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Abstract
Understanding causal mechanisms across different populations is essential for designing effective
public health interventions. Recently, difference graphs have been introduced as a tool to visu-
ally represent causal variations between two distinct populations. While there has been progress
in inferring these graphs from data through causal discovery methods, there remains a gap in sys-
tematically leveraging their potential to enhance causal reasoning. This paper addresses that gap
by establishing conditions for identifying causal changes and effects using difference graphs. It
specifically focuses on identifying total causal changes and total effects in a nonparametric setting,
as well as direct causal changes and direct effects in a linear setting. In doing so, it provides a novel
approach to causal reasoning that holds potential for various public health applications.
Keywords: Difference graphs, causal reasoning, total effect, direct effect, causal change.

1. Introduction

In epidemiology, it is critical to understand the causal mechanisms that impact health outcomes
across diverse populations, which may differ based on geographic location, socioeconomic status,
genetic predispositions, or environmental exposures. Recently, difference graphs have been intro-
duced to represent differences between two Structural Causal Models (SCMs) (Pearl, 2009), with
each model corresponding to a distinct population. These graphs offer a refined representation to
visually compare and analyze the causal variations between these groups. By clearly delineating
these causal differences, epidemiologists can tailor public health policies and interventions more
effectively to address the unique needs of each population. Moreover, it has been highlighted by
Malik et al. (2024) that such graphs are also interesting for root cause analysis (Assaad et al., 2023).

Recently, there has been a surge of interest in constructing difference graphs directly from data
through methods rooted in causal discovery (Wang et al., 2018; Chen et al., 2023; Malik et al., 2024;
Bystrova et al., 2024). The simplest approach involves independently discovering the SCM for each
of the two populations and then computing the difference graph. However, a more effective strategy
has emerged that involves directly constructing the difference graph, bypassing the two SCMs that
define it. This approach reduces the need for stringent assumptions commonly associated with
causal discovery (Spirtes et al., 2000; Glymour et al., 2019). Despite these advancements, an evident
gap remains in the existing literature: there has been no systematic investigation into how difference
graphs themselves can facilitate or enhance the process of causal reasoning. This oversight presents
a unique opportunity to explore the potential of difference graphs as a tool not just for representation
but also for driving identifiability of causal changes and causal effects.

To bridge this gap, this work establishes both sufficient and necessary conditions for identifying
total causal changes and total effects in difference graphs within nonparametric models, under the
assumption of no hidden confounding. Additionally, this work provides sufficient and necessary
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conditions for identifying direct causal changes and direct effects in difference graphs within linear
models, under the assumption of no hidden confounding. Initially, both results are presented under
the assumption that the two causal graphs, induced by the two SCMs defining the difference graph,
share the same topological ordering. These results are then extended to accommodate cases where
the graphs have different topological orderings.

In the remainder, Section 2 introduces difference graphs along with necessary tools and ter-
minologies. Section 3 details the identifiability results for total effects. Section 4 focuses on the
identifiability of direct effects. Section 5 presents related works and offers further discussion. Fi-
nally, Section 6 concludes the paper. In the following, uppercase letters represent variables and
lowercase letters represent their values, while letters in blackboard bold denote sets.

2. Difference graphs, causal changes, and causal effects

This study utilizes the framework of structural causal models (SCMs) introduced by Pearl (2009).
Formally, an SCMM is defined as a 4-tuple (U,V,F, P (U)), where U represents a set of exogenous
(latent) variables and V denotes a set of endogenous (observed) variables. The set F consists of
functions {fi}∣V∣i=1, where each endogenous variable is determined by a function fi ∈ F that depends
on its corresponding exogenous variable Ui ∈ U and a subset of endogenous variables (which are
also called the direct causes or the parents). In a linear SCM, fi is a linear equation where each
coefficient is called path coefficient (Wright, 1920, 1921) and it designates a direct effect. The
following assumption regarding exogenous variables is made throughout the paper.

Assumption 1 All exogenous variables are mutually independent, i.e., no hidden confounding.

Consistent with common practice in causal inference, it is also assumed that each SCMM induces
a causal graph G = (V,E) which is assumed to be a directed acyclic graph (DAG). For clarity, any
causal graph that is a DAG will be referred to as a causal DAG. In this graph, V represents the
set of vertices, each corresponding to a random variable, and E includes the directed edges, with
each edge X → Y indicating a causal relationship between X and Y . For any graph G = (V,E),
standard terminology is adopted to describe relations to any vertex Y ∈ V: Pa(Y,G) denotes the set
of vertices from which there is a direct edge to Y ; An(Y,G) refers to the ancestors of Y which is
the collective set including Y and the parents of all vertices that can be recursively traced back from
Y ; De(Y,G) refers to the descendants of Y which comprises all vertices X for which Y is found
within An(X,G). If a path contains the subpath X → W ← Y , then W is a collider on the path.
A path from X to Y is considered active given a vertex set W, where neither X nor Y are in W,
if every non-collider on the path is not in W, and every collider on the path has a descendant in W.
Otherwise, the path is blocked by W. It is important to note that many SCMs can induce the same
causal DAG and that a causal DAG can be compatible with many probability distributions.

