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Abstract
Many real-world systems can be usefully represented as sets of interacting components. Examples in-
clude computational systems, such as query processors and compilers; natural systems, such as cells
and ecosystems; and social systems, such as families and organizations. However, current approaches
to estimating potential outcomes and causal effects typically treat such systems as single units, rep-
resent them with a fixed set of variables, and assume a homogeneous data-generating process. In
this work, we study a compositional approach for estimating individual-level potential outcomes
and causal effects in structured systems, where each unit is represented by an instance-specific
composition of multiple heterogeneous components. The compositional approach decomposes unit-
level causal queries into more fine-grained queries, explicitly modeling how unit-level interventions
affect component-level outcomes to generate a unit’s outcome. We demonstrate this approach using
modular neural network architectures and show that it provides benefits for causal effect estimation
from observational data, such as accurate causal effect estimation for structured units, increased
sample efficiency, improved overlap between treatment and control groups, and compositional
generalization to units with unseen combinations of components. Remarkably, our results show that
compositional modeling can improve the accuracy of causal estimation even when component-level
outcomes are unobserved. We also create and use a set of real-world evaluation environments for
the empirical evaluation of compositional approaches for causal effect estimation and demonstrate
the role of composition structure, varying amounts of component-level data access, and component
heterogeneity in the performance of compositional models as compared to the non-compositional
approaches.
Keywords: Causal modeling, compositionality, systematic generalization

1. Introduction

Many applications require estimating individual-level potential outcomes and treatment effects,
including personalized medicine (Curth et al., 2024), individualized instruction (Kochmar et al.,
2022), and custom online advertising (Bottou et al., 2013). Standard approaches to heterogeneous
treatment effect estimation (e.g., Hill, 2011; Athey and Imbens, 2016; Wager and Athey, 2018;
Chernozhukov et al., 2018) typically assume that the units of analysis can be represented by a fixed
set of random variables that are sampled from a fixed causal graph, following a homogeneous data
generating process, known as unit homogeneity assumption (Holland, 1986).

However, many real-world systems are heterogeneous and modular — they decompose into
heterogeneous functional components that interact in various ways to produce system behavior
(Callebaut and Rasskin-Gutman, 2005; Johansson et al., 2022). Input data to such systems is often
structured, variable-sized, and sampled from different causal graphs, making it challenging to reason
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about the system’s behavior. An alternative approach to analyzing such systems is to exploit their
compositionality, assuming that the system behavior can be understood in terms of the behavior
of familiar re-usable components and how they are composed. Estimating individual treatment
effects for compositional systems is an important problem, particularly as the complexity of modern
technological systems increases. Modern computational systems such as databases, compilers, and
multi-agent systems can generate large amounts of experimental and observational data containing
fine-grained information about the structure and behavior of modular systems, which often remains
unused by the existing approaches for estimating causal effects.

(b) Unitary approach(a) Example structured units (c) Compositional approach
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Figure 1: Overview of key ideas: (a) Structured units: Units are composed of multiple heteroge-
neous components. Each color represents a distinct component. Treatment T is applied to the unit,
and the compositional system processes the inputs under intervention, returning potential outcomes.
(b) Unitary approach: Standard approaches to effect estimation flattens the underlying structure.
They use a fixed-size representation for each unit, aggregating component-level information to
estimate unit-level potential outcomes. (c) Compositional approach: The compositional approach
models each unit with an instance-specific structure. Component-level covariates Xj and outcomes
Yj are used to train each component model, and component-level outcomes are hierarchically aggre-
gated to estimate unit-level potential outcomes. Each color represents a distinct component model
with different parameters.

Figure 1 provides a schematic overview of causal inference for compositional systems and
how it is addressed by different approaches to causal estimation. Consider a relational database
query execution system with component operations such as scan, sort, aggregate, and
join. The system takes input including tables (e.g., A, B) and a query execution plan (e.g.,
scan(join(scan(A),scan(B)))) and returns a new table as output. Query executions rep-
resent the unit of analysis, and query plans explicitly describe the compositional and hierarchical
structure of those units — query executions consist of heterogeneous component operations that can
be combined in a vast number of different ways. In addition, the compositional structure of query
execution is instance-specific — the number, kind, and structure among components may differ
across each unit. These units can be represented as hierarchical graphs (e.g., parse-trees), where each
node is a component operation and edges represent the information flow between the components.

Given such a system, consider modeling the causal effect of memory size on execution time for
different query plans. This problem can be formulated as using observational data to estimate the
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individual-level effects of interventions on structured units.1 In real-world data on query execution,
interventions such as memory size might be chosen based on the structure and features of the query,
making the data observational. In the terminology of causal inference, each query execution is
a unit of analysis, the features of the relations are pre-treatment covariates, memory size is the
intervention, and execution time is the potential outcome (Rubin, 1974, 2005). We might also want
to predict the effects for a population of arbitrary query executions that contain novel combinations
of the component operations. In that case, it is desirable for the learned models to compositionally
generalize to units with unseen combinations of the components. Other real-world use-cases of
causal reasoning in structured data are discussed in the supplementary material (Section A).

Standard approaches to heterogeneous treatment effect estimation (e.g., Hill, 2011; Athey and
Imbens, 2016) typically ignore the underlying structure and represent each compositional unit using a
fixed-size feature representation, which poses several estimation and identifiability challenges. As the
structure and complexity of each unit vary, estimating effects at the unit level requires reasoning about
the similarity among the heterogeneous units in a high-dimensional space. Additionally, representing
all the units with the same features leads to sparse feature representation and aggregation of the
features of multiple instances of each component, causing identifiability challenges. We use the term
unitary models to denote these approaches that exclusively model unit-level quantities.

In contrast, we study a compositional approach to causal effect estimation for structured units
from observational data. This approach estimates the component-wise potential outcomes using
the observational data available for that component, pooled across each instance of the component
among units. It then forms an estimate of the unit-level potential outcomes and treatment effects
by aggregating the component-level estimates according to the given compositional structure. This
approach facilitates construction of instance-specific causal models (models whose structure changes
based on the specific components present in the specific units being modeled) using modular neural
network architectures to explicitly represent the components of each unit of analysis (Figure 1(c)).2

We formalize a novel compositional framework in the context of causal effects and potential
outcomes to facilitate the study of the compositional approach and provide a detailed analysis of the
unique benefits and costs of such an approach for accurate unit-level CATE estimation. We focus
on the case of hierarchically structured compositional systems without feedback and with simple
interactions because this represents the minimal compositional system necessary to understand the
key characteristics of the compositional approach and compare it to unitary modeling approaches.

We show that the compositional approach provides several novel benefits for causal inference
from observational data. The instance-specific model allows scalable causal effect estimation for
variable-size units by greatly reducing the inherent dimensionality of the task. Instance-specific
modular architectures are widely used in associational machine learning for modeling large-scale
natural language data, structured vision data, and sequential decision-making, providing sample
efficiency and computation benefits (Shazeer et al., 2016; Pfeiffer et al., 2023). However, only a
relatively sparse body of work in causal inference has focused on using instance-specific modular
models using hierarchical and relational data (Maier et al., 2013; Lee and Honavar, 2016; Salimi et al.,
2020; Ahsan et al., 2023), and even this work has been severely hampered by the lack of available
data from compositional domains. To address this gap, we introduce three novel and realistic

1. Here, individual-level effect estimation refers to conditional average treatment effect (CATE) estimation and heteroge-
neous treatment effect estimation (Athey and Imbens, 2016; Shalit et al., 2017; Künzel et al., 2019).

2. Modular neural network architectures are chosen as an implementation choice to demonstrate a compositional approach,
but component-wise causal estimation can be done using a variety of parametric and non-parametric model classes.
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evaluation environments to evaluate compositional approaches for causal effect estimation —
query execution in relational databases, matrix processing on different types of computer hardware,
and simulated manufacturing assembly line data based on a realistic simulator.

The modular structure incorporated in the compositional approach facilitates effect estimation for
units with unseen combinations of components, enabling compositional generalization. In various
fields of machine learning — computer vision (Andreas et al., 2016), language (Hupkes et al., 2020),
reinforcement learning (Peng et al., 2019), and program synthesis (Shi et al., 2024), researchers
have studied the compositional generalization capabilities of the modular approaches as compared to
non-modular approaches for prediction tasks (Bahdanau et al., 2019; Jarvis et al., 2023). However, a
study of the benefits of the compositional approach compared to the standard approaches is missing in
causal inference. We study the relative compositional generalization capabilities of compositional
and unitary approaches in estimating individual treatment effects for novel units.

Individual effect estimation from observational data requires assumptions such as ignorability
and overlap (Pearl, 2009; Rubin, 2005). Satisfying the overlap assumption becomes challenging
as the dimensionality of covariates increases (D’Amour et al., 2021). Learning lower-dimensional
representations of data that satisfies the ignorability and overlap assumption is desirable in such
situations (Johansson et al., 2016, 2022). Exploiting the compositionality of the underlying data-
generating process is one way to learn a lower dimensional representation, allowing better overlap
between treatment groups. We show that the compositional approach performs better than the
unitary approach as the distributional mismatch between the treatment and control groups
increases, especially in cases where treatment is assigned based on the unit’s structure.

