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Abstract

Recent work has identified properties of pre-001
trained self-attention models that mirror those002
of dependency parse structures. In partic-003
ular, some self-attention heads correspond004
well to individual dependency types. In-005
spired by these developments, we propose a006
new competitive mechanism that encourages007
these attention heads to model different depen-008
dency relations. We introduce a new model,009
the Unsupervised Dependency Graph Network010
(UDGN), that can induce dependency struc-011
tures from raw corpora and the masked lan-012
guage modeling task. Experiment results show013
that UDGN achieves very strong unsupervised014
dependency parsing performance without gold015
POS tags and any other external information.016
The competitive gated heads show a strong017
correlation with human-annotated dependency018
types. Furthermore, the UDGN can also019
achieve competitive performance on masked020
language modeling and sentence textual sim-021
ilarity tasks.022

1 Introduction023

Unsupervised dependency parsing aims to learn024

a dependency parser from sentences that have no025

annotation of their correct parse trees (Han et al.,026

2020). Despite its difficulty, unsupervised pars-027

ing is an interesting research direction because of028

its capability of utilizing almost unlimited unan-029

notated text data. The techniques developed for030

unsupervised dependency parsing could also be uti-031

lized for other NLP tasks, such as unsupervised032

discourse parsing (Nishida and Nakayama, 2020),033

aspect-based sentiment analysis (Dai et al., 2021)034

and intent discovery (Liu et al., 2021). In addi-035

tion, research in unsupervised parsing inspires and036

verifies cognitive research of human language ac-037

quisition (Yang et al., 2020; Pate and Goldwater,038

2013; Katzir, 2014; Solan et al., 2002).039

Although large-scale pre-trained models have040

dominated most natural language processing tasks,041

Figure 1: The architecture of Unsupervised Depen-
dency Graph Network (UDGN). Given an input sen-
tence, the parser can predict the dependency relation
between tokens and generate a soft mask to approxi-
mate the undirected dependency graph. Conditioning
on the mask, the DGN computes contextual word em-
beddings for the training task. Since the mask is soft,
the gradient can be backpropagated from the DGN into
the parser. Thus UDGN can induce grammar while
training on masked language modeling or other down-
stream tasks.

some recent work indicates that neural network 042

models can see accuracy gains by leveraging syn- 043

tactic information rather than ignoring it (Wang 044

et al., 2019a; Sundararaman et al., 2019; Bai et al., 045

2020; Kuncoro et al., 2020). These methods either 046

include known structural information as input to 047

the model (Sundararaman et al., 2019; Bai et al., 048

2020), or incorporate structural prediction tasks 049

into the training process (Wang et al., 2019a). How- 050

ever, these attempts require access to large datasets 051

with supervised parsings, which may be hard and 052

expensive to obtain. 053

Recent work also identified properties of pre- 054

trained self-attention models that mirror those of de- 055

pendency parse structures (Htut et al., 2019; Hewitt 056

and Manning, 2019; Jawahar et al., 2019). Struct- 057

Former (Shen et al., 2020) shows that a transformer- 058

based model can induce a good dependency struc- 059

ture. The belief that linguistic structure may be 060

embedded in these models is of interest to the com- 061

munity. Furthermore, Dai et al. (2021) shows that 062
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the induced trees from finetuned RoBERTa outper-063