Recently, difference graphs have been introduced as a tool to represent the differences between
two SCMs, each corresponding to a distinct population, offering a refined method to visually com-
pare causal variations between these groups.

Definition 1 (Difference graphs) Consider an unordered pair of SCMs (M1 = (V,U,F1,Pr1),
M2(V,U,F2,Pr2)) that respectively induce the two causal DAGs G1 and G2 and that are respec-
tively compatible with the two distributions Pr1(v) and Pr2(v). A difference graph D = (V,E∣1−2∣)
betweenM1 andM2 is a directed graph where the set of vertices is identical of the set of endoge-
nous variables in M1 and M2 and the set of edges is defined as follows: E∣1−2∣ ∶= {X → Y ∣
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Figure 1: Three difference graphs ((c), (h), and (m)), each associated with two pairs of causal
DAGs (one pair on the left and one on the right). The two causal DAGs in each pair share the same
topological ordering, ensuring that Assumption 3 is satisfied. In each subfigure, red and blue vertices
represent the cause and effect of interest. In (c), neither the total nor the direct effect are identifiable.
In (h), only the total effect is identifiable, while in (m), only the direct effect is identifiable.

∀X,Y ∈ V if the direct effect of X on Y inM1 is different than the direct effect1 of X on Y inM2,
i.e., if there is a mechanism change (Tian and Pearl, 2001) at Y with respect to X .

Note that multiple unordered pairs of SCMs can define the same difference graph. In Definition 1,
difference graphs are defined using SCMs rather than causal DAGs because causal variations may
not always be structurally evident by comparing the two causal DAGs, since changes are often
parametric rather than structural. That said, Figures 1 and 2, feature six examples of difference
graphs ((c), (h), (m) in Figure 1 and (c), (f), (k) in Figures 2) along with pairs of causal DAGs
on both side of each difference graph that can also define the same difference graph (indicating
structural differences2 between the two populations). This selection was made intentionally in order
to make the concept of difference graphs visually clearer and easier to understand. Nonetheless, it
is important to remember that the theoretical results of this paper apply even when the difference

1. In a linear model, the direct effects are reduce to path coefficients (Wright, 1920, 1921) denoted as αx,y .
2. The term ”structural differences” refers to ”topological differences between the two causal DAGs”.
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between the two populations is not structurally apparent. However, all those results are grounded in
the following assumption regarding the distributions that are compatible with the difference graph.

Assumption 2 Pr1(v) and Pr2(v) are positive distributions.

As shown in Figure 2, generally, there is no inherent necessity to impose similarity constraints
on two causal DAGs and thus difference graphs can contain cycles. However, to make the results of
this paper more comprehensible and consistent with recent literature on difference graphs, I initially
assume that the two causal DAGs have the same topological ordering.

Assumption 3 G1 and G2 share the same topological ordering.

This assumption implies that the difference graph is also a DAG (Wang et al., 2018) and it can hold
in many applications, for example, in biological pathways an upstream gene does not generally be-
come a downstream gene in different conditions (Wang et al., 2018). However, in some domains, it
is possible to imagine scienarios where causal relations can change direction under different condi-
tions. For example, in epidemiology, obesity often leads to the development of type 2 diabetes in
the general population, with no direct feedback from diabetes to obesity. However, in a subpopu-
lation of individuals taking certain antipsychotic medications, the onset of type 2 diabetes can lead
to significant weight gain due to the medication’s side effects, without obesity being the original
cause. Similarly, in nephrology, diabetes can lead to chronic kidney disease, as high blood sugar
damages the kidneys in the general population. However, in patients with end-stage kidney disease,
impaired kidney function can cause insulin resistance, leading to diabetes, without diabetes further
worsening kidney disease. As a result, for each finding presented in this paper under Assumption 3,
I will also provide an alternative result that extends to cases where Assumption 3 is not satisfied.

