norwegian, Danish, Finnish, Icelandic, Dutch, Belgian,
Swiss, Austrian, Greek, Polish, Hungarian, Czech, Slovak,
Romanian, Bulgarian, Serbian, Croatian, Slovenian, Ukrainian,
Belarusian, Estonian, Latvian, Lithuanian, Irish, Scottish, Welsh,
Portuguese, Moroccan, Algerian

nationality2 Vietnamese, Thai, Malaysian, Indonesian, Filipino, Singaporean,
Nepalese, Bangladeshi, Maldivian, Pakistani, Afghan, Iranian,
Iraqi, Syrian, Lebanese, Israeli, Saudi, Emirati, Qatari, Kuwaiti,
Omani, Yemeni, Jordanian, Palestinian, Bahraini, Tunisian,
Libyan, Sudanese, Ethiopian, Somali, Ghanaian, Ivorian,
Senegalese, Malian, Cameroonian, Congolese, Ugandan,
Rwandan, Tanzanian, Mozambican, Zambian, Zimbabwean,
Namibian, Botswanan, New Zealander, Fijian, Samoan, Tongan,
Papuan, Marshallese

action1 feeds, walks, grooms, pets, trains, rides, tames, leashes, bathes,
brushes, adopts, rescues, shelters, houses, cages, releases, frees,
observes, studies, examines, photographs, films, sketches, paints,
draws, catches, hunts, traps, chases, pursues, tracks, follows,
herds, corrals, milks, shears, breeds, mates, clones, dissects,
stuffs, mounts, taxidermies, domesticates, harnesses, saddles,
muzzles, tags, chips, vaccinates

action2 hugs, kisses, loves, hates, admires, respects, befriends, distrusts,
helps, hurts, teaches, learns from, mentors, guides, counsels,
advises, supports, undermines, praises, criticizes, compliments,
insults, congratulates, consoles, comforts, irritates, annoys,
amuses, entertains, bores, inspires, motivates, discourages,
intimidates, impresses, disappoints, surprises, shocks, delights,
disgusts, forgives, resents, envies, pities, understands,
misunderstands, trusts, mistrusts, betrays, protects
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quality1 good, bad, excellent, poor, superior, inferior, outstanding,
mediocre, exceptional, sublime, superb, terrible, wonderful,
awful, great, horrible, fantastic, dreadful, marvelous, atrocious,
splendid, appalling, brilliant, dismal, fabulous, lousy, terrific,
abysmal, incredible, substandard, amazing, disappointing,
extraordinary, stellar, remarkable, unremarkable, impressive,
unimpressive, admirable, despicable, praiseworthy, blameworthy,
commendable, reprehensible, exemplary, subpar, ideal, flawed,
perfect, imperfect

quality2 acceptable, unacceptable, satisfactory, unsatisfactory,
sophisticated, insufficient, adequate, exquisite, suitable,
unsuitable, appropriate, inappropriate, fitting, unfitting, proper,
improper, correct, incorrect, right, wrong, accurate, inaccurate,
precise, imprecise, exact, inexact, flawless, faulty, sound,
unsound, reliable, unreliable, dependable, undependable,
trustworthy, untrustworthy, authentic, fake, genuine, counterfeit,
legitimate, illegitimate, valid, invalid, legal, illegal, ethical,
unethical, moral, immoral

texture smooth, rough, soft, hard, silky, coarse, fluffy, fuzzy, furry, hairy,
bumpy, lumpy, grainy, gritty, sandy, slimy, slippery, sticky, tacky,
greasy, oily, waxy, velvety, leathery, rubbery, spongy, springy,
elastic, pliable, flexible, rigid, stiff, brittle, crumbly, flaky, crispy,
crunchy, chewy, stringy, fibrous, porous, dense, heavy, light, airy,
feathery, downy, woolly, nubby, textured
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Figure E.1: Dimensionality over layers. TwoNN nonlinear Id (top) and PCA linear d (bottom) over
layers are shown for all sizes (left to right). Each color corresponds to a coupling length k ∈ 1 · · · 4.
Solid curves denote sane sequences, and dotted curves denote shuffled sequences. For all models,
lower k results in higher Id and d for both normal and shuffled settings. For all models, shuffling
results in lower Id but higher d. Curves are averaged over 5 random seeds, shown with ±1 SD.

