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Abstract: This paper presents the first decentralized method to enable real-world
6-DoF manipulation of a cable-suspended load using a team of Micro-Aerial Vehi-
cles (MAVs). Our method leverages multi-agent reinforcement learning (MARL)
to train an outer-loop control policy for each MAV. Unlike state-of-the-art con-
trollers that utilize a centralized scheme, our policy does not require global
states, inter-MAV communications, nor neighboring MAV information. Instead,
agents communicate implicitly through load pose observations alone, which en-
ables high scalability and flexibility. It also significantly reduces computing costs
during inference time, enabling onboard deployment of the policy. In addition,
we introduce a new action space design for the MAVs using linear acceleration
and body rates. This choice, combined with a robust low-level controller, en-
ables reliable sim-to-real transfer despite significant uncertainties caused by ca-
ble tension during dynamic 3D motion. We validate our method in various real-
world experiments, including full-pose control under load model uncertainties,
showing setpoint tracking performance comparable to the state-of-the-art central-
ized method. We also demonstrate cooperation amongst agents with heteroge-
neous control policies, and robustness to the complete in-flight loss of one MAV.
Videos of experiments: https://autonomousrobots.nl/paper_websites/
aerial-manipulation-marl
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Aerial Vehicles

1 Introduction

Autonomous Micro Aerial Vehicles (MAVs) offer great capability for transporting slung loads to
dangerous and remote locations [1]. While a single low-cost MAV has limited payload capacity,
collaborative teams of MAVs can transport significantly heavier loads. In addition, by connecting
each MAV with the load at different points using tethers, the full pose of the load can be controlled by
changing the position of the MAVs, yielding a cooperative cable-suspended manipulation solution,
which shows great potential for aerial-based construction, inspection, and resecuring [2, 3, 4, 5, 6].

To coordinate and control MAV fleets, the state-of-the-art method [6] employs a centralized frame-
work that accurately captures the strong dynamical coupling between the MAVs and the suspended
load. This ensures safety and stability while addressing the significant underactuation inherent to
cable-suspended systems, preventing actuator saturations and reciprocal collisions. However, using
centralized control strategies for such systems suffers from critical drawbacks: computational com-
plexity tends to scale exponentially with the number of agents for many approaches, rendering real-
time control infeasible for larger teams with a centralized scheme [6, 7]. In addition, dependence on
global state information and centralized communication is often impractical due to limits on sensors
and communication bandwidth. A plausible solution, decentralization, remains an open challenge
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Simulation Real System

Figure 1: Multi-MAV lifting system performing full-pose control of a cable-suspended load. Left:
simulation environment used to train the decentralized outer-loop control policy. Right: policy
transferred to the real system.

to effectively coordinate MAV fleets due to partial observability, limited communication bandwidth,
and decision-making under strong dynamical coupling between agents while co-manipulating an
object.

In this work, we present the first decentralized algorithm to achieve a real-world demonstrated full-
pose manipulation of a cable-suspended payload using a team of MAVs. Our method leverages
multi-agent reinforcement learning (MARL) and does not require any inter-agent communica-
tion. Instead, each agent only takes their own state and identity, the load pose, and the target load
pose as observations. We train the policy through MARL in a centralized training with decentralized
execution (CTDE) paradigm using multi-agent proximal policy optimization (MAPPO) [8]. Each
MAV learns to communicate implicitly through the load pose information. To fill the sim-to-real gap
in this highly dynamic cooperative task, we design the action space of the reinforcement learning
(RL) policy as reference linear accelerations and body rates of the MAV and combine the RL policy
with a low-level controller based on incremental nonlinear dynamic inversion (INDI) [9, 10, 11].
The low-level controller follows the linear acceleration command with the body rate reference as
the feedforward commands, ensuring agile and smooth control maneuvers during the cooperative
manipulation.

Our method enables zero-shot transfer of the policy from simulation to real-world deployment to
achieve full-pose control accuracy comparable to the state-of-the-art centralized controller [6], and
is deployed fully onboard. In addition, experiments with real MAVs demonstrate that our method
remains robust under load model uncertainties, operates effectively in heterogeneous agent settings
where one MAV uses a different controller, and remains functional even when one of the MAVs
completely fails.

Our core contributions are as follows:

• The first method to achieve fully decentralized and onboard-deployed cooperative aerial
manipulation in experiments with real MAVs, without any inter-agent communication.

