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ABSTRACT

Quasar convexity is a condition that allows some first-order methods to efficiently
minimize a function even when the optimization landscape is non-convex. Previous
works develop near-optimal accelerated algorithms for minimizing this class of
functions, however, they require a subroutine of binary search which results in
multiple calls to gradient evaluations in each iteration, and consequently the total
number of gradient evaluations does not match a known lower bound. In this work,
we show that a recently proposed continuized Nesterov acceleration can be applied
to minimizing quasar convex functions and achieves the optimal bound with a
high probability. Furthermore, we find that the objective functions of training
generalized linear models (GLMs) satisfy quasar convexity, which broadens the
applicability of the relevant algorithms, while known practical examples of quasar
convexity in non-convex learning are sparse in the literature. We also show that if a
smooth and one-point strongly convex, Polyak-t.ojasiewicz, or quadratic-growth
function satisfies quasar convexity, then attaining an accelerated linear rate for
minimizing the function is possible under certain conditions, while acceleration is
not known in general for these classes of functions.

1 INTRODUCTION

Momentum has been the main workhorse for training machine learning models (Kingma & Bal [2015
Wilson et al.l [2017; |Loshchilov & Hutter, 2019; |Reddi et al., [2018; |He et al., [2016; [Simonyan &
Zisserman), 2015} |Krizhevsky et al., |2012). In convex learning and optimization, several momentum
methods have been developed under different machineries, which include the ones built on Nesterov’s
estimate sequence (Nesterov, [1983;|2013)), methods derived from ordinary differential equations and
continuous-time techniques, (Krichene et al.l 2015} |Scieur et al., 2017} |Attouch et al., 2018} [Su et al.,
2014;|Wibisono et al. 2016} Shi et al.| | 2018; [Diakonikolas & Orecchial 2019)), approaches based on
dynamical systems and control (Hu & Lessard} 2017 |Wilson et al.,|[2021), algorithms generated from
playing a two-player zero-sum game via no-regret learning strategies (Wang et al.||2021a; Wang &
Abernethyl |2018}; |Cohen et al.,2021)), and a recently introduced continuized acceleration (Even et al.|
2021)). On the other hand, in the non-convex world, despite numerous empirical evidence confirms
that momentum methods converge faster than gradient descent (GD) in several applications, see
e.g.,|Sutskever et al.|(2013)); Leclerc & Madry| (2020), first-order accelerated methods that provably
find a global optimal point are sparse in the literature. Indeed, there are just few results showing
acceleration over GD that we are aware. Wang et al.| (2021b) show Heavy Ball has an accelerated
linear rate for training an over-parametrized ReLLU network and a deep linear network, where the
accelerated linear rate has a square root dependency on the condition number of a neural tangent
kernel matrix at initialization, while the linear rate of GD depends linearly on the condition number.
A follow-up work of Wang et al.|(2022) shows that Heavy Ball has an acceleration for minimizing a
class of Polyak-tLojasiewicz functions (Polyakl [1963). When the goal is not finding a global optimal
point but a first-order stationary point, some benefits of incorporating the dynamic of momentum can
be shown (Cutkosky & Orabonal [2019; Cutkosky & Mehtal, 2021} |Levy et al.,2021)). Nevertheless,
theoretical-grounded momentum methods in non-convex optimization are still less investigated to our
knowledge.

With the goal of advancing the progress of momentum methods in non-convex optimization in mind,
we study efficiently solving min,, f(w), where the function f(-) satisfies quasar-convexity (Hinder
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et al., [2020; Hardt et al., 2018; Nesterov et al., 2019; |Guminov & Gasnikov, 2017;/Bu & Mesbahil,
2020), which is defined in the following. Under quasar convexity, it can be shown that GD or certain
momentum methods can globally minimize a function even when the optimization landscape is
non-convex.

Definition 1. (Quasar convexity) Let p > 0. Denote w, a global minimizer of f(-) : R? — R. The
function f(-) is p-quasar convex if for all w € R%, one has:

1
flw.) = f(w) + ;(Vf(w)’w* —w). (1
For j > 0, the function f(-) is (p, jt)-strongly quasar convex if for all w € R%, one has:

) 2 £(w) + 5 (9 fw) w. = w) + 5w = wl, @

For more characterizations of quasar convexity, we refer the reader to|Hinder et al.|(2020) (Appendix D
in the paper), where a thorough discussion is provided. Recall that a function f(-) is L-smooth if
f(@) < fly) + (Vf(y),z —y) + %[z — y|| for any = and y, where L > 0 is the smoothness
constant. For minimizing L-smooth and p-quasar convex functions, the algorithm of |[Hinder et al.

/ —w . . /2 || wo—w
(2020) takes O (%) number of iterations and O (% log (é)) total number

of function and gradient evaluations for getting an e-optimality gap. For L-smooth and (p, 11)-strongly

VL/k

quasar convex functions, the algorithm of [Hinder et al.[(2020) takes O < -

log (¥ )) number of

iterations and O (”i/“ log (%) log (LI/)“)> number of function and gradient evaluations, where
V = f(wo) — f(ws) + 4|20 — ws||?, and wo and z, are some initial points. Both results of
Hinder et al.| (2020) improve those in the previous works of [Nesterov et al.| (2019) and |(Guminov,

& Gasnikov| (2017) for minimizing quasar and strongly quasar convex functions. A lower bound

iz —w, . . Ce . .
Q (% on the number of gradient evaluations for minimizing quasar convex functions

via any first-order deterministic methods is also established in [Hinder et al.|(2020). The additional
logarithmic factors in the (upper bounds of the) number of gradient evaluations, compared to the
iteration complexity, result from a binary-search subroutine that is executed in each iteration to
determine the value of a specific parameter of the algorithm. A similar concern applies to [Bu &
Mesbahi| (2020)), where the algorithm assumes an oracle is available but its implementation needs
a subroutine which demands multiple function and gradient evaluations in each iteration. Hence,
the open questions are whether the additional logarithmic factors in the total number of gradient
evaluations can be removed and whether function evaluations are necessary for an accelerated method
to minimize quasar convex functions.

We answer them by showing an accelerated randomized algorithm that avoids the subroutine, makes
only one gradient call per iteration, and does not need function evaluations. Consequently, the
complexity of gradient calls does not incur the additional logarithmic factors as the previous works,
and, perhaps more importantly, the computational cost per iteration is significantly reduced. The
proposed algorithms are built on the continuized discretization technique that is recently introduced
by [Even et al| (2021) to the optimization community, which offers a nice way to implement a
continuous-time dynamic as a discrete-time algorithm. Specifically, the technique allows one to use
differential calculus to design and analyze an algorithm in continuous time, while the discretization
of the continuized process does not suffer any discretization error thanks to the fact that the Poisson
process can be simulated exactly. Our acceleration results in this paper champion the approach, and
provably showcase the advantage of momentum over GD for minimizing quasar convex functions.

While previous works of quasar convexity are theoretically interesting, a lingering issue is that few
examples are known in non-convex machine learning. While some synthetic functions are shown
in previous works (Hinder et al.| [2020} Nesterov et al.l 2019; |Guminov & Gasnikov} 2017), the
only practical non-convex learning applications that we are aware are given by Hardt et al.| (2018)),
where they show that for learning a class of linear dynamical systems, a relevant objective function
over a convex constraint set satisfies quasar convexity, and by [Foster et al.| (2018]), where they
show that a robust linear regression with Tukey’s biweight loss and a GLM with an increasing
link function satisfy quasar convexity, under the assumption that the link function has a bounded
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second derivative (which excludes the case of Leaky-ReLU). In this work, we find that the objective
functions of learning GLMs with link functions being logistic, quadratic, ReLU, or Leaky-ReLU
satisfy (strong) quasar convexity, under mild assumptions on the data distribution. We also establish
connections between strong quasar convexity and one-point convexity (Guille-Escuret et al.| 2022
Kleinberg et al., [2018)), the Polyak-Lojasiewicz (PL) condition (Polyak,|1963; |Karimi et al.,[2016)),
and the quadratic-growth (QG) condition (Drusvyatskiy & Lewis, [2018). Our findings suggest that
investigating minimizing quasar convex functions is not only theoretically interesting, but is also
practical for certain non-convex learning applications.