Recently, there has been increasing interest in discovering difference graphs directly from data,
without first discovering the two SCMs that define them (Wang et al., 2018; Malik et al., 2024;
Bystrova et al., 2024). However, a key question that has yet to be explored, but naturally arises, is
whether these graphs can provide conditions for estimating causal changes between two populations
using observational data. This work considers two types of causal changes: total causal change and
direct causal change, also referred to as mechanism change (Tian and Pearl, 2001). The total causal
change of X on Y is defined as the difference between the total effect of X on Y inM1 and the
total effect of X on Y inM2. In a nonparametric setting, the total effects is a specific functional
of the interventional distribution Pr(Y = y ∣ do(X = x)) (where the do() operator represents the
intervention) for different values of x. However, for simplicity, the total effect is often reffered to as
Pr(Y = y ∣ do(X = x)) and by a slight abuse of notation, in the remainder, the total effect will be
denoted as Pr(y ∣ do(x)). Similarly, the direct causal change is the difference between the direct
effect of X on Y in M1 and the direct effect of X on Y in M2. In a nonparametric setting, the
direct effect can be defined as a specific functional of Pr(y ∣ do(x), do(Sx,y)) for different values of
x, known as the controlled direct effect (Pearl, 2009), where Sx,y represents the set of all observed
variables in the system except X and Y 3. The controlled direct effect of X on Y is not uniquely
defined as it can change with respect to the values of Sx,y (some variables in Sx,y are known as effect
modifier). For instance, the direct effect of a pill on thrombosis is likely different for pregnant and
non-pregnant women (Pearl, 2009). However, in a linear SCM, i.e, ∀fi ∈ F fi, is a linear function,

3. Another approach to defining a direct effect in a nonparametric setting is through the natural direct effect (Pearl,
2001), which relies on counterfactual notions rather than the do() operator. However, since it cannot be defined
purely using interventional concepts, it is considered beyond the scope of this paper.
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the direct effect, obtained through differentiation, corresponds to the familiar path coefficient αx,y

(Wright, 1920, 1921), which, unlike the non-parametric controlled direct effect, is uniquely defined.
Therefore, in this work, whenever direct effect is discussed, it will refer specifically to linear SCMs.

Since the total causal change of X on Y is a functional of the total effect, Pr(y ∣ do(x)), and the
direct causal change is a functional of the direct effect, αx,y, the total causal change is identifiable if
the total effect is identifiable, and likewise, the direct causal change is identifiable if the direct effect
is identifiable4. Therefore, the focus of the remainder of this paper is to establish the identifiability
of both the total and direct effects using difference graphs. I begin by providing a general definition
of the identifiability of causal effects using difference graphs, which is adapted from the definition
given by Pearl (2009) for the identifiability of causal effects using causal DAGs.

Definition 2 (Causal effect identifiability using difference graph) Let X and Y be distinct ver-
tices in a difference graph D = (V,E∣1−2∣). The causal effect Q of X on Y is identifiable in D if Q
is uniquely computable from any observational distributions consistent with D.

Given a causal DAG, it is possible to identify Pr(y ∣ do(x)) using the back-door criterion and
to identify αx,y using the single-door criterion which is only applicable in a linear setting.

Definition 3 (Back-door criterion, Pearl (1995)) A set of variables W satisfies the back-door cri-
terion relative to the total effect Pr(y ∣ do(x)) in a causal DAG G if ∀W ∈ W, W /∈ De(X,G) and
W blocks every path between X and Y which contains an arrow into X .

Definition 4 (Single-door criterion, Spirtes et al. (1998); Pearl (1998, 2009)) A set of variables
W satisfies the single-door criterion relative to the direct effect αx,y in a causal DAG G if ∀W ∈W,
W /∈De(Y,G) and W blocks every path between X and Y .

Whenever a set W satisfies the back-door criterion5 in a causal DAG, Pr(y ∣ do(x)) is given by the
adjsutment formula ∑w Pr(y ∣ x,w)Pr(w). Whenever a set W satisfies the single-door criterion in
a causal DAG, αx,y is given by the regression coefficient of X on Y after W is partialled out.

Since this work focuses on difference graphs, the first objective is to identify a set that satisfies
the back-door criterion across all causal DAGs compatible with a given difference graph when
estimating the total effect—if such a set exists, the total effect is said to be identifiable by a common
back-door. Similarly, the second objective is to find a set that satisfies the single-door criterion
across all compatible causal DAGs when estimating the direct effect—if such a set exists, the direct
effect is said to be identifiable by a common single-door. However, these goals cannot be acheived
by applying the back-door and single-door criteria directly to difference graphs, even when the
difference graph is acyclic. For example, in the difference graph shown in Figure 1 (m), the sets ∅,
{W1}, {W2}, and {W1,W2} all satisfy the back-door criterion for the total effect Pr(y ∣ do(x)).
But when examining the pair of causal DAGs in (k) and (l) that are compatible with this difference
graph, it becomes clear that W1 is necessary and W2 must be excluded from any set that satisfies the
back-door criterion, ruling out the empty set and {W2}. Additionally, by looking at another pair of
causal DAGs in (n) and (o), it becomes evident that in this case, {W2} is required for the back-door

4. In some cases, a causal change can be identified even when the corresponding causal effect is not, e.g., if there is no
directed path from X to Y , the causal change is clearly zero, regardless of whether the causal effect is identifiable.