form parser-provided trees on aspect-based senti-064

ment analysis tasks. This result brings interest to065

study task-specific structures. From this perspec-066

tive, the unsupervised acquisition of dependency067

structure from raw data or downstream tasks ap-068

pears important and feasible.069

Traditionally, dependency grammars take the de-070

pendency types (a.k.a. syntactic functions) to be071

primitive and then derive the constellation (Debus-072

mann, 2000). Every head-dependent dependency073

bears a syntactic function (Mel’cuk et al., 1988).074

Htut et al. (2019) shows that some attention heads075

in BERT (Devlin et al., 2018) and RoBERTa (Liu076

et al., 2019) track individual dependency types. In077

other words, these heads model different syntactic078

functions. Inspired by this observation and syn-079

tactic functions, we introduce competitive gated080

heads to model different syntactic functions and081

the process of selecting the right syntactic func-082

tion for each edge. These heads include two key083

components:084

• A set of gated heads that model different infor-085

mation propagation processes between tokens;086

• A competitive controller that selects the most087

suitable gated head for each pair of tokens.088

Building on these components, we propose a089

novel architecture, the Unsupervised Dependency090

Graph Network (UDGN). As shown in Figure 1,091

the UDGN is composed of two networks: a parser092

that computes the dependency head distribution pi093

for each word wi in the input sentence, and then094

convert it to a matrix of edge probability mij that095

approximates an undirected dependency graph; a096

Dependency Graph Network (DGN) that uses the097

edge probabilities {mij} and competitive gated098

heads to propagate information between words to099

compute a contextualized embedding hi for each100

word wi. While training with the masked language101

modeling or other objectives, the gradient can flow102

through the DGN to the parser network through its103

dependence onmij . As a result, UDGN can induce104

a dependency grammar while solely relying on the105

masked language modeling objective.106

In the experiment section, we first train the107

UDGN with masked language modeling, then eval-108

uate it on unsupervised dependency parsing. Our109

experimental results show that UDGN can: 1)110

achieve very strong unsupervised parsing results111

among models that don’t have access to extra an- 112

notations (including POS tags); 2) learn atten- 113

tion heads that are strongly correlated to human- 114

annotated dependency types; 3) achieve competi- 115

tive performance on language modeling tasks. We 116

also finetune the pretrained UDGN on Semantic 117

Textual Similarity (STS) tasks. Our experiments 118

show that UDGN outperforms a Transformer base- 119

line trained on the same corpus. 120

2 Related Work 121

Unsupervised dependency parsing Unsuper- 122

vised dependency parsing is a long-standing task 123

for computational linguistics. Dependency Model 124

with Valence (DMV; Klein and Manning 2004) is 125

the basis of several unsupervised dependency pars- 126

ing methods (Daumé III, 2009; Gillenwater et al., 127

2010). Jiang et al. (2016) updates the method using 128

neural networks to predict grammar rule proba- 129

bilities. These methods require additional Part-of- 130

Speech (POS) information. Spitkovsky et al. (2011) 131

tackled the issue by performing clustering to as- 132

sign tags to each word by considering its context. 133

He et al. (2018) tackled the problem by combin- 134

ing DMV model with an invertible neural network 135

to jointly model discrete syntactic structure and 136

continuous word representations. Recently, NL- 137

PCFG (Zhu et al., 2020) and NBL-PCFG (Yang 138

et al., 2021) combine neural parameterization and 139

L-PCFG to achieve good results in both unsuper- 140

vised dependency and constituency parsing. Struct- 141

Former (Shen et al., 2020) proposes a joint con- 142

stituency and dependency parser and use the depen- 143

dency distribution to regularize the self-attention 144

heads in the transformer model. This joint parser- 145

language model framework can induce grammar 146

from masked language modeling tasks. 147

The UDGN’s architecture is similar to Struct- 148

Former, both models include a parser and masked 149

language model. Our model, however, has three 150

major differences: 1) it uses competitive gated 151

heads to improve models performance on gram- 152

mar induction; 2) it uses a neural head selective 153

parser that can produce both projective and non- 154

projective dependency trees, whereas the distance 155

parser in StructFormer can only produce projective 156

trees; 3) it uses a simplified method to generate an 157

undirected dependency mask. 158

Transformers, Graph Neural Networks and De- 159

pendency Graphs In many Transformer-based 160

models, attention masks are often used to limit the 161

2



input tokens that a particular timestep can attend162

over. In Yang et al. (2019), for example, a mask163

derived from the permutation of inputs is used to164