To summarize, our contributions include:

 For minimizing functions satisfying quasar convexity or strong quasar convexity, we show
that the continuized Nesterov acceleration not only has the optimal iteration complexity, but
also makes the same number of gradient calls required to get an expected e-optimality gap
or an e-gap with high probability. The continuized Nesterov acceleration avoids multiple
gradient calls in each iteration, in contrast to the previous works. We also propose an
accelerated algorithm that uses stochastic pseudo-gradients for learning a class of GLMs.

* We find that GLMs with various link functions satisfy quasar convexity. Moreover, we
show that if a smooth one-point convex, PL, or QG function satisfies quasar convexity,
then acceleration for minimizing the function is possible under certain conditions, while
acceleration over GD is not known for these classes of functions in general in the literature.

2 PRELIMINARIES

Related works of gradient-based algorithms for structured non-convex optimization:
Studying gradient-based algorithms under some relaxed notions of convexity has seen a growing
interest in non-convex optimization, e.g., (Gower et al.,|2021} |Vaswani et al., 2019; 2022} Jin} 2020).
These variegated notions include one-point convexity (Guille-Escuret et al.| [2022} [Kleinberg et al.,
2018)), the PL condition (Polyakl [1963} [Karimi et al., [2016), the QG condition (Drusvyatskiy &
Lewis) 2018)), the error bound condition (Luo & Tseng, |1993}; |Drusvyatskiy & Lewis,|2018), local
quasi convexity (Hazan et al., 2016), the regularity condition (Chi et al.,[2019), variational coherence
(Zhou et al., 2017), and quasar convexity (Hinder et al., 2020; Hardt et al.| 2018} |[Nesterov et al.|
2019; |Guminov & Gasnikov, [2017;|Bu & Mesbahi, [2020). For more details, we refer the reader to
the references therein.

The continuized technique of designing optimization algorithms:

The continuized technique was introduced in |Aldous & Fill (2002) under the subject of Markov
chain and was recently used in optimization by |[Even et al.| (2021)), where they consider the following
random process and build a connection to Nesterov’s acceleration (Nesterov, |1983}[2013):

dwy = (20 — we)dt — vV f (wy)dN(t)

3
dzy = ) (wr — 2)dt — A}V F(w)AN (D), )

in which n, 1}, v¢, 7, are parameters to be chosen and dN (t) is the Poisson point measure. More
precisely, one has dN (t) = >, <, 07, (dt), where the random times 7%, T5, ..., T}, . .. are such that
the increments Ty, Ty — 11, T3 — Tb, ... follow i.i.d. from the exponential distribution with mean
1 (so E[T] = k). Between the random times, the continuized process (3) reduces to a system of
ordinary differential equations:

dwt = 7]t(2’t — wt)dt (4)
dzy = n)(w — z)dt. (5)
At the random time T}, the dynamic (3)) is equivalent to taking GD steps:
wr, = wr,_ — 1,V f(wn,_) (6)
ATy, = 2Ty — ’Yé’k Vf(’LUka). )

A nice feature of this continuized technique is that one can implement the dynamic (3) without
causing any discretization error, thanks to the fact that the Poisson process can be simulated exactly.
In contrast, other continuous-time approaches (Krichene et al., 2015; [Scieur et al., 2017 |Attouch
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et al.| 2018 Su et al., [2014; [Wibisono et al., 2016} |Shi et al.l [2018; [Diakonikolas & Orecchia, 2019)
do not enjoy such a benefit. The formal statement of the continuized discretization is replicated as
follows.

Lemma 1. (Theorem 3 in|Even et al.|(2021)) The discretization of the continuized Nesterov accelera-
tion can be implemented as Wy := wr,, Uy = WT,,,—, 2k ‘= 21, Furthermore, the update of
the discretized process is in the following form:

O = Wy, + (2 — Wi) (®)
Wrt1 = Ok — Y41V f(Tk) )
Zrqr = 2+ 7 (0 — Zk) — g1 VI (0), (10)

where Ty, T}, Yk, ), are random parameters that are functions of 1, 1, v, and ;.

We replicate the proof of Lemma [I]in Appendix [B] Using the continuized technique, [Even et al.
(2021) analyze the continuized Nesterov acceleration for minimizing smooth convex functions
and smooth strongly convex functions with an application in asynchronous distributed optimization.

3  MAIN RESULTS: APPLICATION ASPECTS

3.1 EXAMPLES OF QUASAR CONVEXITY

We start by identifying a class of functions that satisfy quasar convexity. To get the ball rolling, we
need to introduce two notions first.

Definition 2. (C,-generalized variational coherence w.r.t. a function h(-,-)) Denote w,. € R% a
global minimizer of a function f(-). We say that the function f(-) is generalized variational coherent
with the parameter C,, > 0 if for all w € RY, one has: (V f(w),w — w,) > Cyh(w,w,), where
h(w,w,) : RY x R* — R is a non-negative function whose inputs are w and ws.

Observe that if a function is generalized variational coherent, then it is variational coherent, i.e.,
(Vf(w),w —w,) > 0, which is a condition that allows an almost-sure convergence to w, via mirror
descent (Zhou et al.; 2017). Also, when the non-negative function h(w, w,) is a squared /5 norm, i.e.,
h(w,w,) = [[w — w,]|3, it becomes one-point convexity, i.e., (V f(w),w — w,) > Cyllw — w,||3.
In the literature, a few non-convex learning problems have been shown to exhibit one-point convexity,
see e.g., [Yehudai & Shamir| (2020); |Sattar & Oymak] (2022)); |[Li & Yuan| (2017); Kleinberg et al.
(2018). However, (Guille-Escuret et al.|(2022)) recently show that for minimizing the class of functions
that are one-point convex w.r.t. a global minimizer w, and have gradient Lipschitzness in the sense
that ||V f(w) — Vf(w.)||2 < L||w — w.]|2 for any w € R? (which is called the upper error bound
condition in their terminology), GD is optimal among any first-order methods, which suggests that a
different condition than the upper error bound condition might be necessary to show acceleration
over GD for functions satisfying one-point convexity.

Definition 3. (Cj-generalized smoothness w.r.t. a function h(-,-)) Denote w, € R? a global
minimizer of a function f(-). We say that the function f(-) is generalized smooth with the parameter
Cy > 0 ifforall w € RY, one has: f(w) — f(w,) < Cih(w,w,), where h(w,w,) : RT x RT — R
is a non-negative function whose inputs are w and w.

We see that if a function f(-) is L-smooth w.r.t. a norm || - ||, then it is Z-generalized smooth w.r.t. the

square norm, i.e., h(w, w.) = ||w — w,||*.

Lemma 2. If f(-) is C,-generalized variational coherent and C)-generalized smooth w.r.t. the same

non-negative function h(-,-), then the function satisfies p-quasar convexity with p = gl

Proof. Using the definitions, we have f(w) — f(w.) < Cih(w,w,) < g—i(Vf(w), w—wy). O

Lemma could be viewed as a modified result of Lemma 5 in|Foster et al.| (2018), where the authors
show that a GLM with the link function having a bounded second derivative and a positive first
derivative satisfies quasar convexity. In the following, we provide three more examples of quasar
convexity, while the proofs are deferred to Appendix |C| For these examples, we assume that each
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sample z € R? is i.i.d. from a distribution D, and that there exists a w, € R? such that its label
is generated as y = o(w, x), where o(-) : R — R is the link function of a GLM. We consider
minimizing the square loss function:

2
f(w) :=Ezup [% (o(w'z) —y) } . (11)
3.1.1 EXAMPLE 1: (GLMS WITH INCREASING LINK FUNCTIONS)

Lemma 3. Suppose that the link function o(z) is Lo-Lipschitz and a-increasing, i.e., o’'(z) > a > 0
2
for all z > R. Then, the loss function is o®-generalized variational coherent and L20 -generalized

smooth w.rt. h(w,w,) = Eyp [((w — wy) "2)?]. Therefore, it is p = %—quasar convex.
0

L

An example of the link functions that satisfy the assumption is the Leaky-ReLU, i.e., o(z) =
max(az, z), where a > 0. If we further assume that the models w, w,, and the features z in
have finite length so that the input to the link function o (-) is bounded, then the logistic link function,
ie., 0(z) = (1 +exp(—2))~1, is another example.