10



0 2 4
5

10

15

20

M
LE

 I d

14m

0 2 4

10

20

70m

0 5 10
10

20

30

40
160m

0 10 20

10

20

30
410m

0 10 20

10

20

30

1.4b

0 20
10

20

30

6.9b

0 20
10

20

30

12b

0 2 4
layer

0

10

20

30

PR
 d

0 2 4
layer

0

20

40

60

0 5 10
layer

0

25

50

75

0 10 20
layer

20

40

60

0 10 20
layer

0

25

50

75

0 20
layer

0

50

100

0 20
layer

0

50

100

# words coupled
1
2
3
4
sane
shuffled

Figure E.2: Other dimensionality metrics over layers. MLE nonlinear Id (top) and PR linear d
(bottom) over layers are shown for all model sizes (left to right). Each color corresponds to a coupling
length k ∈ 1 · · · 4. Solid curves denote sane sequences, and dotted curves denote shuffled sequences.
For all models, lower k results in higher Id for both normal and shuffled settings. For all models,
shuffling results in lower Id. The PR-d produced nonsensical results, with linear dimensionality
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Figure E.3: Mean dimensionality over model size (other metrics). Mean nonlinear Id computed
with MLE (left) and linear d computed with PR (right) over layers is shown for increasing LM
hidden dimension D. MLE Id does not depend on extrinsic dimension D (flat lines). PR d produces
nonsensical values, higher than the nonlinear Id. Curves are averaged over 5 random seeds, shown
with ± 1 SD.

NeurIPS Paper Checklist298

1. Claims299

Question: Do the main claims made in the abstract and introduction accurately reflect the300

paper’s contributions and scope?301

Answer: [Yes]302

Justification: Sections 4.1-3 support claims in the Abstract and Introduction.303

Guidelines:304

• The answer NA means that the abstract and introduction do not include the claims305

made in the paper.306

• The abstract and/or introduction should clearly state the claims made, including the307

contributions made in the paper and important assumptions and limitations. A No or308

NA answer to this question will not be perceived well by the reviewers.309

• The claims made should match theoretical and experimental results, and reflect how310

much the results can be expected to generalize to other settings.311

• It is fine to include aspirational goals as motivation as long as it is clear that these goals312

are not attained by the paper.313

2. Limitations314

Question: Does the paper discuss the limitations of the work performed by the authors?315
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Answer: [Yes]316

Justification: The "Limitations" subsection in Section 4 discusses the limitations of this317

work.318

Guidelines:319

• The answer NA means that the paper has no limitation while the answer No means that320

the paper has limitations, but those are not discussed in the paper.321

• The authors are encouraged to create a separate "Limitations" section in their paper.322

• The paper should point out any strong assumptions and how robust the results are to323

violations of these assumptions (e.g., independence assumptions, noiseless settings,324

model well-specification, asymptotic approximations only holding locally). The authors325

should reflect on how these assumptions might be violated in practice and what the326

implications would be.327

• The authors should reflect on the scope of the claims made, e.g., if the approach was328

only tested on a few datasets or with a few runs. In general, empirical results often329

depend on implicit assumptions, which should be articulated.330

• The authors should reflect on the factors that influence the performance of the approach.331

For example, a facial recognition algorithm may perform poorly when image resolution332

is low or images are taken in low lighting. Or a speech-to-text system might not be333

used reliably to provide closed captions for online lectures because it fails to handle334

technical jargon.335

• The authors should discuss the computational efficiency of the proposed algorithms336

and how they scale with dataset size.337

• If applicable, the authors should discuss possible limitations of their approach to338

address problems of privacy and fairness.339

• While the authors might fear that complete honesty about limitations might be used by340

reviewers as grounds for rejection, a worse outcome might be that reviewers discover341

limitations that aren’t acknowledged in the paper. The authors should use their best342

judgment and recognize that individual actions in favor of transparency play an impor-343

tant role in developing norms that preserve the integrity of the community. Reviewers344

will be specifically instructed to not penalize honesty concerning limitations.345