induce a factorization over the tokens so that the165

resulting model is a valid probabilistic model. This166

attention mask can be viewed as an adjacency ma-167

trix over a graph whose nodes are the input to-168

kens. From this perspective, Transformers are a169

form of Graph Neural Network (Scarselli et al.,170

2008) — specifically, a Graph Attention Network171

(GAT; Veličković et al. 2017), as it attends over172

the features of its neighbors. Several works have173

made this connection, and integrated dependency174

structures into transformers (Ahmad et al., 2020;175

Wang et al., 2019b; Tang et al., 2020). Results from176

Omote et al. (2019) and Deguchi et al. (2019) sug-177

gest that embedding these structures can improve178

translation models.179

However, these dependency parses may not al-180

ways be present to be used as input to the model.181

Strubell et al. (2018) trains the self-attention to at-182

tend the syntactic governor (head) of a particular183

token, resulting in a model that does not require de-184

pendency structure as input during inference time.185

We take a further step in our work and attempt to186

learn these structures in an unsupervised fashion187

from the MLM objective.188

Differentiable Structured Prediction While189

the head selection is a good approximation of a tree190

structure, there are methods to obtain a relaxed ad-191

jacency matrix as the output of the parser. Previous192

work have used such methods for predicting struc-193

ture. Koo et al. (2007) proposed using the Kirchoff194

matrix tree theorem for unsupervised dependency195

parsing. They explain how the marginals of the196

edge potentials are computed, and these marginals197

have properties similar to a tree adjacency matrix198

(sum over the marginals are equal to N − 1 for199

example, where N is the length of the sentence).200

Eisner (2016) describes how backpropagation can201

be used to compute marginals of some structured202

prediction algorithm. We also tried using the Kirch-203

hoff method to normalize our dependency distri-204

butions in Appendix A.3. Corro and Titov (2018)205

uses similar notions but relaxes projective trees us-206

ing Gumbel-softmax. Kim et al. (2017) proposed207

a structured form of attention and show that they208

are useful for certain sequence-to-sequence tasks.209

Mensch and Blondel (2018) gives a general theoret-210

ical treatment for these types of relaxations, while211

Paulus et al. (2020) gives a practical treatment of212

possible applications for these methods. 213

3 Model Architecture 214

As shown in Figure 2, the parser computes a de- 215

pendency head distribution for each token and then 216

converts it to a soft dependency mask mij . The 217

DGN takes mij and the sentence as input and uses 218

a competitive mechanism to propagate information 219

between tokens. 220

3.1 Head Selective Parser 221

We use a simplified version of the Dependency Neu- 222

ral Selection parser (DENSE; Zhang et al. 2016) 223

that only predicts unlabelled dependency relations. 224

The parser takes the sentence s = w1w2...wT as 225

input, and, for each token wi, it produces a distri- 226

bution pi over all tokens in the sentence, resulting 227

in a T × T weight matrix. 228

The parser first maps the sequence of to- 229

kens w1w2...wT into a sequence of embeddings 230

[x1,x2, ...,xT ]. Then the word embeddings are fed 231

into a stack of a bidirectional LSTM (BiLSTM): 232

hi = BiLSTM(xi) (1) 233

where hi is the output of the BiLSTM at i-th 234

timestep. Linear transforms are applied to the out- 235

put of the BiLSTM to extract head and dependent 236

information. 237

hH
i = WHhi + bH (2) 238

hD
i = WDhi + bD (3) 239

To map the head and dependents, we use bilinear 240

attention: 241

eij =
hD
i h

H
j√

D
(4) 242

pij =
exp(eij)∑
k exp(eik)

(5) 243

where pij is the probability that wi depends on 244

wj , D is the dimension of hidden states. During 245

the inference for parsing, the Chu-Liu/Edmonds’ 246

algorithm (Chu and Liu, 1965b) is used to extract 247

the most likely directed dependency graph from the 248

matrix pij . 249

3.2 Dependency Mask 250

Given the dependency probabilities, StructFormer 251

(Shen et al., 2020) uses a weighted sum of matrix p 252

and p> to produce a mask for self-attention layers 253

in the transformer. We found that simply using 254
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Figure 2: Details of the UDGN. Given the input sentence, the parser (left) produces a dependency head distribution
for each token. These distributions form a distribution matrix pij . To do unsupervised parsing, the Chu-Liu
algorithm (Chu and Liu, 1965a) generates the most likely dependency graph given pij . While training, however,
we remove the direction of dependency in pij and obtain an undirected dependency mask mij (middle). mij is
symmetric and with zeroes along the diagonal. The DGN (right) takes mij and the sentence as input and uses
competitive gated heads to propagate information between tokens. mij controls the amount of information being
propagated between nodes. If mij is small then less information will be communicated between xi and xj , and
vice versa.

