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Abstract

Linear L1-regularized models have remained one of the simplest and most effective tools
in data science. Over the past decade, screening rules have risen in popularity as a way
to reduce the runtime for producing the sparse regression weights of L1 models. However,
despite the increasing need of privacy-preserving models for data analysis, to the best of
our knowledge, no differentially private screening rule exists. In this paper, we develop
the first private screening rule for linear regression. We initially find that this screening
rule is too strong: it screens too many coefficients as a result of the private screening
step. However, a weakened implementation of private screening reduces overscreening and
improves performance.

1 Introduction

Sparse linear regression is an important statistical technique which can prevent overfitting and allow data
analysts to better interpret model coefficients. Its applications are widespread, but it is especially useful when
choosing features for further study or analyzing high-dimensional datasets with many features, such as those
in medicine or finance (Kandel et al., 2013; Wang, 2010). Sparse regression is typically achieved through
LASSO (L1) optimization. In its constrained form, the LASSO optimization problem can be represented by

ŵ = arg min
w∈Rd: ∥w∥1≤λ

1
n

n∑
i=1

(yi −w · xi)2,

where λ is the constraint parameter, x1, . . . , xn ∈ Rd, and y1, . . . , yn ∈ R. The Frank-Wolfe algorithm can
be used to directly optimize over this objective (Frank & Wolfe, 1956).

However, the output ŵ of this optimization may not be private. In other words, ŵ can reveal information
about specific training datapoints. This may be dangerous in fields like medicine and finance, where data-
points consist of sensitive information which should not be revealed when a model is used publicly (Khanna
et al., 2022; Basu et al., 2021). To prevent private information leakage in cases like these, differential privacy
can be used.

Differential privacy is a statistical technique which provides a guarantee of training data privacy. Specifically,
given privacy parameters ϵ and δ and any two datasets D and D′ differing on one datapoint, an approximate
differentially private algorithm A satisfies P [A(D) ∈ O] ≤ exp{ϵ}P [A(D′) ∈ O] + δ for any O ⊆ image(A)
(Dwork et al., 2014).1 In simple terms, a differentially private algorithm’s outputs do not reveal whether or
not a specific datapoint was used in its training.

Making an algorithm differentially private requires adding noise to its intermediate steps or outputs. Regard-
less of where the noise is added, its scale must be proportional to the algorithm’s sensitivity, or how much its
outputs can change when one of its input datapoints is added or removed. If this change is measured with

1An important consideration when employing differential privacy is the definition of two datasets differing on one datapoint.
There are two ways to define this: one in which a datapoint from D is replaced with another to produce D′, and another in
which a datapoint is added or removed from D to produce D′. In this paper, we use the latter definition for dataset adjacency.
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an L1 or L2 norm, noise can be added with the Laplacian or Gaussian distributions, respectively. Further
introductory details on differential privacy can be found in Near & Abuah (2021).

Differentially private high-dimensional regression optimization algorithms exist, but have flaws (Talwar et al.,
2015; Wang & Gu, 2019). These optimization algorithms modify nonprivate sparse optimization techniques
but can run slowly and produce dense or ineffective solutions. Additionally, many works on sparse differen-
tially private regression discuss model selection algorithms which run prior to training (Kifer et al., 2012;
Thakurta & Smith, 2013). However, these algorithms are computationally inefficient and can assume an
exact level of sparsity of the final solution before choosing a support set prior to training.

In the nonprivate setting, sparsity on regression weights can be achieved by using screening rules. Screening
rules are methods which discard features that do not contribute to a statistical model during training. They
are most often used in L1-regularized or L1-constrained linear regression to set the coefficients of unimportant
features to zero during the optimization process. In doing so, they improve the generalization of a model
by counteracting overfitting and enable faster convergence. Screening rules have been used to improve the
performance of sparse regression optimization on numerous datasets over the past decade and are even
included in the popular R package glmnet (Wang et al., 2013; 2014; Raj et al., 2016; Ghaoui et al., 2010;
Olbrich, 2015; Tibshirani et al., 2012; Friedman et al., 2021).

Unlike the aforementioned approaches for private regression, screening rules do not require a predetermined
support set or level of sparsity. They efficiently check a mathematical condition to determine if a feature
should be screened to 0, and are implemented with sparse optimizers during training to improve the rate of
learning and stability.

A differentially private screening rule has the potential to combat overfitting and help private optimizers
focus on a model’s most important features. However, to the best of our knowledge, no differentially private
screening rule exists. In this work, we privatize a screening rule used for convex problems developed by Raj
et al. (2016), with the goal of testing whether such a modification can yield the benefits of screening rules
while retaining accuracy and guarnateeing privacy.In this work, we develop and explore a differentially private
screening rule, and show two variants of its implementation. We find that an aggresive implementation of
the screening rule cannot accurately screen features, and we analyze why this is the case. We then create a
weaker implementation strategy with improved results.

This paper is organized as follows. In Section 2, we review prior literature on sparse private regression
and a relevant nonprivate screening rule. In Section 3, we find the sensitivity of this screening rule, and
Section 4 shows how the rule can be tentatively implemented to produce sparsity. However, the screening
rule presented in Section 4 is too strong, so Section 5 presents a way to weaken the screening rule, and
Section 6 demonstrates experiments with this screening rule, showing that it can produce better results.

2 Related Work

Methods to produce private sparse regression weights all suffer in performance due to the addition of noise.
Private L1 optimizers must add higher levels of noise when run for more iterations, incentivizing practitioners
to run fewer iterations (Talwar et al., 2015; Wang & Zhang, 2020). However, running an optimizer for fewer
iterations means that the model will be limited in its learning. On the other hand, private model selection
algorithms are computationally inefficient and run prior to training, meaning they are unable to reap the
benefit of any information contained within partially trained coefficients of the weight vector (Lei et al., 2018;
Thakurta & Smith, 2013). Although noise is necessary for privacy, an effective private screening rule would
run with a private optimizer and improve the optimizer’s performance by setting the coefficients of irrelevant
features to 0. By using the screening rule on the current weight vector, it can adapt to the optimizer’s
updates and screen features more accurately.

