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Abstract

In the realm of artificial intelligence, the signifi-001
cance of high-quality data cannot be overstated,002
especially data that adheres to stringent for-003
matting rules and structures. Addressing this004
need, our study introduces an advanced data005
augmentation method specifically designed for006
format-specific datasets. This method utilizes007
the capabilities of Large Language Models008
(LLMs) to generate data that not only meets009
the rigid formatting criteria but also maintains010
the integrity of the information. Central to our011
approach is the integration of specific format012
requirements into natural language prompts,013
which guides the LLMs to produce precisely014
formatted outputs. A salient feature of our ap-015
proach is its self-evaluative mechanism, which016
autonomously assesses the semantic quality of017
the augmented data, distinguishing it from prior018
methodologies that require manual validation,019
thereby streamlining the augmentation process.020
Our research represents a pioneering step for-021
ward, enabling more efficient enhancement of022
datasets that demand exacting format adher-023
ence without the extensive resource investment024
typically associated with such tasks.025

1 Introduction026

In the era of artificial intelligence (AI), large lan-027

guage models (LLMs) have emerged as transforma-028

tive tools for natural language understanding and029

generation tasks. These models have demonstrated030

remarkable capabilities in diverse applications, in-031

cluding text completion, language translation, and032

text summarization. However, as these AI sys-033

tems delve deeper into specialized domains, their034

adaptability and robustness in handling intricate035

and rigid data formats have come under scrutiny.036

A pivotal challenge hindering the progress of037

robust AI lies in the intricacies of training data.038

While deep learning models flourish on vast and039

varied datasets, obtaining such data, especially in040

structured or complex formats, remains a daunting041

endeavor. The process is often hindered by cost, 042

time, and occasional unfeasibility due to issues 043

like privacy or rarity of examples. This has led to 044

the exploration of data augmentation techniques 045

to bolster training datasets. Extensive research 046

has been conducted on data augmentation, and its 047

widespread utilization in natural language process- 048

ing (NLP) tasks has proven effective in address- 049

ing issues such as constrained data availability, un- 050

even sample distribution, and domain-specific chal- 051

lenges like named entity recognition and relation 052

extraction in biomedical text or code generation 053

tasks. Through the incorporation of supplementary 054

samples and introducing diversity, data augmenta- 055

tion contributes to enhancing model robustness and 056

adaptability, simultaneously mitigating overfitting 057

concerns. 058

Commonly employed data augmentation meth- 059

ods encompass the use of synonyms, antonyms, and 060

variations in word forms, all of which serve to aug- 061

ment the quantity and diversity of training data (Niu 062

and Bansal, 2018). Some traditional techniques in- 063

clude synonym replacement, random deletion and 064

random insertions (Feng et al., 2021). Other meth- 065

ods utilize language models to generate reliable 066

samples for more effective data augmentation, in- 067

cluding back translation (Sennrich et al., 2016) and 068

word vector interpolation in the latent space (Jindal 069

et al., 2020). However, existing data augmentation 070

methods often fall short when confronted with the 071

nuances of complex data structures. These meth- 072

ods, while effective in general contexts, tend to 073

struggle with preserving the specificity and intrica- 074

cies inherent in complex formats (Feng et al., 2021; 075

Shorten et al., 2021; Bayer et al., 2021). 076

Considering these challenges, the spotlight turns 077

to prompt engineering, which holds promise as a 078

solution. This research posits prompt engineering 079

as a potential tool to harness the power of LLMs for 080

data augmentation, particularly suited for intricate 081

data formats. It seeks to explore how LLMs, when 082
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Figure 1: Example of an input in Biomedcai Relation
Extraction task. The entity is wrapped in the entity
type’s tags. Different colors mean different entities in
the entity pair. The task is to extract relation between
the entity pair.