3.1.2 EXAMPLE 2: (PHASE RETRIEVAL)

When the link function is quadratic, i.e., o(z) = 22, the objective function becomes that of phase
retrieval, see e.g., ' Yonel & Yazici| (2020); (Chi et al.| (2019). |White et al.| (2016)), [Yonel & Yazici
(2020) show that in the neighborhood of the global minimizers +w., the function satisfies one-point
convexity in terms of the /o norm when the data distribution D follows a Gaussian distribution,
for which a specialized initialization technique called the spectral initialization finds a point in the
neighborhood (Ma et al., 2020). As discussed earlier, one-point convexity is equivalent to generalized
coherence w.r.t. the square norm, i.e., h(w, w,) = ||w — w,||3. Therefore, by Lemma to show
quasar convexity for all w in the neighborhood of +w., it remains to show that the objective function
is generalized smooth w.r.t. the square norm |Jw — w,||3.

Lemma 4. Assume that there exists a finite constant Cr > 0 such that all w € R® in the balls o
radius R centered at +w, satisfy E,.p {((w + w*)Tx)2 Hx||§} < CR. Then, the loss function

is 1Cr-generalized smooth w.r.t. h(w,w,) = ||w — w.||3.

An example of the distribution D that satisfies the assumption in Lemma]is a Gaussian distribution.

3.1.3 EXAMPLE 3: (LEARNING A SINGLE RELU)

When the link function is ReLU, i.e., 0(z) = max{0, z}, Theorem 4.2 in|Yehudai & Shamir|(2020)
shows that under mild assumptions of the data distribution, e.g., D is a Gaussian, the objective
function is one-point convex in terms of the [, norm. Therefore, as the case of phase retrieval, it
remains to show generalized smoothness w.r.t. the square norm ||w — w,||3 for showing quasar
convexity.

Lemma 5. When the link function is ReLU, the loss function is 1By~ p[||z]|3]-generalized

smooth w.r.t. h(w,w,) = ||lw — w,||3.

3.2 EXAMPLES OF STRONG QUASAR CONVEXITY

In this subsection, we switch to investigate strong quasar convexity. We establish its connections to
one-point convexity, the PL condition, and the QG condition.

3.2.1 ONE-POINT CONVEX FUNCTIONS WITH QUASAR CONVEXITY

It turns out that if a C),-one-point convex function f(-) satisfies p-quasar convexity, then it also
satisfies strong quasar convexity. Specifically, we have the following lemma.

Lemma 6. Suppose that the function f(-) satisfies Cy,-one-point convexity and p-quasar convexity.

Then, it is also (p = 37 w= %)-stmngly quasar convex for any 6 > 1.

The proof is deferred to Appendix [C.4] By Lemmal6} phase retrieval and ReLU regression illustrated
in the previous subsection can also be strongly quasar convex.
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3.2.2 POLYAK-LOJASIEWICZ (PL) OR QUADRATIC-GROWTH (QG) FUNCTIONS WITH QUASAR
CONVEXITY

Recall that a function f(-) satisfies v-QG w.r.t. a global minimizer w, € R? if f(w) — f(w,) >
|lw — w.||* for some v > 0 and all w € R* (Drusvyatskiy & Lewis, 2018; [Karimi et al., 2016).
Recall also that a function f(-) satisfies v-PL if 2v(f(w) — f(w.)) < ||V f(w)]||? for some v > 0
and all w € R? (Karimi et al 2016)). It is known that a v-PL function satisfies v-QG, see e.g.,
Appendix A in Karimi et al.|(2016). The notion of PL has been discovered in various non-convex
problems recently (Altschuler et al., 2021;|Oymak & Soltanolkotabi, |2019; |Chizat, 2021; Merigot:
et al.,[2021). We show in Lernmabelow that if a »-QG function f(-) satisfies quasar convexity, then
it also satisfies strong quasar convexity.

Lemma 7. Suppose that the function f(-) is v-QG and p-quasar convex w.r.t. a global minimizer w,.

Then, it is also (p = pO, p = V(lg;e)

)-strongly quasar convex for any 6 < 1.

Lemma [§]in the following shows that GLMs with increasing link functions satisfy QG under certain
distributions D, e.g., Gaussian, and hence they are strongly quasar convex by Lemma([7]and Lemma 3]
Lemma 8. Following the setting of Lemma |3} assume that the smallest eigenvalue of the matrix
E,~plrz "] satisfies Amin(Ez~p|rx]) > 0. Then, the function is &*Amin(Ezp[z2T])-0G.

The proofs of Lemma([7]and Lemma 8] are available in Appendix [C.3]

4 MAIN RESULTS: ALGORITHMIC ASPECTS

We first analyze the continuized Nesterov acceleration (3)) and its discrete-time version (8)-(I0) for
minimizing quasar convex functions.

Theorem 1. Assume that the function f(-) is L-smooth and p-quasar convex. Let n; = %, n, =
0,7 = %, and v, = %. Then, the update wy of the continuized algorithm (3) satisfies

Elf(we) — f(ws)] < 2L||zo—w.|*

— p2t2
Furthermore, for the update Wy, of the discrete-time algorithm (8)-(I0), if the parameters are chosen

2/p
asm=1—( L ) ,Th = 0,9 = 1, and 7}, = 53, then

Tht1
E [T¢ (f(dr) — f(w.))] < wlzi)igwlﬁ

It is noted that the expectation E is with respect to the Poisson process, which is the only source of
randomness in the continuized Nesterov acceleration. By applying some concentration inequalities,
we can get a bound on the optimal gap with a high probability from Theorem

Corollari 1. The update wy, of the algorithm @— with the same parameters indicated in

satisﬁes Fliy) — fw,) < 2ellZo=well” it probability at least 1 — = — éfor any

Theorem T=0)?57k2

ce (0,1)and cy > 1.

Corollaryimplies that K = O (%) number of gradient calls is sufficient for the discrete-

time algorithm to get an e-optimality gap with a high probability, since the discrete-time algorithm
only queries one gradient in each iteration k.
Next we analyze the convergence rate for minimizing (p, pt)-strongly quasar-convex functions.
Theorem 2. Assume that the function f(-) is L-smooth and (p, u)-strongly quasar convex, where
p>0.Lety =+, v = ﬁ, n, = p\/E, and ny = /. Then, the update w, of the continuized
algorithm (3)) satisfies

E[f(wr) — f(w.)] < (F(wo) — fws) + &z0 — w.[2) exp (—py/ ).

Furthermore, for the update Wy, of the discrete-time algorithm (8)-(I0), if the parameters are chosen as

1 (1 _ T _ ; p(1—exp(—(14p) /2 (Thy1-Th))) -~ 1
T T4 (1 exp( (1+p)\/Z(TkH Tk))) Tl T ptexp(—(1+p) /& (Thi1—Tk)) k=T

E [exp (/T Tk) (f (1) = f(wi))] < f(io) = f(ws) + 5120 — wil?.
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Corollary 2. The update Wy, of the algorithm (8)-(10) with the same parameters indicated in

Theoremsatisﬁes f(r) = f(ws) < co (f(wo) — flws) + 520 — wil]?) exp (—py/E(1 = 0)k),
with probability at least 1 — ﬁ — éfor any c € (0,1) and ¢y > 1.

