Generating Medical Instructions with Conditional
Transformer

Samuel Belkadi ', Nicolo Micheletti f, Lifeng Han, Warren Del-Pinto, Goran Nenadic
The University of Manchester

{samuel .belkadi, nicolo.micheletti}@student.manchester.ac.uk
{lifeng.han,warren.del-pinto,g.nenadic}@manchester.ac.uk
t Equal contribution

Abstract

Access to real-world medical instructions is essential for medical research and
healthcare quality improvement. However, access to real medical instructions is
often limited due to the sensitive nature of the information expressed. Additionally,
manually labelling these instructions for training and fine-tuning Natural Language
Processing (NLP) models can be tedious and expensive. We introduce a novel
task-specific model architecture, Label-To-Text-Transformer (LT3), tailored to
generate synthetic medical instructions based on provided labels, such as a vocab-
ulary list of medications and their attributes. LT3 is trained on a vast corpus of
medical instructions extracted from the MIMIC-III database, allowing the model to
produce valuable synthetic medical instructions. We evaluate LT3’s performance
by contrasting it with a state-of-the-art Pre-trained Language Model (PLM), T5,
analysing the quality and diversity of generated texts. We deploy the generated
synthetic data to train the SpacyNER model for the Named Entity Recognition
(NER) task over the n2¢2-2018 dataset. The experiments show that the model
trained on synthetic data can achieve a 96-98% F1 score at Label Recognition on
Drug, Frequency, Route, Strength, and Form. LT3 codes and data will be shared at
https://github.com/HECTA-UoM/Label-To-Text-Transformer

1 Introduction

Access to real-world medical instructions is pivotal for advancing medical research, including clinical
natural language processing (NLP) applications, which is useful for improving healthcare quality and
fostering the creation of novel solutions to address current research challenges [1, 12, 3]. However,
given the confidential nature of these instructions, there are significant difficulties in acquiring and
utilising them for research purposes [4]. Additionally, manual labelling of such data for training and
fine-tuning NLP techniques is labour-intensive and costly. This is also discussed by recent overview
work in [15]].

In response to these challenges, this study harnesses NLP methodologies to generate synthetic medical
instructions. These synthetic examples provide a feasible alternative when real medical data is not
available, which is a common problem due to concerns about patient confidentiality. The use of this
synthetic data alongside, or in place of, real medical data can therefore alleviate challenges associated
with accessing and employing sufficient data for NLP research, which is essential for healthcare
quality enhancement and the inception of innovative strategies toward better computational modelling
of digital healthcare data [6]].

The generation of synthetic clinical data has gained attention in recent years due to the challenges
associated with accessing real-world clinical data [7, [8]. Several studies have explored synthetic
data generation for clinical NLP tasks. For instance, Amin-Nejad et al. [9] proposed a methodology

NeurIPS 2023 Workshop on Synthetic Data Generation with Generative Al.

https://github.com/HECTA-UoM/Label-To-Text-Transformer

for generating synthetic clinical text using structured patient information in a sequence-to-sequence
manner and experimented with state-of-the-art Transformer models. They demonstrated that their
augmented dataset could outperform baseline models on a downstream classification task.

Lee et al. [10] explored the use of an encoder-decoder model to generate synthetic chief complaints
from discrete variables in EHRs, such as age group, gender, and discharge diagnosis. After being
trained end-to-end on authentic records, the model generated realistic chief complaint text that
preserved the epidemiological information encoded in the original record-sentence pairs. This
suggests that such a model could support the de-identification of text in EHRs, helping address the
significant privacy concerns that often limit the sharing and use of real-world clinical data. However,
only some works have attempted to control the generation of these models [[11]. Despite these
advances, there is still room for improvement in generating synthetic clinical letters.

This study puts forth a novel task-specific model architecture, the Label-To-Text-Transformer (LT3),
crafted to generate synthetic medical instructions. Based on the Transformer’s architecture [[12] and
trained on an expansive corpus of medical instructions, LT3 is adept at generating high-quality syn-
thetic medical instructions by capturing the unique patterns and dependencies involved in prescription
writing and other aspects of clinical documentation, such as sentence formatting. For example, given
a medication "docusate sodium" we would expect to generate a prescription such as "docusate sodium
100 mg Capsule Sig: One (1) Capsule PO BID (2 times a day) as needed for constipation.".

To test how effective LT3 is, we will compare its performance to that of another State-of-the-art
Pre-trained Language Model (PLM), T5 [[13]], which we fine-tuned for this particular task. For down-
stream applications, we also deploy the synthetic data generated by LT3 for training the SpacyNER
model to compare the model performance with the ones trained from real data.

2 LT3: Label-To-Text-Transformer

2.1 Problem Formulation

Let C be a space of clinical instruction features, and ¢ € C represents a feature vector for individual
clinical instruction, e.g. a sentence piece. Let £ be a set of drug labels. We have a dataset Dé with
labels annotated over the clinical instructions.

For each drug label [€ £, we originally have a sub-set data D' defined as D! = {cﬁl}fj L, containing
clinical instructions associated with drug /. Individual instructions are indexed by n for each [, where
Nj is the number of instructions for drug [.

