Dynamic HDR Radiance Fields via Neural Scene Flow
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Figure 1. We reconstruct high dynamic range (HDR) neural scene flow fields from (a) multiple view sequences of dynamic scenes captured at
different exposures (low dynamic range; LDR). Our method enables the rendering of (b) HDR novel views across both spatial and temporal
domains. Additionally, we can generate (c) novel LDR views along with their corresponding depth maps.

Abstract

Reliving transient moments captured by a single camera
requires reconstructing accurate radiance, geometry, and
3D motion. While significant progress has been made in dy-
namic 3D scene reconstruction, high-dynamic-range (HDR)
radiance fields of dynamic scenes remain difficult to recon-
struct. This work introduces HDR-NSFF, a novel approach to
reconstructing dynamic HDR radiance fields from a monoc-
ular camera with varying exposures. HDR imaging requires
multiple LDR images captured at different exposures, but
capturing dynamic scenes with alternating exposures in-
troduces challenges such as the correspondence problem,
motion inconsistency, color discrepancies, and low frame
rates. Here, Neural Scene Flow Fields (NSFF) is used to
Jjointly model scene flow with neural radiance fields, en-
abling both novel view synthesis and temporal interpola-
tion. NSFF is extended to HDR radiance field reconstruction
by modeling learnable explicit camera response functions
so that the NSFF and camera response functions can be
jointly estimated in challenging dynamic scenes. Since multi-
exposure images disrupt applying standard optical flow es-
timation due to color inconsistency, we mitigate this issue

by incorporating DINOv2 semantic features, which provide
exposure-invariant object-level priors for motion estimation.
By integrating these components, HDR-NSFF effectively re-
constructs dynamic HDR radiance fields from single-camera
footage, overcoming the limitations of the previous meth-
ods and enabling novel view synthesis and high-quality time
interpolation in challenging HDR scenarios.

1. Introduction

High Dynamic Range (HDR) imaging plays a pivotal role
in enhancing visual realism and acquiring physical measure-
ments for various computer vision and graphics applications,
including augmented reality (AR), virtual reality (VR), and
film production [1, 41, 44]. By capturing a wider range
of light intensities, HDR allows for the faithful reproduc-
tion of both the bright and dark regions of a scene. Prior
work [4, 12, 13, 50] has shown notable progress in 2D HDR
video reconstruction, not only in static scenes but also in
dynamic ones. Building on this, the focus of HDR recon-
struction has shifted to 3D space. Recent works [2, 9, 48]
have demonstrated robust HDR reconstruction quality using



multi-view and multi-exposure LDR images. However, this
achievement is limited to static scenes, and reconstructing an
HDR radiance field in dynamic 3D scenes remains an open
problem, despite being a key component in the aforemen-
tioned real-world applications.

In the field of dynamic scene reconstruction, building
upon the success of static scene reconstruction with Neural
Radiance Fields (NeRF) [25] and 3D Gaussian Splatting
(3DGS) [14], several studies [3, 7, 19, 20, 28, 29] have
extended these methods to dynamic scene reconstruction.
However, their approaches assume multi-view images with
consistent exposure, making them struggle in multi-exposure
scenarios with varying exposure times. Figure 1 illustrates
this challenge. In high- and low-contrast regions caused
by the sensor limitations of conventional cameras, radiance
and geometry reconstruction are likely to be hindered due to
color inconsistency and information loss from saturation, as
they assume single-exposure inputs.

In this work, we propose HDR-NSFF, which enables the
robust reconstruction of a 3D HDR dynamic radiance field
(DRF), geometry, and motion from multi-exposure and multi-
view images. To achieve this, we analyze the key factors
that hinder 3D HDR-DRF under a multi-exposure setting
and find that the motion estimator severely struggles in this
scenario, providing inaccurate guidance for learning the 3D
scene flow. Since the reconstruction of 3D DREF significantly
rely on the 3D scene flow, degraded scene flows lead to
overall degraded dynamic scene reconstruction. To robustify
this, we analyze the behavior of motion estimators [39, 42]
under the multi-exposure setting and observe that DINO-
Tracker [42] is robust to exposure variations and captures
fine-detail motions. Motivated by its robustness, we modify
DINO-Tracker to seamlessly integrate with NSFF and the
learnable camera tone-mapping module. As a result, we
propose a complete 3D HDR-DREF reconstruction pipeline.