Despite these potential benefits, learning compositional models for effect estimation has pitfalls,
including larger numbers of parameters to estimate, sensitivity to individual components, and errors
in modeling component interactions. In this paper, we analyze the role of component-level data
access, composition structure, and heterogeneity in component function complexity in the
relative performance of the compositional approach. For example, we observe that compositional
and unitary approaches perform similarly when modeling systems with homogeneous component
functions—such as matrix processing—where a single component (e.g., matrix multiplication)
dominates the overall unit-level outcome and all component outcome functions belong to the same
polynomial class. See Section 5 for additional pitfalls.

Note: We include a detailed discussion of the related work in the appendix (Section B).

2. Compositional Framework for Causal Effect Estimation

Below, we describe the compositional data-generating process in modular systems, provide the
estimands of interest at the unit and component levels, and discuss identifiability assumptions.

Preliminaries: Assume that each unit i has pre-treatment covariates Xi = x ∈ X ⊂ Rd, a binary
treatment Ti ∈ {0, 1}, and two potential outcomes {Yi(0), Yi(1)} ∈ Y ⊂ R (Rubin, 1974, 2005).
In observational data, we only observe one of the potential outcomes for each unit, Yi = Yi(Ti),
known as the observed or factual outcome. The missing outcomes YiCF = Yi(1− Ti) are known as
unobserved or counterfactual outcomes. Conditional average treatment effect (CATE) is defined as
τ(x) : E[Yi(1) − Yi(0)|Xi = x]. Estimating CATE requires assumptions of ignorability, overlap,
and consistency (Rosenbaum and Rubin, 1983). Under these assumptions, τ(x) is identifiable by
τ(x) = E[Yi|Xi = x, T = 1]−E[Yi|Xi = x, T = 0] (Pearl, 2009). CATE estimation typically uses
direct outcome modeling with treatment as a feature, separate regression models (Künzel et al., 2019),
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or propensity score methods (Kennedy, 2023). We illustrate the compositional approach by directly
estimating the potential outcomes using shared treatment.

2.1. Compositional data generating process

Consider a compositional system with k distinct and heterogeneous classes of components:M =
{M1,M2, . . .Mk}. All units share this set of reusable components. Each structured unit Qi :
(Gi, {Xij}j=1:mi) is described using an interaction graph Gi and a set of component-specific covari-
ates {Xij}j=1:mi , where mi denotes the number of components in unit i. Note that the number of
components mi can be greater than the number of distinct components k in the system, indicating
the presence of multiple instances of each component class in some or all units.

The graph Gi = (Ci, Ei) is a directed hierarchical tree representing component interactions
(Figure 1(a)), with nodes Ci and edges Ei. Each unit i contains components Ci = {c1, c2, . . . cmi},
where each component belongs to a class c ∈Mo, o ∈ {1, 2, . . . k}. Gi defines the processing order
of mi components for unit i, with instance-specific structure varying across units. Components
process structured units from top-to-bottom, with final output from the bottom-most node. For an
edge cj → cj′ , cj is the parent and cj′ the child component. PaGi(cj′) denotes indices of components
with direct edges to cj′ . Component j’s covariates are Xij ∈ Rdj , where subscript i denotes the unit
and j denotes the component instance.

Shared treatment and treatment assignment mechanism in structured units: A unit-level
treatment Ti is selected for each unit, affecting the potential outcomes of some or all components
through shared or distinct mechanisms. While the compositional framework allows component-
specific treatment analysis, we focus on unit-level treatments to facilitate a direct comparison of the
compositional and unitary approaches. The treatment assignment mechanism P (Ti = 1|Qi = q)
depends on both the graph structure and joint covariate distribution, introducing two sources of
observational bias: (1) distribution shift among the covariates; and (2) distribution shift in the
structure and composition of the components between treatment groups.

Unit-level outcome and fine-grained outcomes: Let Yi(t) denote the unit-level and {Yij(t)}j=1:mi

denote the component-level potential outcomes under treatment t for unit Qi. The interaction graph
Gi also defines the causal dependencies among potential outcomes. We make the causal Markov
assumption for components in the graph Gi that the potential outcome of a component j directly
depends on the component’s covariates Xj , shared treatment Ti and the outcomes from the parent
components. For component class o ∈ {1, 2, . . . k}, let µot denote the ground-truth expected poten-
tial outcome function, shared across instances of the same component. If component-level noise is
assumed to be zero-mean random variables ϵo(0), ϵo(1) and cj ∈Mo,3 the data-generating process
for Yij(t), j ∈ {1, 2, . . .mi} and t ∈ {0, 1}:

Yij(t) = µot(Xij , {Yil(t)}{l∈Pa(cj)}) + ϵio(t). (1)

The unit-level potential outcome is generated by aggregating component outcomes via an instance-
specific function g: Yi(t) = g(Yi1(t), Yi2(t) . . . Yimi(t), Gi). For composition in the hierarchical
graph, the data-generating process of each component’s outcome already takes the input from the
parent’s outcome, following Markov dependence (Equation 1). We can define these outcomes
cumulatively, meaning we aggregate them up as we go along, so that the final component’s outcome

3. Additive noise simplifies modeling conditional distributions of component potential outcomes in Section 3.1, though
the compositional approach also extends to non-additive noise.
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represents the complete unit-level outcome, Yi(t) = Yimi(t), where mi indicates the last component
in Gi. For example, consider query execution time: rather than measuring each component’s time
separately, we can measure the accumulated time of each component and all its parent components.
In Figure 1(c), this cumulative approach means we can use the final sequential scan’s outcome for
Q1 as the total execution time of the unit. This formulation allows us to learn the instance-specific
aggregation functions and unit outcomes as part of learning the component potential outcomes.

Note on a formal definition of causal compositionality: A mathematically precise definition of
compositionality is an active research area in machine learning (Ram et al., 2024; Elmoznino et al.,
2025). Given the state of the current literature, our work adopts a data-generating process view of
compositionality inspired by real-world computational systems with explicit causal mechanisms.
More specifically, compositionality in our work is defined through: (1) structured units with instance-
specific compositions; and (2) component interactions that are formalized through an interaction
graph and the Markov assumption (Equation 1). Previous work in machine learning has used a similar
data-generating process view to develop compositional approaches (Andreas et al., 2016; Wiedemer
et al., 2024). We also provide a graphical plate notation-based representation of the compositional
data generating process in Section C.

2.2. Unitary representation of compositional data

As already mentioned, an alternative to a compositional model is a unitary model in which units
are represented by a single, fixed-size, high-dimensional feature vector, Xi ∈ Rd that represents
some aggregation of the component level input features {Xij}mi

j=1. For simplicity in our experiments,
we assume the mean aggregation function (i.e., for No occurrences of component class o in unit i,
Xio =

1
No

∑
j,cj∈Mo

Xij). Similarly, corresponding outcomes are also aggregated. To fairly compare
the unitary and compositional approaches, we also incorporate structural information by including
the number of instances of each component Njl present in each unit at each tree depth with maximum
depth L: X = [X1,X2, . . .Xk, N11, N12 . . . NkL].

2.3. Causal Estimands

The CATE for a structured unit q is conditional on both the structure Gi and the set of component-
level features {xij}j=1:mi . Taking the conditional expectation with respect to the structure and
variable-length representation of the units allows a more accurate definition of the CATE for compo-
sitional units than the standard unitary representation. For ease of notation to describe conditional
distributions, we denote the combined inputs to a component j as Zj(t) = (Xj , {Yl(t)}l∈Pa(Cj)).

Definition 1 The conditional-average treatment effect (CATE) estimand for structured input Qi = q
is defined as: τ(q) = E[Yi(1)− Yi(0)|Qi = q] = E[Yi(1)− Yi(0)|Qi = (Gi, {xij}j=1:mi)]

Definition 2 The conditional-average treatment effect (CATE) estimand for component j with
Xj = xj ∈ Rdj is defined as: τ(zj) = E[Yj(1)− Yj(0)|Zj = zj ].

We define the component-wise distributions as P (Yj(t)|Zj(t) = zj). In hierarchical composition,
the unit outcome equals the final component outcome: E[Yi(t)|Qi = q] = E[Yimi(t)|Qi = q]. This
conditional expectation can be expressed by marginalizing intermediate component outcomes using
the Markov assumption (Equation 1).

E[Yi(t)|Qi = q] =
∫
Yimi−1(t)

∫
Yimi−2(t)

· · ·
∫
Yi1(t)

E[Yimi(t)|Zimi(t)]
∏mi−1
j=1 P (Yij(t)|Zij(t))
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We use the following nested expectation expression as shorthand for marginalization over
intermediate component outcomes: E[Yi(t)|Qi = q] = EYi1:imi−1(t)[E[Yimi(t)|Zimi(t)]].