• A novel action space design for MAVs manipulating a cable-suspended load, together with
a robust low-level controller, enabling successful zero-shot sim-to-real transfer.

• First demonstration of robust full-pose control of the cable-suspended load under hetero-
geneous conditions and even under complete in-flight failure of an MAV.
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2 Related works

Cooperative aerial manipulation of a cable-suspended load typically embraces a centralized
paradigm to consider the cable-load-MAVs system as a whole and requires global state observations
to ensure safety and performance. Early research on multi-MAV cable-suspended load problems
often relied on model simplifications, such as assuming a quasi-static regime to ignore dynamic
coupling effects [12, 13, 14, 15], which cannot address force-related constraints and perform dy-
namic motions. Another class of methods leverages system flatness [16] and dynamic equations to
account for dynamic coupling effects. An example is the cascaded scheme, which employs an outer-
loop geometric controller to generate the commanded wrench for the load, distributes it as desired
cable tensions, and executes it through inner-loop controllers of MAVs [3, 17, 18, 19]. The outer-
loop controller can be replaced by various approaches, such as inverse dynamics control [20], linear
quadratic regulator [4], and nonlinear model predictive control (NMPC) [5]. Recent work [6] lever-
ages whole-body dynamics and NMPC to generate reference trajectories followed by an adaptive
low-level controller, showing high agility and accuracy.

However, these centralized methods require exponentially higher computational budgets and com-
munication burdens with the number of agents involved. Therefore, decentralized controllers, such
as distributed MPC [21, 22] have been proposed and tested in simulation to address the problem with
the computational issues. But these methods still require reliable inter-agent data transfer to obtain
real-time states from other agents, which does not fundamentally solve the problems with limited
communication bandwidth.

Multi-agent reinforcement learning has been extensively studied for complex multi-agent systems,
including cooperative scenarios [23, 24, 25]. Beyond achieving expert-level performance in video
games [26, 27], MARL has been successfully applied to robotics, enabling decentralized control
of multiple agents. For instance, researchers have leveraged MARL to develop cooperative strate-
gies in robot football [28, 29], as well as multi-robot object manipulation with quadrupedal robots,
including pushing [30] and cable-based towing [31]. Unlike our approach, these manipulation meth-
ods [30, 31] rely on neighboring agent information through communication or onboard perception.
In many cases, MARL is employed to optimize high-level task objectives while relying on mid- and
low-level controllers for motor and sub-task execution, capitalizing on RL’s ability to optimize a
long-horizon task-level objective [32].

Recent work by [33] demonstrates MARL’s potential for cooperative object manipulation using sim-
ulated humanoids, relying solely on object bounding box information without explicit inter-agent
communication. However, their approach depends on handcrafted reward functions that guide the
humanoids toward predefined grasping points and walking behaviors. In MAV applications, MARL
has been explored for tasks like swarming [34], but challenges remain due to the platform’s agility,
instability, and reliance on high-frequency, low-latency control [35]. Recently, MARL has shown
potential for training multi-MAV lifting systems using global state observations [36]. However, a
significant challenge remains to address the sim-to-real gap and partial observability, especially for
the multi-MAV lifting system, where dynamic uncertainties are substantial due to complex aerody-
namic disturbances and unknown cable tensions.

Our method effectively bridges this gap by leveraging multi-agent reinforcement learning (MARL)
to achieve the first real-world demonstration of decentralized aerial manipulation, operating with-
out global state observations or inter-agent communication. Furthermore, the method is deployed
entirely onboard, enabled by its computational efficiency.

3 Methods

An overview of the full approach is shown in Figure 2. Our method utilizes MARL to train an
outer-loop control policy, which generates reference accelerations and body rates for the low-level
controller in real-time based on local observations of the ego-MAV state, its robot ID, payload- and
goal pose. The low-level controller, including an INDI attitude controller, tracks these references
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Figure 2: Overview of our method. Dotted lines indicate components only for training; dashed lines
indicate those only for real-system deployment; solid lines for both. The training process involves
the centralized critic (which observes the privileged global state), direct access to MAV states, and
the actuator model that maps rotor speeds to thrust forces. Shared actors make decisions based on
local observations, without access to other agents’ states. The output actions, namely acceleration
and body rates, are tracked by a robust model-based low-level controller based on INDI.

based on the MAV model and accelerometer measurements. The privileged full state is observed by
the centralized critic during training, which is discarded at execution time. Collected experience is
shared across actors to update the parameters of a shared policy. This enables training to be cen-
tralized while execution remains decentralized, allowing each agent to run the policy independently
onboard after zero-shot transfer from simulation to the real world.