3. Theory Assumptions and Proofs346

Question: For each theoretical result, does the paper provide the full set of assumptions and347

a complete (and correct) proof?348

Answer: [NA]349

Justification: This is an empirical work.350

Guidelines:351

• The answer NA means that the paper does not include theoretical results.352

• All the theorems, formulas, and proofs in the paper should be numbered and cross-353

referenced.354

• All assumptions should be clearly stated or referenced in the statement of any theorems.355

• The proofs can either appear in the main paper or the supplemental material, but if356

they appear in the supplemental material, the authors are encouraged to provide a short357

proof sketch to provide intuition.358

• Inversely, any informal proof provided in the core of the paper should be complemented359

by formal proofs provided in appendix or supplemental material.360

• Theorems and Lemmas that the proof relies upon should be properly referenced.361

4. Experimental Result Reproducibility362

Question: Does the paper fully disclose all the information needed to reproduce the main ex-363

perimental results of the paper to the extent that it affects the main claims and/or conclusions364

of the paper (regardless of whether the code and data are provided or not)?365

Answer: [Yes]366

Justification: Data preprocessing steps are provided in the Appendix. Code will be367

deanonymized upon acceptance.368
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Guidelines:369

• The answer NA means that the paper does not include experiments.370

• If the paper includes experiments, a No answer to this question will not be perceived371

well by the reviewers: Making the paper reproducible is important, regardless of372

whether the code and data are provided or not.373

• If the contribution is a dataset and/or model, the authors should describe the steps taken374

to make their results reproducible or verifiable.375

• Depending on the contribution, reproducibility can be accomplished in various ways.376

For example, if the contribution is a novel architecture, describing the architecture fully377

might suffice, or if the contribution is a specific model and empirical evaluation, it may378

be necessary to either make it possible for others to replicate the model with the same379

dataset, or provide access to the model. In general. releasing code and data is often380

one good way to accomplish this, but reproducibility can also be provided via detailed381

instructions for how to replicate the results, access to a hosted model (e.g., in the case382

of a large language model), releasing of a model checkpoint, or other means that are383

appropriate to the research performed.384

• While NeurIPS does not require releasing code, the conference does require all submis-385

sions to provide some reasonable avenue for reproducibility, which may depend on the386

nature of the contribution. For example387

(a) If the contribution is primarily a new algorithm, the paper should make it clear how388

to reproduce that algorithm.389

(b) If the contribution is primarily a new model architecture, the paper should describe390

the architecture clearly and fully.391

(c) If the contribution is a new model (e.g., a large language model), then there should392

either be a way to access this model for reproducing the results or a way to reproduce393

the model (e.g., with an open-source dataset or instructions for how to construct394

the dataset).395

(d) We recognize that reproducibility may be tricky in some cases, in which case396

authors are welcome to describe the particular way they provide for reproducibility.397

In the case of closed-source models, it may be that access to the model is limited in398

some way (e.g., to registered users), but it should be possible for other researchers399

to have some path to reproducing or verifying the results.400

5. Open access to data and code401

Question: Does the paper provide open access to the data and code, with sufficient instruc-402

tions to faithfully reproduce the main experimental results, as described in supplemental403

material?404

Answer: [Yes]405

Justification: We will release the code on github after the notification decision.406

Guidelines:407

• The answer NA means that paper does not include experiments requiring code.408

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/409

public/guides/CodeSubmissionPolicy) for more details.410

• While we encourage the release of code and data, we understand that this might not be411

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not412

including code, unless this is central to the contribution (e.g., for a new open-source413

benchmark).414

• The instructions should contain the exact command and environment needed to run to415

reproduce the results. See the NeurIPS code and data submission guidelines (https:416

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.417

• The authors should provide instructions on data access and preparation, including how418

to access the raw data, preprocessed data, intermediate data, and generated data, etc.419