guided by carefully crafted prompts, can synthesize083

data that not only maintains the rigidity and context084

of complex formats but is also virtually indistin-085

guishable from genuine entries. The overarching086

aim is to bolster AI performance across an array087

of tasks, including natural language understanding,088

sentiment analysis, and content generation, ensur-089

ing they thrive even in contexts laden with complex090

data constraints.091

In the realm of biomedical text data, the intri-092

cacies of rigid formats not only pose substantial093

challenges for data augmentation but also necessi-094

tate meticulous attention to preserve the inherent095

scientific and terminological precision. As shown096

in Figure 1, an example of training input to the097

model is a paragraph that contains an entity pair,098

with entity tags placing around each entity. The099

augmentation method should paraphrase the whole100

paragraph while keeping the entity tags and entity101

text the same, because biomedical named entities102

they are lexical sensitivities, which means that they103

should not be altered without meticulous scrutiny104

and analysis. This makes it complex for creating105

augmentation data in biomedical domain, which we106

should carefully consider the semantic delicacies107

in the biomedical entities.108

Additionally, when it comes to structuring109

datasets from programming languages, the require-110

ment for preserving syntax and semantic accuracy111

introduces a distinct set of challenges. In program-112

ming languages, every character, from a brace to a113

semicolon, carries significance; a minor alteration114

can lead to a completely different execution behav-115

ior. This sensitivity is especially pronounced in116

datasets that include numerical values or complex117

syntactic structures, common in software engineer-118

ing and computational tasks. For instance, in a 119

code snippet, changing a variable name or altering 120

a loop structure could inadvertently change the al- 121

gorithm’s logic or functionality. This highlights 122

the criticality of maintaining syntactic integrity and 123

the original semantic context in any augmentation 124

process applied to code datasets. The augmentation 125

method must be intricately designed to understand 126

and respect the language’s grammar rules, opera- 127

tional semantics, and the contextual role of each 128

code element. Moreover, in the realm of numerical 129

data within code, precision is paramount. Numeri- 130

cal values often represent parameters, dimensions, 131

or constants whose exact values are crucial for the 132

correct functioning of the code. Altering these val- 133

ues without a deep understanding of their context 134

and impact can lead to incorrect results or system 135

failures, particularly in fields like numerical com- 136

puting or algorithmic processing. 137

In this paper, we introduce SemAug (Specified- 138

Rule Augmentation and Semantic-Quality), a novel 139

approach combining the SpecRule Augmentor with 140

the SemQ filter to overcome the challenges inherent 141

in complex data domains, particularly in biomedi- 142

cal datasets. Unlike traditional data augmentation 143

techniques that struggle with the intricate formats 144

and rigid constraints of such datasets, SemAug em- 145

ploys prompt engineering to navigate these com- 146

plexities effectively. 147

• SpecRule Augmentor under SemAug is de- 148

signed to generate diverse and realistic data 149

variations, adhering strictly to the scientific ac- 150

curacy and terminological precision required 151

in biomedical contexts. 152

• SemQ Filter rigorously evaluates the aug- 153

mented data, ensuring its adherence to the 154

high-quality standards essential for maintain- 155

ing scientific validity. Our method contributes 156

significantly to the field by enabling the aug- 157

mentation of biomedical data in a manner that 158

aligns seamlessly with its specialized require- 159

ments. 160

Moreover, SemAug facilitates the development of 161

machine learning models proficient in handling 162

and extracting insights from these enriched and 163

complexly formatted datasets. This innovative ap- 164

proach marks a pivotal advancement in data aug- 165

mentation, paving the way for enhanced application 166

of machine learning and artificial intelligence in do- 167

mains where data complexity and specificity have 168
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traditionally posed significant challenges.169