We model cooperative aerial manipulation as a decentralized partially observable Markov deci-
sion process (Dec-POMDP) [37] with a shared reward function. A Dec-POMDP is defined by
⟨I,S,A,O,P,R, γ⟩, where I denotes the set of agents with the total number of agents being equal
to N , S is the environment state, A ={ai}Ni=1 is the joint action space of all agents, O ={oi}Ni=1

is each agent’s partial observation of the environment, P : S ×A → S is the transition model,
R : S ×A× S → R is the shared reward function and γ is the discount factor. At each timestep t,
the current state st ∈ S transitions to a new state st+1 based on the joint action at ∈ A and the tran-
sition function P . Each agent i then receives the shared reward as feedback from the environment.

Our approach employs the CTDE paradigm [38], utilizing privileged global state information during
training for the asymmetric centralized critic while relying solely on local observations for policy
execution. Each agent i has a policy πi : ωi(oi) → ai that maps its local observation, processed
through its observation function ωi, to an action ai. We implement parameter sharing across agents
(i.e., πi = πj ∀i, j), thus reducing πi to a homogeneous policy π. The set of observation functions
for all agents can be denoted as Ω = {ωi}Ni=1. The final decentralized partially observable problem
is thus defined by the tuple ⟨I,S,A,O,Ω,P,R, γ⟩

Observations and rewards The state of each MAV is given by x i =
[
pM,i, RM,i, vM,i, ωM,i

]
,

where pM,i ∈ R3 denotes the MAV’s position, RM,i ∈ R9 is the vector composed of elements of
its rotation matrix, vM,i ∈ R3 and ωM,i ∈ R3 denote its linear and angular velocities. We use the

subscript i to denote the i-th MAV. The state of the load is given by xL =
[
pL, RL, vL, ωL

]
where pL ∈ R3 denotes the load’s position, RL ∈ R9 is the vector composed of elements of its
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rotation matrix, vL ∈ R3 and ωL ∈ R3 denote its linear and angular velocities. The state of the goal
relative to the payload is denoted by xG =

[
dG, RG

]
where dG ∈ R3 and RG ∈ R9 represent the

goal position relative to the current load position and the vector composed of elements of its relative
rotation matrix from the current load orientation to the goal orientation respectively. All quantities
are described in the inertial world frame FI . The global state that is observable to the centralized
critic during training is then denoted as:

s =
[
xL, xG, xM,1, xM,2, · · · ,xM,N

]
(1)

Where N is the total number of MAVs. The local policies’ observation space only includes the load
pose, relative goal terms, their own respective MAV state, and a one-hot vector e i indicating their
identity to enable role differentiation among homogeneous agents, as the policy network parameters
are shared across all MAVs. The observation space for the i-th MAV is described as:

oi =
[
pL, RL, xG, xM,i, e i

]
(2)

As the problem is partially observable, we use a history of observations by stacking the current and
last 2 observations of the policy [39]. For a more detailed discussion on the history length, we refer
the readers to Appendix A.7.

We train the policies using MAPPO [8], a model-free MARL algorithm that extends PPO [40] with
CTDE. The reward at time t, denoted as rt, is defined as:

rt = rpost + rorit + rdown
t + ractt + rbrt + rthrustt (3)

Where rpost and rorit are rewards to track the goal position and orientation for the load, rdown
t encour-

ages the MAVs to aim their (proxy) downwash away from the load for stability against aerodynamic
disturbances, ractt and rbrt penalize action changes from the last time step and large body-rate outputs
respectively for smoother flight, rthrustt penalizes outputting large thrusts which encourages energy
efficiency. For a detailed reward formulation, we refer the readers to Appendix A.8.

Action space and low-level controller To balance reliable sim-to-real transfer with sufficient con-
trol authority, the choice of action space is critical. Prior work in single MAV control demonstrates
that high-level outputs (e.g., position or velocity) enhance robustness to disturbances and sim-to-real
gaps but limit performance, whereas low-level outputs (e.g., snap) improve tracking precision at the
cost of larger transfer discrepancies [41, 42]. To address this trade-off, we propose a mid-level action
space in desired accelerations and body rates (ACCBR). This approach preserves adequate control
capability while also being robust against uncertain disturbances and model mismatches from the
cable-suspended load.