Our primary objective is to generate a synthetic dataset that replaces the real datasets entirely,
conditioned on the drug labels from L. To achieve this, we aim to learn a density function d{C/|!},
which approximates the true distribution d{C|l} of the clinical instructions conditioned on each drug
label [.

Once the distributions for each drug label [are learned, we generate an entirely synthetic dataset

by drawing random variables from d{C|l} for each drug . This synthetic dataset will have clinical
instructions corresponding to every drug label in £ and completely replace the original dataset.

2.2 Model Architecture

We introduce a transformer-based architecture, LT3 with both an encoder and a decoder. The encoder
processes the input labels, specifies drug names, and produces a contextualised representation, which
is subsequently used by the decoder to generate output sequences in the form of prescriptions.

LT3 implements the pre-trained word-piece BERT tokeniser [[14]. This selection is motivated by
the objective of representing words as a series of smaller sub-word tokens. Simultaneously, this
approach serves the dual purpose of minimising vocabulary size while handling unseen words as the
composition of a set of known sub-words. Embedding layers are used within the model’s architecture
and are trained from scratch to precisely cater to the requirements of the medical prescription writing
task (Figure|I).

200 mg once a day

[____+

Pa ra ce ta mol

<S> 200 mg once a

Figure 1: LT3 Architecture with input/output behaviour

2.3 B2SD: Beam Search Decoding using Backtracking

LT3 implements a novel Beam Search Decoding method using Backtracking (B2SD). While the
conventional technique adopts a greedy strategy, selecting the best n next-token candidates at each
decoding step based on an overall probability function, this method instead employs a backtracking
strategy [[15].

At each step, we select the best candidate sequence generated so far. This selection relies on a
heuristic function, specifically a joint probability function. Subsequently, the selected sequence is
expanded by its best n next-token candidates, referred to as a beam. This strategy allows the search
tree to be flexible in size rather than limited to a fixed n * seq;e,,. However, in addressing the notable
space and time complexity challenges of the B2SD algorithm, we decided to restrict the explorable
space to the top-m sequences generated so far, based on the same heuristic function.

In the example from Figure[6] we compare the execution of both algorithms in generating sentences
that describe someone as twelve years old. Both algorithms use a beam size of two and generate
two sequences. The desired outputs are the ones with the highest total joint probabilities, namely
"I am twelve" (p=0.138) and "You are twelve" (p=0.135). When comparing their execution, we
observe that the backtracking algorithm (b) explores seven vertices, including one dead-end labelled
"scored" (coloured in blue), in contrast to the original algorithm (a), which only examines six vertices.
However, in this scenario, the probabilities are sufficiently close to prevent a greedy algorithm, such
as the original one, from catching the best overall sequences. Therefore, one of the two optimal
solutions remains undiscovered, and instead, the dead-end labelled "scored" is greedily considered
optimal by the original algorithm. However, B2SD managed to discover both desired outputs at the
price of an additional vertex exploration.

twelve

- twelve,_ ;e
060 oso

015
scored high ;g o2 high,
038 017 038
012 oz
| love,_; o Ve p-0034 love. ; VerYp 034
__~ happy,
008
o

am /i nearlyp_o o

twelve

SeeMp._g s

happy,

am nearly,

<START> - He twelve_o ; <START>

S€em . sy

twelve twelve

You - are twenty,_, You - twenty,,_,

007

ﬂ\

friendly,_, 0,4 friendly,_; 014

Play »_g 656

(a) Original BSD (n = 2) b)B2SD(n=2,m=2,p, =1)

play,

Figure 2: Execution Examples of Conventional Greedy BSD and B2SD Algorithms

There is a trade-off between complexity and the main advantage of the backtracking algorithm, which
is its ability to find the best solution in the beam tree according to its heuristic within a finite time

compared to the original BSD algorithm. This means that a higher level of complexity may lead to
a longer search time but a better solution. In our specific scenario, striking this balance is justified.
That is because LT3 deals with a limited number of samples to generate relatively short sequences.
Moreover, by utilising this algorithm, we can efficiently bypass tokens within the beam that, while
still within the top-n candidates, are significantly less likely to contribute to genuinely interesting
sequences. This approach encourages the model to prioritise the development of promising sequences.

Therefore, the complexity of the newly proposed B2SD algorithm can be expressed as exponential in
the sequence’s length, denoted O(n %=). At the same time, the original one is linear: O(n * seqen)
However, worst-case complexity may not represent the execution times for the above reasons (see

Appendix [E)).

Besides using this backtracking approach, the beam size n does not need to be greater or equal to the
number of desired output sequences. Instead, m should follow this requirement, as it is the maximum
number of sequences considered for output.

To enhance the quality of sequence generations, we implement an additional unigram repeat penalty
targeting subsequences of length 4. This penalty aims to discourage the generation of sequences
where a subsequence of four tokens contains multiple instances of the same token. For example, the
subsequence [43, 32, 21, 43] incurs a penalty as the token "43" appears twice. The penalty itself is
calculated using the following formula.

p(Y) =p(Y)>70>Pr 4))

where pr is the probability (or certainty) of the last duplicate token, here "43", and p(Y) is the joint
probability of the sequence Y. This design allows the application of a penalty that accounts for
the token’s certainty level. In cases where a duplicate token is suggested but has a high certainty,
the penalty is reduced, considering that the model may intentionally repeat it to convey specific
information. This can be the case in sentences such as "(once a day (at bedtime))" where closing
parenthesis are repeated consecutively.