• The authors should provide scripts to reproduce all experimental results for the new420

proposed method and baselines. If only a subset of experiments are reproducible, they421

should state which ones are omitted from the script and why.422
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• At submission time, to preserve anonymity, the authors should release anonymized423

versions (if applicable).424

• Providing as much information as possible in supplemental material (appended to the425

paper) is recommended, but including URLs to data and code is permitted.426

6. Experimental Setting/Details427

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-428

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the429

results?430

Answer: [Yes]431

Justification: The details necessary to understand the results can be found in appendices A432

and B433

Guidelines:434

• The answer NA means that the paper does not include experiments.435

• The experimental setting should be presented in the core of the paper to a level of detail436

that is necessary to appreciate the results and make sense of them.437

• The full details can be provided either with the code, in appendix, or as supplemental438

material.439

7. Experiment Statistical Significance440

Question: Does the paper report error bars suitably and correctly defined or other appropriate441

information about the statistical significance of the experiments?442

Answer: [Yes]443

Justification: Standard errors are plotted for all results (although they are often too small to444

see).445

Guidelines:446

• The answer NA means that the paper does not include experiments.447

• The authors should answer "Yes" if the results are accompanied by error bars, confi-448

dence intervals, or statistical significance tests, at least for the experiments that support449

the main claims of the paper.450

• The factors of variability that the error bars are capturing should be clearly stated (for451

example, train/test split, initialization, random drawing of some parameter, or overall452

run with given experimental conditions).453

• The method for calculating the error bars should be explained (closed form formula,454

call to a library function, bootstrap, etc.)455

• The assumptions made should be given (e.g., Normally distributed errors).456

• It should be clear whether the error bar is the standard deviation or the standard error457

of the mean.458

• It is OK to report 1-sigma error bars, but one should state it. The authors should459

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis460

of Normality of errors is not verified.461

• For asymmetric distributions, the authors should be careful not to show in tables or462

figures symmetric error bars that would yield results that are out of range (e.g. negative463

error rates).464

• If error bars are reported in tables or plots, The authors should explain in the text how465

they were calculated and reference the corresponding figures or tables in the text.466

8. Experiments Compute Resources467

Question: For each experiment, does the paper provide sufficient information on the com-468

puter resources (type of compute workers, memory, time of execution) needed to reproduce469

the experiments?470

Answer: [Yes]471

Justification: In Appendix A.472

Guidelines:473
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• The answer NA means that the paper does not include experiments.474

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,475

or cloud provider, including relevant memory and storage.476

• The paper should provide the amount of compute required for each of the individual477

experimental runs as well as estimate the total compute.478

• The paper should disclose whether the full research project required more compute479

than the experiments reported in the paper (e.g., preliminary or failed experiments that480

didn’t make it into the paper).481

9. Code Of Ethics482

Question: Does the research conducted in the paper conform, in every respect, with the483

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?484

Answer: [Yes]485

Justification: The authors have reviewed the NeurIPS Code of Ethics and made sure to486

follow it487

Guidelines:488

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.489

• If the authors answer No, they should explain the special circumstances that require a490

deviation from the Code of Ethics.491

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-492

eration due to laws or regulations in their jurisdiction).493

10. Broader Impacts494

Question: Does the paper discuss both potential positive societal impacts and negative495

societal impacts of the work performed?496

Answer: [Yes]497

Justification: The "Broader Impacts" subsection in section 4 discusses broader impacts498

Guidelines:499

• The answer NA means that there is no societal impact of the work performed.500

• If the authors answer NA or No, they should explain why their work has no societal501

impact or why the paper does not address societal impact.502

• Examples of negative societal impacts include potential malicious or unintended uses503

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations504

(e.g., deployment of technologies that could make decisions that unfairly impact specific505

groups), privacy considerations, and security considerations.506

• The conference expects that many papers will be foundational research and not tied507

to particular applications, let alone deployments. However, if there is a direct path to508

any negative applications, the authors should point it out. For example, it is legitimate509

to point out that an improvement in the quality of generative models could be used to510

generate deepfakes for disinformation. On the other hand, it is not needed to point out511

that a generic algorithm for optimizing neural networks could enable people to train512

models that generate Deepfakes faster.513

• The authors should consider possible harms that could arise when the technology is514

being used as intended and functioning correctly, harms that could arise when the515

technology is being used as intended but gives incorrect results, and harms following516

from (intentional or unintentional) misuse of the technology.517

• If there are negative societal impacts, the authors could also discuss possible mitigation518

strategies (e.g., gated release of models, providing defenses in addition to attacks,519