We evaluate our method on two tasks: novel view syn-
thesis and novel view-and-time synthesis. Since no suitable
real-world dataset exists for this purpose, we construct a
multi-exposure HDR dataset capturing dynamic scenes under
realistic conditions. We also evaluate on the synthetic dataset
[48]. In both real and synthetic scenarios, our method con-
sistently outperforms competing models—including NeRF-
W [30] and HDR-Hexplane [48]—demonstrating our su-
perior reconstruction quality and robustness across a wide
range of challenging exposures and motions. Last but not
least, our model can even reconstruct a full 3D dynamic
scene in HDR from a low-FPS, multi-exposed image se-
quence, underscoring its robustness to limited temporal reso-
lution and varying exposure settings. To summarize, our key
contributions are:

* HDR-NSFF: We introduce the first method that jointly
models HDR radiance field reconstruction and scene flow
modeling for dynamic scenes, enabling both novel view

rendering and time interpolation.

¢ Exposure-Robust Optical Flow: We introduce a novel
usage of DINOv2 semantic features for dynamic HDR
reconstruction by identifying its favorable property of ex-
posure robustness. It notably improves flow estimation
under multi-exposure inputs.

* Real Evaluation Dataset: We collect and share a real
dataset of dynamic scenes captured with alternating expo-
sures, facilitating research on dynamic HDR novel view
and time interpolation.

2. Related Work

High Dynamic Range Imaging. HDR reconstruction is
pioneered by Debevec and Malik [5], who propose aggregat-
ing multiple low-dynamic-range (LDR) frames to recover
an HDR signal. Most subsequent HDR methods have been
based upon this foundational approach. To extend HDR re-
construction to dynamic scenes, HDR video reconstruction
methods [12] are introduced, typically following a two-stage
process: aligning multi-exposure LDR frames and synthesiz-
ing the HDR. Optical flow or feature matching is commonly
employed to establish frame correspondences, while deghost-
ing techniques mitigate artifacts introduced during warping.

With the advent of deep learning, CNNs [12, 22, 49, 51]
and Transformers [23, 37, 40, 52] have been leveraged to
improve deghosting and frame alignment using large-scale
datasets. However, most existing HDR video reconstruction
methods rely on 2D frame alignment and struggle to synthe-
size novel views due to their limited representation of 3D
motion. Methods constrained to 2D information approxi-
mate motion in a projected space, leading to inconsistencies
when handling disocclusion and fast motion [45].

To address these challenges, we explore a 4D HDR re-
construction approach that explicitly models motion in 3D
space. By leveraging multi-view 3D information, our method
enhances geometric consistency and improves temporal co-
herence in HDR video reconstruction.

Dynamic Neural Radiance Fields. Existing dynamic view
synthesis methods primarily reconstruct scenes from RGB-D
images [27, 58] or monocular videos using explicit depth [15,
18, 56] representations. However, explicit representations
inherently struggle to model complex structures or optical
effects such as non-Lambertian reflections.