the adjacency matrix of the undirected dependency255

graph provides better parsing results and perplexi-256

ties. However, simply using the sum of the matrix257

and its transpose to create a symmetric weight ma-258

trix does not ensure that the attention mask has259

values < 1. When pij=1 and pji = 1, for instance,260

the mask violates the constraints of a dependency261

mask. Thus, we treat pij and pji as parameters for262

independent Bernoulli variables, and we compute263

the probability that either wi depends on wj or wj264

depends on wi.265

mij = p(i→ j or j → i)266

= pij + pji − pij × pji (6)267

3.3 Dependency Graph Network268

To better induce and model the dependency rela-269

tions, we propose a new Dependency Graph Net-270

work (DGN). One DGN layer includes several271

gated heads and a competitive controller. A gated272

head can process and propagate information from273

one node to another. Different heads can learn274

to process and propagate different types of infor-275

mation. The competitive controller is designed to276

select the correct head to propagate information277

between a specific pair of nodes.278

We take inspiration from the linguistic theory279

that dependencies are associated with different syn-280

tactic functions. These functions can appear as la-281

bels, e.g. ATTR (attribute), COMP-P (complement282

of preposition), and COMP-TO (complement of to).283

However, DGN learns these functions from train- 284

ing tasks, which in our experiments is the masked 285

language model objective. Since these objectives 286

tend to be statistical in nature, these functions may 287

not be correlated with ground truth labels given by 288

human experts. 289

Inside each layer, the input vector hl−1i is first 290

projected into N groups of vectors, where N is 291

the number of heads. Each group contains four 292

different vectors, namely, query q, key k, value v 293

and gate g: 294
qik

kik

vik

gik

 = Wheadkh
l−1
i + bheadk (7) 295

Gated Head To model the information propaga- 296

tion from node j to node i, we proposed a gated 297

head: 298

cijk = σ(vjk)� sigmoid(gik) (8) 299

where σ is a non-linear activation function, and 300

gates sigmoid(g) allows the i-th token to filter the 301

extracted information. We also found that the gate 302

effectively improves the model’s ability to induce 303

latent dependency structures that are coherent to 304

human-annotated trees. The activation function can 305

be chosen from a wide variety of functions, includ- 306

ing the identity function, tanh, ReLU, and ELU, 307
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Figure 3: Competitive Gated Heads. Suppose that the
information should be propagated from node j to node
i, the competitive controller takes qi·,kj· as input, out-
put a probability distribution âij across different heads.
This allows the model to select a head for the informa-
tion propagation. Then the probability âijk is multi-
plied by dependency mask mij to get aijk. The mask
mij functions as a macro gate to control the amount of
information propagate between the node pair. For the
k-th head, the node j send representation vjk, the node
i use a gate gik to filter the incoming representation.

etc. In our experiment, we found that tanh func-308

tion provides the best overall performance. This309

is probably due to two reasons: a) tanh function310

provides a bounded output (between -1 and 1), and311

b) gates and head weights are more effective while312

controlling a bounded value.313

Competitive Controller Lamb et al. (2021) pro-314

posed the idea of using a competition method to315

encourage heads to specialize over training iter-316

ations to learn different functions. This idea is317

coherent with our intuition different heads should318

model different dependency relations. In UDGN, a319

competitive controller is designed to select a head320

for each pair of nodes (i, j). However discrete as-321

signment is hard to optimize, we replace it with a322

soft relaxation:323

eijk =
qikkjk√

D
(9)324

âijk = softmaxk(eijk) (10)325

where âijk is the probability that the k-th head326

is assigned to propagate information from the j-327

th token to the i-th token. To obtain the actual328

head weights, we multiply the probability of edge329

existence with the probability of choosing a specific330

attention head:331

aijk = âijk ×mij (11)332

where aijk is the weight from the node j to the 333

node i for k-th attention head. 334

Relative Position Bias Transformer models use 335

positional encoding to represent the absolute po- 336

sition for each token. In DGN, we only model 337

whether the token is before or after the current to- 338

ken. The motivating intuition is the association of 339

different heads with different directions. In equa- 340

tion 10, we can introduce a relative position bias: 341

âijk = softmaxk(eijk + blrk ) (12) 342

blrk =

{
blk, i > j

brk, i < j
(13) 343

where blk and brk are trainable parameters. The rel- 344

ative position bias allows the attention head k to 345

prioritize forward or backward directions. A mere 346

forward and backward differentiation may seem 347

weak compared to other parameterizations of posi- 348

tional encoding (Vaswani et al., 2017; Shaw et al., 349

2018), but in conjunction with the dependency con- 350

straints, this method is a more effective way to 351

model the relative position in a tree structure. As 352

shown in Table 8, the relative position bias achieves 353

stronger masked language modeling and parsing 354

performance than positional encoding. 355

At the end, a matrix multiplication is used to 356

aggregate information from different positions. 357

oik =
∑
j

aijkcijk (14) 358

Then, the output o from different heads are con- 359

catenated, and then projected back to the hidden 360

state space with a linear layer. 361

hl
i = hl−1

i +Wo

oi1...
oin

+ bo (15) 362

where hl
i is the output of the l-th gated self attention 363

layers. The shared hidden state space can be seen 364

as the shared global workspace (Goyal et al., 2021) 365

for different independent mechanisms (heads). 366

4 Experiments 367

4.1 Masked Language Modeling 368

Masked Language Modeling (MLM) is a macro- 369

scopic evaluation of the model’s ability to deal with 370

various semantic and linguistic phenomena (e.g. co- 371

occurrence, syntactic structure, verb-subject agree- 372

ment, etc). The performance of MLM is evalu- 373

ated by measuring perplexity on masked words. 374
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Model PTB BLLIP BLLIP BLLIP
-SM -MD -XL

Transformer 68.9 44.6 22.8 17.0
StructFormer 64.8 43.1 23.4 16.8
UDGN 59.3 40.2 24.2 19.7

Table 1: Masked Language Model perplexities on dif-
ferent datasets.