The low-level controller converts the acceleration reference ai,ref from the outer-loop policy to the
thrust direction command through the following acceleration controller:

z i,des =
ai,ref − g − fi,ext/mi

∥ai,ref − g − fi,ext/mi∥
, fi,ext = miai,filtered − fi,filtered (4)

where external forces fext, primarily due to the cable tensions, are estimated using the MAV mass
mi, filtered accelerometer measurements ai,filtered and collective thrust fi,filtered computed from
a classical quadratic thrust model and filtered rotor speed feedbacks [11]. The desired attitude
command and the policy output body-rate command are then sent to the INDI attitude controller
to generate rotor speed commands. We refer readers to [9, 10, 11] for further details on INDI.

Training setup We train our method completely in simulation and achieve zero-shot transfer to
real-world experiments. The simulation environment is built using NVIDIA’s Isaac Lab [43], and
the MARL algorithms are modified from [44]. Training was conducted on a consumer-grade
RTX 3090 GPU and completed in 17 hours. The network architecture is a 4-layer MLP of size
[1024, 512, 256, 128] for both the shared policies and the centralized critic. The inputs to the net-
work are normalized stacked observation histories with history size H = 3. For a complete overview
of training details, network and agent parameters, we refer the readers to Appendix A.9.
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The MAVs with a cable-suspended load spawn uniformly between −1 and 1 in xy, 0.5 and 1.5 in z,
with a random heading. The goal position is sampled from the same range, but also allows pitch and
roll of ±45◦. Despite sampling of the goal is limited to the predefined sets, the policy is still able to
generalize and reach goal poses outside of it during execution.

4 Experiments and Results

4.1 Real-world experiments
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Figure 3: Time series of pose tracking results comparing our
method and a centralized NMPC method [6]. Our method
also includes a setup with 4 MAVs.

Setpoint tracking Our real-world
experiments demonstrate agile pose
control of three MAVs with a cable-
suspended load, tracking a 2 m dis-
placement with (30°, -20°, -90°) at-
titude commands. We compare our
decentralized method with the state-
of-the-art centralized NMPC ap-
proach [6] in Figure 3. Despite be-
ing fully decentralized, our method
achieves comparable tracking per-
formance with positional and atti-
tude RMSEs of 0.52 m (vs 0.45 m)
and 22.93° (vs 16.24°), respectively.
Note that RMSE comparisons favor
NMPC as it tracks a reference trajec-
tory while we only track target poses, resulting in a larger RMSE in the transient area of the step
command. The time-to-target (error < 0.10 m/10◦) is 6.84 s for NMPC vs. 8.36 s for ours, and the
final displacement (RMSE) is 0.05 m /4.02◦ for NMPC vs. 0.04 m /5.78◦ for ours. We also show
successful pose control with 4 MAVs (without cable slack), resulting in tracking RMSEs of 0.92
m and 42.67°. The increased error, compared to the 3 MAV case, may be due to the system be-
coming overconstrained, which introduces more complex coordination and (cable) dynamics [18].
In terms of computational efficiency, we run the NMPC and our method onboard a Raspberry Pi 5
(2.4 GHz quad-core ARM Cortex-A76). Our method inferences in 6 ms at 100 Hz, versus NMPC’s
78 ms at 10 Hz. Crucially, while NMPC’s computation time grows exponentially with agent count,
e.g., 174 ms and 267 ms for 5 and 6 agents respectively, our agent-independent approach maintains
constant computation time regardless of team size.

Robustness against load model mismatch To evaluate robustness, we add objects (0.216 kg, 15.4%
of load mass) to the load, including four freely movable items that dynamically perturb both mass
distribution and center of mass. Despite no inertia randomization during training, the system main-
tains strong tracking performance (0.63 m vs 0.60 m position RMSE; 26.93° vs 26.49° attitude
RMSE. The low-level feedback controller automatically compensates for these disturbances, demon-
strating inherent robustness to model uncertainties. Experimental results are shown in Figure 4B.