2.4. Identifiability assumptions

The key identifiability assumptions for component-level causal estimands are similar to those for
unit-level estimands — ignorability, consistency, and overlap. However, in structured units having
multiple heterogeneous components and instance-specific composition, it is more plausible for these
assumptions to hold for the component level rather than the unit level, particularly for ignorability
and overlap.

Ignorability: Component-level ignorability assumes that component level potential and assigned
treatment are independent conditioned on the components’ covariates, i.e., Yj(1), Yj(0) ⊥ T |Xj .
Component-level ignorability is based on the intuition that components are distinct heterogeneous
sub-systems that are specialized to process parts of the whole input. This suggests that a subset of
the unit-level high-dimensional covariates is sufficient to predict a component’s outcome, even when
treatment might have been assigned based on the structure of the components or joint distribution of
the component covariates. The component-level potential outcomes depend on both the component’s
pre-treatment covariates and the potential outcomes of the parent components. As the treatment
is assigned before any component’s potential outcomes are observed, we can assume that the
component’s covariates Xj are sufficient to satisfy ignorability assumptions.

Overlap: Component-level overlap assumes that overlap holds for the component level covariates
Xj = xj , i.e., ∀xj ∈ Xj , t ∈ {0, 1} : 0 < p(T = t|Xj = xj) < 1. When unit-level overlap holds,
component-level overlap is implied automatically for the feature subset. In compositional data, there
can be two sources for distribution mismatch. (1) Structure-based treatment assignment: Suppose
treatment depends strongly on graph structure (P (T = 1|G = g1) = 1, P (T = 1|G = g2) = 0). For
unitary representation including structural features Njl, the overlap assumption is violated for units
with the structures as g1 and g2, while overlap is maintained for compositional approaches as the
structure is incorporated as part of the model rather than input representation. If we exclude structural
information from unitary representation, then overlap is satisfied, but ignorability is violated because
the structure is a confounder affecting both Ti and Yi. (2) Covariate-based treatment assignment:
When treatment depends on the covariate distribution, both approaches’ identifiability relies on
overlap quality. Due to the compositional nature of units, violation of overlap for a component’s
covariates violates overlap for the unit-level and vice versa. However, due to the lower dimensionality
of the component’s covariates, the degree of distribution mismatch between the covariates is likely to
be lower than the unit-level high-dimensional covariates.

Identifiability for hierarchical composition: The CATE estimand for a structured unitQi = q is
identified by the following: τ(q) = EY1:mi−1 [E[Ymi |Zmi = zmi , T = 1]]− EY1:mi−1 [E[Ymi |Zmi =
zmi , T = 0]] if we assume Markov dependence assumption (Equation 1), component-wise ignorabil-
ity, overlap, and consistency. The proof is provided in the supplementary material.

Additive parallel composition (special case): A special case of the interaction graph Gi is when
all the components are independent and parallely compute the potential outcomes. This condition
can be expressed as when the potential outcomes of components are conditionally independent given
the component’s covariates, i.e., Yj(t) ⊥ Yl(t)|Xj∀j ∈ {1, . . . k}, j ̸= l. Suppose the aggregation
function is a linear combination of the component’s outcomes, e.g., addition. The unit-level CATE
can be expressed as the sum of the potential outcome estimands. Yij(t) = µot(Xij)+ ϵio(t), Yi(t) =
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∑mi
j=1 Yij(t). In that case, the CATE can be directly expressed as the linear combination of the

component-level CATE and is identified as follows: τ(q) =
∑mi

j=1 τ(xij) =
∑mi

j=1 E[Yij |xij , Ti =
1]− E[Yij |xij , Ti = 0]. The proof is provided in the supplementary material. Parallel composition
appears across machine learning domains—from independent composition of latent object attributes
in computer vision (Higgins et al., 2018; Wiedemer et al., 2024) to spatial skill composition in
reinforcement learning (Van Niekerk et al., 2019). Similarly, sequential composition appears in the
options framework in reinforcement learning (Sutton et al., 1999). Our work examines these varied
composition structures to understand their impact on compositional generalization.

3. Learning compositional models from observational data

Below, we discuss the algorithm for learning the hierarchical composition model from observational
data, given different amounts of information about the component’s covariates and outcomes. We
include algorithms for parallel structured composition models in Section E.

3.1. Hierarchical Composition Model

The below algorithm facilitates the modeling of noise variables ϵot (assuming zero-mean additive
noise variables in Equation 1) along with the expected potential outcome functions µot. This allows
the marginalization of intermediate component-level potential outcomes to obtain unit-level CATE
estimates for sequential and hierarchical compositions.

Model Training: The component models for estimating mean and variance of conditional
distribution of the component-level potential outcomes for component class o ∈ {1, 2, . . . k} are
denoted by (f̂θo , σ̂

2
ψo
) : Rdo×RD×{0, 1} → R×R+, assuming maximum in-degree of the graphGi

as D. Each model corresponding to component class o is parameterized by separate and independent
parameters θo for the mean and ψo for the variance. For a given observational data set with n samples,
DF = {qi, ti, yi}i=1:n, we assume that we observe component-level features {xij}j=1:mi , assigned
treatment ti and fine-grained component-level potential outcomes {yij}j=1:mi along with unit-level
potential outcomes yi. If component instance cj ∈Mo, training of each component model o involves
the independent learning of the parameters by minimizing the negative log-likelihood loss:

(θ∗o , ψ
∗
o) := argmin θo, ψo

1

No

No∑
m=1

[
1

2
log(2πσ̂2ψo

(zm, tm)) +
(yij − f̂θo(zm, tm))2

2σ̂2ψo
(zm, tm)

]
(2)

,where No denotes the total number of component instances of component class o across all the N
samples, and m denotes the index of the component instance in class o.

Model Inference: To estimate the CATE for a unit i, a modular architecture consisting of
mi component models is instantiated with the same input and output structure as Gi. During
inference for treatment T = t, the predictions of potential outcomes of the parent’s components
{ŷlt}l∈Pa(cj), l ∈Mo are sampled from a normal distribution ŷlt ∼ N(µ̂ot, σ̂

2
ot). We slightly abuse

the notation to denote the inferred variance and variance model using σ2. The mean and variance
of the jth component outcome are obtained using these samples: µ̂jt = f̂θ∗o (xj , {ŷlt}l∈Pa(cj), t) =
f̂θ∗o (ẑjt, t), σ̂

2
jt = σ̂2ψ∗

o
(xj , {ŷlt}l∈Pa(cj), t) = σ̂2ψ∗

o
(ẑjt, t). The estimate E[Yi(1) − Yi(0)|Qi = q]

of CATE is obtained through Monte Carlo integration by averaging over S samples: τ̂(q) ≈
1
S

∑S
s=1[f̂θ∗o (ẑ

(s)
mit

, 1) − f̂θ∗o (ẑ
(s)
mit

, 0)], where each sample path ẑ(s)mit
is generated by hierarchically

sampling from the component distributions: ŷ(s)jt ∼ N (µ̂jt, σ̂
2
jt) for j = 1 to mi − 1.

8



COMPOSITIONAL MODELS FOR ESTIMATING CAUSAL EFFECTS

3.2. Relaxing assumptions about component-level data access

The model description above assumes observed component-level covariates and outcomes. This
assumption is often reasonable, given the wide availability of fine-grained data for many structured
domains. However, other cases might exist when only the unit-level covariates X and outcomes
are observed, and the component-level covariates Xj and outcomes Yj are unobserved. Below, we
discuss hierarchical composition models for these cases.

Case 1: Unobserved Xj , observed Yj: We jointly learn the lower-dimensional component-level
representations ϕo : Rd → Rd′o , as well as the parameters of outcome functions (θo, ψo) by assuming
zj = (ϕo(xj), {ylt}l∈Pa(cj)) in Equation 2.

Case 2: Observed Xj , unobserved Yj: The model architecture remains the same as before,
but we do not have individual component-level loss functions and only know the loss function
for unit-level outcomes. Due to this, the parameters of the components are jointly learned to
optimize the loss of estimating unit-level outcomes. If ◦ denotes the functional composition, and
functions are composed in the same hierarchical order as Gi, then the joint loss function is given by:
[θ1, θ2 . . . θk] := argminΘ

1
N

∑N
i=1(f̂θmi

◦ f̂θmi−1 ◦ · · · ◦ f̂θ1(xi1, ti)− yi)2
Case 3: Unobserved Xj and unobserved Yj: In this case, we only assume the knowledge of Gi.

[θ1, θ2 . . . θk] := argminΘ
1
N

∑N
i=1(f̂θmi

◦ f̂θmi−1 ◦ · · · ◦ f̂θ1(ϕ1(xi), ti)− yi)2
Identifiability under non-observability: Under the assumption of unobserved component-level

data (e.g., case 3), the compositional model has unit-level information and structural knowledge, the
same information as unitary models. The only difference between the two approaches is that structure
is incorporated in the compositional model, while in the unitary model, it is passed in the form of
high-level structural features. Thus, identification holds under the non-observability of component
data access as long as the identifiability conditions (ignorability and overlap) hold for the unit-level
covariates. As the unit-level features are aggregated, the ignorability might be affected due to the
approximate representation of the units.