2 Related Works170

2.1 Large Language Models171

In recent developments within the domain of large172

language models (LLMs), their proficiency in mim-173

icking human language through extensive train-174

ing on expansive textual datasets has been well-175

documented (Brown et al., 2020; Chowdhery et al.,176

2022; Hoffmann et al., 2022). Crucially, these mod-177

els exhibit an exceptional ability to follow human-178

issued instructions, yielding significant zero-shot179

performance (Wei et al., 2022; Dong et al., 2023).180

In our research, we harness this particular trait of181

LLMs, employing them to generate datasets in spe-182

cific formats by inputting prompts that encompass183

our defined requirements and rules. This method-184

ology aligns with the broader narrative in LLM185

research, where the adaptability and responsive-186

ness of these models to guided inputs are being187

increasingly explored for tailored data generation188

purposes.189

2.2 Data Augmentation190

Data augmentation, a common strategy to prevent191

overfitting in limited data scenarios, typically in-192

volves minor, label-preserving modifications to193

the existing data (Wei and Zou, 2019; Fadaee194

et al., 2017). Recent studies have explored the195

use of Large Language Models (LLMs) for this196

purpose. Specifically, they use few-shot data as197

demonstrations and prompt LLMs to generate new198

data (Yoo et al., 2021; Sahu et al., 2022). The199

capability of LLMs to blend a few-shot dataset200

and create analogous data has been widely rec-201

ognized. Lin et al. (2023) introduced the use of202

Pointwise V-information to sift through and re-203

move non-beneficial data from these generated204

sets. Most recent approaches involve using mod-205

els like ChatGPT and GPT-4 for data generation,206

leading to notable improvements in performance207

(Dai et al., 2023; Whitehouse et al., 2023). Fur-208

thermore, Cheng et al. (2023) demonstrated the209

efficacy of using GPT-3 generated data to enhance210

sentence embeddings through contrastive learning.211

Our methodology diverges by utilizing LLMs as212

an all-encompassing solution specifically for gen-213

erating and evaluating augmented data within rigid214

or specific data formats, effectively obviating the215

requirement for manual annotation.216

2.3 Few-shot and zero-shot learning 217

A zero-shot prompt poses a query to the LLM on 218

topics it hasn’t been explicitly trained on. The term 219

"zero" in "zero-shot" indicates that the LLM lacks 220

specific training on the particular task or question 221

in the prompt. The "shot" denotes providing an 222

example to the LLM. Thus, "zero-shot" implies 223

that the model wasn’t trained for the exact task or 224

question and the prompt doesn’t offer an illustrative 225

example for reference. An instance of a zero-shot 226

prompt is translation tasks. Even though the model 227

might not have received particular training samples 228

for translations, their vast linguistic training allows 229

them to generalize and provide probable transla- 230

tions without dedicated training for the task. Few- 231

shot prompts resemble zero-shot prompts in that 232

the model hasn’t been tailored for the specific ques- 233

tion or task. But, unlike zero-shot prompts, few- 234

shot prompts offer an in-context example within 235

the request to guide the model. 236

3 Methodology 237

We apply the idea of using examples in few-shot 238

learning; however, the largest difference here is that 239

although examples are used in the prompt, there is 240

no given label for them, instead, the focus on the 241

format and meaning of the dataset is considered 242

to be more important here. This means that the 243

concept used here is zero-shot learning. Figure 244

2 shows the overflow of our method. There are 245

two main steps here: creating data augmentation 246

following requirements (SpecRule Augmentor) and 247

self-evaluating the quality of generated data (SemQ 248

Filter) 249

3.1 Data Augmentation with User’s 250

Requirements 251

Given a original dataset containing n samples 252

Do = {d1, d2, ..., dn}, the data augmentation Da 253

can be obtained through: 254

Da = {SpecRuleAugmentor(di) | di ∈ Do} (1) 255

where SpecRuleAugmentor is a specified prompt 256

used in the LLM in Figure 3 257
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Figure 2: Overall Flow of The Framework

Figure 3: Requirement-Specified Prompt for Generat-
ing Rigid Data Augmentation (SpecRule Augmentor)

Instead of focusing on letting the model know258

how to create a pair of training data (input + label),259

the prompt concentrates on emphasizing the model260

to create data following requirements of correct261

format. An example of SpecRule Augmentor ap-262

plied in Biomedical Relation Extraction and Code263

Generation task is shown in Figure 6 and Figure 7264

in Appendix correspondingly.265

3.2 Self-Evaluative Data Augmentation’s266

Quality267

Following augmentation, we apply the SemQ Fil-268

ter to each document di′ in Da to assess its qual-269

ity. The SemQ Filter functions as a prompt-based270

scoring mechanism, as illustrated in Figure 4, and271

assigns a quality score to each document. This272

process is represented as:273

Score(di′) = SemQFilter(di′) for each di′ ∈ Da

(2)274

To ensure the augmented dataset’s quality, We275

apply a threshold-based filtering, retaining only276

those documents from Da with a SemQ Filter score277

above 4. The augmented dataset, Dfiltered, consists278

of documents from Da that meet the quality crite- 279

rion below: 280

Dfiltered = {di′ ∈ Da |Score(di′) > 4} (3) 281

The final dataset Dfinal is formed by combining the 282

original dataset Do with the high-quality, filtered 283

augmented data Dfiltered: 284

Dfinal = Do ∪Dfiltered (4) 285

Figure 4: Semantic Checking Prompt for Quality
Assurance (SemQ Filter)