Heterogeneous agents Although our policy is trained under the assumption of homogeneous agents,
it remains effective when deployed with heterogeneous agents. In this experiment, we let the load
hover at a fixed point. Then we hacked one of the MAVs by replacing its RL policy with a model-
based controller [11], and provided it with different setpoints to observe the behavior of the other
two MAVs controlled by the RL policy. Specifically, we commanded the hacked MAV to move
outwards on the y-axis by 0.7 m to pull the load away from the reference; we then commanded the
hacked MAV to move inwards by 0.3 m to push it closer to the other two MAVs. Figure 4A provides
a snapshot of the experiments. Since the policy is conditioned solely on the load pose and not on
the states of the other agents, the two remaining MAVs utilizing the policy can compensate for load
pose deviations from the reference. In contrast, the fully observable policy fails in these conditions
due to the dependence on the states of all agents. Time series can be found in Appendix A.3.
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Figure 4: Real-world experiments. (A) Snapshot of the test with heterogeneous agents in which one
MAV is manually controlled (hacked) to pull out and push in, and the other two MAVs counteract
the interference of the hacked MAV. (B) Snapshot of the test where additional load is added to the
original load, and the pose error with and without such model mismatch. (C) Snapshot of the case
where one MAV fails in flight and the remaining two MAVs manage to control the load.

In-flight failure of one MAV The effectiveness of our method with a heterogeneous agent setup
and robustness against load model uncertainties also offers strong fault tolerance in the case of agent
failure. In this experiment, we deliberately turned off the hacked MAV (one of the two on the same
side). As a result, the load was controlled by the remaining two MAVs. Note that with only two
MAVs, the load orientation around the line joining the remaining two attachment points becomes un-
actuated. Even worse, the failed MAV hangs underneath the load, leading to additional disturbances
to the post-failure system. Despite that, our method allows the other two MAVs to effectively control
the remaining 5 DoFs of the load. We show that the system is still able to yaw by -180° and is also
able to maintain position control by flying 0.5 meters down along the z-axis and maneuvering along
the y-axis by 1 meter. The tracking results and snapshots of the setup after the failure are seen in
Figure 4C. As in the heterogeneous agent case, the remaining agents can compensate for the miss-
ing MAV since the policy operates independently of other agents’ states, thereby avoiding unstable
behavior in out-of-distribution scenarios. In contrast, the fully observable policy fails under these
conditions due to its reliance on the states of all agents. Time series illustrating both scenarios can
be found in Appendix A.4.

4.2 Comparison among different action and observation spaces

We compare our selected observation and action spaces with alternatives in simulation for safety.
The Agilicious flight stack is used with the Gazebo simulator [45] and RotorS [46] plugins, which
add sensor noise, aerodynamic disturbances, and system latencies in a ROS environment. All poli-
cies are trained for 1 billion environment steps (10 h) and evaluated 10 times in Gazebo.

Action space We compare the ACCBR action space with three alternatives: velocity (VEL), linear
acceleration (ACC), and collective thrust with body rates (CTBR). The ACCBR, VEL, and ACC
outputs all utilize the same low-level controllers, which compensate for disturbances such as aero-
dynamic forces and cable tension. In contrast, CTBR outputs feed directly into the INDI attitude
controller without additional disturbance compensation.

The RMSE results in Table 1 demonstrate that the VEL action space achieves the best performance,
followed by ACCBR, while ACC fails to track the load orientation accurately. Notably, the widely
used CTBR approach [47, 32] fails to learn effectively. Since CTBR directly commands collective
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Action space Pos RMSE Att RMSE
ACCBR 0.64 ± 0.00 33.87 ± 0.91
CTBR∗ NaN NaN

ACC 0.54 ± 0.00 87.89 ± 1.85
VEL 0.56 ± 0.06 25.74 ± 1.49

∗Not able to take off

Table 1: Pose tracking RMSEs of different
action spaces at test time in the Gazebo envi-
ronment.

thrust without leveraging the proposed low-level controller’s disturbance compensation, we hypothe-
size that the unpredictable cable forces exerted on each MAV make the learning process prohibitively
difficult, as there are no cable force sensors mounted for both training and evaluations.

However, while VEL achieves lower RMSE, Figure 5 shows it causes hazardous oscillations. AC-
CBR offers more stable hovering despite higher initial errors, making it safer and preferable for
stability-critical tasks like inspection or delivery.
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Figure 6: Training curves of fully ob-
servable, partial augmented, and par-
tially observable observation spaces.