The proof of the above theorems and corollaries are available in Appendix [D] Denote V' :=
f(wo) — fw.) + &|Z0 — wi||. Theoremand Corollaryshow that the proposed algorithm takes

VL . . . . .
0] (p/” log (‘2)) number of iterations with the same number of gradient evaluations to get an

e-expected optimality gap and an e-optimality gap with a high probability respectively. Together
with Theorem [T]and Corollary [I] these theoretical results show that the continuized Nesterov accel-
eration has an advantage compared to the existing algorithms of minimizing quasar and strongly
quasar-convex functions (Hinder et al.} 2020; Bu & Mesbahi, [2020; |[Nesterov et al., 2019; Guminov,
& Gasnikov} |2017), as it avoids multiple gradient calls in each iteration and does not need function
evaluations to have an e-gap with a high probability. On the other hand, it should be emphasized that
the guarantees in the aforementioned works are deterministic bounds, while ours is an expected one
or a high-probability bound.

Recall Lemma suggests that C,,-one-point convexity and L-smoothness implies p = % quasar

convexity. Furthermore, Lemma6]states that 5 quasar convexity and C',-one-point convexity actually
implies (p = g,u = %)
Lemma@ we find that C',-one-point convexity and L-smoothness implies (p = 20w = L(6-1))-

L
strong quasar convexity, for any # > 1. By substituting (p = QLCOU , o = L(6 — 1)) into the complexity

-strongly quasar convex for any § > 1. By combining Lemma and

0] (”Lp/” log (‘2)) indicated by Corollary , we see that the required number of iterations to get

an e gap with high probability for minimizing functions that satisfy C',-one-point convexity and

L-smoothness via the proposed algorithm is O (CL \/% log (%)) =0 (CL log (%)) where we

simply let 6 = 2. On the other hand, |Guille-Escuret et al.| (2022) consider minimizing a class
of functions that satisfies C',-one-point convexity and a condition called the L-upper error bound
condition (L-EBT). A function satisfies L-EB™ if ||V f(w) — Vf(w.)||2 < L|jw — wy||2 for a
fixed minimizer w, and any w € R<. |Guille-Escuret et al.| (2022) show that the optimal iteration
lwr—w 3 _

complexity k to have Two—w 8 =

€ for minimizing the class of functions via any first-order algorithm

2
isk=0 ((CL> log (i)) and that the optimal complexity is simply attained by GD. Our result

does not contradict to this lower bound result, because L-smoothness and L-EB™ are different.
L-EB™ is about gradient Lipschitzness between a minimizer w, and any w, not for any pair of points
in R?, and hence does not imply L-smoothness. Also, L-smoothness does not imply L-EB™.

Lastly, it is noted that both theorems (and corollaries) require the L-smoothness condition. The reader
might raise a question whether the smoothness holds for the case when a GLM with the link function
is ReLU or Leaky-ReLU. For this case, it has been shown that the objective (T1) satisfies smoothness
when the data distribution is a Gaussian distribution, e.g., Lemma 5.2 in|Zhang et al.| (2018]).

Continuized accelerated algorithm with stochastic pseudo-gradients for GLMs: We also propose
a stochastic algorithm to recover an unknown GLM w, € R that generates the label 3 of a sample

r € R?viay = o(w, x), where o(-) is the link function. A natural metric for this task is the distance
to the unknown target w,, i.e., f(w) := 3|lw — w.||3, However, since we do not have access to

w,, we cannot use the gradients of f(-) for the update. Instead, let us consider using stochastic
pseudo-gradients, defined as g(w; §) := (o(w'z) — y) x, where £ := (z, y) represents a random
sample drawn from the data distribution. Assume that the first derivative of the link function is
positive, i.e., ’(-) > a > 0. Then, the expectation of the dot product between the pseudo-gradient
and the gradient V f(w) over the data distribution satisfies

Ee[(g(w;€), Vf(w))] = Ee[{(o(w ) —y) z,w — w.)] = Ez[((0(w @) — o(w]x)) z,w — w.)]

(a(w—rx)—o(w:x))

=E, |“——r o (w— w*)T:v)Q} > aEy [((U’ - w*)Tx)ﬂ ’

w'rz—w,x

(12)
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which implies that taking a negative of pseudo-gradient step should make progress on minimizing the
distance %||w — w, |3 on expectation when w has not converged to w,. That is, the update w1 =

—ng(wy; &) could be shown to converge to the target w, € RY under certain conditions, where
1 > 0 is the step size. In fact, this algorithm is called (stochastic) GLMtron in the literature (Kakade
et al., | 2011). We introduce a continuized acceleration of it in the following. But before that, let us
provide some necessary ingredients first.

Denote a matrix H(w) := E,[¢(w ' 2, w] x)xx "], where ¥(a,b) := %. When the data

matrix satisfies E;[zz "] = 61, for some § > 0 and when the derivative of the link function o (-)
satisfies o/(1) > a > 0, one has H(w) = uly > 0, where p := afl. We assume that for any
w € RY, it holds that E, [¢(w' 2, w/] z)?|z||3z2 "] < R?H(w) for some constant R? > 0, and

also that E,, [1/)(wa, w,) x)? ||:1:|\H(w) 1mrT] = RKH(w) for some constant & > 0, where we denote
2013y = 2T H(w) 'z and H(w)~" is the inverse of H(w). Define # := %2. Then, we
have & < k, because E, {w(wTa: w]2)?(|2]13 ) lqu < LBy [Y(wTz,wl2)?|z]3zaT] <
RTQH (w) = kH (w). The assumptions can be viewed as a generalization of the assumptions made in

Jain et al.|(2018)); Even et al.| (2021) for the standard least-square regression, in which case one has
o(z) = z and hence ¥(-,-) = 1.
Our continuized acceleration with stochastic pseudo-gradient steps can be formulated as:
dwy = ne(ze — we)dt — v [z g(we; €)AN (¢, €) a3)
dzy = mp(wy — z¢)dt — 7 [ g(we; E)AN(t,6),

where 1, 1}, Y, 7y, are parameters, £ € = represents an i.i.d. random variable associated with a sample
used to compute a stochastic pseudo gradient g(w; ), and dN(t,€) = Yp>16(7,, 5k)(dt dg) is the
Poisson point measure on R x =. We have Theoreml 3|in the following, and its proof is available
in Appendix [E] where we also provide a convergence guarantee of the discrete-time algorithm.

Theorem 3. (Continuized algorithm (13) for GLMs) Choose n; = \/ ==, 1t = \/ 752> Yt = 72>
1 ;
TR Then, the update w; of satisfies

E [ we = w. 3] < & (lhwo = w3 + ullz0 — w0l )1 ) ex0 (—v/Fort) -

and ~y; =

5 EXPERIMENTS

We compare the proposed continuized acceleration with GD and the accelerated method of Hin{
der et al. (2020) (AGD). For the method of Hinder et al.| (2020), we use their implementation
available online (Hinder et al.| 2021). Our first set of experiments consider optimizing the
empirical risks of GLMs with link functions being logistic, ReLU, and quadratic, i.e., solving

. 2 . . .
min,, - Y1, {% (c(w'z;) —y;) }, where n is the number of samples. Each data point z; is sam-
T

pled from the normal distribution N (0, I;) and the label y; is generated as y; = o(w, x;), where
ws ~ N(0, I4) is the true vector and o (-) is the link function. In the experiments, we set the number
of samples n = 1000 and the dimension d = 50. The initial point of all the algorithms wy € R? is
a close-to-zero point, and is sampled as wg ~ 1072¢, where ( ~ N (0, I). Since the continuized
acceleration has randomness due to the Poisson process, it was replicated 10 runs in the experiments,
and the averaged results over these runs are reported. Both the continuized acceleration and AGD
of Hinder et al.|(2021)) need the knowledge of L, p, and p for setting their parameters theoretically.
We instead use the grid search and report the result under the best configuration of these parameters
for each method. More precisely, we search L and j over {...,109,5 x 109,109 ...} with the
constraint that L > u, where ¢ € {—2,—1,...,4}, and search p € {0.01,0.1,0.5}.