Finally, to further reduce the search space, the maximal probability difference in beam, p;, constrains
the tokens considered in a beam. This value tells how much lower the probability of a token in the
beam from the top probability token in that same beam is allowed to be. For example, if the top token
of a beam has a probability of 0.5 and p, = 0.5, tokens in the beam with a probability < 0.5 * 0.5
won’t be further considered. This is useful whenever an obvious best candidate exists, for instance,
when selecting the drug name that was itself given as input.

Therefore, the beam size n, maximum candidates space m, and maximal probability difference in
beam pj;, are three hyper-parameters to fine-tune to obtain optimal results. We assign them the values
n =4, m = 3 * nboytput and p, = 1.

Heuristic function
The heuristic function used is logarithmic in the sequence’s joint probability

_ loge(p(Yo....n))

) Ip(Y)

@

.....

where Y, is the n'" token of the sequence Y generated so far, and Y, refers to the product of the
probabilities associated with each token in the sequence Y, which is referred to as the joint probability
of Y. The heuristic function applies length normalisation as taken from Google’s NMT System paper
[16], where we set o = 0.6.

G+ [YD*

(Y) = (5+1)°

3

3 Evaluation

3.1 Dataset and Preprocessing

Our research draws upon a specialised subset of the MIMIC-III (Medical Information Mart for
Intensive Care) database [|L7, |18]; specifically, the portion that aligns with the National NLP Clinical
Challenges (n2c2) 2018 shared task data on adverse drug events and medication extraction with gold
labels [19] (Appendix [B). We divided the official training set into our "training" and "validation"
sets with the ratio (9:1) and kept the original test set. We implemented a procedure in our dataset
to automatically extract and structure discharge medication information from the n2c2 dataset. The
procedure scans each text-based medical record in the original dataset and identifies the text segment
containing information about the medications prescribed upon discharge.

The identified medication data is further decomposed into two primary components: the label (or
name of the medication) and the associated instructions. Both are captured and stored in a structured
format. Finally, we apply statistical filtering techniques to remove outliers based on the medication
labels’ length and instructions. This ensures a dataset free from extreme values that could potentially
bias downstream applications.

3.2 Model Selection

We conduct a model evaluation experiment to select the most optimal LT3 model (Appendix [D)). This
experiment entails training each model on the training set and using them to generate five times the
amount of data from the validation set as synthetic data. We then assess the models’ performance
using the quantitative metrics BLEU, ROUGE-1/2/L, and BERTScore. Based on the results, we
select the best model and retrain it on the training and validation sets to obtain a final LT3 model.

For the TS model, given the provided labels, we leverage TS5 language processing capabilities to
fine-tune the model to generate appropriate text responses in the form of medical prescriptions from
labels representing medications such as "paracetamol” or "ibuprofen".

3.3 Lexical Similarity Evaluation against References

For this experiment, we fine-tuned three versions of TS, namely t5-small, t5-base, and t5-large, paired
with their sentence-piece pre-trained tokeniser. Each is fine-tuned independently on the same dataset
as LT3 to provide comparable results, with the prompt "summarise:" as it is the closest to our task.
The results in Table[T|show that LT3’s generations are the closest match to the reference samples. We
use multi-reference evaluation to consolidate our results. Refer to Appendix [F|for more details on
this evaluation’s strategies and motivations.

Table 1: Quantitative evaluation of LT3 (learned-scratch) vs T5 (fine-tuned) on the Testing Set.

Models BLEU | ROUGE-1 | ROUGE-2 | ROUGE-L | BERTScore

T5 Small || 71.75 76.16 66.24 75.55 0.70

T5 Base 71.98 76.28 66.30 75.45 0.70

T5 Large || 69.89 75.07 65.19 74.22 0.68
LT3 78.52 78.16 68.72 77.55 0.72

3.4 Lexical Diversity Evaluation within Generated Outputs

A diverse range of content is crucial in the note-generation process to create unbiased and individu-
alised clinical instructions. To achieve this, we have implemented a diversity score that measures the
breadth of our model’s output. For each label, we measured the Jaccard similarity [20} 21] score of
the generations of our models. A higher Jaccard Score indicates more similarity between the two
populations. A lower score indicates better diversity in our tasks. The results in Table [show a lower
intra-similarity score for the generations of LT3, implying that LT3 produces more diverse samples.

Table 2: Jaccard scores of LT3 and T5 on the testing set (lower score is better).

Median Jaccard Score | Average Jaccard Score
LT3 0.650 0.652

TS Base 0.658 0.660

3.5 Downstream NER Task

In the cross-model evaluation (Figure [3), we aim to substantially increase the size of our dataset
beyond what we initially extracted from n2c2. To achieve this, we generate synthetic data using LT3
on the known training labels. This synthesis allows us to create a dataset that is five times larger
than the original one. Subsequently, we perform fine-tuning on Spacyﬂ using both the original and
synthetically generated datasets. Finally, we compare the three resulting NER models, one fine-tuned
on the real dataset, one on the synthetic dataset, and the last on a combination of real and synthetic
data. Specifically, the real dataset is oversampled, ranging from 100% (identical to the original) to
500% (five times the original size). The synthetic dataset is generated using real labels, ranging
from 100% to 500%. The combined real and synthetic dataset starts with 100% real data, to which
synthetic data is incrementally added, from 100% to 400%. The NER model is trained to recognise
medical labels: Drug, Strength, Form, Route, and Frequency. This comparison helps us to quantify
the effectiveness of using synthetic data generated using LT3 to augment or replace the training
dataset by assessing the ability of the fine-tuned models to recognise named entities in unseen data.