To develop a differentially private screening rule, we adapt Theorem 11 of Raj et al. (2016)’s rule which is
flexible to solving many types of regression problems. While other screening rules exist, they are geometry-
and problem-specific (Ghaoui et al., 2010; Wang et al., 2014; 2013). Our goal is to utilize Raj et al.
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(2016)’s screening rule for L1-constrained regression to induce sparsity on Talwar et al. (2015)’s
L1-constrained private Frank-Wolfe algorithm.2

Since we use the private Frank-Wolfe algorithm (DP-FW), we also review it here. DP-FW uses the Frank-Wolfe
method for L1-constrained convex optimization, which chooses a vertex of the feasible region (scaled L1 ball)
which minimizes a linear approximation of the loss function. By doing this for T iterations with appropriate
step sizes, the algorithm satisfies L(w(T ))−minw∗∈C L(w∗) ≤ O( 1

T ) (Frank & Wolfe, 1956; Jaggi, 2013). To
privatize the Frank-Wolfe algorithm, Talwar et al. (2015) restrict the L∞ norm of datapoints so they can
calculate the exact sensitivity of the gradients. They then use the report-noisy-max mechanism to noisily
choose which component of the weight vector to update. Unfortunately, due to inexact optimization caused
by the noisy selection process, the private Frank-Wolfe algorithm produces dense results, limiting its ability to
be used in high-throughput or interpretability-restricted applications of regression. Despite this limitation,
the Frank-Wolfe algorithm is ideal for an application of Raj et al. (2016)’s screening rule. Of current
methods for private high-dimensional regression, recently summarized by Khanna et al. (2024), the Frank-
Wolfe algorithm is unique in that it uses L1-constrained optimization with updates to one component of the
weight vector per iteration. Each of these conditions is important. The first is necessary because Raj et al.
(2016)’s screening rule requires optimization over an L1-constrained set. The second is important because if
a private (noisy) optimization algorithm updates all components of a weight vector at each iteration, then
any sparsity induced by applying a screening rule would be lost at the next iteration of optimization, since
the output of the optimization would be dense.

To the best of our knowledge, this is the first work considering a differentially private screening rule. The
difficulty of DP screening is counteracted by the reward of obtaining sparse and private regression, as normal
DP destroys sparsity via the addition of noise.

3 Privatizing Iterative Screening

Raj et al. (2016) consider the problem minw∈C f(Xw), where C is the feasible set of solutions and f is
L-smooth and µ-strongly convex. They also define x(i) ∈ Rnx(i) to be the ith column of the design matrix

X =

x1
...

xn

 ∈ Rn×dX and GC(w) to be the Wolfe gap function, namely maxz∈C(Xw−Xz)⊤∇f(Xw). Given

this information, they prove that if

si = |x⊤
(i)∇f(Xw)|+ (Xw)⊤∇f(Xw) + L(∥x(i)∥2 + ∥Xw∥2)

√
GC(w)/µ < 0 (1)

is less than 0 at any w ∈ C, then w∗
i = 0, where w∗ is the optimal solution to the optimization problem.3

Our goal is to employ this screening rule for linear regression, namely, when f(Xw) : Rn → R =
1
n (y−Xw)⊤ (y−Xw). Since we want to guarantee privacy, we will determine the sensitivity of this calcula-
tion so we can add an appropriate amount of noise and ensure screening is differentially private. Specifically,
we want to determine how much the value of f can change between datasets X and X′, where X′ contains
either one additional row or one removed row compared to X.Our goal is to determine the sensitivity of this
calculation so we can add an appropriate amount of noise and ensure screening is differentially private. We
will conduct our analysis for the case where ∥xi∥∞ ≤ 1, C is the λ-scaled L1-ball in Rd, and |yi| < λ. These
conditions are also required by the DP-FW optimizer (Talwar et al., 2015).
Theorem 1. Under the conditions listed above, the sensitivity of Equation 1 when f(Xw) =
1
n (y−Xw)⊤ (y−Xw) is

2λ

n
+ 2λ2

n
+ 1

n
(1 + λ)

√
4λ2/n

1/n
.

2Note that Raj et al. (2016) is written with semantics typical in the field of optimization - there are d (d)atapoints and the
goal is to optimize a vector with (n)umber of components n. In this paper, we use the standard statistical and machine learning
conventions, in which there are n (n)umber of datapoints and optimization is done over d (d)imensions.

3Note that in this expression and in the Wolfe gap function, the gradients are taken with respect to the vector u = Xw ∈ Rn.
Since u ∈ Rn, ∇f(u) ∈ Rn. This can be a source of confusion for those who are unfamiliar with the Wolfe gap function.
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Algorithm 1 ADP-Screen

Require: Privacy Parameters: ϵ1 > 0, ϵ2 > 0, 0 < δ1 ≤ 1, 0 < δ2 ≤ 1; Constraint: λ > 0; Iterations: T ;
Design Matrix: X ∈ Rn×d where ∥xi∥∞ ≤ 1 for all i ∈ {1, . . . , n}; Target: y; L2-Sensitivity: ∆2; Set of
Iterations to Screen: Ii.

1: l← |I|
2: δiter ← δ2

l+1
3: ϵiter ← ϵ2

2
√

2l log(1/δiter)

4: σ2 ← 2∆2
2 log(1.25/δiter)

ϵ2
iter

5: ŵ(0) ← Random Vector in {w ∈ Rd : ∥w∥1 ≤ λ}the λ-scaled L1 Ball
6: for t = 1 to T do
7: ŵ(t) ← DP-FW Step

(
ϵ1, δ1, λ, T, X, y, ŵ(t−1))

8: if t ∈ I then
9: for i = 1 to d do

10: si ← |x⊤
(i)∇f(Xŵ(t))| + (Xŵ(t))⊤∇f(Xŵ(t)) + L(∥x(i)∥2 + ∥Xŵ(t)∥2)

√
GC(ŵ(t))/µ

Equation 1
(
X, y, ŵ(t), λ

)
11: s← s +N (0, σ2Id)
12: ŵ(t)

j ← 0 if sj < 0 for all j

13: Output ŵ(T )

The sensitivity of releasing s =
[
s1 . . . sd

]⊤ is

2λ
√

d

n
+ 2λ2

√
d

n
+ 1

n

(√
d + λ

√
d
)√4λ2/n

1/n
.

The proof is provided in the appendix.