Observation space To benchmark the decentralized pol-
icy’s performance, we compare three observation space
cases: (1) the fully observable case with global state
s = [xL,xG,x1,x2,x3], (2) an augmented partial ob-
servability case where each MAV i also receives the load
twist and other MAVs’ positions ("Partial augmented")
oi = [xL,xG,pj1 ,pj2 ,xi, ei] with pj1 ,pj2 representing
the neighboring agents’ positions, and (3) the partially ob-
servable case. For partially observable cases, we include
observation histories (H = 3) to improve state estimation
and decision-making under uncertainty [39]. Figure 6 re-
veals comparable convergence across all configurations,
indicating that load pose alone serves as a sufficient statis-
tic for implicit MAV coordination, while the full global
state contains redundant elements.

5 Conclusion

We introduced a decentralized method using MARL that allows for full-pose control of a cable-
suspended load using three MAVs without any inter-MAV communication or neighboring MAV
information. The policy is computationally tractable and executes entirely onboard. We proposed
a novel action space of accelerations and body rates (ACCBR) along with a robust low-level con-
troller and showcase zero-shot transfer from simulation to real-world deployment. Extensive testing
with real MAVs shows that the setpoint tracking performance of our method is comparable to that of
the state-of-the-art centralized NMPC [6], despite being fully decentralized and having significantly
lower computation time. Our method demonstrates robustness against unknown disturbances, het-
erogeneous agents, and even the complete in-flight failure of one MAV. We attribute this resilience to
two key factors: 1) closed-loop reference tracking by the low-level controller, which maintains sta-
bility despite perturbations, 2) decentralized policy independence, where local agents operate with-
out dependence on neighboring states, preventing cascading failures. Our work shows promising
results to enable scalable and robust cooperative aerial manipulation with minimal onboard sensing
and no internal communications required.
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A Appendix

A.1 Limitations

Our method requires pose measurement of the load, which is not often practical beyond lab en-
vironments. In our experiment, we require an external motion capture system to provide high-
frequency load pose measurement. For future real-world outdoor deployment, onboard sensing
(e.g., a downward-facing camera for load pose estimation and SLAM for MAV localization) would
be necessary. This would introduce new challenges, such as observation delays, imperfect state es-
timates, sensor noise, and different reference frames for the load and MAVs that require alignment
and synchronization. Additionally, our current framework does not address obstacle avoidance, as
we assume collision-free paths to the goal—an unrealistic assumption in unstructured environments.
Future work will focus on integrating a robust perception stack and obstacle avoidance capabilities.

A.2 Experimental setup

Real-world evaluation setup We evaluate our method in real-world experiments. Our experiment
includes 3 MAVs built based on the Agilicious [48] flight stack. Each MAV is connected to a
basket-shaped payload with 1-meter cables at three distinct locations. The MAVs weigh 0.6kg, and
the payload weighs 1.4 kg. We conduct the experiment in an indoor flight space with motion capture
systems. We attach motion capture markers to the MAVs and the payload to measure their positions
and orientations and distribute them to each MAV through ROS at 100 Hz. The trained policy and
low-level controllers are deployed onboard each MAV. The policy is inferred at 100 Hz to send
acceleration and body-rate commands. The low-level controller is executed at 300 Hz to generate
rotor speed commands.

A.3 Heterogeneous agents time series

Push in
0.3 m

Pull out
0.7 m

Figure 7: Time series of the load pose in the heterogeneous agents scenario, comparing the perfor-
mance of the partially observable policy and the fully observable policy. The time points at which
control commands are issued to push the load inward by 0.3 m relative to the desired policy position,
or to pull it outward by 0.7 m, are indicated in green (push-in) and orange (pull-out), respectively.

Figure 7 compares the performance of partially observable and fully observable policies in the het-
erogeneous agents scenario. The partially observable policy, being independent of other agents’
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states, allows the unaffected MAVs to compensate for the hacked agent, maintaining system stabil-
ity. In contrast, the fully observable policy—which relies on neighboring agents’ states—performs
worse, exhibiting larger tracking errors (0.42 m vs. 0.28 m in position, 30.08 degrees vs. 8.88
degrees in attitude) and large oscillations during the inward push.