Testing
Set
Training labels Traning | 1 Spacy (NER) Accuracy
Data N\ /
E— VAN
Compare
S VAN
/- ~N
LT3 Model | —Generation—s| Synthetic data —Train—— SPacy (NER) _ Accuracy
Figure 3: Cross-model Evaluation Pipeline
Downstream NER Performance
1.00
Q
- - .
o 0.98
A —o -
W pos{ @ — ®
—
Y- 0.94
Q
o -
© 0.92 1 —@~ Synthetic
Y 90 @ Real)
P<3 —&- RealSynthetic
0-88 T T T T T T T T T
100 150 200 250 300 350 400 450 500

Percentage of Data

Figure 4: Average F1 score for five labels (Drug, Strength, Form, Route, Frequency) using Synthetic
data, Real data, and Real+Synthetic. RealSynthetic: 100% real + n*100% Synthetic. Real: over-
sampled.

The evaluation scores F1 in Figure @] show that LT3 could successfully train Spacy on this NER task
on five labels "drug, form, frequency, route, and strength" achieving 0.96+ scores. The evaluation on

'https://spacy.io

https://spacy.io

Drug labels always yields around 1.00 accuracy. Most importantly, it yielded comparable performance
to the real data, demonstrating the quality of generated texts and the benefit of using the generated
synthetic data as an alternative to real data.

4 Conclusion and Future Work

To facilitate clinical NLP research and address the data privacy and restriction issues, we proposed
LT3 for generating synthetic clinical data using pre-defined drug labels and related attributes from
the n2¢2-2018 shared task. The evaluation against the TS5 model demonstrated that LT3 can generate
better quality and diversity outputs. Furthermore, utilising synthetic data generated by LT3 for
the NER task demonstrated its ability to effectively train SpacyNER, resulting in performances
comparable to those achieved with real data. This underscores the advantages of employing LT3 as a
viable alternative to real data. In future work, we plan to design new benchmarks on clinical NLP
tasks using synthetic data to move the field forward. We also plan to conduct model training on new
label sets such as "diagnoses" and generating full clinical letters.

Author Contributions

SB and NM co-developed LT3, fine-tuned TS5, and built an evaluation pipeline. Specifically, SB
developed the LT3 architecture, code, and B2SD, and NM fine-tuned Spacy and deployed LT3’s
generated data on the NER. SB did closeness to reference evaluation; NM extracted+processed the
dataset and implemented and ran intra-similarity evaluation. LH and GN designed the project and
supervised the progress, and LH revised the first manuscript. WDP co-supervised the project and
revised the final manuscript. Everyone approved the final manuscript.

Acknowledgements

We thank Dr Christopher J. Hyde and anonymous reviewers for their valuable discussions and
insightful comments on this project and the earlier manuscript. SB and NM were partially supported
by the University of Manchester student summer project via the Department of Computer Science.
LH, WDP, and GN are grateful for the support from the grant “Assembling the Data Jigsaw: Powering
Robust Research on the Causes, Determinants and Outcomes of MSK Disease”. The project has been
funded by the Nuffield Foundation, but the views expressed are those of the authors and not necessarily
the Foundation. Visit www.nuffieldfoundation.org. LH, WDP, and GN were also supported by the
grant “Integrating hospital outpatient letters into the healthcare data space” (EP/V047949/1; funder:
UKRI/EPSRCO).

References

[1] Nazari Nezhad S, Zahedi MH, Farahani E. Detecting diseases in medical prescriptions using
data mining methods. BioData Mining. 2022 Nov;15(1):29. Available from: https://doi!
org/10.1186/s13040-022-00314-w.

[2] Alrdahi H, Han L, Suvalov H, Nenadic G. MedMine: Examining Pre-trained Language Models
on Medication Mining. arXiv e-prints. 2023:arXiv-2308.

[3] Cui Y, Han L, Nenadic G. MedTem?2.0: Prompt-based Temporal Classification of Treat-
ment Events from Discharge Summaries. In: Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 4: Student Research Workshop).
Toronto, Canada: Association for Computational Linguistics; 2023. p. 160-83. Available
from: https://aclanthology.org/2023.acl-srw.27.

[4] Spasic¢ I, Livsey J, Keane JA, Nenadi¢ G. Text mining of cancer-related information: review of
current status and future directions. International journal of medical informatics. 2014;83(9):605-
23.

[5] Wornow M, Xu Y, Thapa R, Patel B, Steinberg E, Fleming S, et al. The shaky foundations
of large language models and foundation models for electronic health records. npj Digital
Medicine. 2023;6(1):135.

https://doi.org/10.1186/s13040-022-00314-w
https://doi.org/10.1186/s13040-022-00314-w
https://aclanthology.org/2023.acl-srw.27

[6] Chen J, Chun D, Patel M, Chiang E, James J. The validity of synthetic clinical data: A validation
study of a leading synthetic data generator (Synthea) using clinical quality measures. BMC
Medical Informatics and Decision Making. 2019 03;19.