Figure [I] shows the results, where we compare the performance of the algorithms in terms of the
function value versus iteration, the number of gradient calls, and CPU time (seconds). From the
first column of the figure, one can see that the proposed continuized acceleration is competitive with
AGD of |[Hinder et al.| (2020) in terms of the number of iterations. From the middle and the last
column, the continuized acceleration shows its promising results over AGD and GD when they are
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Figure 1: Comparison of the continuized Nesterov acceleration, GD, and AGD (Hinder et al.,|[2020).
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(a) Leaky-ReLU link (o = 0.01). (b) Leaky-ReLU link (¢ = 0.1) (c) Leaky-ReLU link (o« = 0.5)
Figure 2: Distance ||wy — wy]| v.s. iteration k.

measured in terms of the number of gradient calls and CPU time, which confirms that the cost of
AGD per iteration is indeed higher than the continuized acceleration and showcases the advantage of
the continuized acceleration. Our second set of experiments compare stochastic GLMtron and the
proposed continuized acceleration of it (accelerated stochastic GLMtron), in which both algorithms
randomly select a sample to compute a stochastic pseudo-gradient at each step of the update. We
consider learning a GLM with a Leaky-ReLU, i.e., 0(z) = max(«az, z) under different values of a.
Figure [2] shows the effectiveness of accelerated stochastic GLMtron, as it is significantly faster than
stochastic GLMtron for recovering the true vector w.

6 CONCLUSION

We show that the continuized Nesterov acceleration outperforms the previous accelerated methods
for minimizing quasar convex functions. Compared to the previous approaches, the continuized
discretization technique provides a relatively easy way to design and analyze an accelerated algorithm
for quasar convex functions. Hence, it would be interesting to check whether this technique could
offer any other benefits in non-convex optimization. Specifically, can the technique help design fast
algorithms for minimizing other classes of non-convex functions? On the other hand, while examples
of quasar convex functions are provided in this paper, a natural question is if this property holds
more broadly in modern machine learning applications. Exploring the possibilities might be another
interesting direction.
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A ALGORITHMS OF HINDER ET AL.|(2020)

We replicate the algorithms in |Hinder et al.| (2020) using our notations for the reader’s reference.
Their algorithms use a subroutine of binary search to determine the “mixing” parameter 7.

Algorithm 1: AGD for (p, u1)-strongly quasar convex function minimization in Hinder et al.
(2020)
1

1: Setr, =p %,ﬁk:%,and%:ﬁ
2: for k=0,1,...,K do

3: i < BINARYLINESEARCH (f, wy, 2k, b= B c=

5
M

= 0).
4 Tk < 1-— Q.

5: Ukzwk—‘er(Zk—wk).

6:  Wry1 = Vg — Y1 V. (0k).

7: Zk4+1 = 2k + 7',2('1)1c - Zk) — %HVf(vk).
8: end

9: return wg

Algorithm 2: AGD for p-quasar convex function minimization in |Hinder et al.| (2020)

1: Setp, =0, = %, and 7, = Liek, where 0;, = H‘T‘l (\/(0]@71)2 +4— 91@71) for k > 0 and

0., =1.
).

for k=0,1,... K do
ap < BINARYLINESEARCH (f, Wk, 2k, 0=0,c=p (i — 1) L€ =

R

Ok
Tk < 1— Q.
Ve = Wi + Tk(Zk- — wk)
Wry1 = Vk — Vo1V f (k).
Zey1 = 2k + T (VK — 2k) — Ve V. (0k).
end
return wg

WRe ANk w1

Algorithm 3: BINARYLINESEARCH(f, w, z, b, ¢, €,[guess]) (Hinder et al.| 2020)

1: Assumptions: f is L-smooth, w, z € R%; b, ¢, € > 0; “guess” (optional) is in [0, 1] if provided.
2: Define g(a) := f(aw + (1 — a)z) and p := bllw — z]|°.

3: if guess provided and cg(guess) + guess(g'(guess) — guess - p) < cg(1) + € then return
guess;,

if ¢’(1) < € + p then return 1;

else if c = 0 or g(0) < g(1) + £ then return 0;

_ __€&tp
T4+ 1 TTo—z2

lo < 0,hi< 7,0+ 7.
while cg(a) + a(g'(a) — ap) > cg(1) + € do
a < (lo + hi)/2
if g(a) < g(7) then
hi < «;
else
lo +— «;
end
9: return o.

A A
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B PROOF OF LEMMA[TI

Lemma|I| (Theorem 3 in|Even et al.|(2021)) The discretization of the continuized Nesterov accelera-
tion can be implemented as Wy 1= wry, Uk = WT, ., —, 2k ‘= 271, Furthermore, the update of
the discretized process is in the following form:

Ve :’LlN}]c—l-Tk(gk; —IT}]C) (14)
Wit1 = O — Y41 V.S (Or) (15)
Zyr = 2+ 7(0k — Zk) — A1 VI (0), (16)

where Ty, T}., Yk, 7, are random parameters that are functions of n,, 1}, v, and ;.

Proof. We replicate the proof in (Even et al.|[2021)) for completeness. Recall between random times,
we have the ODEs

dwy = (20 — wy)dt (17)
dzy = ny(wy — z)dt. (18)
Integrating from 7}, to Tp41—,
U =Wy, = WT, —|—7'1€(ZT,C —IUTk) :@k‘FTk(gk_ﬁ’k) (19)
s = 21y, + TH (W, — 21,) = 2+ T (W — Zk), (20)

where 75, and 7} depend on 7, and 7, respectively. Combing the above two equations, we have

. = 2k + T,;/(l e (O — ThZk) — Zk) = 2k + 71 (0k — Zk), (21)
where 7']; = 12’%» . Furthermore, from (EI) and , we have
Wht1 = Wy = WTy s — YTy VF(WT ) = Ok — Y13, VI (Ok), (22)
21 = ey = Tpr. — Vo, V(W) = 26 + (0 — Z1) — g, VF(O). (23)
Hence, Fi41 = 17,4, and 7,y = 7, -
O

C MISSING PROOFS IN SECTION 3]

C.1 PRrROOF OF LEMMA[3

Lemma Suppose that the link function o(z) is Lo-Lipschitz and a-increasing, i.e., o’'(z) > a > 0
2
forall z > R. Then, the loss function (|11)) is o-generalized variational coherent and L2° -generalized

smooth w.r.t. h(w,w,) = Egp [((w — w,) " x)?]. Therefore, the function isp= QLO‘; -quasar
0
convex.

Proof. We first show generalized variational coherence. We have
(Vi(w),w—ws) @ Eonp [(0(w'z) — o(w/] z)) o' (w'z)(w — ws, z)]

(:)EIND [(Aeroete ) o (w ) (w - w) To)?] oo
b

> &?Epp [((w —wy) " 2)?)

= o?h(w,w,),

where (a) uses that y = o(w, z), (b) uses that % >0aso'(-) > a > 0. Now let us

switch to show generalized smoothness. We have

f() = fw.) = Eanp [} (o(wT2) = o(w]2))’]

<BE, p[(w—w)T2)?] = Lh(w,w.),

(25)
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where the inequality is due to Lg- Lipschitzness of o(-). We can now invoke Lemmato conclude

that the objective function is p = 2‘3“ -quasar convex.

O

C.2 PROOF OF LEMMA[]

Lemma@ Assume that there exists a finite constant Cr > 0 such that all w € R in the balls o
radius R centered at +w, satisfy E,..p [((w + w*)Tx)2 Hx||§} < CR. Then, the loss function

is 1Cr-generalized smooth w.r.t. h(w,w,) = ||w — w.||3.