4. Experimental Infrastructure

We describe the experimental setup to evaluate the models across various in-distribution and out-of-
distribution settings. We provide a detailed description of the causal effect estimation task, unit-level
and component-level covariates, treatment, and outcomes for each domain in Section F 4.

4.1. Datasets

Research on modeling causal effects for compositional data has been hampered by the lack of real-
world benchmarks. To facilitate effective empirical evaluation of the utility of compositional modeling
of causal effect estimation, we introduce two benchmarks based on real-world computational systems
and one benchmark based on a realistic simulation.

Query execution in relational databases: We collected real-world query execution plans data by
running 10,000 publicly available SQL queries against the Stack Overflow database under different
configurations (memory size, indexing, page cost), treating configuration parameters as interventions
and execution time as the potential outcome, assuming additive composition.

4. Data and code for creating benchmarks and reproducing experiments is available at https://github.com/KDL-
umass/compositional_models_cate.
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Manufacturing plant data: We use a discrete-event simulation framework, Simpy, to generate
realistic manufacturing plant data. The simulation includes four manufacturing processes (material
processing, joining, electronics processing, and assembly) combined across 50 hierarchical manu-
facturing line layouts, assuming hierarchical composition. Each layout consists of various product
demand (5-1,000) with different raw material inventories as covariates. Treatment compares five
versus fifteen skilled workers, measuring total parts produced as outcomes.

Matrix operations processing: The dataset consists of 25,000 samples for 25 matrix expression
structures (units) evaluated on two different computer hardware (treatment), with matrix dimen-
sions ranging from 2 to 1,000. Component operations encompass 12 component operations (e.g.,
multiplication, inverse, singular value decomposition, etc.). We ensure each operation is executed
individually, ensuring parallel composition with additive aggregation function. Matrix size is used as
a biasing covariate to create a distribution mismatch between treatment groups.

Synthetic data: In addition to these real-world benchmarks, we also generate simulated data
to systematically understand the role of component-level data access, composition structure, and
heterogeneity in components’ response surfaces. Composition structures include sequential and
additive parallel composition. Structured units are generated by sampling binary trees (max depth=10)
with k = 10 heterogeneous modules, each having dj = 1 feature (d = 10 features total).

4.2. Models and Evaluation Criteria

Compositional Models: We implement four versions of the compositional models (hierarchical
and parallel, depending on the domain) with varying amount of component-level data access as
discussed in Sections 3.1 and 3.2: (1) Compositional (observed Xj , observed Yj); (2) Compositional
(unobserved Xj , observed Yj); (3) Compositional (observed Xj , unobserved Yj); and (4) Composi-
tional (unobserved Xj , unobserved Yj). The component-level models are implemented as neural
networks, independently trained in case of access to fine-grained outcomes and jointly end-to-end
trained otherwise. Note: Unless stated explicitly, the legend “compositional" in experimental results
implies a model with observed component-level covariates Xj and outcomes Yj .

Baselines: We compare the performance of the compositional models with three types of existing
approaches for CATE estimation: (1) TNet, a neural network-based CATE estimator (Curth and
Van der Schaar, 2021); (2) X-learner, a meta learner that uses plug-in estimators to compute CATE,
with random forest as the base model class (Künzel et al., 2019); (3) Non-parametric Double ML
(Chernozhukov et al., 2018); and (4) Vanilla neural network and random forest-based outcome
regression models.

Creation of observational data sets: Real-world computational systems provide experimental
datasets with observed outcomes for both treatments, from which we create observational datasets
by introducing structure and covariate-based confounding bias (Gentzel et al., 2021). Bias strength
ranges from 0 (experimental) to 10 (observational), with treatment probabilities varying between 0.01-
0.99, creating treatment group distribution shifts. Unconfoundedness holds as biasing information
is observed in both approaches. Higher “bias strength" indicates higher treatment probability for
specific biasing covariate values and structure.

Evaluating compositional generalization: We evaluate compositional generalization by training
on structures with 2 to K module combinations and testing on combinations containing all K module
combinations. For example, when training on 2-module combinations, we use all possible pairs (e.g.,
(C1, C2), (C1, C3), (C2, C3)), including varied orders and repeated modules (e.g., (C1, C2, C1)),
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and test on larger combinations like (C1, C2, C3). For real-world data, we train on structures with
smaller tree depths and test on larger ones.
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Figure 2: Results on manufacturing domain (10, 000 samples). We report R2 between CATE
estimates and ground-truth effects (higher is better). (a) Sample-size efficiency (WID): Compositional
models are more accurate and sample-efficient in CATE estimation for within-distribution settings.
(b) Compositional generalization (OOD): Models are trained on units with tree depth ≤ K and
evaluated on a test-set with depth 8. Compositional models generalize to the unseen combinations
due to compositional structure whereas non-compositional baselines perform comparably only after
training on units similar to test data. (c) Effect of increasing observational bias (OOD): Models are
trained and tested on data with increasing observational bias strength between assigned treatment and
tree depth. Compositional models and X-learner are less affected by increased observational bias.

Performance and Evaluation Metrics: Performance is evaluated in two settings: WID (same
structure/covariate distribution in train/test) and OOD, which includes (1) compositional generaliza-
tion (testing on unseen component combinations) and (2) observational bias (structure/covariate-
dependent treatment assignment). We measure PEHE loss (Hill, 2011): ϵPEHE(f̂) = E[(τ̂f̂ (q)−
τ(q))2], and R2 score for datasets with large outcome values or high performance variability.

5. Findings

In this section, we provide the key findings from our experiments and discuss the mechanisms
responsible for compositional models’ performance compared to the baselines.

Compositional models can provide substantially more accurate CATE estimation for struc-
tured units: Figure 2(a) shows results from the manufacturing domain in which compositional and
unitary models were learned from experimental data and evaluated in terms of their in-distribution per-
formance. The compositional model has substantially lower error than the baselines, particularly for
small sample sizes. More detailed analysis showed that the performance advantage of compositional
models in this setting is primarily due to two factors: (1) units in this domain have heterogeneous
hierarchical structure and instance-specific models more accurately represent this structure; and (2)
compositional models were learned with higher sample efficiency due to the existence of multiple
samples of each component per unit (see Figure 7(a) in the supplementary materials).

Incorporating modular structure enables compositional generalization: Figures 2(b) and 3
report the compositional generalization performance of the models in the manufacturing and synthetic
domains, respectively. Compositional models were able to successfully generalize to high-complexity
units (large depth or number of module combinations, respectively) even though they had only been
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trained on low-complexity units. In contrast, unitary models perform worse (often far worse) until
they are trained on units that equal or nearly equal the compositional complexity of the test units.
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(b) Parallel Composition
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Figure 3: Role of component-level data access and composition structure in the performance of
compositional models: R2 score for models evaluated on compositional generalization task with
varying degrees of component-level data access. (Higher is better; PEHE errors are reported in
Figure 14 of the supplementary material). We observe that end-to-end trained models incorporating
just modular structure compositionally generalize as trained on more module combinations. Unitary
models show compositional generalization for additive parallel composition but perform comparably
only for in-distribution combinations (K=10) for sequential composition, except X-learner. Note
that the number of training samples increases as training depth increases.

Compositional models are less affected by observational bias in treatment assignment:
Figure 2(c) reports the effects of differing degrees of observational bias based on the instance-specific
structure in the manufacturing domain. Compositional models (and the unitary X-learner) are least
affected by this form of observational bias. Other unitary models (Neural network and Random
forest) are strongly affected, and another unitary model (double ML) is the most strongly affected due
to its use of propensity score weighting. Figure 4(a) reports results for the query execution domain,
where bias was introduced based on the covariate distribution. The error of all models increases
because covariate-based bias affects both unit-level and component-level balance, but the error of the
compositional model is lower and increases more slowly than the unitary baselines.

When trained end-to-end, compositional models perform remarkably well even without
component-level data access: Figure 3 reports the performance of models trained on synthetic data
with varying degrees of data access. Figure 3(a) and (b) report results on a synthetic domain in which
units have sequential and parallel structures, respectively. Compositional models outperform unitary
models regardless of their access to component-level covariates and outcomes (more for sequential
case than parallel case as discussed below), demonstrating that compositional models can effectively
estimate CATE for novel units in scenarios where component-level data is unavailable, and training
uses only the compositional structure and unit-level data.