The SemQ Filter prompt tells the model to do a 286

self-evaluation on both format and semantic check- 287

ing. Moreover, instead of using "True", "False" 288

evaluation in the prompt, we see that telling the 289

model to give a score from 0-5 can help identify 290
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real high-quality data in the generated samples. Ex-291

ample of SemQ scores given for different generated292

samples can be seen in Table 5 in Appendix.293

4 Experiments294

4.1 Dataset295

BioRED Dataset (Luo et al., 2022): The task is to296

extract biomedical relation across multiple entity297

types with multiple relation types. There are multi-298

ple entity types (gene, chemical, disease, ...) and299

relation pairs (disease-gene, chemical-chemical)300

at the document level. There are a total of 600301

PubMed abstracts, with 400 documents for train-302

ing, 100 for dev and 100 for validation.303

EvolInstruct-80k-v1 dataset1 : EvolInstruct-80k-304

v1 dataset (license cc-by-nc-sa-4.0) is an open-305

source dataset generated using Evol-Teacher (Luo306

et al., 2023). The dataset contains about 78000307

instructions and their code solution. We use this308

dataset to fine-tune model for Code Generation309

task.310

HumanEval (Chen et al., 2021): HumanEval con-311

tains 164 handwritten Python programming prob-312

lems with a function signature, docstring, body, and313

several unit tests. It focuses on testing the execu-314

tion ability of the code using the evaluation metric315

pass@k.316

MultiPL-E dataset (Cassano et al., 2022):317

MultiPL-E is a benchmark for evaluating large lan-318

guage models for code generation that supports 18319

programming languages. It takes the OpenAI "Hu-320

manEval" Python benchmark and uses little com-321

pilers to translate them to other languages. In this322

paper, we do experiments on C++, Java, JavaScript323

(JS), R, Bash, Rust.324

Grade School Math 8K (GSM8K) (Cobbe et al.,325

2021): GSM8k is a dataset of 8.5K high-quality326

linguistically diverse grade school math word prob-327

lems. The dataset was created to support the task328

of question answering on basic mathematical prob-329

lems that require multi-step reasoning.330

4.2 Experimental Design331

Data augmentation: We use open-source LLM332

OpenChat-3.5 (Wang et al., 2023) as the model for333

SpecRule Augmentor and SemQ Filter.334

Biomedical Relation Extraction: BioRED dataset335

is used for training and evaluating. We fine-tune336

PubMedBERT (Gu et al., 2020) in 50 epochs with337

1https://huggingface.co/datasets/nickrosh/
Evol-Instruct-Code-80k-v1.

Table 1: Data augmentation in different dataset do-
mains. Ori: Original, Aug: After Augmentation, Sem:
After semantic filtering.

Dataset Ori Aug Sem Success
rate

BioRED 28233 87519 60188
(+31955)

53.9%

Evol
Instruct

78381 156762 133568
(+55187)

70.4%

learning rate 1e-5, batch size 10. 338

Code Generation: For fine-tuning our model, 339

we utilized the EvolInstruct-80k dataset, selecting 340

Deepseek-Coder-1.3b-Instruct (DeepSeek, 2023) 341

as the foundational model. The model is fine- 342

tuned in 800 steps, with learning rate 2e-5. For 343

evaluation purposes, we employed datasets includ- 344

ing HumanEval, MultiPL-E, GSM8K. Since there 345

is a difference between the performance stated 346

in DeepSeek (2023) and those obtained through 347

our use of the bigcode-evaluate-harness (Ben Allal 348

et al., 2022), we opted to rely on the performance 349

evaluations derived from bigcode-evaluate-harness 350

for all models to ensure consistency in comparative 351

analysis. Temperature is set to 0.2 for all models, 352

and the primary metric used for evaluating model 353

performance in this task was pass@1. Our model’s 354

performance was benchmarked against several oth- 355

ers, including CodeGeeX2 6B (Zheng et al., 2023), 356

StarCoder 15B (Li et al., 2023), CodeLlama 7B, 357

CodeLlama-Instruct 7B, CodeLlama 13B (Roziere 358

et al., 2023). 359

Mathematics Reasoning: We additionally assess 360

the influence on the performance of a model that 361

has been fine-tuned for the code generation task 362

when applied to a different task. This involves 363

comparing a model already fine-tuned for code gen- 364

eration with various other Large Language Mod- 365

els, including Llama 7B, Llama 13B (Touvron 366

et al., 2023), Minerva 8B (Lewkowycz et al., 2022), 367

CodeGeeX2 7B, StarCoder 15B, and Deepseek- 368

Coder-1.3b-Instruct. 369

4.3 Results 370

Generated data: In this study, we embarked on 371

an extensive data augmentation initiative spanning 372

two distinct and challenging domains: biomedical 373

relation extraction (BioRED) and code generation 374

(Evol Instruct). Table 1 presents a comprehensive 375

overview of the data augmentation output and sub- 376
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sequent filtration efficacy across these domains.377