Proof. We have

f(w) = fw.) = Bomp [§ (0T 2)? = (w]2)?)?]
~Erp |5 (07 0) = (W]2) (WT2) + (w]0))| 20
1

1
< 5w = w.3Bonp [((w+w) ) 0l}] < SCRIw = w.l.

C.3 PROOF OF LEMMA[3]

Lemma |S| When the link function is ReLU, the loss function is 1B, p[||z||3]-generalized
smooth w.r.t. h(w,w,) = ||w — w,||3.

Proof. We have
fw) = f(w.) =Eq |} (o(wTe) = o(w]a)’| <Bs [} (wTa—wla)’]

1
<. | 3llw - w.ll} e

N[

< 5Ea(ll3][lw — w. 13,

where the first inequality uses that ReL.U is 1-Lipschitz. [

C.4 PROOF OF LEMMA[6]

Lemma@ Suppose that the function f(-) satisfies C\,-one-point convexity and p-quasar convexity.

F

Then, it is also (p = 37 w= -strongly quasar convex for any 0 > 1.

Proof. We have
flw) = f(w.)

IN

A<Vf(U)),w - U)*> = %(Vf(w),w - w*> - %(Vf(w),w - w*>
(28)

1

p
< %<Vf('w), 7’LU*> 767;101)Hw7w*”2v
where the last inequality uses the deﬁnition of C,-one-point convexity. Rearranging the above
inequality, we get f(ws) > f(w) + p/9 (Vf(w),w, —w) + 20”(02771)/’)”10* —wl|?. O
C.5 PROOF OF LEMMA [J]AND LEMMA [§]

Lemma Suppose that the function f(-) is v-QG and p-quasar convex w.r.t. a global minimizer w..

v(1—6
(19 ))

Then, it is also (p = po, u = -strongly quasar convex for any 6 < 1.

15
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Proof. By p-quasar convexity, we have
(Vf(w),w —w.) = p(f(w) = fws)) = pO(f(w) — f(w.)) + p(1 = 0)(f (w) — f(w.))
> p0(f (w) = f(we) + 252w — w2,

where the last inequality uses the definition of v-QG. Rearranging the above inequality, we get
flwe) > f(w) + /3—16,(Vf(w)7 wy — w) + wnw* — w||?, which shows the result. O

(29)

Lemma @r Following the setting of Lemma 3| assume that the smallest eigenvalue of the matrix
E,plrz '] satisfies Amin(Ez~p|rx]) > 0. Then, the function is &*Amin(Ezp[r27])-0G.

Proof. We have

fw) = f(wy) =Epp {; (g(wa) — J(w;rx))ﬂ
o(w'z) —o(w =z ?
o [ ]
> %azEmND [(w'z —w]z)?] G0
= 1042(11) —w,)  Epup [mx—r] (w — wy)

2

1
> §a2)‘min(Ez~D[xxT])Hw - w*sz

where the second-to-last inequality uses that the derivative of the link function satisfies o/ (-) > a.

O

D PROOF OF THEOREM [I] AND THEOREM 2]

Theorem Assume that the function f(-) is L-smooth and p-quasar convex. Let 1, = %, n =
0,7 = % and v, = %. Then, the update w; of the continuized algorithm (3)) satisfies

2L|z9 — wyl?

Elp(un) - fw) < 2]

Furthermore, for the update Wy, of the discrete-time algorithm (8)-(I0), if the parameters are chosen

2/p
1 _ [ Tx I— 0 A, — L ~r — pTk
asT =1 <Tk+1> ,kaO,’kaL,and'ykf 2L,then

E[TZ (f(dr) — f(w))] < 2L||50pgw*|_

Theorem 2| Assume that the function f(-) is L-smooth and (p, j1)-strongly quasar convex, where
w>0. Let v, = % = # n, = p\/%, and n, = \/% Then, the update w; of the continuized

algorithm (3) satisfies

E[f(we) = fw.)] < (Flwo) = F(w.) + §llz0 = we]?) exp (V}) .

Furthermore, for the update Wy, of the discrete-time algorithm (8)-(I0), if the parameters are chosen as

B _ p(1—exp(—(14+p)\/E(Thr1-T1))) ~
TR = ﬁ (1—exp (=1 + p)V/E(Thepr = T1))) 77, = p+exp(,(1+p)\/§L(Tk:ﬁTk)) k= 1

and 7;, = ﬁ, then

16
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The proof follows that of Theorem 2 in|Even et al.|(2021)) with some modifications to account for
(strong) quasar convexity. We will consider a Lyapunov function for the continuized process (3),
defined as:

o = Ay (f(wy) — flwy)) + %Hzt - w*||2' 3D

We will show that ¢ is a super-martingale under certain choices of parameters 7, 1}, ¢, Vi, A¢, and
B;. Let us first denote the process w; := (t, wy, 2¢), whose dynamic is:

1 0
dwy = b(wy)dt + G(wy)dN (t), blwy) = an-—wg , G(wy) = —%VUQWﬂ. (32)
i (we — 2¢) —YV f(wy)

Then, by Proposition 2 of |[Even et al.|(2021), we have

bt = do + / (V6(,), b(w,))ds + / (6 + G(@) — d(w)) ds + My, (33)

where M, is a martingale. Therefore, to show ¢, is a supermartingale, it suffices to show:
Iy == (Vo(wy), b(we)) + ¢(wy + G(wy)) — d(wy) < 0. (34)
For the first term of ;. we have

(Vo(wy),b(wy)) = 0rp(w) + (Quwd(y), e (26 — wy)) + (D2 (wy), Mt (wy — 2¢))
dA dB
= L (Fwn) — £) + 5tz wl? 35)
+ Ame(V f(we), 2e — wi) + Bemp(ze — i, 2¢ — wy).

By (p, p)-strongly quasar-convexity, we have

1
flwe) = flws) < ;<vf(wt)7wt —Wy) — g”wt —w.|]?. (36)
Furthermore, the following inequality holds,
1 2 2
(2t — wi,we — z¢) < *(||wt—w*|| =zt — wal%), (37)
because (zp —ws, Wy —2¢) = (2 — Wi, W — w*||2 < lze—wa|[|we —wi || = || 26 —wi||? <
L(llwe — wil]? = |20 — wa|?) Comblmng 1 5)-(37; j gives
1dA dA 1
(Vo). o)) < (392 = A ) (9w = )+ B = St ) gl — w2
dB,
- (dtt B Bt??t) Sllze = wel [ + Amne(V f (wr), 20 — w.).
(38)
For the second term of I;, we have
(W + G(wr)) — ¢(wr) = Ay (f(we — 9V f(we)) — fi)
(39)

4 B (e =9 1 0) =+ T H ) = 1= ).
Since by smoothness, we have
P30V F ()~ (1) < (VF (), 39 F )+ |1V 7 )| =~y L) |19 Flw)]

(40)
So the second term can be bounded as

P(wy + G(wy)) — d(we) < (Be(vy)? — Aeve(2 — L)) %va(wt)HQ — Bz — we, V f(wy)).
41)

17
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Combining (34), (38), @), we have

1dA dA 1
I < (pdtt - Atnt) (Vf(wy),ws —wy) + (Btm dtt ) §”wt —w,?
dB 1
+ (dtt - Bmt) —lze — wa||? + (Agme — Biy))(V f(wy), 2e — w.) (42)

(Bl — Aw(2 — L)) 3 IV S ()

Now let us determine the parameters 7, 1}, V¢, Vi, A and B;. We start by taking v; = % Since we
need I; < 0, we want to satisfy

1dA; dB; , , ,  dA; o A
- = — =B Ay = B Bin, = — B = —. 43
b dt s dt tT)ts t"t tVts tTh di H, t(’Yt) 7 (43)
Let us choose
_ Ay _ By, _ | B ’_ dAy pp_ pAimep Ay (44)
Vi LBt ) uis At LAt ’ N = dt Bt Bt = pu LBt )

which ensures that the last three conditions of {3)) are satisfied. It remains to show that the first two
hold:
1 dAt dBt - B o AtBt
Py at e~ = Pt = PR I

(45)

We have

d 1 dAt (a) Bt d 1 dBt( At
(Vi) o0/A, dt 2 L avVP) o0V/B; dt 2 T’ (46)

where (a) uses that dAt = pAym = pAy LB—Zt from , and (b) uses dBf = pu AtBt from .