[7] Gongalves A, Ray P, Soper B, Stevens J, Coyle L. Generation and evaluation of synthetic patient
data. BMC Medical Research Methodology. 2020 05;20.

[8] Marchesi R, Micheletti N, Jurman G, Osmani V. Mitigating Health Data Poverty: Generative
Approaches versus Resampling for Time-series Clinical Data. In: NeurIPS 2022 Workshop on
Synthetic Data for Empowering ML Research; 2022. Available from: https://openreview.
net/forum?id=Ib-8gIlymC1,

[9] Amin-Nejad A, Ive J, Velupillai S. Exploring Transformer Text Generation for Medical Dataset
Augmentation. In: Proceedings of the Twelfth Language Resources and Evaluation Conference.
Marseille, France: European Language Resources Association; 2020. p. 4699-708. Available
from: https://aclanthology.org/2020.1rec-1.578|

[10] Lee S. Natural Language Generation for Electronic Health Records. CoRR.
2018;abs/1806.01353. Available from: http://arxiv.org/abs/1806.01353,

[11] Keskar NS, McCann B, Varshney LR, Xiong C, Socher R. CTRL: A Conditional Transformer
Language Model for Controllable Generation. CoRR. 2019;abs/1909.05858. Available from:
http://arxiv.org/abs/1909.05858.

[12] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.. Attention Is All You
Need; 2023.

[13] Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. J Mach Learn Res. 2020 jan;21(1).

[14] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding; 2019.

[15] Golomb SW, Baumert LD. Backtrack Programming. J ACM. 1965 oct;12(4):516-524. Available
from: https://doi.org/10.1145/321296.321300,

[16] Johnson M, Schuster M, Le QV, Krikun M, Wu Y, Chen Z, et al. Google’s Multilingual Neural
Machine Translation System: Enabling Zero-Shot Translation. Transactions of the Association
for Computational Linguistics. 2017;5:339-51. Available from: https://aclanthology!
org/Q17-1024,

[17] Johnson AEW, Pollard TJ, Shen L, Lehman LWH, Feng M, Ghassemi M, et al. MIMIC-III, a
freely accessible critical care database. Sci Data. 2016;3(1):160035.

[18] Johnson A, Pollard T, Mark R. MIMIC-III clinical database. PhysioNet; 2020.

[19] Henry S, Buchan K, Filannino M, Stubbs A, Uzuner O. 2018 n2c2 shared task on adverse drug
events and medication extraction in electronic health records. Journal of the American Medical
Informatics Association : JAMIA. 2019 10;27.

[20] Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat. 1908;44:223-
70.

[21] Ivchenko G, Honov S. On the jaccard similarity test. Journal of Mathematical Sciences.
1998;88:789-94.

[22] Yang X, Chen A, PourNejatian N, Shin H, Smith K, Parisien C, et al. A large language model
for electronic health records. npj Digital Medicine. 2022 12;5.

[23] Casey A, Davidson E, Poon M, Dong H, Duma D, Grivas A, et al. A systematic review of natural
language processing applied to radiology reports. BMC Medical Informatics and Decision
Making. 2021 06;21.

[24] Ive], Viani N, Kam J, Yin L, Verma S, Puntis S, et al. Generation and evaluation of artificial
mental health records for Natural Language Processing. npj Digital Medicine. 2020 12;3.

[25] Chapman WW, Nadkarni PM, Hirschman L, D’ Avolio LW, Savova GK, Uzuner 0. Overcoming
barriers to NLP for clinical text: the role of shared tasks and the need for additional creative
solutions. Journal of the American Medical Informatics Association : JAMIA. 2011;18 5:540-3.

https://openreview.net/forum?id=Ib-8gIymC1
https://openreview.net/forum?id=Ib-8gIymC1
https://aclanthology.org/2020.lrec-1.578
http://arxiv.org/abs/1806.01353
http://arxiv.org/abs/1909.05858
https://doi.org/10.1145/321296.321300
https://aclanthology.org/Q17-1024
https://aclanthology.org/Q17-1024

[26]

[27]

(28]

[29]

[30]

[31]

[32]

LiJ, Zhou Y, Jiang X, Natarajan K, Pakhomov SV, Liu H, et al. Are synthetic clinical notes
useful for real natural language processing tasks: A case study on clinical entity recognition.
Journal of the American Medical Informatics Association. 2021 07;28(10):2193-201. Available
from: https://doi.org/10.1093/jamia/ocabl12,

Xue L, Constant N, Roberts A, Kale M, Al-Rfou R, Siddhant A, et al. mT5: A massively
multilingual pre-trained text-to-text transformer. CoRR. 2020;abs/2010.11934. Available from:
https://arxiv.org/abs/2010.11934/

Moradi M, Dorffner G, Samwald M. Deep contextualized embeddings for quantifying the
informative content in biomedical text summarization. Computer Methods and Programs in
Biomedicine. 2019 10;184:105117.