Notably, the success rates post-semantic valida-378

tion—courtesy of our SemQ filter—demonstrate379

task-specific variability, which we attribute to the380

inherent complexity and structural rigidity of each381

dataset. An example result of SemQ can be seen382

in Table 5. For the biomedical relation extraction383

task, the data augmentation process involves intri-384

cate manipulation of text interspersed with rigor-385

ously formatted tags such as @GeneOrGeneProd-386

uct and @ChemicalEntity. These tags, which re-387

quire precise placement and pairing of opening388

(@GeneOrGeneProduct) and closing (@/GeneOr-389

GeneProduct) markers (detailed example can be390

seen in Table 6 in Appendix), significantly elevate391

the complexity of the augmentation task. Conse-392

quently, a substantial proportion of the augmented393

dataset failed to meet the stringent criteria set forth394

by the SemQ Filter, as it rigorously scrutinizes395

the congruence of these tags within the augmented396

narratives. This meticulous semantic checking pro-397

cess is pivotal in ensuring the scientific accuracy398

of the augmented data, a non-negotiable aspect in399

biomedical research where precision is paramount.400

On the other hand, the Code Generation task,401

while still subject to strict syntactic and seman-402

tic constraints, exhibited a higher pass rate post-403

augmentation. In this domain, the augmentation404

process must ensure that the syntactical structure405

and numerical values within the code remain un-406

altered to preserve the original logic and function-407

ality. Despite these constraints, the augmentation408

method proved to be more adaptable to the pro-409

gramming context, resulting in a greater volume of410

data successfully passing through the SemQ Filter.411

This higher success rate suggests that our augmen-412

tation approach is effectively attuned to the nuances413

of programming languages, capable of generating414

syntactically sound and semantically coherent code415

snippets that align with the original intention of the416

code’s author. The disparity in the success rates417

between the two tasks underscores the challenges418

that specialized domains pose to data augmentation419

techniques. In domains like biomedical research,420

where the data is densely annotated and laden with421

domain-specific terminologies, the augmentation422

process must navigate a complex landscape of lin-423

guistic and semantic rules. Similarly, in program-424

ming language datasets, the augmentation must425

contend with the rigid syntax and operational se-426

mantics that are fundamental to the code’s execu-427

Figure 5: Performance on Math Reasoning Task.

tion. These findings highlight the need for augmen- 428

tation strategies that are not only context-aware but 429

also capable of discerning and adhering to the nu- 430

anced rules that govern data in specialized fields. 431

432

Biomedical Relation Extraction Task: Table 433

2 shows that our methodology demonstrates 434

substantial improvement across all three evaluation 435

schemas. When augmented data is introduced, 436

SemAug not only excels in extracting entity pairs 437

within a relation but also in discerning the type of 438

relation and further characterizing the novelty of 439

the entity pairs. This is evident from the marked 440

8.8% enhancement in the F1-score, showcasing 441

the robustness of our approach in handling the 442

intricacies of biomedical data and contributing to 443

a more nuanced understanding and extraction of 444

relationships within it. 445

Code Generation Task: It is clear from Ta- 446

ble 3 that SemAug demonstrates a significant 447

enhancement over the base model, Deepseek- 448

Coder-Instruct, across various programming 449

languages. Particularly notable are the improve- 450

ments in languages like Java and C++, where 451

SemAug shows an increase of 5.0% and 7.0% 452

respectively, suggesting that our method has 453

effectively leveraged the underlying LLM to pro- 454

duce superior data augmentation outcomes. The 455

consistent increments across multiple languages 456

affirm the robustness and versatility of SemAug, 457

validating its potential as a powerful tool for tasks 458

requiring nuanced language comprehension and 459

generation. 460

Mathematics Reasoning Task: SemAug was 461

fine-tuned exclusively on a code instruction dataset 462
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Table 2: Evaluation results on RE task comparison when added augmented data: extracting the entity pairs within
a relation, second schema: extracting the entity pairs and the relation type and the third schema: further labeling
the novelty for the extracted pairs. All numbers are F-scores. The <G,D> is the concept pair of the gene (G) and
the disease (D). The columns of those entity pairs present the RE performance in F-scores. Bold denotes best
model

Eval Schema Methods All <G,D> <G,G> <G,C> <D,V> <C,D> <C,V> <C,C>

Entity pair
BERT-GT 72.1 63.8 78.5 77.7 69.8 76.2 58.5 74.9
PubMedBERT 72.9 67.2 78.1 78.3 67.9 76.5 58.1 78.0
SemAug 78.3 76.1 86.2 85.7 66.0 78.2 38.1 85.9