4 ADP-Screen

Using the bounds for the L2-sensitivity of the screening rule in Equation 1, we discuss our first attempt
at implementing it into a differentially private linear regression training procedure. Prior to proceeding,
we highlight that the method produced in this section is impractical for actual use; rather, the method
demonstrates the critical problem of “overscreening” in private screening rules. We develop a method to
address overscreening in Section 5.

Since our screening rule requires L1-constrained optimization, we employ the private Frank-Wolfe algorithm
developed in Talwar et al. (2015) to train regression models. To the best of our knowledge, this is the
only differentially-private algorithm for L1-constrained optimization. Additionally, the mean-squared error
loss has Lipschitz constant 1 with respect to the L1 norm, which satisfies the algorithm’s requirement for
L1-Lipschitz loss functions.

Our algorithm is shown in Algorithm 1, abstracting away the steps required for the private Frank-Wolfe
algorithm. Since our mechanism uses the advanced composition theorem with approximate differential
privacy, we call this method ADP-Screen. We include the following guarantee for privacy:
Lemma 2. Algorithm 1 is (ϵ1 + ϵ2, δ1 + δ2)-differentially private.

Proof. First, note that each iteration of line 11 uses the Gaussian mechanism and is (ϵiter, δiter)-differentially
private (Dwork & Lei, 2009). By using the advanced composition theorem for approximate differential
privacy, we can identify that l compositions of ϵiter and δiter is (ϵ2, δ2)-differentially private (Dwork et al.,
2006; 2010). The differentially private Frank-Wolfe algorithm guarantees the output of T compositions of
DP-FW Steps is (ϵ1, δ1)-differentially private. Following this, the basic composition theorem of approximate
differential privacy guarantees that Algorithm 1 is (ϵ1 + ϵ2, δ1 + δ2)-differentially private.
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ADP-Screen did not produce good results, and as such, we include the experiments section demonstrating
its performance in the appendix. Here, we include the main takeaways from our experiments, which will be
used to develop a better-performing screening rule in the following sections.

1. ADP-Screen was unable to discriminate between true zero and true nonzero coefficients.

2. ADP-Screen screened too many coefficients per iteration, and since the Frank-Wolfe algorithm only
updates one coefficient at a time, after a few iterations, the weight vector is only able to have up to
a few nonzero coefficients which have not been screened to zero.

5 RNM-Screen

In this this section, we seek to improve the performance of ADP-Screen by modifying it in two ways:

1. We redistribute the total privacy budget to reduce the noisiness of private optimization.

2. We employ the report-noisy-max mechanism to reduce the screening noise to sub-O(
√

d) and reduce
overscreening.

5.1 Redistributing the Privacy Budget

Experiments with ADP-Screen indicated that noisy private optimization caused it to lose its ability to screen
coefficients effectively. For this reason, we sought to reduce the amount of noise added during private
optimization.

ADP-Screen relies on DP-FW for L1-constrained optimization. To the best of our knowledge, this is the only
algorithm which performs private L1-constrained optimization, and as such, the only way to reduce the
amount of noise added during private optimization is to redistribute the final privacy budget to reduce the
noise for private optimization.

5.2 Report-Noisy-Min Mechanism

Experiments on ADP-Screen demonstrated that it overscreened coefficients, producing solution vectors which
were too sparse to output useful predictions. To prevent overscreening, we chose to screen only one coefficient
per iteration.

To achieve this, we use the report-noisy-max mechanism. The report-noisy-max mechanism is a technique for
choosing an item with the highest score from a set given a function which computes the score. By finding the
maximum of the negative values of the scores, the report-noisy-max mechanism can also be used to privately
find the element with minimum score. We use the report-noisy-min technique to select the coefficient to
screen every iteration.

To do this, after every iteration, we run Equation 1 on all coefficients. We use the report-noisy-min technique
to select the coefficient which produced the smallest value in Equation 1 in a differentially private manner.
We then screen this coefficient.

Our algorithm can be seen in Algorithm 2. We call the algorithm RNM-Screen due to its use of report-noisy-
min in lines 9 and 10.

Using the report-noisy-min mechanism has another benefit: we are able to reduce the noise scale to sub-
O(
√

d) since the report-noisy-min mechanism only requires the sensitivity for a single coefficient of the output
weight (Dwork et al., 2014).

We conclude this section with a proof of privacy:
Lemma 3. Algorithm 2 is (ϵ1 + ϵ2, δ1 + δ2)-differentially private.
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Algorithm 2 RNM-Screen

Require: Privacy Parameters: ϵ1 > 0, ϵ2 > 0, 0 < δ1 ≤ 1, 0 < δ2 ≤ 1; Constraint: λ > 0; Iterations: T ;
Design Matrix: X ∈ Rn×d where ∥xi∥∞ ≤ 1 for all i ∈ {1, . . . , n}; Target: y

1: ϵiter ← ϵ2√
8T log 1

δ2

2: ∆← 2λ
n + 2λ2

n + 2λ(1+λ)
n

3: scale← ∆
ϵiter

4: ŵ(0) ← Random Vector in {w ∈ Rd : ∥w∥1 ≤ λ}the λ-scaled L1 Ball
5: for t = 1 to T do
6: ŵ(t) ← DP-FW Step

(
ϵ1, δ1, λ, T, X, y, ŵ(t−1))

7: for i = 1 to n do
8: si ← |x⊤

(i)∇f(Xŵ(t))| + (Xŵ(t))⊤∇f(Xŵ(t)) + L(∥x(i)∥2 + ∥Xŵ(t)∥2)
√
GC(ŵ(t))/µ

Equation 1
(
X, y, ŵ(t), λ

)
9: s← s + Laplace (scale)

10: j ← Index of the smallest element of s
11: if sj < 0 then
12: ŵ(t)

j ← 0
13: Output ŵ(T )

Proof. First, note that lines 9 and 10 consist are the report-noisy-min mechanism with the noise scaled by
the sensitivity of a single component, so for a single iteration they are (ϵiter, 0)-differentially private (Dwork
et al., 2014). Next, using the advanced composition mechanism for pure differential privacy, running the
screening rule T times produces an (ϵ2, δ2)-differentially private mechanism. Employing basic composition
theorem of approximate differential privacy guarantees that Algorithm 2 is (ϵ1 + ϵ2, δ1 + δ2)-differentially
private (Dwork et al., 2010).