We trained and evaluated our model on 2 differ-375

ent datasets: the Penn TreeBank (PTB) and BLLIP.376

In our MLM experiments, each token has an in-377

dependent chance to be replaced by a mask token378

<mask>, except that we never replace <unk> to-379

ken.380

PTB The Penn Treebank (Marcus et al., 1993) is381

a standard dataset for language modeling (Mikolov382

et al., 2012) and unsupervised constituency parsing383

(Shen et al., 2018; Kim et al., 2019). It contains 1M384

words (2499 stories) from Wall Street Journal. Fol-385

lowing the setting proposed in Shen et al. (2020),386

we preprocess the Penn Treebank dataset by re-387

moving all punctuations, lower case all letters, and388

replaces low frequency tokens (< 5) with <unk>.389

The preprocessing results in a vocabulary size of390

10798 (including <unk>, <pad> and <mask>).391

BLLIP The Brown Laboratory for Linguistic392

Information Processing dataset is a large Penn393

Treebank-style parsed corpus of approximately 24394

million sentences from Wall Street Journal. We395

train and evaluate UDGN on four splits of BLLIP:396

BLLIP-XS (40k sentences, 1M tokens), BLLIP-397

SM (200K sentences, 5M tokens), BLLIP-MD398

(600K sentences, 14M tokens), and BLLIP-LG399

(2M sentences, 42M tokens). Following the same400

setting proposed in Hu et al. (2020) for sentence401

selection, resulting in each BLLIP split being a su-402

perset of smaller splits. All models are then tested403

on a shared held-out test set (20k sentences, 500k404

tokens). To make the mask language modeling and405

parsing results comparable, we use a shared vo-406

cabulary for all splits. Just like the PTB dataset,407

we preprocess the BLLIP dataset by removing all408

punctuations and lower case all letters. The shared409

vocabulary is obtained by counting word frequen-410

cies on BLLIP-LG dataset and select the words411

that appear more than 27 times. The resulting vo-412

cabulary size is 30232 (including <unk>, <pad>413

and <mask>), and covers more than 98% tokens414

in BLLIP-LG split.415

The mask rate when training on both corpora is416

Methods DDA UDA

DMV (Klein and Manning, 2004) 35.8
E-DMV (Headden III et al., 2009) 38.2
UR-A E-DMV (Tu and Honavar, 2012) 46.1
Neural E-DMV (Jiang et al., 2016) 42.7
Gaussian DMV (He et al., 2018) 43.1
INP (He et al., 2018) 47.9
NL-PCFGs (Zhu et al., 2020) 40.5 55.9
NBL-PCFGs (Yang et al., 2021) 39.1 56.1
StructFormer (Shen et al., 2020) 46.2 61.6
UDGN 49.9 61.8

Table 2: Dependency Parsing Results on WSJ test set
without gold POS tags. Daggered entries (†) takes the
argmax of head distribution without a tree constraint.
DMV-based baseline results are from He et al. (2018).
DDA stands for Directed Dependency Accuracy. UDA
stands for Undirected Dependency Accuracy. Unsuper-
vised dependency parsing results with the knowledge
of gold POS tags or other external knowledge are ex-
cluded from this table.

30%. In Section A.4, we further explore the re- 417

lationship between mask rate and parsing results. 418

Other hyperparameters are tuned separately for 419

each model and dataset and are further described in 420

Section A.1. The masked language model results 421

are shown in Table 1. UDGN outperforms the base- 422

lines on smaller datasets (PTB, BLLIP-SM), but 423

underperforms against baselines trained on large 424

datasets (BLLIP-MD, BLLIP-LG). However, in 425

Section 4.5, we find that the UDGN pretrained 426

on BLLIP-LG dataset can achieve stronger perfor- 427

mance when finetuned on a downstream task. This 428

may suggest that our model learns more generic 429

contextual embeddings. 430

4.2 Unsupervised Dependency Parsing 431

We convert the human-annotated constituency trees 432

from the Wall Street Journal test set (Marcus et al., 433

1993) to dependency trees and use the Directed De- 434

pendency Accuracy (DDA) as our metric. To derive 435

valid trees from the attention mask, we use the Chu- 436

Liu (Chu and Liu, 1965b) (or Edmonds’ Edmonds 437

1967) algorithm to obtain the maximum directed 438

spanning tree. Following previous research (Shen 439

et al., 2020), we use the model trained on the pre- 440

processed PTB dataset (no punctuations), and test 441

its parsing performance on section 23 of the WSJ 442

corpus. Punctuation is ignored during the evalua- 443

tion. 444

Table 2 shows that our model outperforms base- 445

line models. This result suggests that, given our 446

minimum inductive bias (a token must attach to 447
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Models prep pobj det compound nsubj amod dobj aux

UDGN 0.65(0.12) 0.60(0.11) 0.68(0.15) 0.42(0.04) 0.50(0.06) 0.39(0.07) 0.39(0.07) 0.62(0.10)
StructFormer 0.39(0.05) 0.38(0.07) 0.57(0.03) 0.33(0.01) 0.25(0.06) 0.26(0.01) 0.22(0.05) 0.23(0.04)
Transformer 0.43(0.00) 0.46(0.03) 0.46(0.12) 0.30(0.01) 0.39(0.15) 0.26(0.02) 0.28(0.01) 0.30(0.10)

Table 3: The pearson correlation coefficients between most frequent dependency types and their most correlated
head. All results are average across four random seeds, standard derivation are in parentheses. Types are arrange
from the highest frequency to lower frequency. PCC heat maps between all types and all heads are in Appendix A.2.