A.4 In-flight failure of one MAV time series

Failure 
moment

Figure 8: Time series of load pose in the in-flight failure of one MAV case without sending any
commands, comparing a partially observable policy vs a fully observable policy. The thick purple
line indicates the moment the MAV fails.

Failure 
moment

Figure 9: Time series of load pose in the in-flight failure of one MAV case, comparing a partially
observable policy vs a fully observable policy. An attitude command is sent after 10 seconds and a
positional command after 20 seconds. The thick purple line indicates the moment the MAV fails.
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Figures 8 and 9 show the tracking performance of the partially observable and fully observable
policies following an in-flight failure of one MAV. Figure 8 corresponds to the scenario in which
no additional command inputs are issued, whereas Figure 9 corresponds to the scenario in which
new attitude and position commands are introduced at t = 15 s and t = 25 s. In both scenarios,
the partially observable policy successfully compensates for the MAV failure. In contrast, the fully
observable policy exhibits strong oscillatory behavior, causing the suspended MAV to repeatedly
crash to the ground. When new pose commands are sent, the fully observable policy fails to track
them accurately, whereas the partially observable policy is still able to track 5 DoF. This results in
larger tracking errors for the fully observable policy, which incurs position and attitude root-mean-
square errors of 1.50 m and 73.37 degrees, respectively, compared to 0.67 m and 50.31 degrees for
the partially observable policy. The robustness of the partially observable policy is attributed to its
independence from the states of neighboring agents, which helps prevent cascading failures.

A.5 Trajectory tracking

Although our method is not trained for trajectory tracking, we evaluate its trajectory tracking capa-
bilities against that of the centralized NMPC [6] in Figure 10. The reference trajectory is a figure-
eight trajectory with a maximum velocity of 1 m/s and a maximum acceleration of 0.5 m/s2. It
is worth noting that our method only considers the reference pose information, while the NMPC
also takes velocity information from the reference trajectory into account. For future specialized
trajectory tasks, incorporating higher-order information such as velocity, as well as future reference
points [49] into the observations would significantly improve tracking performance and make for a
fairer comparison. Nonetheless, our method is able to successfully track the figure-eight trajectory,
albeit with a high tracking error. Our method achieves positional and attitude RMSEs of 0.82 m (vs
0.10 m), and 18.22 degrees (vs 4.80 degrees).
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Figure 10: Comparison of our method, which is not trained for trajectory tracking, against the
centralized NMPC in [6]. Left: top view of the flight path of the center of mass of the load while
tracking a figure-eight trajectory with a maximum velocity of 1 m/s and maximum acceleration of
0.5 m/s2. Right: position (top) and attitude (bottom) tracking errors time series.

A.6 Performance without centralized critic
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Figure 11: Training curves using a centralized
critic vs using a local critic.

To assess the impact of using a centralized critic
with access to privileged global state informa-
tion, we compare its performance against a pol-
icy trained with a shared local critic. The local
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critic has access only to local observations, which
are the same as those available to the actor. The
training curves in Figure 11 show that the setup
with the local critic fails to converge to the same
performance as with the centralized critic, and
even collapses at the end. Specifically, the policy
with the local critic fails to learn the position and
orientation rewards effectively. We hypothesize
that access to global state information allows the
centralized critic to produce more accurate value
estimates, which can indirectly support more ef-
fective credit assignment during learning [50],
thereby improving task performance.

A.7 Performance with different history lengths

We compare the performance of the partially observable policy with different history lengths in
the observation space. H = 1 means that the history only contains the observations of the cur-
rent timestep (no previous observations). All policies are trained on a limited budget of 2 billion
environment steps and are evaluated in the Gazebo environment.
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Figure 12: Training curves comparing different
history lengths for the partially observable policy.
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Figure 13: Mean reward of policies with differ-
ent history lengths over 10 runs at test time in the
Gazebo environment.

Figures 12 and 13 show that including historical observations has little impact on performance.
We hypothesize that the load’s pose—even without historical data—contains enough information
to estimate the other agents’ states, enabling implicit communication among the MAVs. Further
investigation into the role of history in more complex scenarios, such as those with higher noise or
additional MAVs, is left for future work.