Recently, volumetric rendering methods, including
NeRF [25] and 3DGS [14], have significantly advanced
dynamic novel view synthesis [3, 8, 20, 28, 29, 45]. Shift-
ing focus from static scene reconstruction, numerous meth-
ods leveraging multi-view videos have successfully recon-
structed dynamic scenes [16, 17, 38, 43], enabling a wide
range of practical applications. Consequently, dynamic re-
construction methods using monocular video inputs have at-
tracted significant research interest, broadly categorized into



two approaches. The first approach learns deformations from
a fixed canonical template [28, 29, 35, 54], yet is susceptible
to occlusions and exhibits reduced spatial consistency when
handling long sequences or large, rapid motions [8]. The sec-
ond approach directly models temporal changes at individual
spatial locations [8, 19, 20, 45]. Representative methods typ-
ically incorporate additional priors such as depth or optical
flow to enhance temporal modeling. Although this approach
involves more complex training procedures, it has demon-
strated robust performance for capturing fast and complex
3D scene motions from in-the-wild videos.

In our monocular bracketing scenario, the need to acquire
videos across various exposures inherently leads to reduced
temporal resolution. Thus, we extend Neural Scene Flow
Fields (NSFF) [19] to effectively represent and reconstruct
dynamic scenes with significant motion under HDR con-
ditions. Specifically, we propose additional HDR-robust
geometric prior and a corresponding reconstruction frame-
work. Note that our framework can easily integrate and
extend beyond NSFF, leveraging various data-driven priors
used by existing dynamic scene reconstruction methods.

HDR Volumetric reconstruction. Recent research actively
extends conventional LDR-based volumetric reconstruction
methods to the HDR domain. Several studies employed
raw sensor data [10, 21, 26, 36], yet required specialized
sensors and extensive calibration, limiting their practicality.
In another direction, some explicitly disentangle varying
scene appearance via learned embeddings [24, 32, 57], but
this approach is limited to isolating appearance changes
rather than reconstructing HDR radiance. Thus, approaches
using widely available multi-exposure images have become
prevalent, often jointly modeling HDR 3D representations
with tone-mapping for LDR conversion [2, 9, 11, 33, 46].

However, existing HDR volumetric methods typically fo-
cus on static scenes, struggling with motion, common in real-
world. HDR-Hexplane [48], a recent dynamic HDR method
based on Hexplane representations, has two critical limi-
tations. First, it demands densely sampled, high-FPS data
that are difficult to obtain practically. Second, it employs a
fixed sigmoid function instead of learnable camera-specific
camera response functions (CRFs), insufficiently capturing
diverse image signal processor (ISP) characteristics. More-
over, the strong reliance on inter-plane interpolation leads to
artificial motions in scenes with rapid dynamics.

To overcome these issues, we propose: (1) a scene-flow-
based temporal interpolation method that achieves natural
temporal continuity from sparse, low-FPS multi-exposure
data; (2) a robust optical flow estimator insensitive to expo-
sure variations; and (3) explicit modeling of camera-specific
learnable CRFs to enhance accuracy and adaptability.

3. Method

This section provides details of our method. We first provide
a brief overview of the baseline NSFF method (Sec. 3.1)
before introducing the overall pipeline (Sec. 3.2). Next,
we describe our tone-mapping module (Sec. 3.3) and novel
semantic-based optical flow estimation (Sec. 3.4). Finally,
we detail the optimization procedure (Sec. 3.5).

3.1. Preliminary

To model dynamic scenes, NSFF [19] extend the concept
of NeRF [25] by representing 3D motion as scene flow
fields. NSFF learns a combination of static and dynamic
NeRF representations. The dynamic model, denoted as
Fg ¥, explicitly models view and time dependent variations
by incorporating time ¢ as an additional input. Beyond
color and density, it also predicts forward and backward
3D scene flow Fy;=(f; 441, f;—:—1) and occlusion weights
Wi=(wi—t41, wr—¢—1) to handle 3D motion disocclusion:

(Ct,O’t,Ft,Wt) :ng(xvdat)' (1)

To supervise scene flow estimation, NSFF uses temporal
photometric consistency. Specifically, for each time 7, scene
flow is predicted for the 3D points sampled along rays, and
this predicted flow is used to warp corresponding points from
neighboring times j € A/ (%) to time i. The color and opacity
information of the warped points is then used to render the
image at time 7:

éjﬁi(”) = /Zf Tj(2) oj (Tiﬁj(z)) ¢ (Ti%j(z)v di) dz,

"’ 2)
where  7i,;(2) = 1i(2) + £, (ri(2)). 3)

Temporal photometric consistency is enforced by mini-
mizing the mean squared error (MSE) between the warped
rendered view and the ground-truth image:

Lphoto = Z Z ||CA'J—>Z(T1) - Cl(rl)Hg “)

i FEN (i)

The static NeRF, th, represents a time-invariant scene
using a multilayer perceptron (MLP). Given an input po-
sition x and view direction d, it outputs the RGB color c,
volume density o, and an unsupervised 3D mixing weight
v that determines the blending between static and dynamic
components:

(c,0,v) = Fj'(x,d). )

Here, ¢; and oy denote the color and volume density at posi-
tion x at time ¢. The final color is computed by blending the
static and dynamic components using the following render-
ing equation:

) = [Tt d ©

n
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Figure 2. Overall pipeline of our propsed method. HDR-NSFF takes a multi-exposed image sequence of a dynamic scene as input and
estimate 3D scene flow for the sampled points along each ray. Neighboring frames are then warped to render the HDR radiance at the target
frame, which is tone-mapped to LDR via a white-balance and camera-response function module. Photometric loss with the ground-truth
LDR images, along with optical flow and depth constraints from off-the-shelf models, jointly optimize both the scene flow fields and

tone-mapping module in an end-to-end manner.
where 0£°(2)c$®(z) is a linear combination of static and
dynamic scene components, weighted by v(z):

o (2)c(2) = v(2)e(2)o(2) + (1 —v(2))ei(2)ai(2). (T)

T; represents the transmittance at time 7, while z,, and zy
denote the near and far depths along the ray. The final
rendered output C'®(r;) is optimized against the ground-
truth pixel color C;(r;) using a photometric loss:

Loy = Y [IC(rs) — Calro) 3. @®)

Reconstructing dynamic scenes from monocular input is
inherently ill-posed, and relying solely on photometric con-
sistency often leads to convergence at poor local minima.
Therefore, NSFF incorporates three additional guided losses:
a term enforcing monocular depth and optical flow consis-
tency, a motion trajectory term promoting cycle-consistency
and spatiotemporal smoothness, and a compactness prior en-
couraging binary scene decomposition and reducing floaters
via entropy and distortion losses. For more details, please
refer to the supplementary materials.

3.2. HDR-NSFF

We now extend NSFF to handle HDR reconstruction, in-
troducing the HDR-NSFF pipeline. Figure 2 shows overall
pipeline. Given that the radiance of a scene remains invariant
to changes in camera exposure settings, our method explic-
itly decouples the intrinsic scene radiance and geometry
from camera-dependent imaging characteristics. Specifi-
cally, HDR-NSFF first leverages the NSFF framework to
model the intrinsic spatio-temporal radiance () and geo-
metric structure represented by density (o), independently

from camera parameters. Subsequently, a dedicated tone-
mapping module simulates the camera’s physical imaging
processes—including white balance and the camera response
function —to convert these intrinsic radiance values into ob-
served LDR images. Such modular decomposition allows
HDR-NSFF to effectively learn exposure-invariant scene rep-
resentations. In the following, we explain a detailed design
of the tone-mapping module.