5. The back-door criterion is in general not complete. However, when X is a singleton (as considered in this paper), an
adjustment set exists iff there is at least one set that satisfies the back-door criterion (Perković et al., 2018).
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criterion to hold. This illustrates that, in this example, no single set satisfies the back-door criterion
for every causal DAG compatible with the difference graph. Similarly, for the difference graph in
Figure 1 (h), the sets ∅, {W1}, {W2}, and {W1,W2} all satisfy the single-door criterion for the
direct αx,y. However, the pair of causal DAGs shown in (f) and (g), both W1 and W2 are needed in
any set that satisfies the single-door criterion, whereas in the pair of causal DAGs shown in (i) and
(j), W2 must not be included in any such set. This demonstrates that, in this example, no single set
satisfies the single-door criterion for all causal DAGs compatible with the difference graph.

In addition to examining identifiability by a common back-door (for the total effect) or by a
common single-door (for the direct effect), I also consider cases where the total or direct effect is
identifiable because it is evident from the graph that the causal effect does not exist. For example, in
a DAG where Y causes X , the total and direct effects of X on Y are both identifiable: Pr(y ∣ do(x))
reduces to Pr(y), and αx,y is zero. In such cases, the total or direct effect are referred to as being
identifiable trivially. Now that all necessary terminologies and notations have been established, the
two problems that this work aims to address can be formally presented.

Problem 1 Consider a difference graph D defined by two unknown SCMs that respectively induce
two unknown causal DAGs. Is Pr(y ∣ do(x)) identifiable inD trivially or by a common back-door?

Problem 2 Consider a difference graph D defined by two unknown linear SCMs that respectively
induce two unknown causal DAGs. Is αx,y identifiable in D trivially or by a common single-door?

3. Identification of total effects using difference graphs in a nonparametric setting

This section first presents conditions for identifying total effects using difference graphs in a non-
parametric setting under Assumption 3 and then generalizes this result by relaxing the assumption.

Theorem 5 Consider a difference graph D compatible with two different SCMs. Under Assump-
tions 1, 2 and 3, Pr(y ∣ do(x)) is identifiable in D trivially or by a common back-door iff:

A.1 Y ∈ An(X,D); or

A.2 X ∈ An(Y,D) and ∀W ∈ V/{X,Y }, X ∈ An(W,D) or W ∈ An(X,D).

Furthermore, if Condition A.1 is satisfied then Pr(y ∣ do(x)) = Pr(y) and if Condition A.2 is
satisfied then Pr(y ∣ do(x)) = ∑wan Pr(y ∣ x,wan)Pr(wan), where Wan = An(X,D)/{X}.

Proof Lemmas 6 and 7 respectively prove that Conditions A.1 and A.2 are sufficient for identifia-
bility and Lemmas 6 and 8 prove that they are also necessary.

Before delving into the four lemmas that form the foundation of the proof for Theorem 5, it
is important to highlight the key implications of the theorem. The theorem provides conditions
under which the total effect can be identified in difference graphs by a common back-door. The
identification of these total effects hinges on the structural properties of the difference graph.

In particular, when there is no directed path between the variables of interest—either from X to
Y or from Y to X—as seen in the difference graph in Figure 1 (c), the absence of such a connection
creates ambiguity in the directionality of the total effect. This is illustrated by the pair of causal
DAGs in (a) and (b), where the association between X and Y reflects the total effect of interest,
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and by the pair in (d) and (e), where the association between X and Y does not correspond to the
total effect being sought. Therefore, the total effect cannot be identified using a common back-door.
This is an essential point, as it highlights that causal reasoning in difference graphs is counterin-
tuitive, with nonexistent directed paths in the difference graph potentially leading to ambiguous
causal interpretations. The following lemma builds on this observation and in addition it shows that
Condition A.1 of the theorem is sufficient.

Lemma 6 Under Assumptions 1, 2 and 3, if there exists a directed path from Y to X then Pr(y ∣
do(x)) = Pr(y) and if there exists no directed path from X to Y or from Y to X in D then
Pr(y ∣ do(x)) is not identifiable.

Proof If there exists a directed path from Y to X then by Assumption 3, there cannot exists a
directed path from X to Y , which means that X does not have an effect on Y , i.e., Pr(y ∣ do(x)) =
Pr(y). If there is no directed path from X to Y or from Y to X inD then there exists a possible pair
of causal DAGs (G1,G2) defining D such that X → Y in G1 and G2. In this case Pr(y ∣ do(x)) ≠
Pr(y). At the same time there exists another possible pair of causal DAGs (G1′ ,G2′) defining D
such that X ← Y in G1′ and G2′ . In this case, Pr(y ∣ do(x)) = Pr(y).

Condition A.2 of Theorem 5 can be applied to identify Pr(y ∣ do(x)) in the difference graph
shown in Figure 1 (h), as W1 ∈ An(X,D) and X ∈ An(W2,D). This implies that for any pair of
causal DAGs compatible with the difference graph—such as the pairs depicted in Figures 1 (f) and
(g) or Figures 1 (i) and (j)—the set {W1} satisfies the back-door criterion. The following lemma
illustrates that Condition A.2 is indeed sufficient for identifiability.