Unitary approaches compositionally generalize more easily for additive composition struc-
tures than sequential structures: The results in Figure 3 also show that unitary models can
generalize for some composition types better than others. Figure 3(a) and (b) show results from units
simulated with strictly sequential and (additive) parallel composition, respectively, with exactly the
same component functions and covariate distributions. While most unitary models perform very
poorly in the case of sequential composition, nearly all perform fairly well in the case of additive
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Figure 4: Results for real-world data sets: (a) Query execution data set: Compositional model
estimates the effect more accurately as observational bias increases. (b) Matrix operations data
set: All baselines perform similarly for this data set due to a single shared covariate, homogenous
component outcome functions, and dominant contribution of matrix multiplication.

parallel composition, particularly as module combinations become more similar to the test data. The
role of structure type in compositional generalization is often overlooked in relevant work in machine
learning, where most work assumes either additive or sequential compositions.

Some factors can eliminate the advantages of compositional models for causal estimation:
Figure 4(b) reports results for one realistic domain we studied — matrix operations — in which
compositional models provide no substantial advantage over unitary baselines in both experimental
(bias-strength = 0) and observational (bias-strength > 0) settings. This contrasts sharply with
the superior performance of compositional models in the manufacturing (Figures 2, 3) and query
execution (Figure 4(a)) domains. Further investigation identified three factors that explain this
result: (1) the dominance of one component—matrix multiplication—in determining overall run-
time (Figure 12); (2) homogeneous functional forms of the component outcome functions, such
that additive composition leads to similar unit-level outcome functions (Figure 13); and (3) a
single shared covariate—matrix size—that affects both unit-level and component-level outcomes,
creating similar distribution imbalance issues at both the unit and component levels. In contrast, the
query execution and manufacturing domains were more heterogeneous—different covariates affect
component-level outcomes, no single component dominated in producing overall effects, component
outcome functions belonged to different function classes, and composition structures were more
complex. Thus, compositional models had higher relative performance in those domains.

6. Conclusion

The compositional models for causal effect estimation show promise in complex, modular, and
heterogeneous systems. Compositional modeling provides a scalable and practical perspective for
instance-specific causal reasoning in modern technological systems. This work focuses on composi-
tional models for shared treatment and individual effect estimation. Compositional causal reasoning
about component-specific treatments, such as selecting the optimal configuration parameters for each
component, and reasoning about the wide array of realistic interventions, such as adding, replacing,
or removing components from the system, are useful directions for future work.
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Appendix A. Other examples of structured systems with compositional data

The causal questions of interest in the compositional domain are: How do the unit-level interventions
impact the component-level outcomes to produce the overall unit’s outcome? Many real-world
phenomena require answering such causal questions about the effect of shared interventions on
different components. We provide several real-world use cases where the compositional approach
can be useful to reason about the effects of the interventions and make informed and personalized
decisions.

• Compiler optimization: How do different hardware architectures (intervention) affect the
compile time (potential outcome) of different source codes (unit) ? In this case, source code
consists of multiple program modules; hardware architecture is the unit-level intervention that
can affect the compiling of different source codes differently, and compile time is the outcome
of interest.

• Energy efficiency optimization: How does a state-wide mandate (intervention) of shifting to
more efficient electric appliances affect the monthly bill (potential outcome) of each building
(unit) in the state? Each building can be assumed to consist of various compositions of electric
appliances. The intervention might affect the bill of each kind of appliance differently, affecting
the overall utility bill.

• Supply chain optimization: How is the processing time (potential outcome) of an order (unit)
affected when a supply chain company shifts to a different supplier for various parts (interven-
tion)? In this case, each order execution plan is the unit of analysis that consists of routing
the information from different parties, suppliers, manufacturers, and distributors specific to
each order; intervention can impact the processing time of different parties depending on the
affected parts and order details.

• Causal reasoning in multi-agent systems: How do the model hyperparameters (architecture,
agent implementation types) affect the accuracy (potential outcomes) of multi-agent systems
(LLM agents) for different task instances (unit)? As multi-agent LLM-based systems are
becoming an integral part of daily workflows, developing instance-specific causal reasoning
models for such systems using compositional approaches is helpful.

Appendix B. Related Work

In this section, we discuss the connections of the compositional approach with the existing work in
causal inference and associational machine learning in greater detail.

Causal effect estimation in structured domains: In causal inference, a relatively sparse body
of work has focused on treatment effect estimation on structured data in modular domains (Gelman
and Hill, 2006; Salimi et al., 2020; Kaddour et al., 2021). For example, existing work in multi-level
modeling and hierarchical causal models (Gelman and Hill, 2006; Witty and Jensen, 2018; Weinstein
and Blei, 2024) leverages hierarchical data structure to improve effect estimation under unobserved
confounders. There is also growing interest in heterogeneous effect estimation for complex data,
such as images (Jerzak et al., 2023), structured treatments (e.g., graphs, images, text, drugs) (Harada
and Kashima, 2021; Kaddour et al., 2021), and relational data (Salimi et al., 2020; Khatami et al.,
2024). The compositional approach complements this line of research by focusing on the units
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composed of multiple heterogeneous components. On the other hand, hierarchical causal models
focus on units with hierarchical structures but homogeneous sub-units in a unit. Relational causal
models primarily employ relational semantics to describe instance-specific structures and interactions
among entities. The compositional approach uses simpler compositional semantics and focuses on
the generic component-wise behavior of a system and interactions among them, where components
can be objects, processes, and distinct heterogeneous modules in a system. Our focus also lies
in the structured and compositional representation of the units rather than only treatments, which
helps better estimate causal effects in the case of high-dimensional observational data. Another
piece of related work is the fine-grained analysis of the potential outcomes to study the validity of
synthetic control methods with panel data (Shi et al., 2022). This work focuses on reasoning about
potential outcomes of homogeneous sub-units (individuals) to establish identifiability of unit-level
(state) potential outcomes. The compositional approach employs similar fine-grained reasoning, but
explicitly uses the fine-grained data for compositional causal modeling.

Modularity and compositionality in SCMs: The vast body of work under the structural causal
model (SCM) framework (Pearl, 2009) typically summarizes a system’s behavior with a fixed set of
variables and assumes fixed causal structure among those variables (unless modified under explicit
intervention via the do-operator). The causal model, a directed acyclic graph, represents the causal
interactions among all variables. In the compositional approach, we assume an instance-specific
structure among the components for a given unit. Thus, the compositional data-generating process
could not be represented by a single SCM. Instead, a unique SCM corresponding to each composition
structure would be required. This is beyond the scope of nearly all current work in SCMs, with a
very few exceptions (e.g., (Laskey, 2008)).

In the specific context of structural causal models, the term modularity is sometimes used to
refer to a model property in which the structural function of a given variable can be intervened upon
without influencing the structural function of any other variable. This property is also known as
autonomy (Haavelmo, 1944), structural invariance (Aldrich, 1989), and independence of causal
mechanism (Peters et al., 2017). Note that modularity, in this sense, is a property of the model— It is
true by definition (variables in an SCM are assumed to be modular), and it is absolute. In contrast, the
modular structure that we reference in this paper is a property of both the system being modeled and
(perhaps) the structure of a given model of that system. To enable compositional generalization, the
compositional approach assumes that the data-generating distribution of outcomes of a component
given component-specific inputs remains stable and invariant across the units irrespective of where
the component appears in the structure of a unit. This assumption differs from the modularity
assumption made in SCM, which assumes the stability for the conditional distribution of each
random variable given its parents in the direct graph with respect to the interventions on the other
conditional distributions.

Compositional models in associational machine learning: Our work is inspired by research
on compositional models in machine learning that exploit the structure of underlying domains and
explicitly represent it in the model structure (Heckerman and Wellman, 1995; Koller and Pfeffer,
1997; Friedman et al., 1999; Getoor and Taskar, 2007; Taskar et al., 2005; Laskey, 2008). For
example, research in object-oriented and relational models has produced directed graphical models
that explicitly reproduce known modular structure in the systems being analyzed (Koller and Pfeffer,
1997; Friedman et al., 1999; Laskey, 2008). In a similar way, modular architectures in deep neural
networks have been designed to replicate the assumed modular structure of the systems that they
attempt to model (Jacobs et al., 1991). Some work in probabilistic programming has a similar
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flavor, in that the structure of the probabilistic program reflects known modular structure in the
real-world system being analyzed (Lake et al., 2015). The instance-specific modular architectures are
widely used in machine learning to model data in natural language, program synthesis, reinforcement
learning, and combined vision and language problems, providing sample efficiency, systematic
generalization, and computation benefits (Andreas et al., 2016; Shazeer et al., 2016; Pfeiffer et al.,
2023). The closest work to the compositional models for causal effect estimation is using a mixture
of expert (MoE) architecture (Jacobs et al., 1991; Shazeer et al., 2016) and modular neural networks
(Socher et al., 2011; Andreas et al., 2016; Marcus and Papaemmanouil, 2019) in vision and language
domains. However, most of the work in machine learning focuses on understanding the systematic
generalization and sample efficiency benefits of compositional models for prediction tasks. At the
same time, their role in reasoning about intervention effects is unexplored (Lake and Baroni, 2018;
Hupkes et al., 2020; Mittal et al., 2022; Jarvis et al., 2023; Wiedemer et al., 2024; Schug et al., 2024;
Lippl and Stachenfeld, 2024). We inspire the formalization of the compositional data-generating
process using a systems perspective (e.g., query execution system) with explicit causal mechanisms
and interventions. In contrast, vision/language domains often lack well-defined components and
causal interactions due to the perceptual nature of the data. Additionally, compositionality is usually
a property of the causal data-generating process, and viewing compositionality from the lens of
causality, interventions, and components in the modular systems helps understand the compositional
generalization characteristics of the models. This work takes the first step in that direction.