Grambow C, Zhang L, Schaaf T. In-Domain Pre-Training Improves Clinical Note Gen-
eration from Doctor-Patient Conversations. In: Proceedings of the First Workshop on
Natural Language Generation in Healthcare. Waterville, Maine, USA and virtual meet-
ing: Association for Computational Linguistics; 2022. p. 9-22. Available from: https:
//aclanthology.org/2022.nlgdhealth-1.2.

Papineni K, Roukos S, Ward T, Zhu WJ. Bleu: a Method for Automatic Evaluation of Machine
Translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational Linguistics; 2002.
p- 311-8. Available from: https://aclanthology.org/P02-1040.

Lin CY. ROUGE: A Package for Automatic Evaluation of Summaries. In: Text Summarization
Branches Out. Barcelona, Spain: Association for Computational Linguistics; 2004. p. 74-81.
Available from: https://aclanthology.org/W04-1013,

Zhang T, Kishore V, Wu F, Weinberger KQ, Artzi Y. BERTScore: Evaluating Text Generation
with BERT; 2020.

https://doi.org/10.1093/jamia/ocab112
https://arxiv.org/abs/2010.11934
https://aclanthology.org/2022.nlg4health-1.2
https://aclanthology.org/2022.nlg4health-1.2
https://aclanthology.org/P02-1040
https://aclanthology.org/W04-1013

Appendix A On Current PLMs for Clinical NLP

Natural language processing (NLP) technologies have been increasingly used in healthcare over the
past several years, contributing to advancements in several areas such as clinical decision support,
patient triage, and automated clinical documentation [22| [23]]. However, these applications face
numerous challenges, one of the most significant being the scarcity of available data. This issue is
predominantly due to stringent privacy regulations and the sensitive nature of healthcare data, which
prevent access to large volumes of real-world clinical data [24} 25].

To circumvent this problem, synthetic data generation has been explored as an alternative approach,
aiming to produce data that mimics the properties and structure of real-world clinical data without
compromising patient privacy [26]. Despite this approach’s potential, producing high-quality, domain-
specific synthetic data remains challenging due to the complexity and specificity of medical language.

Pre-trained Language Models (PLMs) have shown remarkable capabilities in generating contextu-
alised texts, such as translations [27] and summaries [28]]. However, they have struggled to generate
coherent text in the medical domain. This is due to the considerable shift from standard NLP tasks to
the medical domain, which presents challenges as pre-trained models have a more general-purpose
design and do not learn directly from restricted domain-specific data [29]. For example, the word
"paracetamol" may be captured in many training documents that do not correspond to synthetic
clinical letter generation tasks and, therefore, be a noisy contribution. Moreover, PLMs need more
flexibility to handle different input types and are not explicitly trained on label-to-text data, resulting
in sub-optimal accuracy for the specific task. To address these challenges, this research proposal aims
to develop a task-specific model architecture that can overcome the limitations of pre-trained models
and generate high-quality synthetic clinical instructions.

Appendix B On the Choice of N2C2 Data

We chose the n2c2 dataset for two main reasons. First, it contains many caregiver notes and medication
prescriptions over a varied range of clinical conditions and treatments, ensuring a broad spectrum
of clinical instructions can be generated by our models, enhancing their utility in different clinical
scenarios. Second, the n2c2 dataset annotations conform to the 2010 i2b2/VA Challenge on Concepts,
Assertions, and Relations in Clinical Text, a well-established and comprehensive framework for
processing and understanding clinical text. This standardisation facilitates handling clinical notes’
diverse and complex language patterns. Moreover, using these gold labels helps us ensure the accuracy
and consistency of our model’s learning process, which is crucial to generating high-quality synthetic
medical data. In addition, using a dataset that adheres to a widely accepted annotation guideline
enhances the replicability and validity of our study. It allows other researchers and practitioners to
understand the method and results of our work within a known context, promoting transparency and
further collaboration.

Appendix C On Evaluation Metrics

BLEU [30]], ROUGE [31]], and BERT Score [32] represent key evaluation metrics, each illuminating
different facets of text quality. BLEU focuses on the syntactic elements, measuring the overlap of
n-grams between the machine-generated text and a reference. It incorporates a brevity penalty for
translation length, making it particularly useful for tasks like machine translation.

On the other hand, ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is more recall-
focused and assesses the quality of summaries by comparing them to reference summaries. It
considers the number of overlapping units, such as n-grams, word sequences, and word pairs between
the generated and reference summaries.

Finally, the BERT Score leverages the power of pre-trained language representations to go beyond
mere syntactic overlap, capturing semantic nuances between predicted and reference texts through
cosine similarity measures. These approaches reflect a shift from rigid, rule-based evaluations toward
more dynamic, context-aware metrics, aligning more closely with human perceptions of text quality.

10

Appendix D Model Selection in Details

D.1 On tokenisation

Experiments were conducted to select the most effective tokenisation strategy for this task, for which
results are summarised in Table[3|and Figure[5] Three different types of tokenisers were considered: a
custom full-word tokeniser, a pre-trained word-piece tokeniser (BERT-base-cased), and a pre-trained
sentence-piece tokeniser (T5-base).