another, but the graph is not necessarily a tree),448

predicting missing tokens implicitly learns a good449

graph that correlates well with human-annotated450

dependency trees. This may suggest that some451

of the dependency relations proposed by linguists452

correspond with efficient ways of propagating in-453

formation through the sentence. Parsing examples454

of our model can be found in Appendix A.5.455

4.3 Correlation Between Heads and456

Dependency Types457

In this section, we test the correlation between458

heads and dependency types. We consider each459

dependency edge i → j (i depends on j) in the460

ground truth structure as a data point. Given all461

the edges, we can obtain three sets of quantities:462

head probabilities Ak = {âkji} and type values463

Y l = {ylij}. âkij is a real value between 0 and 1,464

represents the probability that heads k is used to465

model the information propagation from the child466

i to the parent j. Details about this value can be467

found at Equation 12. ylij is a binary value, repre-468

sents whether the label l is assigned to edge i→ j.469

We can then compute Pearson Correlation Coeffi-470

cient (PCC) for every pair of Ak and Y l across all471

ground truth edges {i→ j}:472

ρAk,Y l =
cov(Ak, Y l)

σAkσY l

(16)473

where cov(·) is the covariance function, σ· is474

the standard deviation of the respective variable.475

Hence, ρAk,Y l measures the correlation between476

head k and dependency type l. ρAk,Y l > 0 means477

that the model tends to use head k for propagating478

information from child to parent for dependency479

edges of the type l. Here, we only consider the480

information propagation from child to parent even481

though information can propagate in both direc-482

tions in masked language models. In Appendix A.2,483

we also computed the PCC for the parent to child484

direction.485

Table 3 shows the PCC between the most fre-486

quent dependency types and their most correlated487

Figure 4: Relationship between the parsing perfor-
mance and the number of heads in each layer. The
hidden state size of heads are adjusted to maintain the
same number of total parameters.

heads. We can observe that all three models 488

have heads that are positively correlated to human- 489

annotated dependency types. This result is coherent 490

with the observation of Htut et al. (2019). Mean- 491

while, the UDGN achieves a significantly better 492

correlation than the StructFormer and the Trans- 493

former. This confirms our intuition that competitive 494

gated heads can better induce dependency types. 495

4.4 Ablation Experiments 496

Figure 4 shows the relation between the number of 497

heads in each UDGN layer and the model’s unsu- 498

pervised parsing performance. Table 8 shows the 499

model’s performance when individual components 500

are removed. We can observe that the number of 501

heads has the most significant influence on unsu- 502

pervised parsing performance. While this is only 503

one head, the model fails to learn any meaningful 504

structure. Then the parsing performance increase 505

as the number of heads increase. And we observe 506

marginal improvement after the number of heads 507

reaching 8. The second most significant parsing 508

performance decrease is caused by removing the 509

gating mechanism. This change forces each head to 510

always extract the same information from a given 511

key node hj , regardless of the query node hi. This 512

has a similar effect as the previous change, reduc- 513

ing the diversity of different functions that can be 514
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Model MLM Argmax Chu-Liu
PPL DDA UDA DDA UDA

UDGN 59.3(0.5) 52.7(0.9) 58.3(0.7) 49.9(1.6) 61.8(0.9)
- Gates 69.5(1.9) 31.5(2.2) 40.7(0.3) 26.1(2.1) 48.9(0.5)
- Competition 73.6(3.1) 44.7(1.9) 54.4(1.9) 40.4(1.6) 56.6(2.1)
- relative pos bias 62.1(1.0) 51.6(1.6) 59.8(0.8) 47.4(2.6) 62.1(1.1)

Table 4: The performance of UDGN after removing different components. “- Gates” means removing the gate g
in gated heads. “- Competition” means using a non-competitive sigmoid function to replace the softmax in the
competitive controller. “- relative pos bias” means removing the relative positional bias. “Chu-Liu” means that we
use the Chu-Liu algorithm to extract the maximum directed spanning tree. “Argmax” means that we take the word
at the maximum p value as the dependency head. This could result in non-tree structures, but we believe that this
metric gives a better indication of how often the parser predicts the right head of each word.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Transformer 76.17 61.48 73.97 74.35 53.72 64.26 80.00 69.14
UDGN (Freeze parser) 77.71 71.17 78.71 82.30 66.04 70.13 82.17 75.46
UDGN 80.51 75.02 80.54 82.16 64.73 72.49 81.94 76.77

Table 5: Sentence embedding performance on STS tasks. All models are pretrained on BLLIP-LG, and finetuned
on STS. Freeze parser means that the parameters for the parser are not updated during finetuning.