5.3 Analyzing RNM-Screen’s Screening Potential

To observe the behavior of screening only one coefficient per iteration, it is interesting to consider the case
where coefficients which are updated and screened are uniformly chosen every iteration. Although this will
almost certainly not hold during training, analyzing this case will provide us with insight into such a screening
procedure. In this case, we have the following:

Theorem 4. Let {I1, I2, . . . , Id} be a set of indicator functions where Ii takes value 1 when the ith coefficient
is nonzero after T iterations of training. Then

lim
T →∞

E [I1 + · · ·+ Id] = (d− 1)2d

(d− 1)d + 1
lim

d→∞
E [I1 + · · ·+ Id] = T − 1.

The proof is provided in the appendix.

From these limits, we can see that when RNM-Screen is run for infinite iterations, it approaches a solution
with O(d) nonzero coefficients. From this result, we can infer that RNM-Screen slows the growth of the
number of nonzero coefficients but is weak enough to prevent overscreening. The second limit is expected,
as when the number of dimensions grows, it becomes increasingly unlikely that RNM-Screen will choose to
screen coefficients which have been updated to be nonzero. This result is common among differentially private
algorithms; for example, if the private Frank-Wolfe algorithm is run alone and the number of dimensions
approaches infinity, its coefficient choices will approach uniformity.
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Table 1: Average true positive rates, false positive rates, F1 scores, and sparsities of 20 trials of RNM-Screen when run
on synthetic data. True positives correspond to private nonzero coefficients which are truly nonzero. False positives
correspond to private nonzero coefficients which are zero in the true solution.

TPR FPR F1 Score Sparsity
Uncorrelated 0.829 0.475 0.291 0.504
Correlated 0.957 0.281 0.444 0.371

6 Experiments with RNM-Screen

To test RNM-Screen, we analyzed its performance on two synthetic datasets and a number of real-world
datasets. Results are shown below.

6.1 Synthetic Data

We began by using the synthetic dataset which Raj et al. (2016) used to test their nonprivate screening
algorithm. Specifically, we generated 3000 datapoints in R600 from the standard normal distribution, and
scaled the final dataset so ∥xi∥∞ ≤ 1. We set the true weight vector w∗ to be sparse with 35 entries of +1
and 35 entries of −1, and set y = Xw∗. Raj et al. (2016) demonstrated that the nonprivate screening rule
listed in Equation 1 performs well on this dataset for linear regression. We verified this result, finding that
using the nonprivate Frank-Wolfe optimizer with the nonprivate screening rule at every iteration produced
a final weight vector in which nonzero components were only at the locations of nonzero components in the
true weight vector and 55% of the true nonzero components were nonzero after training.

We also wanted to determine how correlated features affect the performance of the screening rule. To this
end, we generated 3000 datapoints in R600 from N (0, Σ) where Σij = 0.5|i−j|. We then scaled the data as
above, the true weight vector remained the same, and y was found in the same way.

We tested the performance of two settings of RNM-Screen on each of these datasets. We ran RNM-Screen
with ϵ1 = 4.9, ϵ2 = 0.1, δ1 = 1

4000 , δ2 = 1
12000 , λ = 50, and T = 1000.4 Figure 1 and Table 1 demonstrate

the results of this experiment. It is clear that RNM-Screen performs significantly better than ADP-Screen in
that it is able to distinguish between the true nonzero and true zero coefficients in both cases and sets many
more true zero coefficients to 0.

We define the F1 score as

#Correct Nonzero Coeffs.
#Corr. Nonzero Coeffs. + #Incorr. Nonzero Coeffs.+#Incorr. Zero Coeffs.

2

and employ this as a quantitative metric to compare how well an algorithm is able to distinguish screening
true nonzero and true zero coefficients.5 We find that the F1 scores of RNM-Screen were significantly
better than those of ADP-Screen in both for both the uncorrelated and correlated cases, as measured by
a nonparameteric sign test. This is not surprising, as from Figure 1 we can see that the number of true
nonzero coefficients found by ADP-Screen is approximately 0, which produces an F1 score of approximately
0.
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Figure 1: Comparing RNM-Screen to ADP-Screen. From these graphs, it is clear that RNM-Screen is able to distinguish
between screening true nonzero coefficients and true zero coefficients, while ADP-Screen is generally unable to do this.
However, in both cases, RNM-Screen does not achieve the same final sparsity level as ADP-Screen. Additionally, it is
interesting to note that correlated features improves the performance of private screening rules.

6.2 Real-World Data

We also explored RNM-Screen’s performance on publicly available real-world datasets. We employed the
Abalone, Housing, Body Fat, Pyrim, Triazines, Residential Buildings, Normalized Communities and Crime,
and BlogFeedback datasets found in the LIBSVM and UCI Dataset Repositories (Harrison Jr & Rubinfeld,
1978; Behnke & Wilmore, 1974; Rafiei, 2018; Redmond, 2009; Buza, 2014). For the Residential Buildings
dataset, our target variable was profit made on the sale of a property.6 We applied the Yeo-Johnson transform
to each dataset and scaled them so ∥xi∥∞ ≤ 1 (Yeo & Johnson, 2000). We also applied a Yeo-Johnson
transform to the the target y. The dimensionality of each dataset can be found in Table 2.

4In our experiments, we chose to employ a high privacy budget for the optimization procedure to identify how private
screening performs given a good optimizer but low privacy budget for screening. The experiments in the following sections
will demonstrate that in many cases, RNM-Screen introduces minimal negative side-effects during optimization while inducing
sparsity.

5This metric is inspired by the traditional F1 score for binary classification. We choose to use it as a quantitative metric for
measuring sparsity since, unlike traditional L0 metrics for measuring sparsity, it rewards correct nonzero coefficients (coefficients
which are nonzero in a nonprivate solution). It also rewards zero coefficients which are zero in a nonprivate solution and penalizes
nonzero coefficients which are zero in a nonprivate solution.