3.3. Tone Mapping

The tone mapping process converts HDR images into LDR
images by sequentially applying exposure adjustment, white
balance correction, and CRF. In HDR-NSFF, volume render-
ing produces an HDR radiance value E, which is processed
by an explicit tone mapping module 7 with radiometric
parameters 6 :
C=T(E,?). 9)
The tone mapping function 7 consists of two stages: a
white balance function w and a CRF g. The white balance
scaling parameters are learned jointly with exposure values.
The tone mapping process follows a typical digital camera’s
acquisition pipeline and is expressed as:

C=T(E)=gow(E). (10)

The white balance function w applies per-channel scaling
using the white balance parameter 6,, = [w,,wg, wy] T €
R3, producing a white balance-corrected image E,,. The
CREF g is then applied to E,,, mapping it to the final LDR
image C'. The CRF is parameterized as a piecewise linear
function, defined using 256 points uniformly sampled in
the [0, 1] range. Values exceeding the dynamic range are
thresholded accordingly.
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Figure 3. Visualization of flow between multi exposed images.
RAFT struggles under multi-exposure conditions, resulting in no-
ticeable errors. As a stronger reference, fine-tuning RAFT on
synthetic multi-exposed data (called RAFT-Finetuned) provides
moderate improvement, but our semantic-based approach remains
more accurate overall. The red arrows highlight regions where

RAFT and RAFT-Finetuned fail to capture correct motion, whereas
our method recovers a more reliable flow.
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During training, we adopt leaky-thresholding, which is
proposed by HDR-Plenoxels [ 1], to reduce saturation loss
in rendered images:

ax, <0
Greaky () = ¢ 9(2), 0<z<1 (1)
N
ﬁ+a+1, x> 1,

where « is the thresholding coefficient. This approach en-
sures effective color correction and dynamic range handling
during HDR-NSFF training.

3.4. Semantic based Optical Flow

DINO-Tracker [42] leverages a transformer-based architec-
ture to aggregate global semantic features from DINOv2,
which allows it to maintain robust correspondences even
under dramatic exposure variations. By computing match-
ing scores across frames, it can reliably track objects over
long sequences despite occlusions or changes in appear-
ance. This global context enables the tracker to overcome
challenges that conventional optical flow methods face in
multi-exposure scenarios. However, because DINOV?2 is
primarily trained on object-centric data, its performance
on background regions can be noisy. To address this lim-
itation, we further refine the tracking by restricting it to
adjacent frame pairs and using Segment Anything Model
2 (SAM2) [31] at inference time to designate query points
corresponding to moving objects. This targeted approach sig-
nificantly improves the quality of the estimated optical flow,
as demonstrated in Figure 3, and significantly contributes
to more accurate scene flow estimation in our HDR-NSFF
framework.

3.5. Losses

Photometric Loss. To end-to-end train both the neural scene
flow fields and the tone-mapping module using only LDR
images, we minimize the Mean Squared Error between the
LDR views rendered by our HDR-NSFF and the ground-
truth (GT) LDR images.

Building on the photometric supervision in NSFF [19],
we instead replace the rendered color C' with our tone-
mapped output 7 (E), where E denotes the rendered HDR
radiance. Formally, the photometric losses are defined as:

Loy = Y _IT(E(r:)) = Ci(ry)|[3, and  (12)

Lphoto =y, Y IT(Ejmi(rs)) = Cilr)|5,  (13)
ri JEN (i)
where r denotes a camera ray. This loss directly supervises
our network by ensuring that the tone-mapped renderings
closely match the GT LDR images.

Data-Driven Priors. Monocular reconstruction of complex
dynamic scenes is highly ill-posed, and multi-exposure con-
ditions further exacerbate this challenge. Similar to prior
works that integrate external cues for improved geometry and
motion estimation [19, 20], we leverage data-driven priors by
integrating our semantic-based optical flow and off-the-shelf
single-view depth. Specifically, our optical flow loss, Laow,
initializes scene flow estimation by minimizing the MSE
between the 2D displacement of projected 3D points and
the semantic-based optical flow. In parallel, the single-view
depth loss, Lgepn, enforces temporal geometric consistency
by comparing the warped, opacity-derived depth against the
depth predicted by Depth-Anything-V2 [53]. The overall
data-driven prior loss is formulated as:

Liata = Liow + ﬁdepthLdeplha (14)

which effectively enforces motion and depth consistency. For
further details, please refer to the supplementary material.