↑ 5.4 ↑ 8.9 ↑ 7.1 ↑ 7.4 ↓ 1.9 ↑ 1.7 ↓ 20 ↑ 7.9

+Relation type
BERT-GT 56.5 54.8 63.5 60.2 42.5 67.0 11.8 52.9
PubMedBERT 58.9 56.6 66.4 59.9 50.8 65.8 25.8 54.4
SemAug 64.4 64.3 76.1 64.3 47.0 72.2 9.5 59.7

↑ 5.5 ↑ 7.7 ↑ 9.7 ↑ 4.4 ↓ 3.8 ↑ 6.4 ↓ 16.3 ↑ 5.3

+Novelty
BERT-GT 44.5 37.5 47.3 55.0 36.9 51.9 11.8 48.5
PubMedBERT 47.7 40.6 54.7 54.8 42.8 51.6 12.9 50.3
SemAug 56.5 51.1 69.1 57.9 44.9 78.2 9.5 56.5

↑ 8.8 ↑ 10.5 ↑ 14.4 ↑ 3.1 ↑ 2.1 ↑ 26.6 ↓ 3.4 ↑ 6.2

Table 3: Evaluation results on Completion Task. The evaluation metric is pass@1. Bold denotes best model. A
demarcation line is placed between the final two models to emphasize our primary objective is to compare the
enhancements our method brings relative to the base model.

Model Size HumanEval MultiPL-E

C++ Java R Rust Bash JS

CodeGeeX2 6B 33.5 29.2 23.5 6.8 17.9 6.3 24.8
StarCoder 16B 30.4 28.6 28.5 13.6 21.2 9.3 31.7
CodeLlama 7B 30.0 25.5 29.2 16.8 26.3 8.1 31.8
CodeLlama-Istruct 7B 45.7 8.7 28.8 14.9 26.3 8.7 33.1
CodeLlama 13B 35.1 34.1 32.2 22.4 28.2 11.8 38.3
Deepseek-Coder-Instruct 1.3B 51.8 29.2 31.0 12.4 23.6 7.5 39.1
SemAug 1.3B 53.7 34.2 38.0 13.7 24.4 11.2 39.1

↑ 1.9 ↑ 5.0 ↑ 7.0 ↑ 1.3 ↑ 0.8 ↑ 3.7 ↑ 0.0

that did not contain data explicitly related to463

mathematics. As shown in Figure 5, despite the464

dataset’s focus being misaligned with the task,465

SemAug exhibits commendable resilience, with466

only a marginal decrease in performance post-fine-467

tuning. This slight dip, however, underscores the468

importance of task-aligned data for fine-tuning,469

to fully harness the model’s capabilities in470

domain-specific tasks. The fine-tuning process,471

although not directly contributing to performance472

in this task, demonstrates the model’s flexibil-473

ity and provides insights into the transferability474

of learned representations across different contexts.475

476

5 Conclusion and Future Work 477

This paper introduces a groundbreaking approach 478

to format-specific data augmentation, uniquely cou- 479

pled with a self-evaluative mechanism. These 480

datasets are characterized by their strict structural 481

requirements, which might include specific tag- 482

ging systems in biomedical data or syntactic rules 483

in programming languages. Unlike general, non- 484

format-specific datasets, which can accommodate a 485

broader range of augmentation techniques, format- 486

specific datasets demand precise adherence to their 487

unique formatting rules to retain data integrity and 488

utility. 489

Our method distinguishes itself by seamlessly 490

adapting to these stringent requirements across di- 491

verse domains without the need for extensive mod- 492
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ifications to the existing system architecture. The493