Lemma 7 Under Assumptions 1, 2 and 3, if there exists a directed path from X to Y and for
each vertex W ∈ V/{X,Y } there exists a directed path from X to W or from W to X in D, then
Pr(y ∣ do(x)) is identifiable in D by a common back-door.

Proof Consider any pair of causal DAGs (G1, G2) that define D. Let Wan = An(X,D)/{X,Y }
and let Wde = De(X,D)/{X,Y }. For any W ∈ Wan, W cannot be in Wde, otherwise D would
not be acyclic and Assumption 3 would not be satisfied. By the lemma, for any W ∈ V/{X,Y } if
W ∉ Wan then W ∈ Wde. It follows that ∀W ∈ Wan, W has to be an ancestor of X in at least one
of the two causal DAGs G1 and G2 and W is not a descendent of X in any of the two causal DAGs.
Thus Wan has to block all paths from X to Y which contains an arrow into X and at the same time
Wan cannot contain any descendant of X . Therefore, Wan satisfies the back-door criterion (Pearl,
1995) in G1 and in G2 and by Pearl (1995, Theorem 1) the total effect Pr(y ∣ do(x)) inM1 and in
M2 is given by ∑wan Pr(y ∣ x,wan)Pr(wan).

Theorem 5 indicates non-identifiability if Conditions A.1 and A.2 are not met. For instance,
Theorem 5 shows that Pr(y ∣ do(x)) is not identifiable in the difference graph in Figure 1 (m). This
is evident by considering two possible pairs of causal DAGs compatible with the difference graph:
Figures 1 (k) and (l), and Figures 1 (n) and (m). In the first pair, {W1} satisfies the back-door
criterion, but {W1,W2} does not. In contrast, in the second pair, only {W1,W2} satisfies the back-
door criterion. Lemma 6 provided one part of the proof for the necessity of these two conditions,
and the following lemma completes the other half, thus concluding the proof of the theorem.
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Lemma 8 Under Assumptions 1, 2 and 3, if there exists a directed path from X to Y and there
exists a vertex W ∈ V/{X,Y } for which there is no directed path from X to W or from W to X in
D then Pr(y ∣ do(x)) is not identifiable in D by a common back-door.

Proof Suppose there is a directed path from X to Y in D. Now, consider a vertex W for which
there is no directed path from or to X in D. It follows that in any pair of causal DAGs G1 and G2,
W can be either independent of X or a descendant of X or a parent of X or an ancestor, but not a
parent, of X . Let us focus on the second and third cases. In the second case, W cannot be included
in any set that satisfies the back-door criterion in every causal DAG compatible with D, since W
is a descendant of X . In the third case, W cannot be a descendant of Y ; otherwise, a cycle would
form involving X , W , and Y . Therefore, in at least one causal DAG compatible withD, W must be
a parent of Y , meaning W must be included in any set that satisfies the back-door criterion in every
causal DAG compatible with D. This third case contradicts the second case, making it impossible
to find a set that satisfies the back-door criterion in all compatible causal DAGs.

The remaining part of this section investigates the case where the two causal DAGs induced
by the two SCMs that define the difference graph do not share the same topological ordering (i.e.,
Assumption 3 is not satisfied). In this case the difference graph can contain cycles.

It is clear that if Assumption 3 is not satisfied, the first part of Lemma 6 does not hold. An
example of this can be seen in Figure 2 (c), where the difference graph contains a directed path
from Y to X , yet the total effect cannot be identified due to the simultaneous existence of a directed
path from X to Y . Additionally, it is evident that if Assumption 3 is not met, Lemma 7 as a
whole will fail. Furthermore, even though the second part of Lemma 6 and Lemma 8 remain valid
individually, together they do not provide necessary conditions. However, as shown in the following
theorem, minor modifications to these lemmas would allow acheiving correctness. The proof of this
new theorem will simply highlight how the proofs of the previous lemmas should be modified.

Theorem 9 Consider a difference graph D compatible with two different SCMs. Under Assump-
tions 1 and 2, Pr(y ∣ do(x)) is identifiable in D trivially or by a common back-door iff

B.1 Condition A.1 is satisfied and X /∈ An(Y,D); or

B.2 Condition A.2 is satisfied and An(X,D) ∩De(X,D) = {X}.

Furthermore, if Condition B.1 is satisfied then Pr(y ∣ do(x)) = Pr(y) and if Condition B.2 is
satisfied then Pr(y ∣ do(x)) = ∑wan Pr(y ∣ x,wan)Pr(wan), where Wan = An(X,D)/{X}.