6These datasets were chosen to have increasing dimensionality, but are still low-dimensional, with n < d. We did not employ
high-dimensional datasets since running DP-FW on high-dimensional datasets is computationally challenging (Raff et al., 2024).
Note, however, that sparsity on low-dimensional datasets with sufficiently high d is still desirable since this can produce a more
interpretable solution.
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Figure 2: Mean squared error of RNM-Screen on real-world datasets. Decreasing loss on datasets with larger d indicate
that learning does occur in these instances. Since we are most interested in employing sparsity to build a generalizable
and interpretable model on datasets with large d, this indicates that RNM-Screen may be useful for this task. Note
that DP-FW does not produce sparse solutions, which is the purpose of this work. For this reason, it is excluded from
this plot.

We chose to apply the Yeo-Johnson transform for a few reasons. First, the synthetic data tested above
followed a Gaussian distribution, and to try and replicate its performance on real-world datasets, we trans-
formed our data to have an approximately Gaussian distribution. Second, some of the datapoints and
features in our real-world dataset contain outliers, and performing a linear scaling transformation to bound
the L∞ norm of these points without the Yeo-Johnson transform would cause many of the values in the
design matrices to be nearly zero. Finally, some of the datasets had outliers in their target variables which
dominated mean-squared error loss. The Yeo-Johnson transform can combat this outcome. Note that we
demonstrate results without the Yeo-Johnson transform in the appendix.

6.2.1 F1 Scores

To measure how well RNM-Screen performed on these datasets, we compared its solutions to the weight
vectors produced by scikit-learn’s nonprivate LASSO optimizer (Pedregosa et al., 2011). We aimed to find
a regularization strength for the nonprivate LASSO algorithm which produced approximately d

3 nonzero
coefficients on a given dataset. We then used the L1 norm of this output weight as λ for RNM-Screen. For
RNM-Screen, we set ϵ1 = 4.9, δ1 = 3

4 ×
1
n , ϵ2 = 0.1, and δ2 = 1

4 ×
1
n . For datasets with fewer datapoints,

we ran the algorithm for fewer iterations as more iterations would increase the noise added in both the
optimization and screening processes and unnecessarily corrupt the results.
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Table 2: Average true positive rates, false positive rates, F1 scores, sparsities, and R2 scores of 20 trials of RNM-Screen
when run on real-world dataset. We could not compare R2 scores of RNM-Screen to DP-FW because the solutions of
DP-FW are dense. True positives correspond to private nonzero coefficients which are nonzero in the nonprivate
solution. False positives correspond to private nonzero coefficients which are zero in the nonprivate solution.

n d Iter. TPR FPR F1 Sparsity R2

Abalone 4177 8 100 0.333 0.200 0.534 0.319 0.800
Housing 506 13 100 0.250 0.444 0.497 0.315 0.483
Body Fat 252 14 100 0.600 0.444 0.333 0.357 0.653
Pyrim 74 27 100 0.556 0.556 0.445 0.506 0.688
Triazines 186 60 100 0.474 0.488 0.377 0.508 0.851
Residential
Buildings 372 103 200 0.484 0.486 0.387 0.496 0.983

Communities
and Crime 1994 122 200 0.488 0.432 0.430 0.480 0.837

BlogFeedback 52397 280 1000 0.580 0.453 0.370 0.450 0.357

The results of this experiment are shown in Table 2. Of note, when computing the F1 score, we defined the
true zero and true nonzero coefficients with respect to the output of the nonprivate LASSO optimizer, not
with respect to the optimal weight, as the optimal weight vector is unknown. Bolded values in Table 2 are
significantly better than those produced by DP-FW, as measured by a nonparametric sign test. Note that we
verified that running the Frank-Wolfe algorithm for more iterations on the smaller datasets produced little
change in F1 score while increasing the density of the solutions. This is why we chose to run RNM-Screen for
fewer iterations on these datasets. For the larger BlogFeedback dataset, additional iterations did increase
the density of the result but were accompanied with an increased F1 score. This is why we ran this for more
iterations.

Analyzing Table 2, it is clear that the results for F1 scores are not ideal. For all datasets, RNM-Screen
was unable to produce an F1 score significantly better than the standard private Frank-Wolfe algorithm.
Overall, RNM-Screen is significantly better at distinguishing between true nonzero and zero coefficients than
ADP-Screen, but the results shown in Table 2 indicate that for real-world datasets, RNM-Screen does not
effectively find the same nonzero coefficients as a LASSO solver.

6.2.2 Mean Squared Error

To determine whether RNM-Screen allowed any learning to occur, we tracked the mean squared error at
every iteration on the above datasets. Results are shown in Figure 2.

Despite the disappointing results on F1 scores, the mean squared error plots in Figure 2 indicate that learning
still occurs on larger datasets despite the inaccurate choice of nonzero coefficients. We believe this is a
valuable result, as it shows that the solutions produced by RNM-Screen may be useful in prediction. Indeed,
research on the duality of differential privacy and algorithmic stability shows that differentially private
algorithms do not seek to produce similar results to nonprivate algorithms but rather find algorithmically
stable solutions which fit the data sufficiently well (Dwork & Lei, 2009).

We tested whether RNM-Screen’s nonzero coefficients served as an effective basis for the coefficients which
it incorrectly set to zero to determine if the models produced by RNM-Screen have similar expressivity to
nonprivate models. We did this by fitting an unregularized multivariate linear regression from the features
of the dataset corresponding to RNM-Screen’s nonzero coefficients to the features of the dataset whose
RNM-Screen set to zero but were nonzero in the nonprivate solution. We reported the R2 scores of these
regressions in Table 2. Higher values of R2 scores indicate that RNM-Screen’s nonzero coefficients can better
approximate the target features.

Table 2 indicates that for most datasets, the features which RNM-Screen chooses are able to approximate the
unchosen features which the nonprivate method chooses reasonably well. This confirms our intuition that

10
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Table 3: Comparing the F1 scores and mean squared errors of 20 trials of the Oracle-K privately optimized Frank-
Wolfe with 20 trials of RNM-Screen. Results from the nonprivate Frank-Wolfe algorithm are included as NP-FW and
demonstrate that without private optimization or pruning, the algorithm achieves higher F1 scores and MSEs, as
expected.