The equations on (#6) imply that

j; VA) = ﬁ7 VB = Qfd (VAr). (47)

D.1 p-QUASAR-CONVEX

Proof. (of Theorem|[I)
For the case of u = 0, we choose Ay = 0 and By = 1. From , we have jt (vVBt) =050 that
B; = 1 and that %(\/At) =3 \F consequently, \/A; = p—= 5 \F From , we conclude v, = 7,
v = 2‘)}5 ,my =0,and n, = % Therefore, as ¢, is a super-martlngale, we get

E[Ar(f(wr) — f)] < Elér] < ¢o = |20 — w|? (48)

So we have
4L||z0 — wil?

E[.f(wT) - f*} < p2t2 (49)
This proves the first part of Theorem |}
The ODEs (@)-({3) become
2
dwt = ’I’]t(Zt — ’Ll)t)dt = E(Zt — u}t)dt (50)
dzy = ny(wy — z¢)dt = 0. (5D
Integrating the ODEs from time ¢ to ¢,
tO 2/p
Wy = 24, + <t> (Wi, — 2t,) (52)
Zt = ztO' (53)

18
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Using Lemmal[T]with tg = T}, t = Tj 41—, (52) becomes

2/p 2/p
L T, N Ty >
U, =2 | 1 — +w (54)
S ( <Tk+1) ) * (Tk+1
. . _— 7\ . .
This together with (8) implies that 7, = 1 — (Tk4;1> , while comparing (20) and (53) leads to

"__ A A _ 1 At — pT ;
7, = 0and 7, = T = 0. Moreover, we have 7, = v, = ¢ and 7, = v, = 5. This proves

the second part of Theorem T}

O

D.2 (p,4)-STRONGLY QUASAR-CONVEX

Proof. (of Theorem2)
From ll we choose 1, = £, 7] = ﬁ n, = py/E e = /. We have

A = /Ay exp (;’\/@ By = /Ay fiexp (g\/@ | (55)

Then, we can conclude that
E[Ar(f(wr) — fo)] < Elpr] < ¢o = Ao (f(wo) — f(w.)) + AogHZo —w.*  (56)

So we have
BljGor) - £ < ((F) — f0) + Bl ) exp (=) 22) . 0

This proves the first part of Theorem 2}
The ODEs (@)-({) become

dwy = ne(ze — wy)dt = \/g(zt — wy)dt (58)
dzy = ny(wy — z¢)dt = p\/g(wt — z)dt. (59)
The solutions are
wy = pwio_:_pzto + wtlo ;PZtO exp <(1 + p)\/g(t - to)) (60)
— i (1= (<04 B t0))) Gy — ) 1)
2 = Pwigo—:-pzto I pZtoll'L;}to exp (_(1 4 p)\/g(t o t0)> (62)

. ﬁ”p (1 —exp (-(1 + p)\/g(t ~ to))> (wey — 24, ) (63)

Taking tg = T}, t = Ty11—, the above becomes

1
V) = Wy, + m (1 — exp <—(1 + p)\/E(Tde — Tk)>> (2k — U~)k) (64)
e =t T (1o (—0 4 BT -10) )@ -2) 69

Comparing equation (64) and , we know that 7 = 11 (1 — exp (= (1 + p)\/F (Tk+1 — Tk)))-
Furthermore, by using (64)), we get
1

1= 155 (L= exp (=(1 4 p) /T (Tirr = Th)))

- (B — Z).- (66)
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Based on ( ) | i and (2 i we conclude thatT (l_eXp(_(Hp)\E(THI_TH)) . Moreover, we
ﬁ+exp( (1+p) f(Tk+1—Tk))

have v, = fka = L and 7 'yk = 'yT = f This proves the second part of Theoreml

D.3 PROOF OF COROLLARY [I]AND COROLLARY[2]

Corollary [I;  The update Wy, of the algorithm (8)-(I0) with the same parameters indicated in
Theorem|l|satisfies f(wy) — f(wy) < %, with probability at least 1 — - — for any
ce (0,1)and cy > 1.

Proof. Using Markov’s inequality and Theorem[I] we get

- E[TZ (f (0r)— f (ws Zo—w.||*/p?
Pr [T2 (f(in) — f(w.)) = Co] < LERIII] o bz s”, (67)
Let Cp := c2L|Zo — w.||?/p?, where co > 1 is a universal constant. Then, with probability 1 — -~
T2 (f(@k) — f(w,)) < 2ol (68)
By Chebyshev’s inequality, we have Pr (|7 — E[Ty]| > cE[T]) < %, where ¢ > Ois a

universal constant. Hence, we have T}, > (1 — ¢)E[T};] = (1 — ¢)k with probability at least 1 — -,
where we used the fact that E[T;] = Var[T}] = k as T}, is the sum of k Poisson random variables
with mean 1. Combining this lower bound of T}, and (68)) leads to the result. O

Corollary 2t The update Wy, of the algorithm (8)-(I0) with the same parameters indicated in
Theorem||satisfies f (W) — f(w.) < co (f(Wo) — fws) + 4120 — ws|?) exp (—p/E(1 — )k),
with probability at least 1 — 7 — —for any ¢ € (0,1) and ¢y > 1.

Proof. Using Markov’s inequality and Theorem[2] we get

X LTy, k) — f(wx wo)— f(w L 120 —wx |

Pr [exp (p/ET:) (f ~fw) > Col < Ele p(pﬂn)c(gf(wk) f(w.))] < H@0)=1( *)Ctgu o—w.|l?

(69)

Let Cy := co (f(wo) — f(ws) + 41|20 — w4||?), where ¢y > 1 is a universal constant. Then, with
probability 1 — X,

exp (p/7Tk) (f (W) — f(ws)) < co ((f (o) — f(ws)) + 520 — w.?) (70)

By Chebyshev’s inequality, we have Pr (|Ty, — E[T}]| > cE[T}]) < %, where ¢ > O is a

universal constant. Hence, we have T}, > (1 — ¢)E[T}] = (1 — ¢)k with probability at least 1 — —3,
where we used the fact that E[T},] = Var[T}] = k as T}, is the sum of k& Poisson random variables
with mean 1. Combining this lower bound of T}, and leads to the result. O

E PROOF OF THEOREM[3]

Theorem@(Continuized algorithm for GLMSs) Choose ), = \/ 75z e = \/ 75z 1t = 72,
and v, = \/{71%2. Then, the update w; of satisfies
HR

1 1
B | glhoe = wl?] < 5 (oo — el 4 sllzo = ) o (= 2zt

Proof. Letus denote H; := H(w;) = E,[)(w/ z,w] z)xx ] and consider a Lyapunov function for
the continuized process (E[), defined as:

A B
b = Ww umﬁ+3w%—wmg+ 71)
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We first show that ¢ is a super-martingale under certain values of parameters 7, 1}, V¢, ¥4, A¢, and
B;. Let us denote the process w; := (t, wy, 2 ), which satisfies the following equation:

1 0
dw; = b(wy)dt + / G(wg; §)AN(t,6), b(wy) = [Ut( —wy)|, G(wg;€) = [’Ytg(’wt;f)] .
E Ui(wt — zt) —7:9(we; €)
(72)
Then, by Proposition 2 of [Even et al.|(2021), we have

t

¢t = o +/ I,ds + My, (73)
0

where M, is a martingale and I; is
Iy := (V(wy), b(wy)) + Ee[d(wr + G(we; €)) — d(wy)] (74)
For the first term of I;, we have