Appendix C. Graphical representation of compositional data-generating process

In section 2, we use the potential outcomes (PO) framework (Rubin, 1974, 2005) to describe the
compositional data generating process for causal inference because the PO framework simplifies
the representation of the key elements of the compositional approach: (1) small number of causal
dependencies: our focus is on estimating the causal effect of treatment (T) on component outcomes
(Yj) given component covariates (Xj) without needing to explicitly model causal relationships
among the covariates (and assuming that causal mechanisms of all random variables are modular),
as required by structural causal models; (2) component interactions: we represent component
interactions and composition structure through the interaction graph (Figure 1(a),(c)). While Gi
constrains the possible causal dependencies among random variables that could be represented
as instance-specific causal graphs, Gi also highlights the most important aspect of compositional
models: the manner in which components interact to bring about system behavior. These elements
are formalized through Equation 1.

Compositional data generating process described in Section 2 can also be represented using a
plate-based notation, commonly used in the probabilistic graphical models to represent various model
classes such as hierarchical causal models (Gelman and Hill, 2006; Witty and Jensen, 2018; Weinstein
and Blei, 2024) and relational causal models (Maier et al., 2013; Lee and Honavar, 2016; Salimi et al.,
2020; Ahsan et al., 2023). In Figure 5, we represent plate models for three different composition
structures in which component-level variables lie inside an inner plate and the unit-level variables lie
in the outer plate, with edges denoting the causal dependencies among component-specific covariates,
potential outcomes, and unit-level treatment.
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Figure 5: Graphical representation of compositional causal models: Each plate model represents
the data-generating process of unit-level and component-level variables for a given instance-specific
composition structure (Gi), shown for three different structures here. Xj denotes the component-
specific covariates, Yj denotes the component-specific outcomes, and T denotes the unit-level shared
treatment. Each distinct color represents the fixed data generating process for a specific component,
that might appear in multiple units.

Appendix D. Identifiability Results

D.1. Definition, assumptions and auxiliary lemmas

We first define the necessary distributions and provide some simple results. Assume that each unit i
has pre-treatment covariates Xi = x ∈ X ⊂ Rd, a binary treatment Ti ∈ {0, 1}, and two potential
outcomes {Yi(0), Yi(1)} ∈ Y ⊂ R (Rubin, 1974, 2005). In the observational data, we only observe
one of the potential outcomes for each unit, Yi = Yi(Ti) known as the observed or factual outcome
and missing outcomes YiCF = Yi(1− Ti) are known as observed or counterfactual outcome.

Definition 3 The conditional average treatment effect (CATE) is defined as

τ(x) : E[Yi(1)− Yi(0)|Xi = x]

We first show that under the assumptions of ignorability and consistency, the CATE function
τ(x) is identifiable by τ(x) = E[Yi|Xi = x, T = 1]− E[Yi|Xi = x, T = 0] (Pearl, 2009) (Rosen-
baum and Rubin, 1983). We assume a joint distribution function p(Xi, Ti, Yi(1), Yi(0)), such that
(Yi(1), Yi(0) ⊥ Ti)|Xi and 0 < P (T = 1|Xi = x) < 1, for all x. We also assume consistency; that
is, we assume that we observe yi = Yi(1)|Ti = 1 and yi = Yi(0)|Ti = 0.

Lemma 4
E[Yi(1)− Yi(0)|Xi = x]

= E[Yi(1)|Xi = x]− E[Yi(0)|Xi = x] (3)
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= E[Yi(1)|Xi = x, Ti = 1]− E[Y(0)|Xi = x, Ti = 0] (4)

= E[Yi|Xi = x, Ti = 1]− E[Yi|Xi = x, Ti = 0] (5)

Equality (3) is due to the linearity of the expectation. Equality (4) follows from the ignorability
assumption in which we assume that Y (T ) is independent of T conditioned on X. Equality (5)
follows from the consistency assumption. The last equation consists of only observable quantities
and can be estimated from the data if we assume overlap, 0 < P (Ti = 1|Xi = x) < 1, for all x.

Definition 5 The conditional-average treatment effect (CATE) estimand for structured input Qi = q
is defined as: τ(q) = E[Yi(1)− Yi(0)|Qi = q] = E[Yi(1)− Yi(0)|Qi = (Gi, {xij}j=1:mi)]

For ease of notation to describe conditional distributions, we denote the combined inputs to a
component j as Zj(t) = (Xj , {Yl(t)}l∈Pa(cj)).

Definition 6 The conditional-average treatment effect (CATE) estimand for component j with
Xj = xj ∈ Rdj is defined as: τ(zj) = E[Yi(1)− Yi(0)|Zj = zj ].

D.2. Identifiability for hierarchical composition

We define the component-wise distributions as P (Y (t)|Zj(t) = zj). In hierarchical composition,
the unit outcome equals the final component outcome: E[Yi(t)|Qi = q] = E[Yimi(t)|Qi = q]. This
conditional expectation can be expressed by marginalizing intermediate component outcomes using
the Markov assumption (Equation 1).

E[Yi(t)|Qi = q] =

∫
Yimi−1(t)

∫
Yimi−2(t)

· · ·
∫
Yi1(t)

E[Yimi(t)|Zimi(t)]

mi−1∏
j=1

P (Yij(t)|Zij(t)) (6)

We use the following nested expectation expression as shorthand for marginalization over
intermediate component outcomes:

E[Yi(t)|Qi = q] = EYi1:imi−1(t)[E[Yimi(t)|Zimi(t)]] (7)

Assumption 1 (Component-level ignorability) The component level potential outcomes and as-
signed treatment are independent conditioned on the component level covariates, i.e., Yj(1), Yj(0) ⊥
T |Xj .

Assumption 2 (Component-level overlap) The overlap holds for the component level covariates
Xj = xj , i.e., ∀xj ∈ Xj , t ∈ {0, 1} : 0 < p(T = t|Xj = Xj) < 1

Assumption 3 (Component-level consistency) The consistency holds for the component level co-
variates, i.e., yj = Yj(0)|t = 0 and yj = Yj(1)|t = 1.

As the treatment is assigned before any component’s potential outcomes are observed, we can
assume that the component’s covariates Xj are sufficient to satisfy ignorability assumptions, i.e.,
Yj(t) ⊥ T |Xj Consider the conditional distribution P (Yj(t)|Zj(t)). Assuming component-level
ignorability for component j, we can write
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P (Yij(t)|Zij(t)) = P (Yij(t)|Xj , {Yl(t)}l∈Pa(cj))

= P (Yij |Xj , {Yl(t)}l∈Pa(cj), T = t)

Now, assuming consistency for components cl, where l ∈ Pa(cj), we can write Yl(t)|T = t =
Yl.

P (Yij(t)|Zij(t)) = P (Yij |Xj , {Yl}l∈Pa(cj), T = t) = P (Yij |Zij , T = t)

Similarly, E[Yimi(t)|Zimi(t)] can be written as E[Yimi |Zimi , T = t], assuming component-level
ignorability and consistency. Substituting these quantities in Equation 6, we get the below result.

τ(q) =

∫
Yimi−1

∫
Yimi−2

· · ·
∫
Yi1

E[Yimi |Zimi = zimi , T = 1]

imi−1∏
j=1

P (Yij |Zij = ziz, T = 1)−

∫
Yimi−1

∫
Yimi−2

· · ·
∫
Yi1

E[Yimi |Zimi = zimi , T = 0]

imi−1∏
j=1

P (Yij |Zij = ziz, T = 0)

Using shorthand notation, we get the desired result.

τ(q) = EY1:mi−1 [E[Ymi |Zmi = zmi , T = 1]]− EY1:mi−1 [E[Ymi |Zmi = zmi , T = 0]]

Component-level overlap assumption ensures that the estimand is identified using observational data.

D.3. Identifiability for additive parallel composition

In this section, we first describe the assumptions that the data-generating process follows for additive
parallel composition. Then, we prove the identifiability results for additive parallel composition.

Assumption 4 Additivity assumes that the ground-truth component-level potential outcomes add
up to generate the ground-truth unit-level potential outcome, i.e., Yi(1) =

∑mi
j=1 Yij(1), Yi(0) =∑mi

j=1 Yij(0).