Nonprivate Private

NP-FW Preselect-K FW Oracle-K FW RNM-Screen

Dataset F1 MSE F1 MSE F1 MSE F1 MSE

Abalone 1.000 0.512 0.667 0.689 0.867 0.560 0.534 0.894
Housing 1.000 0.322 0.000 0.786 0.788 0.516 0.497 0.835
Body Fat 0.833 0.025 0.400 0.246 0.320 0.368 0.333 0.689
Pyrim 0.889 0.439 0.571 0.759 0.339 0.451 0.445 0.451
Triazines 0.829 0.610 0.467 0.655 0.337 0.979 0.377 0.979
Residential
Buildings 0.667 0.009 0.500 0.358 0.342 0.415 0.387 0.431

Communities
and Crime 0.800 0.277 0.540 0.373 0.400 0.382 0.430 0.395

BlogFeedback 0.868 0.489 0.546 0.489 0.320 0.736 0.370 0.822

although RNM-Screen does not choose the same nonzero coefficients as a nonprivate rule, it is still able to
learn effectively from the coefficients it chooses.

In order to test whether the mean squared errors are good for their level of sparsity, we compared RNM-Screen
to an Oracle-K clip of the private Frank-Wolfe Algorithm. Specifically, for the Oracle-K clip, we found a
weight with the private Frank-Wolfe algorithm and then kept only the K absolute largest coefficients nonzero,
where K is the number of nonzero coefficients which the nonprivate LASSO solver found. Note that this
is not differentially private, as the value of K is not private, but we employed it as a strong baseline. If
RNM-Screen produces F1 scores or mean squared errors similar to the Oracle-K clip, we believe it performs
well for a private sparse algorithm.

Results are shown in Table 3, which includes also includes two more nonprivate columns. The NP-FW column
displays results from the nonprivate Frank-Wolfe algorithm without any feature selection, and the Preselect-
K FW column displays results from the nonprivate Frank-Wolfe algorithm after choosing the K features
with highest L1 norm.7 For all datasets with d > 20, RNM-Screen does not produce a significantly worse F1
score than the Oracle-K technique. For all but the BlogFeedback dataset, the datasets with d > 20 also do
not have significantly worse mean squared errors. These results imply that RNM-Screen is an effective way
to ensure privacy while producing a sparse solution. While it may not identify the same nonzero coefficients
which a nonprivate LASSO solver identifies, it is still able to learn effectively while producing comparatively
good F1 scores and sparsity.

7 Open Problems

The experiments above present modest evidence that a screening rule can produce effective sparse solutions
for linear regression under differential privacy. In this section, we highlight four open problems for further
study.

First, we ask whether private screening can be adapted to effectively distinguish between the nonzero and zero
coefficients of nonprivate solutions on real-world datasets, including high-dimensional ones. Future works
to solving this problem may be empirical, perhaps improving RNM-Screen, but a more rewarding approach

7Note that we also tested using the nonprivate Frank-Wolfe algorithm with the screening rule, but this produced identical
results to the NP-FW column. This is because nonprivate Frank-Wolfe optimization was started from the zero vector, and
the algorithm did not update any features which the screening rule removed. Intuitively, this makes sense - the Frank-Wolfe
algorithm only updated the coefficients which were beneficial in the final solution, and the screening rule did not make these
coefficients zero.
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would identify a utility bound for a private screening rule so it can be compared to other differentially private
algorithms. A utility bound is especially useful in comparing differentially private randomized algorithms as
it is not subject to random variations which occur when empirically comparing algorithms on datasets.

Second, we ask whether private screening rules can be employed in a similar approach to nonprivate screening
rules. Screened coefficients from nonprivate screening rules will not be updated in future iterations by the
optimizer, which improves the computational efficiency of optimization, especially for very high dimensional
datasets. Unfortunately, since our screening rule is randomized, it is possible that a coefficient is screened
incorrectly, so we continue to optimize for all coefficients despite screening, which does not improve the
efficiency of optimization. An effective private screening rule which improves the computational efficiency of
optimization would encompass both the sparsity and efficiency benefits of screening rules.

Third, we note that RNM-Screen requires two sets of privacy parameters, (ϵ1, δ1) and (ϵ2, δ2). Although we
used a heuristic to set these parameters, consistent guidelines for splitting the privacy budget between these
two parameters is unclear. Note that this issue arises in many works with multiple calculations that need
to be privatized. For example, the original Two-Stage sparse regression technique proposed by Kifer et al.
(2012) also required two sets of privacy parameters. However, in addition to further testing, to produce a
private screening rule which can be employed for real-world data analysis, better guidelines for setting these
privacy parameters is required.

Finally, we highlight a limitation to RNM-Screen. On low-dimensional datasets, every coefficient might be
important, but RNM-Screen always screens one coefficient per iteration, which can still lead to overscreening.
In contrast, nonprivate screening algorithms never screen coefficients which are important to the regression
task. For this reason, it is important that RNM-Screen only be used on tasks with a sufficient number of
features such that practitioners believe that a sparse solution should exist.

8 Conclusion

In this paper, we created ADP-Screen, the first differentially private screening rule. After showing that
it overscreens coefficients and is unable to solve a simple regression problem with a synthetic dataset, we
developed RNM-Screen. We showed that it performs better than ADP-Screen on synthetic data since it is
actually able to distinguish between screening true zero and true nonzero coefficients. After testing on the
synthetic datasets, we tested RNM-Screen’s performance on real-world datasets. We found that it produces
good sparsity with decreasing mean-squared error on larger datasets. Additionally, R2 scores indicate that
the coefficients it chooses are able to model the coefficients it screened away during computation. Finally, we
found modest evidence that the Yeo-Johnson transform improves RNM-Screen’s performance on real-world
datasets. We believe that the algorithmic and empirical developments this work makes to the field of sparse
regression with differential privacy makes it a valuable result to the exploration of future techniques for
screening rules and sparse differentially private regression.
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A Proof: Privatizing Iterative Screening

Theorem 1. Under the conditions listed above, the sensitivity of Equation 1 when f(Xw) =
1
n (y−Xw)⊤ (y−Xw) is

2λ

n
+ 2λ2

n
+ 1

n
(1 + λ)

√
4λ2/n

1/n
.

The sensitivity of releasing s =
[
s1 . . . sd

]⊤ is
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d

n
+ 2λ2

√
d

n
+ 1

n

(√
d + λ

√
d
)√4λ2/n

1/n
.