CRF Smoothness Loss. We incorporate a smoothness loss
to enforce that CRF varies smoothly in a physically plausible
manner [6]. Following HDR-Plenoxels [1 1], we penalize the
second-order derivative of the CRFs: It is defined as follows:

_ N "
Lsmooth - Zi:l 266[0,1] 9; (6)7 (15)

where ¢”(e) denotes the second order derivative of CRFs
w.r.t. its input domain. Finally, our HDR-NSFF is end-to-end
optmized using the following loss:

L= ch + Lphoto + /BdataLdata + ﬁregLreg + Lsmootha
(16)
where the [ coefficients weight each term. Additional reg-
ularization terms, L,..4 leveraging scene flow priors are de-
tailed in the supplementary material.



Figure 4. A camera rig for multi-exposure multi-view dataset.
We use nine GoPro Hero 13 Black cameras arranged at two height
levels with fixed spatial intervals. Each camera is synchronized
to capture multi-view video simultaneously under three distinct
exposure settings.

4. Experiments

4.1. Experimental Settings

We evaluate our method on both synthetic and real datasets.
The synthetic dataset is sourced from HDR-Hexplane [48],
while the real dataset is collected using our multi-exposure
camera system.

Synthetic Dataset. We modify the dataset proposed in HDR-
HexPlane [48]. The original dataset is rendered with a high
frame rate and a multi-camera configuration. To better reflect
real-world exposure bracketing scenarios, we select four
scenes and modified. We re-render scenes in a monocular
setup and uniformly sample 30 images to simulate sparse
acquisition conditions. Further implementation details are
provided in the supplementary materials.

Real Dataset. For further evaluation, we additionally cap-
tured real-world datasets, Real dataset. Go-pro dataset con-
sists of a custom camera rig equipped with 9 GoPro Hero
13 Black. Inspired by [17] we arrange cameras at two dif-
ferent height levels with a fixed spatial interval. All cam-
eras are synchronized to capture a dense multi-view video
sequence simultaneously and are preconfigured with three
distinct multi-exposure settings to ensure a diverse range of
exposure levels in the recorded data. Figure 4 shows the
camera setup. To construct a video sequence, we select one
frame per viewpoint from a single camera at each timestamp
simulating monocular dynamic input setup.

Implementation Details. We estimate the intrinsic and
extrinsic camera parameters using COLMAP [34]. Since
COLMAP assumes a static scene, we utilize the SAM2 [31]
to mask out features corresponding to dynamic objects.
During training and testing, we sample 128 points along
each ray and normalize the video sequence to a temporal
range of ¢ € [0,1]. Training a full model takes about 15
hours per scene using a single NVIDIA RTX 3090 GPU.
Rendering at a resolution of 720x480 takes around 5 sec.

Full Dynamic only

Methods PSNR? SSIM{ LPIPS| PSNRT SSIMt LPIPS)
NSFE[19] 1779 07048 00705 1559 05577 0.1339
NeRF-WT [30] 2829 09139 00322 1662 05739 0.1268
HDR-HexPlane [48] 2075  0.6248  0.1387  17.65 0.5659 0.1316
Ours 3129 09277 00235 2281 0.7673 00718

Table 1. Quantitative results of novel view synthesis on real
data. Metrics are averaged across all scenes. The green and yellow
colors stand for the best and the second best , respectively.

Full Dynamic only
Methods PSNR} SSIM{ LPIPS|, PSNRT SSIMt LPIPS|
NSFE[19] 17.77 07028 0.0786  15.74 0.5889 0.1652
NeRE-WT [30] 2799 09015 0.0392 1643 05513  0.1494
HDR-HexPlane [48]  21.56  0.6502 0.1407  18.14 0.6166 0.1346
Ours 3148 09304 00262 2282  0.8087 0.0949

Table 2. Quantitative results of novel view and time synthesis
on real data. Metrics are averaged across all scenes. Each color
stands for the best and the second best , respectively.