Throughout the experiment, LT3 encountered challenges implementing the full-word tokeniser built
from scratch. Although this tokeniser yielded overall good performances, it struggled with handling
unknown words, for which the only solution seemed to be significantly expanding the vocabulary
size to cover a vast tokenisation space. Without an extensive vocabulary, the tokeniser fails to map
unseen words, leading to a lack of contextual understanding for LT3.

On the other hand, significant improvements were observed when using the word-piece tokeniser
(BERT) due to his ability to represent any word as a sequence of smaller sub-words while minimising
its vocabulary size. This allows the model to effectively handle unseen words and cover a large
tokenisation space to yield better generalisation capabilities.

Experiments were also carried out using the pre-trained sentence-piece tokeniser provided by T5.
This tokeniser demonstrated improvements similar to those of the word-piece tokeniser (BERT),
effectively mitigating the issues faced by the custom tokeniser. However, we observed that the
word-piece tokeniser (BERT) could generate predictions for unseen data at an earlier stage of training
compared to the pre-trained sentence-piece tokeniser (TS). This might be due to LT3 generating short
sentences with low correlation and no repetitive patterns between words, a task for which word-piece
tokenisers may be more adapted.

Considering these factors, we concluded that the BERT word-piece tokeniser aligned most effectively
with our task.

D.2 On Embeddings

Alternatively, this study explored two interesting embedding methods: transfer learning using pre-
trained embeddings and embedding layers trained from scratch. Transfer learning used BioBERT
(base-v1.1) embeddings, pre-trained on large medical corpora, including PubMed 1M, while embed-
ding layers were trained during LT3’s training phase.

Although transfer-learning can provide a solid foundation for the model, especially when task-specific
data is scarce or when the pre-training domain closely matches the task, its experimental results
displayed challenges when applied to our task (Table[3). Despite training in medical texts, pre-trained
embeddings could not grasp the prescriptions’ nuances and unique formats. This led to a need for
extensive training to overwrite the previous embeddings, as seen in Figure[5] On the other hand,
embedding layers outperformed pre-trained embeddings by addressing the task’s unique format and
leveraging the extensive available data. As a result, LT3 displayed a much better learning shape and
evaluation results when implementing embedding layers.

Note that, when using pre-trained embeddings, the disparity between the learning curve, which
appears to be reasonably good (Table [3), and the evaluation scores, which are rather very low
(Figure[3)), is attributed to the application of teacher forcing during training. This explains that the
model with pre-trained embeddings can accurately predict the next token, provided with an accurate
context and a generated sequence. However, it struggles when tasked with independently creating an
appropriate context from the input and generating a complete sequence that is contextually coherent.

D.3 Results

We plot the training loss (Figure[5) and evaluation scores (Table[3]on the validation set and Figure
[6] on the test set) to provide a comprehensive assessment of each model’s learning trajectory and
generation quality. This approach helps readers understand how each model evolves through the
learning process.

11

Training loss of LT3 Models

Training Loss
-

0.5

0.3

0.2

25 5.0 7.5

10.0
Epochs

125

15.0

Figure 5: Training Loss of LT3 Models

BLEU scores of LT3 Models

/

S — P —— 60
o _/ "~~~ BERT Tokenizer; Emb. Layers; 5250 H
g 4= e TS Tokenizer; Emb. Layers g
z %o 7/ —a— Custom Tokenizer; Emb. Layers D ss
2 /, —+— BERT Tokenizer; Pretrained Emb, g
E —+— BERT Tokenizer; Emb.Layers; Default BSD 3
s 2
s0
a0
s
-— .
35 \ T TT——————
— w0
2 4 6 8 10 12
Epochs
ROUGE-2 scores of LT3 Models
6 e 065
e
;/ ——
50 /
= 055
e e GERT Toenizr;Emb. Loyrs: 5250 .
g e 5 Tokenizer; Embs Layers § 050
S 227 Custom Toaniaer b, coyers 2
84 —+— BERT Tokenizer; Pretrained Emb, &
s —+— BERT Tokenizer; Emb.Layers; Default BSD 2 a5
3
0.40
30
~—_ — T~ 035
2 ‘\./
2 4 6 8 10 12
Epochs

BERT Tokenizer; Emb. Layers
T5 Tokenizer;
Custom Tokenizer; Emb. Layers

BERT Tokenizer; Pre-trained Emb.

Emb. Layers

ROUGE-1 scores of LT3 Models

—

—e— BERT To}

kenizer; Emb. Layers; B2SD

=~ TS Tokenizer; Emb. Layers

—a— Custom
—1— BERT Tol
—+— BERT o

Tokenizer; Emb. Layers
kenizer; Pretrained Emb.
kenizer; Emb.Layers; Default BSD

_/'\~/’\.