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from520

feedback over time, improving the efficiency and accessibility of ML).521

11. Safeguards522

Question: Does the paper describe safeguards that have been put in place for responsible523

release of data or models that have a high risk for misuse (e.g., pretrained language models,524

image generators, or scraped datasets)?525
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Answer: [NA]526

Justification: The paper poses no such risks527

Guidelines:528

• The answer NA means that the paper poses no such risks.529

• Released models that have a high risk for misuse or dual-use should be released with530

necessary safeguards to allow for controlled use of the model, for example by requiring531

that users adhere to usage guidelines or restrictions to access the model or implementing532

safety filters.533

• Datasets that have been scraped from the Internet could pose safety risks. The authors534

should describe how they avoided releasing unsafe images.535

• We recognize that providing effective safeguards is challenging, and many papers do536

not require this, but we encourage authors to take this into account and make a best537

faith effort.538

12. Licenses for existing assets539

Question: Are the creators or original owners of assets (e.g., code, data, models), used in540

the paper, properly credited and are the license and terms of use explicitly mentioned and541

properly respected?542

Answer: [Yes]543

Justification: Assets used are the estimator implementations and the pretrained Pythia544

models Appendix B.545

Guidelines:546

• The answer NA means that the paper does not use existing assets.547

• The authors should cite the original paper that produced the code package or dataset.548

• The authors should state which version of the asset is used and, if possible, include a549

URL.550

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.551

• For scraped data from a particular source (e.g., website), the copyright and terms of552

service of that source should be provided.553

• If assets are released, the license, copyright information, and terms of use in the554

package should be provided. For popular datasets, paperswithcode.com/datasets555

has curated licenses for some datasets. Their licensing guide can help determine the556

license of a dataset.557

• For existing datasets that are re-packaged, both the original license and the license of558

the derived asset (if it has changed) should be provided.559

• If this information is not available online, the authors are encouraged to reach out to560

the asset’s creators.561

13. New Assets562

Question: Are new assets introduced in the paper well documented and is the documentation563

provided alongside the assets?564

Answer: [NA]565

Justification: No new assets are introduced in the paper566

Guidelines:567

• The answer NA means that the paper does not release new assets.568

• Researchers should communicate the details of the dataset/code/model as part of their569

submissions via structured templates. This includes details about training, license,570

limitations, etc.571

• The paper should discuss whether and how consent was obtained from people whose572

asset is used.573

• At submission time, remember to anonymize your assets (if applicable). You can either574

create an anonymized URL or include an anonymized zip file.575

14. Crowdsourcing and Research with Human Subjects576
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Question: For crowdsourcing experiments and research with human subjects, does the paper577

include the full text of instructions given to participants and screenshots, if applicable, as578

well as details about compensation (if any)?579

Answer: [NA]580

Justification: No human crowdsourcing.581

Guidelines:582

• The answer NA means that the paper does not involve crowdsourcing nor research with583

human subjects.584

• Including this information in the supplemental material is fine, but if the main contribu-585

tion of the paper involves human subjects, then as much detail as possible should be586

included in the main paper.587

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,588

or other labor should be paid at least the minimum wage in the country of the data589

collector.590

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human591

Subjects592

Question: Does the paper describe potential risks incurred by study participants, whether593

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)594

approvals (or an equivalent approval/review based on the requirements of your country or595

institution) were obtained?596

Answer: [NA]597

Justification: No human experiments.598

Guidelines:599

• The answer NA means that the paper does not involve crowdsourcing nor research with600

human subjects.601

• Depending on the country in which research is conducted, IRB approval (or equivalent)602

may be required for any human subjects research. If you obtained IRB approval, you603

should clearly state this in the paper.604

• We recognize that the procedures for this may vary significantly between institutions605

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the606

guidelines for their institution.607

• For initial submissions, do not include any information that would break anonymity (if608

applicable), such as the institution conducting the review.609
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