modeled by heads. These two observations may515

suggest that the diversity of information propaga-516

tion function (multiple heads) is essential to induce517

a meaningful structure.518

The competitive controller also has an impor-519

tant influence on parsing performance. Its non-520

competitive version is the sigmoid controller used521

in StructFormer. If we replace it with the non-522

competitive controller, the DDA decreases to 44.7523

which is similar to the result of StructFormer (46.2).524

Another interesting observation is that removing525

relative position bias has the least influence on pars-526

ing and language modeling. This may suggest that527

the dependency structure already encoded certain528

positional information. More ablation experiment529

results can be found in Appendix A.3.530

4.5 Fine-tuning531

In this experiment, the goal was to determine if a532

better representation of semantics can be encoded533

if the model was constrained for structure. We534

pretrain a UDGN model on the BLLIP-XL dataset,535

and then finetune it on the STS-B (Cer et al., 2017)536

dataset. For a controlled experiment, we compare537

the results we attain with the previously mentioned538

Transformer model. We then evaluate the resulting539

classifier on the STS 2012-2016 (Agirre et al., 2012,540

2013, 2014, 2015, 2016), the SICK-Relatedness541

(Marelli et al., 2014) dataset, and STS-B (Cer et al.,542

2017). We then report the Spearman correlation543

score for each dataset (the ‘all’ setting in Gao et al.544

2021). 545

We find that the UDGN model performs better 546

overall compared to the transformer model. While 547

these are not state-of-the-art results on these tasks, 548

the purpose of our comparison was to examine 549

the benefit of the UDGN model over the Trans- 550

former architecture. It’s also interesting to notice 551

that if parameters in the parser are frozen during 552

the finetuning, the model will get worse perfor- 553

mance. This result suggests that fine-tuning on 554

STS forces pretrained language models to learn 555

more task-oriented trees. Dai et al. (2021) observed 556

similar results with finetuned RoBERTa on Aspect- 557

Based Sentiment Analysis tasks. 558

5 Conclusion 559

In this paper, we proposed the Unsupervised De- 560

pendency Graph Network (UDGN), a novel archi- 561

tecture to induce and accommodate dependency 562

graphs in a transformer-like framework. The model 563

is inspired by linguistic theories. Experiment re- 564

sults show that UDGN achieves state-of-the-art de- 565

pendency grammar induction performance. The 566

competitive gated heads show a strong correlation 567

to human-annotated dependency types. We hope 568

these interesting observations will build new con- 569

nections between classic linguistic theories and 570

modern neural network models. Another interest- 571

ing future research direction is exploring how the 572

newly proposed components can help large-scale 573

pretrained languages models. 574
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A Appendix888

A.1 Hyperparameters889

Model Hidden head/Head Dropout DropAtt lr #tags Feedforward
Size Size Size

UDGN (PTB) 512 128 0.2 0.1 0.001 6 –
UDGN (BLLIP-XS,SM) 512 128 0.2 0.1 0.001 6 –
UDGN (BLLIP-MD,LG) 512 128 0.2 0.1 0.001 6 –
Transformer 512 64 0.1 0.1 0.0003 – 2048
StructFormer 512 64 0.1 0.1 0.0003 – 2048

Table 6: Hyperparameters used in Masked Language Modeling experiments. All model has 8 layers and 8 heads
or attention heads. For UDGN, we apply dropout in front of all linear layers; dropatt randomly drops heads; the
parser is a 3-layer biLSTM model, which has 6 tag embeddings, 1 of them is a zero vector, 5 of them are trainable.
For transformer and structformer, the dropout is applied to the output of each sublayers; dropatt randomly drops
attention weights; the size of their feedforward sublayers is 2048.

A.2 Correlation between Heads and Dependency Types890

Models prep pobj det compound nsubj amod dobj aux

UDGN 0.45(0.15) 0.84(0.05) 0.59(0.08) 0.38(0.03) 0.47(0.08) 0.43(0.08) 0.32(0.04) 0.45(0.08)
StructFormer 0.28(0.04) 0.43(0.13) 0.38(0.06) 0.34(0.02) 0.30(0.03) 0.27(0.01) 0.19(0.02) 0.22(0.02)
Transformer 0.44(0.03) 0.31(0.05) 0.37(0.03) 0.32(0.00) 0.16(0.01) 0.28(0.01) 0.20(0.01) 0.26(0.03)

Table 7: The pearson correlation coefficients between most frequent dependency types (the child to parent direc-
tion) and their most correlated head. Types are arrange from the highest frequency to lower frequency.