Proof The proof is very similar to the proof of Theorem 5 with sime minor difference. First, notice
that replacing Assumption 3 with the condition that there is no directed path from X to Y in the
proof of Lemma 6 would maintain correctness. Second notice that replacing Assumption 3 with the
condition that there is no cycle containing X and another vertex in the proof of Lemma 7 would
maintain correctness. Finally, to extend Lemma 8, I add the condition that the total effect is not
identifiable by a common back-door if a cycle exists on X . Combining this with the second part of
Lemma 6 establishes that the conditions are necessary. This can be easily shown because if there
is a cycle in D involving X and another vertex W (where W ≠ Y ), then there must exist a causal
DAG in which W is a parent of X , as well as another causal DAG in which W is a descendant
of X . In both of these graphs, W can also be a parent of Y . This implies that in the first DAG,
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(a) Causal DAG 1.
X Y

(b) Causal DAG 2.
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(c) Difference graph.
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(e) Causal DAG 2.
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(f ) Difference graph.
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(g) Other causal DAG 1.
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(h) Other causal DAG 2.
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(i) Causal DAG 1.
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(j) Causal DAG 2.
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(k) Difference graph.

X Y

W1 W2
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Figure 2: Three difference graphs ((c), (f), and (k)), each associated with two pairs of causal DAGs
(one pair on the left and one on the right). The two causal DAGs in each pair do not share the
same topological ordering, therefore Assumption 3 is not satisfied. In each subfigure, the red and
blue vertices represent the cause and effect of interest, respectively. In the first difference graph (c),
neither the total nor the direct effect is identifiable. In the second graph (f), only the total effect is
identifiable, while in the third graph (k), only the direct effect is identifiable.

W must be included in any set satisfying the back-door criterion, while in the second DAG, W
cannot be included in such a set. Therefore, no set can satisfy the back-door criterion for all causal
DAGs compatible with D. Moreover, if the cycle only involves X and Y , the total effect is also
not identifiable for the same reason the total effect is not identifiable when there is no directed path
from X to Y or from Y to X .

Theorem 9 shows that Pr(y ∣ do(x)) is not identifiable in the difference graphs depicted in
Figures 2 (c) and (k), but it is identifiable in the difference graph shown in Figure 2 (f).

Small simulation study for total causal changes. The adjustment set provided by Theorems 5
and 9 is not the only possible adjustment set that could be selected using the back-door criterion
if the true pair of DAGs were known. However, as shown in Figure 3 (a), in practice, the set used
in Theorems 5 and 9 performs as well as the set consisting of the parents of the exposure and
outperforms the minimal set derived from the back-door criterion.
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4. Mediation analysis using difference graphs in a linear setting

This section presents conditions for identifying the direct effect using a difference graph in a linear
setting and as in the previous section, it starts by given conditions under Assumption 3 and then
generalizes this result by relaxing the assumption.

Theorem 10 Consider a difference graph D compatible with two different linear SCMs. Under
Assumptions 1, 2 and 3, αx,y is identifiable in D trivially or by a common single-door iff:

C.1 Y ∈ An(X,D); or

C.2 X ∈ An(Y,D) and ∀W ∈ V/{X,Y }, Y ∈ An(W,D) or W ∈ An(Y,D).

Furthermore, if Condition C.1 is satisfied then αx,y = 0 and if Condition C.2 is satisfied then αx,y =
rY X.Wan where rY X.Wan is the regression coefficient of X on Y after Wan is partialled out.

Proof Lemmas 11 and 12 respectively prove that Conditions C.1 and C.2 are sufficient for identi-
fiability and Lemmas 11 and 13 prove that they are also necessary.

Theorem 10 establishes that the direct effect αx,y is identifiable by a common single-door in
the difference graph presented in Figure 1 (m), but it is not identifiable by a common single-door in
the difference graphs shown in Figures 1 (c) and (h). The same reasoning applied in the previous
section for the non-identifiability of the total effect in Figure 1 (c) also applies here for the direct
effect. For the case of Figure 1 (m), it becomes clear why the direct effect is not identifiable when
considering the two pairs of causal DAGs compatible with the difference graph, shown in Figures
(f) and (g), and Figures (i) and (j). In the first pair, {W1,W2} is the only set that satisfies the single-
door criterion. However, in the second pair, W2 cannot be included in any set that satisfies the
single-door criterion. I now move on to present the lemmas required for the proof of the theorem,
noting that their proofs follow the same reasoning as the lemmas introduced in the previous section.

Lemma 11 Under Assumptions 1, 2 and 3, if there exists a directed path from Y to X then αx,y = 0
and if there exists no directed path from X to Y or from Y to X in D then αx,y is not identifiable.

Proof The proof follows directly from the proof of Lemma 6.

Lemma 12 Under Assumptions 1, 2 and 3, if there exists a directed path from X to Y and for each
vertex W ∈ V/{X,Y } there exists a directed path from Y to W or from W to Y in D, then αx,y is
identifiable in D by a common single-door.