Proof. Let u = Xw. For linear regression, f(u) = 1
2n (u − y)⊤(u − y), implying ∇f(u) = 1

n (u − y) and
∇2f(u) = 1

n In. Therefore, from the definitions of Lipschitz smoothness and strong convexity, we can see
that f(u) is 1

n -smooth and 1
n -strongly convex with respect to u.

By using the triangle inequality and the fact that the maximum of a sum is at most the sum of each element’s
maximum, we can bound the sensitivity of Equation 1 for linear regression by summing the sensitivity of
each of its terms. These calculations are shown below. Assume without loss of generality that the difference
between X and X′ is the data-target tuple (x0, y0).

To bound the first term of Equation 1, note that

max
X,X′,y,y′

∣∣∣x⊤
(i)∇f(Xw)− x′⊤

(i)∇f(X′w)
∣∣∣

= max
x0,y0

∣∣∣∣x0i

[
1
n

(
x⊤

0 w− y0
)]∣∣∣∣

≤2λ

n
,

where the first simplification comes from expanding the inner products and the second follows directly from
restrictions on the feasible set and norms of the input data. This means that the sensitivity of the first term
for one value of i is 2λ

n . By the sensitivity principles of vectors, this means that releasing the values of the
first term for all i has L2-sensitivity of 2λ

√
d

n (Dwork et al., 2014).

For the second term,

max
X,X′,y,y′

|(Xw)⊤∇f(Xw)− (X′w)⊤∇f(X′w)|

= max
x0,y0

∣∣∣∣x⊤
0 w
[

1
n

(
x⊤

0 w− y0
)]∣∣∣∣

≤2λ2

n
,

using the same logic as the previous calculation. This means its sensitivity is 2λ2

n and its L2-sensitivity is
2λ2√

d
n .

To find the sensitivity of the third term, we note that the maximum of a product is bounded by the product
of maximums. Given this, we find that

max
X,X′

∣∣∣∥∥x(i)
∥∥

2 −
∥∥∥x′

(i)

∥∥∥
2

∣∣∣
≤max

x0

√
|x2

0i|

≤1,
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where the first simplification is derived from expanding the first and noting that the difference of square
roots must be less than or equal to the square root of the absolute value of the difference in their squared
terms. The same logic can be applied for

max
X,X′

|∥Xw∥2 − ∥X
′w∥2|

≤max
x0,y0

√∣∣∣(x⊤
0 w
)2
∣∣∣

≤λ.

For the Wolfe gap function,

max
X,X′,y,y′,z∈C

|(Xw−Xz)⊤∇f(Xw)− (X′w−X′z)⊤∇f(X′w)|
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n
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Plugging in each of these calculations, the sensitivity of this term for a single i is 1
n (1 + λ)

√
4λ2/n

1/n and the

L2-sensitivity for releasing all i is bounded by 1
n

(√
d + λ

√
d
)√

4λ2/n
1/n . By the triangle inequality, this means

the sensitivity of the screening rule for one i is bounded by
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and the total L2-sensitivity for releasing all i is bounded by

2λ
√

d

n
+ 2λ2

√
d

n
+ 1

n

(√
d + λ

√
d
)√4λ2/n

1/n
. (3)

16



Under review as submission to TMLR

B Experiments on ADP-Screen

To test whether ADP-Screen performs well in practice, we tested how it performed on linear regression. To
do so, we used the synthetic dataset which Raj et al. (2016) used to test their nonprivate screening algorithm.
Specifically, we generated 3000 datapoints in R600 from the standard normal distribution, and scaled the
final dataset so ∥xi∥∞ ≤ 1. We set the true weight vector w∗ to be sparse with 35 entries of +1 and 35
entries of −1, and set y = Xw∗. Raj et al. (2016) demonstrated that the nonprivate screening rule listed
in Equation 1 performs well on this dataset for linear regression. We verified this result, finding that using
the nonprivate Frank-Wolfe optimizer with the nonprivate screening rule at every iteration produced a final
weight vector in which nonzero components were only at the locations of nonzero components in the true
weight vector and 55% of the true nonzero components were nonzero after training. We then ran the private
ADP-Screen on this dataset for 1000 iterations with ϵ1 = ϵ2 = 2.5, δ1 = δ2 = 1

6000 , and λ = 5.

Figure 3 shows the results of this experiment when we implemented screening after every iteration, every
50th iteration, and after the last iteration. It is clear that ADP-Screen is not able to discriminate between
screening true zero and true nonzero coefficients in any of these cases. Additionally, when private screening
is implemented too often, it screens too many coefficients, and since the Frank-Wolfe algorithm only updates
one coefficient at a time, after a few iterations, the weight vector is only able to have up to a few nonzero
coefficients which have not been screened to zero. To identify whether the private Frank-Wolfe algorithm or
the private screening methods were causing these poor results, we ran the following two experiments:

(A) We tested how well nonprivate screening performed using the private Frank-Wolfe algorithm with
ϵ = 2.5 and δ = 1

6000 . We found that no matter how often we implemented the screening rule, no
coefficients were screened from the solution.

(B) We tested how well private screening performed using the nonprivate Frank-Wolfe algorithm with
ϵ = 2.5 and δ = 1

6000 . We found that when screening every 50th iteration, the screening rule would
produce a final weight vector with nonzero components in approximately 10% of the true nonzero
components and none of the true zero components. The results of this experiment when screening
every iteration or only at the last iteration mimicked those found in the respective rows of Figure 1.

These experiments provide key insights into the results shown in Figure 3. Experiment A suggests that all
of the screening occurring in Figure 3 arises from noise added to the screening rule. This is because without
the screening’s noise, no screening occurs. It also implies that the noise added for private optimization made
it more difficult to screen coefficients, since when we tested completely nonprivate screening (without noisy
optimization), the nonprivate screening rule worked well. Heuristically, this outcome may arise because noisy
weights make the Wolfe gap function in Equation 1 very large, meaning that it overpowers the second term,
which is the only term that can be negative and is thus essential to effective screening. We verified that the
Wolfe gap function evaluates to smaller values when using nonprivate optimization. This result can be seen
in Figure 4.