(Vo(wy), b(we)) = Dyp(wy) + (Quw (W), ne (20 — wy)) + (D2 (wy ), mj(wy — 21))

1dA; 1dB —
= *7f||wt wi|* + = tH t—w*\ﬁrl + A (wy — we, z¢ — wy) + By (z — wy, Hy Mwe — 20)).
2 dt 2 dt ¢
(75)
Since H; = E, [¢(w, x,w] z)zx "] = uly, we have
a2 < o el a6
Using (76), we have
1
Slhee = wel|? < g = w2 = S hwe = w2 )
Furthermore, the following inequalities hold,
1
(2 = wa, Hy Hwe = 21)) < S([we = wel[ 0 = [z = we[70)- (78)
This is because (z; — wy, H; "(wy — 2)) = (20 — we, Hy Y(wy — wy)) — ||z — w*||H_1 <
3 (Il = wall? 2 = e = w2 ).
Combining (73)-(78), we get
_ dA; dA:; \ 1
(V). bw)) < Tt = vl (B = ) Gl = .

dB 1
- ( dtt Bt%) §Hzt — w*lli;l + A (wy — wy, 2 — wy).

For the second term of I;, we have

E¢[p(w; + G(wy; §)) — d(wy)]

A, B, ,
— B | 5 (o = o) = wall? = hwr = ) + 5 (ot = o = wally s = = vl )|
_ Ayt PN B . ( 1)? 2 / 1
=E¢ | 5~ llg(ws O = Aeye{we — ws, g(we; ) + —5=llg(we; )1 — Bevilze — ws, Hi g(wy; )| -
(80)
Let us upper-bound the first two terms in (80). We have
E¢[llg(we; )11 = Eu[(o(w @) —y) z, (o (w] ) —y) z)]
= Eo [t (w; @, 0, 2)*(w, —w.) " 2)?|]]
(81)
= (wr — we, By [P(w] @, w] 2) |22 | wp — w.)
< R*(wy — wy, B, [w(ng,wjx)xxT] wy — wy)] = R?||lwy — w3,
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where in the last inequality we used

E, [Y(w] z,w]2)?|z|?z2x"] 2 R?E, [¢(w/ z,w]z)z2"] = R*H,. (82)

Furthermore, we have

Eel(g(we; €), we — w.)] = Eo[{(o(w " 2) — o(w) ) 2, wp — w.)]

83
— (wr — w.)TEa (w2 0T @)za T (wn — ) = — wolf.

Therefore, the first two terms in (80) can be bounded as

Eg At’)’t2

2 AyER? )
[g(we; )7 — Apve(we — wi, g(we; §)) | < 9 Ay ) lwe — willzg, . (84)
Now let us switch to upper-bound the last two terms in (80). We have

Ee[llg(we; )l 1] = o [(o(w/ @) —y) 2, H " (o(w ) — y) 7))

= E. [v(] o, wl2)((w — w.) o))} ]

(85)
= (wy = we, B [0(w] 2,0l 02 a0 ] wp - w,)
< RE,[(wy — we, (w] v, w] 2)ax” (w, —w.))] = Fllw; — w.|,,
where in the last inequality, we used the assumption that
E, [w(w:x,wjx)zﬂxﬂz,lx:ﬁ—r] < kB, [¢(w, z,w]x)zaT] = RH,. (86)

We also have
B (et — we Hy L g(n, €))] = Be [z — wa, By (o] 2) — o] 2)) 2)]
= B¢ [y{(z — ws, Hy "(w] 2, 0] 2)2zz " (0, —w,))] (87
= V{2 — We, wp — W),

So the last two terms in (80) can be bounded as

Be [P0 byt 91 — Bk — w7 g(ws )] < OIS
(88)
Therefore, combining (84), (88), and (80), we have
Ee[p(we + G(wy; €)) — d(we)]
< (22— a+ BOPE) s~y - Bt - s — ).

Combining (74), (79), and (89), we have:

dA, dA; 1
1< (= e ) =l (B = ) Gl =
dB 1
i ( i Bm£> Sz = wallf o + (A = Biyp) (wr — w2 —w) - (90)
Ay R? Bi(v,)%R
+ (tét — Ay + 775(20 ) l[ws = w.[F,

Now let us determine 7, 1;, V¢, ¥4, At, and B;. We start by taking v = #. We want I; < 0, so we
want to satisfy

A, 4B, dA, A,
i Ay, 7 By, Ay = Byy;, By = M Bi(1)? = R (28]

22
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Let us choose
t _ By, _ B, _ _dA M _ Amep _ Ay
Brr2 M4, RR2A; @t B, B, '\ERB,
which ensures that the last three conditions of @ are satisfied. It remains to show that the first two
hold:

92)

ddy B g, [AB
a 1t = by = | ERZ

dt
d 1 dAt a Bt d 1 dBt b) At
(/A :ﬂ/— Z(VBy) = :ﬂ/ 94
VA = 20/A, dt e @V P 2B, dt Fre Y
where (a) uses that dA’ = Ay = A/ = R2 T and (b) uses that dB' = B, = /= R2 iR from

(©2) and (©3). The equat10ns on (94) imply that

d? d
(VA = 4R2ﬁ, VB = 2VRR? . (VAy). 95)

Let us choose v; = % ! oz, e = \/=%=. We have

Ve = W =
VA= VAo ( /1?%2 > VB = VAsexp ( RR? t> 0

Then, we can conclude that
1 2 o AQ 2 BO 2
E[At§|\wt —w. "] < E[¢e] < ¢o = 7”“10 —w” + 7\\20 — Wellbrwey-1 ) - OD

So we have

1 1 (A B /
E[§H’U}t—w*||2] S IO ( 0||'LU0 w*||2+0||20_w*|§1(w0)1> exp (_ ~é2t) s (98)

and we have £ =pu from and we can choose Ay = 1. This proves Theoreml

(93)

Now let us switch to determine the corresponding parameters of the discrete-time algorithm (8)-(T0),
where the gradient V (w,) is now replaced with the stochastic pseudo-gradient g(w;; ;). The ODEs

@)-(3) become
dwy =y (2e — wy)dt = 4 /F;LRQ(% — wy)dt (99)

dzy = ny(wy — z)dt = /%m(wt — z)dt. (100)

The solutions are

Wy, + 2¢ Wy, — 2 jZ
wy = 02 0 + 02 Oexp (—2 ’%R2(t—t0)) (10])
1
= wy, + 3 (1 — exp (—2\ / /%/]J%Q (t— to))> (2t — Wyy) (102)
Wy, + 2 Zt, — W
Zt = to 5 to -+ to 5 to exp (—2 /%22 (t — t0)> (103)

1
= 20+ 5 <1 — exp <2, / f-ﬁ%? (t— to)>) (wr, — 24, ). (104)

Taking tg = T}, t = Tx41—, the above becomes

1

Vg = Wk + 5 (1 — exp (—2\/ PYD (Thy1 — Tk))) (2 — W) (105)
1

ZTyir_ = Zk t3 (1 — exp ( 24 =53 ~R2 (Thq1 — Tk))) (ks — Zg). (106)
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Comparing equation (1 and we know 7, = 3 (1 —exp (—2v/7gz (Te+1 — T))) and
7 =1(1—exp(— 21/ Tk+1 T)))- Furthermore by using (105)), we get

o 1
Wg — 2k =
1-4 (1 — exp (—2\/% Thit1 —
1—exp( =24/ 725 (Tip1 T
Based on lli and , we conclude that 7], = oo az st k)). Moreover, we

I+exp(—2y/ =25 (Thy1—Tx))

have . = y1, = 7z and 7 vk = ka = \/T We can now conclude that the corresponding

discrete-time algorithm under the above choice of parameters satisfies

1, . 1, . M
B |exp (/s ) gl — wul?] < (Gl P+ B0 — vl ) - 108

O
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