key to this flexibility is the strategic alteration of494

natural language prompts, which guides the aug-495

mentation process to produce outputs that conform496

to the particular format constraints. This capability497

illustrates the versatility and efficacy of SemAug498

in addressing the challenges posed by structured499

datasets. Additionally, a key advancement of Se-500

mAug over previous methods is its autonomous501

capability to evaluate and ensure the semantic qual-502

ity of augmented data. Traditional approaches of-503

ten rely on human oversight, which can be time-504

consuming and prone to error. SemAug circum-505

vents this dependency, offering a more efficient506

and reliable means of data augmentation that mini-507

mizes the need for manual intervention. Moreover,508

the accessibility of our methodology to non-experts509

is another significant aspect. By reducing reliance510

on extensive programming knowledge, it opens511

up opportunities for a broader range of users to512

engage in advanced data processing and augmenta-513

tion. This democratization of technology can lead514

to innovative applications and solutions, previously515

unattainable due to technical barriers.516

In conclusion, this research not only provides517

a novel technical solution but also fosters a more518

inclusive approach to complex data processing. As519

we continue to explore and refine this method, we520

anticipate it will unlock new possibilities and appli-521

cations, significantly contributing to the advance-522

ment of various fields that rely on specialized data523

formats.524

Limitations525

The effectiveness of our method is closely tied526

to the performance of Large Language Models527

(LLMs). This implies that the quality of our data528

augmentation output, as well as the efficacy of the529

self-evaluation process, is contingent on the accu-530

racy and reliability of the LLMs’ results. Hence,531

suboptimal performance from these models could532

potentially impact the overall quality and reliability533

of the augmented data generated by our method.534

In this study, we have utilized a single LLM for535

data augmentation purposes. Future investigations536

should explore the application of various LLMs to537

determine their influence on the ultimate effective-538

ness of the model.539
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Figure 6: SpecRule Augmentor in Biomedical Relation Extraction task.

Figure 7: SpecRule Augmentor in Code Instruction task.

Table 4: Performance on Math Reasoning Dataset.

Model Size Accuracy
LLama 7B 11.0
LLama 13B 17.8
Minerva 8B 16.2
CodeGeeX2 7B 22.2
StarCoder 16B 23.4
Deepseek-Coder-Instruct 1.3B 34.9
SemAug 1.3B 30.0
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Table 5: Generated samples on EvolInstruct-80k-v1 dataset. Highlights mean specific syntax or number that are
kept unchanged after augmentation.

Original Altered text Score
Edit the existing HTML code to create an or-
dered list with the following requirements:
- The ordered list should be numbered in
descending order.
- Each fruit name in the list should be dis-
played in uppercase letters.
- Add a CSS style to the list items to have a
background color of yellow.
- The fruit names should be sorted in alpha-
betical order.
- Only include fruits that start with a vowel in
the list.
- Each fruit name should be followed by a
comma.
- Add a CSS style to the list to have a border
of 1px solid black.
- The ordered list should be displayed hori-
zontally instead of vertically.
- Add a CSS style to the list items to have a
font size of 20px.
- The list should have a maximum of 5
items.

Modify the existing HTML code to generate
an unordered list with the following con-
straints:
- The list items should be numbered in as-
cending order.
- Each fruit name in the list should be dis-
played in lowercase letters.
- Include a CSS style to the list items to have
a background color of red.
- The fruit names should be sorted in reverse
alphabetical order.
- Only include fruits that start with a conso-
nant in the list.
- Each fruit name should be followed by a
semicolon.
- Add a CSS style to the list to have a border
of 2px dotted blue.
- The unordered list should be displayed
vertically instead of horizontally.
- Add a CSS style to the list items to have a
font size of 18px.
- The list should have a minimum of 5 items.

0

Create an object with key-value pairs using
JavaScript.

Generate an object with key-value pairs in
JavaScript using a for loop.

4

Write a function to determine the largest
prime number in an unordered array.
array = [6, 8, 1, 3, 4]

Identify the largest prime number within an
unstructured array.
array = [6, 8, 1, 3, 4]

5

Write a code to generate a random pass-
word using the random library of Python.
The password should satisfy the following
requirements:
- The length of the password should be 8
characters.
- The password should contain at least one
uppercase letter, one lowercase letter, one
digit, and one special character (!#$% ^&*).
- The password should not start with a digit.
- The password should not contain any con-
secutive repeating characters.
Note: You are not allowed to use any ex-
ternal libraries or built-in functions for
generating passwords.

Compose a random password using Python’s
random library, ensuring the following crite-
ria:
- The password length must be 8 characters.
- The password should include at least one
uppercase letter, one lowercase letter, one
digit, and one special character (!#$% ^&*).
- The password should not commence with a
digit.
- The password must not contain any consec-
utive repeating characters.
Without utilizing any external libraries
or built-in functions for password genera-
tion, follow the aforementioned rules and
rephrase the given instruction.

5
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Table 6: Generated samples on BioRED. Highlighted words denote the entities with special tags around them.
Blue words stand for those modifications while keeping the same semantic meaning.