Assumption 5 Conditional independence assumption among potential outcomes implies that the
ground-truth potential outcomes of a component j are conditionally independent of outcomes of
other components l (l ̸= j) given the component’s covariates Xj: Yj(T ) ⊥ Yl(T )|Xj

Assuming conditional independence assumption and Markov assumption, the data-generating
process for additive parallel composition can be written as: Yij(t) = µot(Xij) + ϵio(t)

Assuming additivity assumption 4, we get

τ(q) = E[
mi∑
j=1

Yij(1)−
mi∑
j=1

Yij(0)|Qi = (Gi, {xij}j=1:mi)]

Due to the linearity of the expectation, we get the following:

τ(q) = E[
mi∑
j

Yij(1)|Qi = (Gi, {xij}j=1:mi)]− E[
mi∑
j=1

Yij(0)|Qi = (Gi, {xij}j=1:mi)]

24



COMPOSITIONAL MODELS FOR ESTIMATING CAUSAL EFFECTS

Assuming conditional independence assumption among the component-level potential outcomes
and Markov assumption, we get

τ(q) =

mi∑
j=1

E[Yij(1)|xij ]− E[Yij(0)|xij ] =
mi∑
j=1

E[Yij(1)− Yij(0)|xij ] =
mi∑
j=1

τ(xij)

Now, we prove the identifiability result for additive parallel composition.

τ(q) =

mi∑
j=1

E[Yij(1)|xij ]− E[Yij(0)|xij ]

Assuming component-level ignorability, we get

τ(q) =

mi∑
j=1

E[Yij(1)|xij , T = 1]− E[Yij(0)|xij , T = 0]

Assuming component-level consistency, we get

τ(q) =

mi∑
j

E[Yij |xij , T = 1]− E[Yij |xij , T = 0]

Component-level overlap assumption ensures the estimand is identified using observational data.

Appendix E. Learning compositional models from observational data

In this section, we discuss the algorithm for the additive parallel composition model discussed in
Section 2.4.

t1 t1 t1

T X1 T X2 T X3
t1

T X4

Y
Y1(T)

Y2(T) Y3(T)
Y4(T)

Figure 6: Model architecture for parallel composition model

The key idea is that the component-level models for effect estimation are instantiated specific
to each unit, and outcomes of one component are not shared with other components as we assume
conditional independence among the potential outcomes given component-level features and shared
treatment. In addition, linearity of expectation applies to the additive composition model, so we
can directly compute the CATE estimates by just estimating the expected component-level potential
outcomes. See Figure 6 for model architecture for parallel composition.

Model Training: The component models for estimating component-level potential outcomes are
denoted by f̂θo : Rdo ×{0, 1} → R. Each model corresponding to component class o ∈ {1, 2, . . . k}
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is parameterized by separate and independent parameters θo. For a given observational data set
with n samples, DF = {qi, ti, yi}i=1:n, we assume that we observe component-level features
{xij}j=1:mi , assigned treatment ti and fine-grained component-level potential outcomes {yij}j=1:mi

along with unit-level potential outcomes yi. If component instance cj ∈ Mo, training of each
component model o involves the independent learning of the parameters by minimizing empirical
risk: θ∗o := argminθo

1
No

∑No
m=1(f̂θo(xm, tm) − ym)

2, where No denotes the total number of
component instances of component class o across all the N samples, and m denotes the index of
the component instance belonging to class o. To clarify, tm denotes the assigned treatment Ti for
the unit i from which component instance m data sample is obtained, and ym is the corresponding
component-level outcome. The potential outcome of each component is computed using input
features of that component, shared unit-level treatment, and observed potential outcomes of the
parent’s component.

Model Inference: To estimate CATE for a unit i, a modular architecture consisting of mi

component models is instantiated with the same number of components as in the unit i. During
inference for treatment T = t, due to conditional independence assumption, ŷijt = f̂θ∗o (xij , t). The
estimate of CATE is obtained by taking the sum of the potential outcome estimates of all component
instances τ̂(q) =

∑mi
j=1,j∈Mo

f̂θ∗o (xij , 1)− f̂θ∗o (xij , 0).

E.1. Relaxing assumptions about component-level data access for additive parallel composition

The model description above assumes observed component-level covariates and outcomes. This
assumption is often reasonable, given the wide availability of fine-grained data for many structured
domains. However, other cases exist when only the unit-level covariates X and outcomes are
observed, and the component-level covariates Xj and outcomes Yj are unobserved. Below, we
discuss hierarchical composition models for these cases.

Case 1: Unobserved Xj , observed Yj: We jointly learn the lower-dimensional component-level
representations ϕo : Rd × Rd′o , as well as the parameters of outcome functions. If we assume
component instance cj ∈ Mo, then f̂θo : θo := argminθ

1
No

∑No
i=1(f̂θo(ϕo(xi), ti) − yij)2. ϕo is

jointly trained with the parameters θo, so that the relevant variables for predicting yij are selected.
Case 2: Observed Xj , unobserved Yj: The model architecture remains the same as before,

but we do not have individual component-level loss functions and only know the loss function for
unit-level outcomes. Due to this, the parameters of the components are jointly learned to optimize
the loss of estimating unit-level outcomes. Due to additive composition, the joint loss function is
given by: [θ1, θ2 . . . θk] := argminΘ

1
N

∑N
i=1(f̂θmi

+ f̂θmi−1 + · · ·+ f̂θ1(xi1, t)− yi)2
Case 3: Unobserved Xj and unobserved Yj: In this case, we only assume the knowledge

of Gi. In this case, the model is equivalent to a mixture of experts (MoE) (Jacobs et al., 1991)
architecture with addition as gating function. [θ1, θ2 . . . θk] := argminΘ

1
N

∑N
i=1(f̂θmi

+ f̂θmi−1 +

· · ·+ f̂θ1(ϕ1(xi), t)− yi)2

Appendix F. Experimental Infrastructure

F.1. Data sets

In this section, we describe the details of the two benchmarks based on real-world computational
systems — query execution, matrix operations and one benchmark based on a realistic simulation —
manufacturing plant data.
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Figure 7: Number of samples for units and component instances for different domains: (a)
Manufacturing data set showing component re-use across layouts (10, 000 units). (b) Query execution
data set (1, 500 units). (c) Matrix operations processing data set (25, 000 units)

F.1.1. QUERY EXECUTION SYSTEM

We first collect 10000 most popular user-defined Math Stack Overflow queries. We install a Post-
greSQL 14 database server and load a 50 GB version of the publicly available Stack Overflow
Database. We then run these queries with different combinations of the configuration parame-
ters listed in Table 1. In all our experiments, our queries were executed with PostgreSQL 14
database on a single node with an Intel 2.3 GHz 8-Core Intel Core i9 processor, 32GB of RAM,
and a solid-state drive. PostgreSQL was configured to use a maximum of 0 parallel workers
to ensure non-parallelized executions so that additive assumption about operations is satisfied
(max_parallel_workers_per_gather = 0). Before each run of the query, we begin from
the cold cache by restarting the server to reduce caching effects among queries. Many database
management systems provide information about the query plans as well as actual execution informa-
tion through convenient APIs, such as EXPLAIN ANALYZE queries. Usually, Postgres reports the
total run-time of each operation, along with children’s operations. We mainly model the query plans
with the following operations — Sequential Scan, Index Scan, Sort, Aggregate, Hash, Hash Join as
the occurrence of these operations in collected query plans was good, providing a large number of
samples to learn the models from data. For CATE estimation experiments, we select 1500 query
plans in which effect sizes were significant and were actually a result of the intervention rather than
random variation in the run-time due to the stochastic nature of the database execution system. Each
SQL query is run 5 times, and the median execution time is taken as the outcome. We evaluate the
combined treatment effect of increasing working memory size and adding indices on structured query
execution plans (Table 1). Increasing working memory affects the run-time of sorting, hash join, and
aggregation operations, as can be seen in Figure 8. Adding additional indices modifies the structure
of the execution plan by switching from a sequential scan component to an index scan component, as
discussed below.
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Treatment Working Memory Temp Buffers Indices

T=0 64 KB 800 KB Primary key indexing
T=1 50 MB 100 MB Secondary key indexing

Table 1: Treatment details for query execution data set

Change in the structure of query execution plans as a result of interventions on configuration
parameters: For some interventions on the configuration parameters and for some queries, the query
planner doesn’t return the same query plan. It returns the query plan with a changed structure as well
as modified features of the components. This makes sense as that is the goal of query optimizers to
compare different plans as resources change and find the most efficient plan. For example, increasing
the working memory often causes query planners to change the ordering of Sort and aggregate
operations, changing the structure as well as inputs to each component. These interventions are
different from standard interventions in causal inference in which we assume that the covariates of
the unit remain the same (as they are assumed to be pre-treatment) and treatment only modifies the
outcome. In this case, a few features of the query plan are modified as a result of the intervention
(and thus are post-treatment), while other features remain the same. Prediction of which features
would change is part of learning the behavior of the query planner under interventions. In this work,
we have mostly focused on learning the behavior of the query execution engine and assumed that
the query planner is accessible to us. For simplicity, we assume that we know of the change in
structure as a result of the intervention for both models. We leave the learning of the behavior of
query optimizers under interventions for future work. This case provides another challenge for the
task of causal effect estimation, even in the case of randomized treatments (bias strength = 0); due
to the modified features of the query plans, the distribution of features in control and treatment
populations might differ, providing an inherent observational bias in the dataset coming from the
query optimizer. As long as we provide the information about modified query plans for both models,
we believe that our comparisons are fair. For changed query structure, CATE estimand can be thought
of as conditional on the same query but two different query plans.