Experiment B indicates that the noise added in the private screening rule makes it much stronger that its
nonprivate counterpart. This is observed by noting that without a noisy screening rule, screening at every
iteration with the nonprivate Frank-Wolfe optimizer would not screen all the true nonzero components to
zero, whereas with the noisy screening rule, almost all components are screened to zero after only a few
iterations. This makes sense: in an iteration of ADP-Screen, many coefficients can be screened to zero, but
at most one zero coefficient can become nonzero through the Frank-Wolfe update. When the coefficients
chosen for screening are noisy, there is a high probability that each coefficient is selected to be screened at
some point over many iterations, but only a few incorrectly screened coefficients can become nonzero from
a Frank-Wolfe update.
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Figure 3: Testing ADP-Screen on a synthetic dataset. Values reported are the fraction of nonzero coefficients in
the output of ADP-Screen which correspond to the indices of the true nonzero and true zero coefficients. The true
nonzero and true zero coefficients are known from the dataset generation procedure.

Figure 4: Comparing the Wolfe gap function for nonprivate and private optimization when nonprivate screening is
applied at every iteration.
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C Proof: Analyzing RNM-Screen’s Screening Potential

Theorem 4. Let {I1, I2, . . . , Id} be a set of indicator functions where Ii takes value 1 when the ith coefficient
is nonzero after T iterations of training. Then

lim
T →∞

E [I1 + · · ·+ Id] = (d− 1)2d

(d− 1)d + 1
lim

d→∞
E [I1 + · · ·+ Id] = T − 1.

Proof. We compute the expected value of the number of nonzero coefficients after training,
E [I1 + I2 + · · ·+ Id]. By the laws of expectation, this is equivalent to E [I1 + I2 + · · ·+ Id] = E [I1] +
E [I2] + · · · + E [Id]. Since the coefficients are updated and screened uniformly, they are exchangeable, and
thus this expectation simplifies to dE [I1].

By the properties of Bernoulli random variables, the expectation of an indicator function is equal to the
probability it is 1. We can see that P(I1 = 1) equals

P(Coef. 1 Never Screened)P(Coef. 1 Updated)+
P(Coef. 1 Last Screened At Ite. 1)P(Coef. 1 Updated After Ite. 1)+
P(Coef. 1 Last Screened At Ite. 2)P(Coef. 1 Updated After Ite. 2)+
· · ·+
P(Coef. 1 Last Screened At Ite. T)P(Coef. 1 Updated After Ite. T).

This can be calculated as(
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d
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where the summation breaks each event up into the 1
d probability that coefficient 1 was screened on iteration

i, the
(
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d

)T −i probability that coefficient 1 was not screened after iteration i, and the
(
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( 1
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probability that coefficient 1 was updated after iteration i. Therefore dE [I1] equals

d

(
d− 1

d

)T
(

1−
(

d− 1
d

)T
)

+
T∑

i=1

(
d− 1

d

)T −i
(

1−
(

1
d

)T −i
)

.

This expression holds only when the assumptions in this section are satisfied. However, as the number of
iterations approaches infinity, the scale of differentially private noise increases unbounded, and will thus
dominate any finite gradient. This means that as T → ∞, choosing coefficients to update and screen
approaches uniformity. Additionally, as the number of dimensions approaches infinity, the probability of
choosing a specific coefficient to update or screen approaches 1

d . Thus, we compute the limits of dE [I1]
under these limits:

lim
T →∞

dE [I1] = (d− 1)2d

(d− 1)d + 1 ,

lim
d→∞

dE [I1] = T − 1.
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D Ablating the Yeo-Johnson Transform

We wanted to determine whether the Yeo-Johnson transform had a significant impact on RNM-Screen’s
performance. For this reason, we chose to run an ablation study in which we did not apply the Yeo-Johnson
transform to the features or targets. Instead, we scaled datapoints so ∥xi∥∞ ≤ 1 and |yi| ≤ 1. We ran this
ablation study for each of the real-world datasets in the previous section for the same number of iterations
as listed in Table 2.

Table 4 and Table 5 list the results of this experiment. Note that it is impossible to directly compare the
mean-squared error values to previous experiments because the scaling of the target variables is different.

From Table 4, it is clear that as before, running RNM-Screen on this dataset does not produce significantly
better scores than the standard private Frank-Wolfe algorithm, but it does significantly improve the spar-
sity. However, for all datasets except BlogFeedback, Table 4 has R2 scores that are worse than Table 2.
This indicates that the Yeo-Johnson transform allows our chosen features to better approximate unchosen
important features when building a model.

Table 5 demonstrates a significant difference between the results of the transformed and untransformed data.
With the transformed data, Table 3 indicates that RNM-Screen outperforms Oracle-K FW on larger datasets
with respect to the F1 score. However, in Talble 5, this does not happen for any dataset. This may indicate
that transforming the data makes it easier for RNM-Screen to distinguish between true zero and true nonzero
coefficients, which thus improves its performance with respect to the F1 score.

Table 4: Average F1 scores, sparsities, and R2 values of 20 trials of RNM-Screen when run on real-world datasets
which have not been transformed with the Yeo-Johnson transform.

F1 Sparsity R2

Abalone 0.450 0.113 0.109
Housing 0.525 0.200 0.062
Body Fat 0.447 0.204 0.526
Pyrim 0.451 0.441 0.582
Triazines 0.412 0.497 0.808
Residential
Buildings 0.372 0.240 0.856

Communities
and Crime 0.433 0.505 0.821

BlogFeedback 0.367 0.439 0.383

Table 5: Comparing the F1 scores and mean squared errors of 20 trials of the Oracle-K privately optimized Frank-
Wolfe with 20 trials of RNM-Screen on data which has not been processed with the Yeo-Johnson transform.

Nonprivate Private

NP-FW Oracle-K FW RNM-Screen

Dataset F1 MSE F1 MSE F1 MSE

Abalone 1.000 0.012 0.667 0.014 0.450 0.010
Housing 0.889 0.018 0.788 0.051 0.525 0.159
Body Fat 1.000 0.020 0.550 0.124 0.447 0.555
Pyrim 0.941 0.019 0.583 0.182 0.451 0.301
Triazines 0.872 0.024 0.424 0.108 0.412 0.095
Residential
Buildings 0.061 2.120 0.411 1.711 0.372 1.820

Communities
and Crime 0.469 0.020 0.400 0.033 0.433 0.034

BlogFeedback 0.021 0.023 0.349 0.022 0.367 0.004
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