Proof Consider any pair of causal DAGs (G1, G2) that define D. Let Wan = An(Y,D)/{X,Y } and
let Wde = De(Y,D)/{X,Y } . For any W ∈ Wan, W cannot be in Wde, otherwise D would not be
acyclic and Assumption 3 would not be satisfied. By the lemma, for any W ∈ V/{X,Y } if W ∉Wan

then W ∈ Wde. It follows that ∀W ∈ Wan, W has to be an ancestor of Y in at least one of the two
causal DAGs G1 and G2 and W is not a descendent of Y in any of the two causal DAGs. Thus Wan

has to block all paths between X and Y and at the same time Wan cannot contain any descendant of
Y . Therefore, Wan satisfies the single-door criterion (Spirtes et al., 1998; Pearl, 1998) in G1 and in
G2 and by Pearl (1998, Theorem 6) the direct effect αx,y inM1 and inM2 is given by rY,X.Wan .

10
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Lemma 13 Under Assumptions 1, 2 and 3, if there exists a directed path from X to Y and there
exists a vertex W ∈ V/{X,Y } for which there is no directed path from Y to W or from W to Y then
αx,y is not identifiable in D by a common single-door.

Proof Suppose there is a directed path from X to Y . Now, consider a vertex W for which there is
no directed path from or to Y in D. It follows that in any pair of causal DAGs G1 and G2, W can be
either independent of Y or a descendant of Y or a parent of Y or an ancestor, but not a parent, of Y .
Let us focus on the second and third cases. In the second case, W cannot be included in any set that
satisfies the single-door criterion in every causal DAG compatible with D, since W is a descendant
of Y . In the third case, it is possible to imagine that thre exists a causal DAG compatible with D
where W is either a parent of a child of X . Therefore, in this causal DAG, W must be included in
any set that satisfies the single-door criterion in every causal DAG compatible with D. This third
case contradicts the second case, making it impossible to find a set that satisfies the single-door
criterion in all compatible causal DAGs.

The following theorem extends Theorem 10 to the case where the two causal DAGs, derived
from the two SCMs that form the difference graph, do not have the same topological ordering.

Theorem 14 Consider a difference graph D compatible with two different linear SCMs. Under
Assumptions 1 and 2, αx,y is identifiable in D trivially or by a common single-door iff:

D.1 Condition C.1 is satisfied and X /∈ An(Y,D); or

D.2 Condition C.2 is satisfied and An(Y,D) ∩De(Y,D) = {Y }.

Furthermore, if Condition D.1 is satisfied then αx,y = 0 and if Condition D.2 is satisfied then
αx,y = rY X.Wan where rY X.Wan is the regression coefficient of X on Y after Wan is partialled out.

Proof The proof closely follows the structure of the proof for Theorem 10, with a few key modi-
fications. First, note that replacing Assumption 3 with the condition that there is no directed path
from X to Y in the proof of Lemma 11 preserves its correctness. Second, replacing Assumption 3
with the condition that no cycle contains both Y and another vertex in the proof of Lemma 12 also
maintains its validity. To extend Lemma 13, I introduce the condition that the direct effect cannot be
identified using a common single-door criterion if there is a cycle involving Y . Combining this new
condition with the second part of Lemma 11 demonstrates that these conditions of the Theorem are
necessary. This can be shown as follows: if a cycle exists in D involving Y and another vertex W
(where W ≠ X), then there must be at least one causal DAG where W is a parent of Y and another
causal DAG where W is a descendant of Y . In both of these DAGs, W can also act as either a
parent or descendant of X . This implies that in the first DAG, W must be included in any set that
satisfies the single-door criterion, while in the second DAG, W cannot be included in such a set. As
a result, no single set can satisfy the single-door criterion across all causal DAGs compatible with
D. Furthermore, if the cycle only involves X and Y , the direct effect is also not identifiable for the
same reason it is not identifiable when there is no directed path between X and Y .

Theorem 14 indicates that the direct effect αx,y is not identifiable in the difference graphs shown
in Figures 2 (c) and (f), but it is identifiable in the difference graph depicted in Figure 2 (k).
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Figure 3: Mean absolute error and standard deviation for estimating the total and direct causal
changes of X on Y . Subfigure (a) compares errors in total causal change estimation using (i) the set
of parents of X , (ii) a minimal set satisfying the back-door criterion, and (iii) the set derived from
Theorem 5 and 9 using a difference graph. Subfigure (b) evaluates direct causal change estimation
using (i) the set of parents of Y , (ii) a minimal set satisfying the single-door criterion, and (iii) the
set from Theorem 10 and 14. Results are reported over 100 pairs of dataset, consisting of 1000
observations and 10 variables, with each 10 pairs sharing the same difference graph for which the
causal effect of interest is identifiable by our theorems. Each dataset is simulated using a linear
SCM, where coefficients are randomly selected between 0 and 1, with Gaussian noise.

Small simulation study for direct causal changes. The adjustment set provided by Theorems 10
and 14 is not the only possible adjustment set that could be selected using the single-door criterion
if the true pair of DAGs were known. So similarly, to Section 3, in Figure 3 (b), the set used in
Theorems 10 and 14 is compared with the set consisting of the parents of the outcome and the
minimal set derived from the single-door criterion. In this case, the set used in Theorems 10 and 14
performs slightly less well than the set of parents and better than the minimal set.