Full Dynamic only
Methods PSNR? SSIM{ LPIPS|, PSNR{ SSIMt LPIPS|
NSFF[19] 1598 06457 0.1388 1604 05697 0.1527
NeRF-WT [30] 3110 09366 00342 2150 07490  0.0895
HDR-HexPlane [48] 2995 09055 0.0527 2387 07999 0.1071
Ours 3507 009465 00483 27.19 0.8836 00576

Table 3. Quantitative results of novel view and time synthesis
on synthetic data. Metrics are averaged across all scenes. Each

color stands for the best and the second best , respectively.

Full Dynamic only

PSNRT SSIM? LPIPS| PSNRt SSIM{ LPIPS|
Ours w/ RAFT [39]  30.42 09269 0.0246 2138 0.7369 0.0675
Ours w/ Finetuned 30.68  0.9234  0.0253 21.51 0.7377  0.0689
Ours 31.01 0.9301 0.0233 2255 0.7714 0.0697

Methods

Table 4. Ablation study on real data. To compare the effect of
flow regularization, we compare our approach against the base-
line optical flow model (RAFT [39]) and a stronger baseline fine-
tuned RAFT on a multi-exposure adaptation of the FlyingThings3D
dataset. The green and yellow colors stand for the best and the

second best , respectively.

Evaluation. We compare our method against NSFF [19],
HDR-HexPlane [48], and NeRF-WT [30]. Since the expo-
sure values of individual images cannot be directly estimated,
we assume that the scene is captured using three identical
cameras. To convert HDR images into LDR images, we
borrow the tone-mapping function learned from neighboring
cameras. To evaluate the quality of synthesized images from
novel views, we use PSNR, SSIM [47], and LPIPS [55] as
metrics. To evaluate HDR images, we employ p-law, which
applies a logarithmic transformation to compress HDR pixel
values, converting them into a tone-mapped image:

1 WE
ME) = ke a)

where  is the compression level set to 50 in this work.
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Figure 6. Qualitative results of novel view and time synthesis on
synthetic data. Since, our approach explicitly models scene flow, it
excels at time interpolation and consistently produces high-quality
results. In contrast, other methods [19, 30, 48] struggle to handle
the temporal dimension, leading to visible artifacts.

4.2. Quantitative Results

Novel View Synthesis. To quantitatively evaluate the per-
formance of our method on dynamic scene reconstruction,
we adopt a novel view synthesis (NVS) evaluation strategy.
Specifically, for each time instance, we render the scene
from all camera poses not used during training and apply the
corresponding learned tone-mapping functions to convert
the HDR renders back to LDR. We then compare these syn-
thesized views against the actual LDR images captured by
those cameras. By measuring how closely the rendered re-
sults match the ground-truth images, this evaluation directly
assesses two key aspects: (1) the quality of our dynamic
scene modeling, and (2) the accuracy of our camera-specific
tone-mapping functions. Table 1 shows that our approach
achieves significant improvements in rendering fidelity com-
pared to previous single-view and multi-view baselines, both

in highly dynamic regions and across the entire scene. This
demonstrates its effectiveness in reconstructing HDR scenes
with fine detail across varying exposures.

Novel View and Time Synthesis. We also evaluate novel
view and time synthesis to demonstrate our method’s ability
to handle dynamic scenes with sparse temporal sampling.
Following NSFF [19], we remove every other frame from
the original video sequences during training, and use the in-
termediate frames at held-out camera viewpoints for testing.
To render a new frame in fractional time, we adopt the scene
motion—based splatting approach: we predict the volumetric
density and color from the two nearest training frames, warp
them via our scene flow, and then blend them linearly accord-
ing to the target time index. After reconstructing the scene
in HDR, we apply the learned tone-mapping function to con-
vert it to LDR for direct comparison against the ground-truth
intermediate frames. Tables 2 and 3 show that our results
outperform competing models across all evaluation metrics.