Original Altered text
Curcumin prevents @ChemicalEntitySrc$ maleate-
induced @/ChemicalEntitySrc$ nephrotoxicity:
relation to hemodynamic alterations , oxidative
stress , mitochondrial oxygen consumption and
activity of respiratory complex I. The potential pro-
tective effect of the dietary antioxidant curcumin
( 120 mg/Kg/day for 6 days ) against the renal
injury induced by @ChemicalEntitySrc$ maleate
@/ChemicalEntitySrc$ was evaluated. Tubular
proteinuria and oxidative stress were induced
by a single injection of @ChemicalEntitySrc$
maleate @/ChemicalEntitySrc$ ( 400 mg/kg ) in rats.
@ChemicalEntitySrc$ Maleate-induced @/Chem-
icalEntitySrc$ renal injury included increase in
renal vascular resistance and in the urinary excre-
tion of total protein, glucose, sodium, neutrophil
gelatinase-associated lipocalin ( NGAL ) and N-
acetyl b-D-glucosaminidase ( NAG ), upregulation
of kidney injury molecule (KIM)-1, decrease in
renal blood flow and @GeneOrGeneProductTgt$
claudin-2 @/GeneOrGeneProductTgt$ expres-
sion besides of necrosis and apoptosis of tubular
cells on 24 h. Oxidative stress was determined
by measuring the oxidation of lipids and proteins
and diminution in renal Nrf2 levels. Studies were
also conducted in renal epithelial LLC-PK1 cells
and in mitochondria isolated from kidneys of all
the experimental groups. @ChemicalEntitySrc$
Maleate @/ChemicalEntitySrc$ induced cell dam-
age and reactive oxygen species ( ROS ) production
in LLC-PK1 cells in culture. In addition, @Chem-
icalEntitySrc$ maleate @/ChemicalEntitySrc$
treatment reduced oxygen consumption in ADP-
stimulated mitochondria and diminished respira-
tory control index when using malate/glutamate
as substrate. The activities of both complex I and
aconitase were also diminished. All the above-
described alterations were prevented by curcumin.
It is concluded that curcumin is able to attenuate
in vivo @ChemicalEntitySrc$ maleate-induced
@/ChemicalEntitySrc$ nephropathy and in vitro
cell damage. The in vivo protection was associated
to the prevention of oxidative stress and preserva-
tion of mitochondrial oxygen consumption and
activity of respiratory complex I, and the in vitro
protection was associated to the prevention of ROS
production .

Curcumin protects against renal toxicity induced
by @ChemicalEntitySrc$ maleate @/ChemicalEn-
titySrc$: relation to changes in hemodynamics,
oxidative stress, mitochondrial oxygen use and
activity of respiratory complex I. The possible pro-
tective effect of the dietary antioxidant curcumin
(120 mg/Kg/day for 6 days) against kidney in-
jury caused by @ChemicalEntitySrc$ maleate
@/ChemicalEntitySrc$ was looked at. Tubular
proteinuria and oxidative stress were brought on
by a single injection of @ChemicalEntitySrc$
maleate @/ChemicalEntitySrc$ (400 mg/kg) in
rats. @ChemicalEntitySrc$ Maleate-induced
@/ChemicalEntitySrc$ kidney injury included
increased renal vascular resistance and urinary
excretion of total protein, glucose, sodium, neu-
trophil gelatinase-associated lipocalin (NGAL) and
N-acetyl b-D-glucosaminidase (NAG), upregula-
tion of kidney injury molecule (KIM)-1, decreased
renal blood flow and @GeneOrGeneProductTgt$
claudin-2 @/GeneOrGeneProductTgt$ expression
in addition to necrosis and apoptosis of tubular
cells at 24 hrs. Oxidative stress was determined
by measuring the oxidation of lipids and proteins
and reduction in renal Nrf2 levels. Studies were
also done in renal epithelial LLC-PK1 cells and in
mitochondria isolated from kidneys of all the ex-
perimental groups. @ChemicalEntitySrc$ Maleate
@/ChemicalEntitySrc$ caused cell damage and
reactive oxygen species (ROS) production in LLC-
PK1 cells in culture. Additionally, @ChemicalEn-
titySrc$ maleate @/ChemicalEntitySrc$ treatment
lowered oxygen consumption in ADP-stimulated
mitochondria and reduced respiratory control in-
dex when using malate/glutamate as substrate. The
activities of both complex I and aconitase were
also decreased. All the above described changes
were prevented by curcumin. It is concluded that
curcumin is able to reduce in vivo @ChemicalEn-
titySrc$ maleate-induced @/ChemicalEntitySrc$
nephropathy and in vitro cell damage. The in vivo
protection was linked to prevention of oxidative
stress and preservation of mitochondrial oxygen
use and activity of respiratory complex I, and the
in vitro protection was linked to the prevention of
ROS production.
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