A.8 Reward function formulation

The reward function components are formulated as:
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rpost = λ1 exp (−λ2 ∥pG − pL∥) ,
rorit = λ3 exp (−λ4θ(qG, qL)) ,

rdown
t = λ5

(
1− exp

(
−λ6 ·min

i
∥fint(pM,i, ti)− pL∥

))
,

ractt = λ7 exp
(
−∥(at − at−1)/N∥2

)
,

rbrt = λ8 exp (−∥ωt/N∥) ,
rthrustt = λ9 exp (−max(Tt/Tmax)) ,

(5)

Here pG and pL denote the goal and load positions respectively. θ(qG, qL) denotes the quaternion
error magnitude function which is calculated using the quaternion representation of the goal orien-
tation qG, and the load orientation qL. The error is calculated by taking the norm of the axis-angle
representation of the quaternion difference qG ⊗ q∗

L, where q∗
L is the conjugate of qL.

The function fint(pM,i, ti) computes the intersection point between two elements: the line defined
by the i-th MAV’s position pM,i and its thrust direction ti, and the plane containing the payload.
This payload plane is characterized by its normal vector n = ℓx × ℓy , where ℓx and ℓy represent
arbitrary vectors spanning the load’s local x-y plane. From all such intersection points computed
for each MAV, the operator min selects the closest one to the payload position, corresponding to the
most significant downwash effect.

The intersection calculation expands to:

fint(pM,i, ti) = pM,i +

(
d− n · pM,i

n · ti

)
ti (6)

where d = n · pL defines the payload plane’s offset from the origin through the payload position
pL.

The amount of MAVs is denoted by N , and a represents the control command, and ω the body
rate part of the control command. T ∈ R4N is the vector containing the rotor thrusts from each
MAV, which is then normalized by the maximum thrust output Tmax. λ1, λ2 · · ·λ9 are different
positive hyperparameters. All components are normalized by the simulation frequency. The chosen
hyperparameters are shown in Table 2.

A.9 Training configuration

The inputs to the network are normalized stacked observation histories with history size H = 3.
We also implement a form of advantage filtering [51] where 50% of the samples with the lowest
advantage magnitude are dropped. This approach prioritizes learning from the most informative state
transitions—specifically the underexplored extremes of the data distribution where actions have a
clearly better or worse outcome—thereby improving data efficiency during training. For a complete
overview of the network and agent parameters, we refer the readers to Table 3.

For setups with more than 3 MAVs, the mass of the load is sampled from a uniform distribution
between 1.0 and 1.8 kg (the mass of the real payload is 1.4 kg). For the 3-MAV setup, the cables
are modeled as rigid rods of 1 meter in length, connected to both the payload and the MAVs via
ball joints. When using more than 3 MAVs, the system becomes overconstrained, which can lead to
cable slack [12]. To address this, the cables are instead modeled as three rigid segments linked by
ball joints.

The episodes have a duration of 20 seconds, where a single goal pose is given to encourage sta-
ble hovering of the payload. The episode times out after 20 seconds, in which case the return is
bootstrapped using the value function estimate, or it terminates earlier if:

• any MAV or the payload is too close to the ground,

• the angle between the payload and the cable exceeds a certain threshold,
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• the angle between the cable and the MAV exceeds a certain threshold,

• cables collide with each other,

• MAVs collide with each other,

• any rigid body is outside a specified bounding box,

• any of the cable tensions are below a specified threshold. (> 3 MAVs)

Reward function weights The reward function weights shown in Table 2 are based on iterative
tuning in simulation and real-world experiments.

Reward weight Value
λ1 1.5
λ2 1.5
λ3 1.5
λ4 1.5
λ5 0.5
λ6 3.0
λ7 0.5
λ8 0.5
λ9 0.5

Table 2: Reward function weights

Hyperparameters of MAPPO The hyperparameters of MAPPO are shown in table 3. The names
of the parameters are based on the SKRL [44] learning library.

Hyperparameter Value
number of envs 4096

rollouts 128
learing epochs 5
mini batches 4

discount factor 0.99
gae lambda 0.95

learning rate actor 5e-4
learning rate critic 1e-4
state preprocessor RunningStandardScaler

shared state preprocessor RunningStandardScaler
value preprocessor RunningStandardScaler

grad norm clip 1.0
ratio clip 0.1
value clip 0.1

entropy loss scale 0.001
value loss scale 1.0

kl threshold 0.0

Table 3: MAPPO hyperparameters based on SKRL [44] learning library
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