Ablation study. We analyze the impact of our proposed
semantic-based optical flow on the novel view synthesis task
using 8 real dataset samples. We compare two variants of
our method: (1) Ours (w/ RAFT), in which the RAFT op-
tical flow is used without modification, and (2) Ours (w/
RAFT Finetuned), where RAFT is fine-tuned on synthetic
multi-exposure data. Note that, as shown in Figure 3, the
original RAFT model was not trained on multi-exposed im-
ages, resulting in high errors when applied directly in our
setting. By fine-tuning it on synthetic data, the performance
is improved. As shown in Table 4, our proposed method
achieves the best results.
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Figure 7. Qualitative results on novel LDR/HDR view synthesis. We visualize LDR rendering results at varying exposure levels (low, mid,
and high), tone-mapped HDR rendering by ours and corresponding ground-truth HDR references. We also visualize histograms of our HDR
images (the upper) and ground truth (the lower). For better visualization, we plot HDR histogram using smoothed kde method.

4.3. Qualitative Results

LDR reconstruction. We qualitatively assess our method’s
ability to render novel views on the real-world multi-
exposure dataset. This indicates that our HDR-NSFF con-
sistently preserves fine geometric details and color accuracy
compared to other baselines. Because our model simultane-
ously learns geometry and a camera-specific tone-mapping
module, it not only reconstructs dynamic scenes more faith-
fully but also generalizes to new exposure levels. that our
method captures both the scene structure and the camera’s
response function more accurately, leading to sharper images
and fewer artifacts even from unseen viewpoints.

We further demonstrate the capability of our approach to
handle time synthesis under multi-exposure conditions. In
contrast to methods that do not explicitly model 3D motion,
our HDR-NSFF leverages scene flow to warp content from
adjacent frames, enabling smooth transitions at fractional
time steps. As shown in Figure 6, our model renders dynamic
objects with noticeably fewer motion artifacts, even when
the temporal gap is large due to their low frame-rate. This
is particularly beneficial in multi-exposure scenarios, where
high-FPS data acquisition is challenging. By accurately
modeling motion and exposure simultaneously, our approach
generates more coherent intermediate frames, outperforming
baselines that struggle with large inter-frame displacements.

HDR reconstruction. To validate the effectiveness of our
approach in HDR reconstruction, we conducted qualitative
comparisons between HDR rendering of our model and
ground-truth HDR images, as shown in Fig. 7. Tone-mapped
HDR views generated by our model (Tone-mapped HDR)
exhibit strong visual consistency with ground-truth HDR
images, particularly in preserving fine details in challenging

lighting scenarios, including both underexposed and overex-
posed regions.

We also visualize histograms of pixel intensity of tone-
mapped HDR images, demonstrating that our reconstructed
HDR images effectively cover the entire radiance range, ac-
curately recovering radiance values from very low to high
intensities, closely matching ground-truth distribution. Also,
we present novel LDR views rendered at multiple exposure
levels, demonstrating that our method successfully controls
exposure using specified exposure times, by accurately re-
constructing under and over saturation of the images.

5. Conclusion

In this work, we presented HDR-NSFF, a framework for
reconstructing dynamic HDR scenes from multi-exposure
video captured using a single camera. Our method tack-
les the inherent challenges of dynamic HDR reconstruc-
tion by simultaneously modeling intrinsic scene properties
and camera-specific imaging variations. Without relying
on uniform exposure assumptions or pre-calibrated camera
responses, our approach jointly estimates HDR radiance,
geometry, and 3D motion while learning tone-mapping pa-
rameters directly from multi-view LDR images. We also
introduce a robust optical flow estimation strategy that lever-
ages semantic cues to handle exposure variations, thereby
refining scene flow predictions even under challenging condi-
tions. Extensive evaluations on both real-world and synthetic
datasets demonstrate that HDR-NSFF significantly improves
rendering fidelity, geometric consistency, and temporal inter-
polation compared to other methods.
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