A.3 More Ablation Experiments891

In this section, we evaluate UDGN’s performance after removing the nonlinear function in gated heads,892

replacing relative positional bias with a standard positional encoding, and using Kirchhoff matrix tree893

theorem (Koo et al., 2007) to normalize the dependency probabilities. It’s interesting to notice that,894

although Kirchhoff method can produce a valid marginal distribution for dependency probabilities, adding895

the normalization can’t improve the unsupervised parsing performance. We believe it’s due to the extra896

optimization complexity introduced by the matrix inversion in Kirchhoff method. Another observation897

is that relative position bias helps the model to achieve better perplexity and parsing performance in898

comparison with positional encoding. This may suggest that the combination of dependency graphs and899

relative positions is more informative than absolute positions.900

Model MLM Argmax Chu-Liu
PPL DDA UDA DDA UDA

UDGN 60.4(0.8) 52.5(0.7) 58.8(0.9) 50.2(1.5) 61.2(0.4)
- Nonlinear 61.2(1.0) 49.5(1.1) 56.8(1.4) 45.6(2.0) 60.8(1.4)
- relative pos bias + pos encoding 65.2(3.4) 47.1(7.3) 55.4(4.1) 44.8(7.2) 58.2(5.2)
+ Kirchhoff 59.7(0.5) 50.2(2.2) 58.4(1.2) 46.5(2.1) 60.7(1.2)

Table 8: The performance of UDGN after removing different components. “- Nonlinear” means remove the tanh
activation function in gated heads. “- relative pos bias + pos enc” means using a trainable positional encoding to
replace the relative position bias. “+ Kirchhoff” means using Kirchhoff matrix tree theorem (Koo et al., 2007) to
compute the marginal probabilities of each edge, and these marginals have properties similar to a tree adjacency
matrix (sum over the marginals are equal to N-1 for example, where N is the length of the sentence).
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(a) PCC heat map for heads and child to parent dependency relations.

(b) PCC heat map for heads and parent to child dependency relations.

Figure 5: Pearson Correlation Coefficients heat maps. Dependency types are arranged from highest frequency to
lowest. We can observe that high frequent types have more strongly correlated heads. Strongly correlated heads
also evenly distributed across layers.
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Dataset #tokens MLM Argmax Chu-Liu
PPL DDA UDA DDA UDA

BLLIP-XS 1M 133.7(3.1) 51.4(2.0) 57.6(1.6) 47.9(2.7) 61.2(1.6)
BLLIP-SM 5M 40.2(0.8) 53.7(2.5) 60.7(0.6) 50.9(5.3) 65.1(1.6)
BLLIP-MD 14M 24.2(0.5) 50.5(6.1) 59.8(2.9) 47.7(8.1) 63.0(4.2)
BLLIP-LG 42M 19.7(0.3) 45.6(2.9) 61.7(1.8) 41.6(4.2) 62.5(1.6)

Table 9: The performance of UDGN after trained on different BLLIP splits. Since all BLLIP splits share the
same vocabulary and test set, results are comparable. While DDA have a high variance, UDA remain stable across
different corpus sizes. This may due to the reason that DGN only use an undirected dependency mask, the choice
of dependency direction could be arbitrary. This result may suggest that syntax can be acquired with a relatively
small amount of data. It is possible then, that where extra data helps is in terms of semantic knowledge, like
common sense.

Figure 6: Relationship between the parsing performance and the mask rate for MLM.

A.4 Mask rate901

One of the more surprising findings in our experiments with this architecture was the relationship between902

the word mask rate in the MLM task and how much the resulting parse trees corresponded to the ground-903

truth parse trees. We trained 5 models for different word masking rates from 0.1 to 0.9, in 0.1 increments,904

and computed the argmax, DDA, and undirected DDA (UDA) scores for each of these models. Figure 6905

shows the plot for these results.906

Firstly, we observe that the acceptable range of masking rate for achieving a decent UDA score was907

fairly large: the optimal was at about 0.3, but values of 0.2 up to 0.8 worked to induce tree structures that908

resulted in fairly good undirected trees. Secondly, as we move away from the optimum of 0.3-0.4, the909

variance of our results increases, with the highest variance when we mask at a rate of 0.9. Finally, our910

model supplies the attention mask as a symmetric matrix— the directionality of the mask is decimated911

when we perform Equation 6. Consequently, we find that the variance of the DDA is higher than UDA912

as the connectivity of the nodes in the tree is more important than the direction of the connection in our913

architecture.914

A.5 Dependency Graph Examples915

gold:

commercial paper

pred:

commercial paper
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Gold tree:

hooker ’s philosophy was to build and sell

Induced tree:

hooker ’s philosophy was to build and sell

gold:

a few hours later the stock market dropped N points

pred:

a few hours later the stock market dropped N points

gold:

there ’s nothing rational about this kind of action

pred:

there ’s nothing rational about this kind of action
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gold:

it ’s turning out to be a real blockbuster mr. <unk> said

pred:

it ’s turning out to be a real blockbuster mr. <unk> said

gold:

and i think institutions are going to come in and buy

pred:

and i think institutions are going to come in and buy
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gold:

that <unk> <unk> quantum badly because its own plants cover only about half of its <unk> needs

pred:

that <unk> <unk> quantum badly because its own plants cover only about half of its <unk> needs
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