5. Related works and discussion

There has been extensive research on causal reasoning using graphs that represent a class of graphs.
For example, Maathuis and Colombo (2013); Perkovic et al. (2016); Perkovic (2020); Jaber et al.
(2022); Wang et al. (2023) extended causal reasoning to partially oriented graphs such as CPDAGs
and PAGs. PAGs are similar to CPDAGs but allow for hidden confounding. Both CPDAGs and
PAGs represent multiple causal DAGs that share the same skeleton, some common edge orienta-
tions, and the same topological ordering. Moreover, extensive research has been conducted for
recovering these structures from observational data under specific assumptions (Spirtes et al., 2000;
Glymour et al., 2019). From a different perspective, Iwasaki and Simon (1994); Chalupka et al.
(2016); Anand et al. (2023); Assaad et al. (2023); Ferreira and Assaad (2024); Assaad et al. (2024)
have examined causal reasoning using cluster graphs, where each vertex corresponds to a cluster
of low-level variables, and each edge denotes a causal relationship between two clusters. A cluster
graph can represent multiple causal DAGs but does not necessarily share the same skeleton as the
true causal DAG and is not necessarily acyclic. Like CPDAGs and PAGs, cluster graphs can also be
discovered from data under certain assumptions (Wahl et al., 2024). In addition, other works, such
as Richardson (1997); Forré and Mooij (2020), have specifically focused on cyclic directed graphs,
where vertices do not represent clusters. More closely related to difference graphs are selection
diagrams (Bareinboim and Pearl, 2012) which can also represent differences between populations.
There is a substantial body of literature on their use in causal reasoning (Bareinboim and Pearl,
2012) and methods for discovering them from data (Li et al., 2023). However, these two graphi-
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cal representations serve different purposes. Selection diagrams provide more detailed information
about stable causal relations and changes in noise, whereas difference graphs are more informative
regarding changes in direct effects. In summary, to date, there has been no investigation into causal
reasoning using difference graphs. The existing work in the literature cannot be directly applied to
difference graphs because the absence of an edge in these graphs has a different interpretation than
in other types of graphs.

This work addresses this gap and allow analysts to focus solely on the differences between two
populations, simplifying reasoning, while still achieving identification for each domain individually.
I emphasize that in this work, I assume that the difference graph is given and correct. The differ-
ence graph may be provided either by domain experts or by an algorithmic discovery method. In
many domains, experts cannot construct a difference graph without knowing the true causal DAGs
for both populations. However, in certain cases, this is feasible. For example, consider two cell
populations: Population A (untreated) and Population B (treated with a drug that inhibits a specific
protein). While the complete causal DAGs of these populations may be complex and unknown,
domain knowledge about the drug’s direct mechanism of action allows researchers to construct a
difference graph representing the expected changes in causal structure. When domain experts can-
not directly specify a difference graph, they may rely on algorithmic approaches to discover it from
data. Some algorithms discover an equivalence class of graphs (Wang et al., 2018; Bystrova et al.,
2024), while others aim to recover the exact difference graph (Chen et al., 2023). If the exact dif-
ference graph is known, all theorems intorduced in this paper, can be applied directly. For instance,
consider the difference graph shown in (Chen et al., 2023, Figure 4 (a)), discovered from a real ovar-
ian cancer dataset. Based on Theorem 5, the total effect of BIRC3 on PRKAR2B is not identifiable,
whereas according to Theorem 10, the direct effect of BIRC3 on PRKAR2B is identifiable, assum-
ing linearity. In contrast, when working with Markov equivalence classes of difference graphs, the
applicability of the results of this paper depends on whether the conditions of theorems hold across
all graphs in the equivalence class. For instance, consider a scenario with four variables: X , Y ,
W1, and W2. If every difference graph within a given Markov equivalence class includes the edges
X ← W1, X → W2, and X → Y , then the conditions of Theorem 5 are satisfied across the entire
equivalence class, ensuring that the total effect of X on Y is identifiable. Similarly, for the identifi-
cation of the direct effect, suppose that in every difference graph within a given Markov equivalence
class, the edges W1 ← Y , W2 → Y , and X → Y are present. This guarantees that the conditions of
Theorem 10 hold, allowing for the identification of αx,y.

6. Conclusion

This paper is the first to explore causal reasoning through the lens of difference graphs. While
difference graphs may not be as intuitive as classical causal DAGs for identifying causal effects, this
work establishes conditions for identifying total effects (and total causal changes) in a nonparametric
setting and direct effects (and direct causal changes) in a linear setting, directly from the difference
graph. For future works, it would be valuable to extend the results of this paper to direct effects
in a nonparametric setting to path-specific effects. Additionaly, if it will be shown that difference
graphs with hidden confounding are useful and can be learned or provided by experts, then it will
be valuable to investigate the identifiability conditions in the presence of hidden confounding.
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