8 10 12 14
Epochs
BERTScores of LT3 Models
— T

—e— BERT Tol

—=— Custom
—— BERT o

8 10
Epochs

kenizer; Emb. Layers; B2SD

—s— T5 Tokenizer; Emb. Layers

Tokenizer; Emb. Layers
kenizer; Emb.Layers, Default BSD

12 14

Figure 6: Quantitative Evaluation Scores of LT3 Models on the Testing Set

Table 3: Quantitative Evaluation Results of LT3 Models on the Validation Set

Tokenizer Embeddings Beam Search

BLEU

ROU-1

ROU-2

ROU-L

BERTScore

BERT Emb. layers B2SD
Pre-trained
Emb. layers Default
Custom B2SD
T5-base

66.31
36.11
54.33
64.19
65.78

70.74
43.16
67.01
70.00
68.99

60.01
28.56
55.46
58.34
58.63

70.03
41.81
66.20
68.13
68.22

0.65
0.29
0.60
0.63
0.63

12

Average execution time of different BSD algorithms

550 ~ —e— Original BSD Algorithm
B2SD Algorithm

500

500 1000 1500 2000 2500 3000
Number of total generated samples

Figure 7: Average Execution Time of Original BSD and B2SD Algorithms

Appendix E Comparisons on Beam Search Decoding Algorithms

To quantify the difference in execution time between the original BSD algorithm and the proposed
backtracking variant, we ran the following experiment on a TPU v2.

Initially, the validation set is 304 samples divided into 157 unique labels, with a median of 36 samples
per label. This experiment used LT3 to generate four synthetic datasets from the validation set by
increasing its size by 2, 5, 7, and 10. The increase in size is proportional to the number of samples
per unique label. Hence, the same number of unique labels remains while the number of samples
increases. For instance, if the first label has three samples, it will be increased to 6 in the first synthetic
dataset, 15 in the second, etc. Thus, we force the beam search tree to expand in size for each label to
quantify its impact on the execution time.

For each synthetic dataset, we use five different versions of the LT3 model from different checkpoints
of its training. This is done to simulate the execution time of the algorithm on models of varying
efficiency and certainty.

In practice, we observe a rather linear increase in complexity when using both algorithms, reducing
the huge trade-off in their theoretical complexities. LT3 deals with a limited number of samples
per generation, and the generated sequences are relatively short. On the other hand, most of the
advantages of the backtracking algorithm are preserved.

It is important to note that, whereas B2SD uses a heuristic function based on the joint probability of a
sequence, this algorithm will perform the best on well-trained models with certainty in their token
selection, meaning high distinction between sequence probabilities. This ensures that the algorithm
goes straight at generating the most promising sequences. However, on ineffective or untrained
models, it may perform slowly as it might consider many dead-end sequences where probabilities are
close to each other due to uncertainty in token generation.

Appendix F On the Evaluation Settings

To provide a lexical evaluation of the generated data, we aim to assess the performance of LT3
compared to T5-small, T5-base, and T5-large at generating synthetic prescriptions from unseen data
(Figure[§). To process the comparison, we use the labels from the testing set to generate synthetic data,
creating a five times larger dataset than the original testing dataset. For instance, ten prescriptions will
be generated if a particular label appears twice in the testing data, ten prescriptions will be generated.
We conduct two types of evaluations:

13

* Quantitative Evaluations to assess the quality of the generated prescriptions by comparing
LT3 and T5 against reference prescriptions.

* Lexical Diversity Evaluation to measure the diversity of the generated prescriptions from
LT3 compared to T5.

The overall framework of this experimental design for lexical evaluation is displayed in Figure [§]
This experiment aims to show that (1) LT3 can generate lexically diverse prescriptions, as well as
(2) significantly larger volume of data compared to the available real data. (3), despite generating a
larger dataset, we intend to confirm that the quality of LT3’s generated prescriptions remains high in
terms of quantitative scores against references. (4) Most importantly, we try to assess LT3’s overall

abilities at generating prescriptions from unseen data.
Testing
references

Testing labels

Closeness to
U \l ' _— -
) LT3's ! Reference ! / N
LTS Model —Generation—s Syntheticdata | | . Evaluaton | Scores /‘
+
: T5's | \,. Diversity - ~
T5 Model —Generation—s, Synthetic data —— Evaluation —./ Scores \w
: : _/
Figure 8: Lexical Evaluation Pipeline
Appendix G Model hyperparameters
Parameters LT3 TS Base TS Large
Amodel 515 768 1024
dsy 2038 3072 4096
Ay 64 64 64
Dropout 0.2 0.1 0.1
Heads 5 12 16
Layers 2 12 24
Learning rate 0.0004 0.001 0.001
Weight decay 0.02 0.02 0.02
Epochs 10 10 10
Batch size 53 10 10
FP16 False False
Optimizer AdamW AdamW AdamW
Params (x10°) 57 220 770

where:

* dmoder represents the dimension of the model’s hidden states or embeddings;

* dyy represents the dimension of the feed-forward network within the Transformer’s self-
attention layers;

* dy, represents the dimension of the query, key, and value vectors used in the attention
computation.

14

	Introduction
	LT3: Label-To-Text-Transformer
	Problem Formulation
	Model Architecture
	B2SD: Beam Search Decoding using Backtracking

	Evaluation
	Dataset and Preprocessing
	Model Selection
	Lexical Similarity Evaluation against References
	Lexical Diversity Evaluation within Generated Outputs
	Downstream NER Task

	Conclusion and Future Work
	On Current PLMs for Clinical NLP
	On the Choice of N2C2 Data
	On Evaluation Metrics
	Model Selection in Details
	On tokenisation
	On Embeddings
	Results

	Comparisons on Beam Search Decoding Algorithms
	On the Evaluation Settings
	Model hyperparameters