τ(Qi) = E[Yi(1)− Yi(0)|Qi]

τ(Qi) = E[E[Yi(1)|Qpi(1)]− E[Yi(0)|Qpi(0)]]

Covariates used for query execution data for model training: See Table 2 for information
about the high-dimensional covariates and component-specific covariates used for training models
on query execution plans data set.

F.1.2. MANUFACTURING PLANT DATA

We use a process-based discrete-event simulation framework, Simpy, to generate realistic manu-
facturing plant data. The plant aims to produce the final product by processing raw materials and
assembling intermediate parts. The simulation comprises four distinct manufacturing processes:
Material Processing, Material Joining, Electronics Processing, and Assembly combined and re-used
across 50 manufacturing line layouts with varying hierarchical structures. Each scenario consists of
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Figure 8: Treatment effect on query executions for 1500 queries: Ground-truth causal effect
estimate of increasing memory for experimental data (random) and observational data created with
bias strength = 1. 0 means low memory, and 1 means high memory. We can see that increasing
memory has the most effect on sort and aggregate operation and the least effect on the sequential
scan.
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Model Component Training features Outcome

Unitary num_Sort, num_Hash_Join, num_Seq_Scan,
num_Hash, num_Index_Scan, num_Aggregate,
num_complex_ops, Sort_input_rows, Hash
Join_input_rows, Hash Join_left_plan_rows, Hash
Join_right_plan_rows, Seq Scan_input_rows,
Hash_input_rows, Index Scan_input_rows,
Aggregate_input_rows

total_time

Compositional Sequential
Scan

Seq_Scan_input_rows, Seq_Scan_plan_rows seq_scan_time

Compositional Index
Scan

Index_Scan_input_rows, Index_Scan_plan_rows index_scan_time

Compositional Hash Hash_input_rows, Hash_plan_rows hash_time

Compositional Hash Join Hash_Join_left_input_rows,
Hash_Join_right_input_rows,
Hash_Join_plan_rows

hash_join_time

Compositional Sort Sort_input_rows, Sort_plan_rows sort_time

Compositional Aggregate Aggregate_input_rows, Aggregate_plan_rows aggregate_time

Table 2: Covariates used by unitary and compositional models for query execution plans data set

simulations with product demand varying from 5 to 1000, with different raw material inventories
(pre-treatment covariates) available for each demand. The intervention consists of the availability of
multiple workers with two different skill levels – (1) 5 workers with a higher mean of skill distribution
and (2) 15 workers with a lower mean of skill distribution (Figure 10). The goal is to estimate the
effect of workers’ (with different skill levels) availability on the number of parts produced. Figure
11 shows the effect of treatment on total output (total number of parts produced), total time (total
processing time of each scenario), and output per time (total parts produced/time) distributions. This
data satisfies causal Markov dependence among the potential outcomes as the quality of the part
processed by the component is explained by the raw-material inputs, intervention, and the quality of
the directly connected parent components. There are a total of 39 unit-level covariates and around 10
covariates per component.

A factory has the following features:

1. Inventory of raw items (Covariates): This includes parts and items which come into the
factory to be processed into a final product. For this example, we use the following:

(a) Fastener: This includes parts such as screws, nuts and bolts.

(b) Electronic component: electronic components are parts used in the assembly of electronic
assemblies such as printed circuit boards.

(c) Raw material: These are parts such as metal blanks, plastic sheets, sheet-metal etc.
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Figure 9: Illustrative figure explaining manufacturing assembly system
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Figure 10: Treatment for manufacturing plant data: skill distribution for five (5) vs. fifteen (15)
skilled workers.

(d) Misc Component: Parts such as belts, pulleys, gears etc.
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Figure 11: Distribution of different potential outcomes for manufacturing data : This figure
shows the distribution of various potential outcomes for treatment and control groups for manufactur-
ing plant data — (a) total output (total number of parts produced), (b) total time (total processing
time of each scenario), and (c) output per time (total parts produced/time) distributions. We consider
total output (total number of parts produced (a)) in our experiments.

2. Process archetypes (Components): These are processing stations which consume inventory
of raw items and parts from other processes to produce a part. A process is defined by its
processing time, i.e. how long does it ideally take to produce the part, and complexity, i.e how
complex the given task is. Archetypes used in this simulation are:

(a) Material Processing: takes 1 part, does some processing and outputs the processed part
(eg: painting, coating, heat treatment etc.)

(b) Material Joining: takes two parts and joins them together to output another part (eg:
welding, riveting, fasteners to put two parts together)

(c) Electronics Processing: takes multiple components and electronics to produce a elec-
tronic part (eg: soldering, PCB manufacturing)

(d) Assembly: takes components from other stations and puts them together to form an
assembly (eg: final product assembly)

3. Workers (Treatment): workers are a common resource pool of people working on a process.
At a given time one process can have only one worker. A worker is defined by their skill which
directly impacts how long a process will take over its base time and how much scrap (the final
part is unusable and cannot proceed to the next step) and rework (redo aspects of the process
increasing the amount of time the process takes) the process may produce.

F.1.3. MATRIX OPERATIONS PROCESSING

We generate a matrix operations data set by evaluating complex 25 complex matrix expressions on
two computer hardware with different processors and RAM (treatment) and evaluate the execution
time for each treatment (potential outcomes). The matrix size of matrices varies from 2 to 1000,
resulting in total 25000 unit samples. The expressions contain 12 component operations, e.g., matrix
multiplication, inverse, singular value decomposition, etc. We ensure each operation is executed
individually, ensuring parallel composition with additive aggregation function. Matrix size is used
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as a biasing covariate to create a distribution mismatch between treatment groups. Treatment 0
means operations are processed on computer hardware with an 8-core, 32GB of RAM, and treatment
1 means operations are processed on 1-core, 4 GB RAM. Figure 13 shows the potential outcome
functions for each treatment for unit-level and component data. Figure 12 shows that the matrix
multiplication operation is the dominant operation, taking the most of the execution time (50%)
across all matrix expressions
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Figure 12: Dominant contribution of component operation in total execution time: This figure
shows the dominant contribution of matrix multiplication’s execution time in total execution time.
Percentage contribution of each component is calculated for each unit. Mean is taken over 25000
unit instances corresponding to 25 expression structrues.

F.1.4. SYNTHETIC DATA GENERATION:

We generate data sets with varying characteristics to test model performance for units with different
structures and composition functions. Structured units are generated by sampling binary trees (max
depth=10) with k=10 heterogeneous modules, each having dj=1 feature (d=10 (covariates) + 10
(structural information) total). All components’ total sum of features is used as a biasing covariate to
create a distribution mismatch based on joint covariates distribution. For observational bias based
on the structure, the depth of the trees is used as a proxy for structural information. The covariate
distribution for each component is sampled from a multivariate Gaussian and uniform distribution
with a mean ranging between 0 and 3 and covariance ranging between 0 and 3. The potential outcome
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Figure 13: Homogeneous functional forms of the component outcome function for matrix
operations data set: Ground-truth outcome functions for components for matrix operation data set.
Blue and orange colors correspond to binary treatments 0 and 1. Intervention corresponds to two
different compute hardware on which matrix expressions are processed.

for each treatment is a polynomial smooth function with different parameters for each treatment to
generate heterogeneous treatment effects. For fixed structure data generation, the depth of the tree is
fixed to 10 so that every unit has the same number and kind of components. For the variable structure
setting, the depth of the tree randomly varies between 4 and 10, and components are sampled with
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replacement. For compositional generalization, an equal number of trees are generated for every
module combination from 2 to 10. For parallel composition, the potential outcome is simulated for
each component for each treatment as a function of input features and treatment. For sequential
and hierarchical composition, the potential outcome is a function of input features, treatment, and
potential outcomes of the parent components.

F.2. Models and Baseline implementation

1. Hierarchical composition models: Each distinct component in a structured unit is implemented
as a separate MLP module with a hidden dimension size = 2 ∗ input_size and batch size = 64
for each component. Models were trained using Adam optimizer with a learning rate of 0.01
(and adaptive cosine learning rate schedule with a starting learning rate of 0.001 for certain
data sets). The total mean squared loss for all the component outcomes was optimized for the
observed fine-grained outcomes of the hierarchical model. In contrast, loss for only unit-level
potential outcomes was optimized for the unobserved fine-grained outcomes model. For the
unobserved fine-grained outcomes model, the outcomes are passed hierarchically through the
component interaction graph Gi as illustrated in Figure 1(c).

2. Additive parallel composition models: We implement an additive parallel model using two
model classes: random_forest and neural_network. The differences between hierarchical
and additive parallel composition models are as follows: (1) In parallel composition, the
outcomes of each component are computed independently and not shared hierarchically.
Second, an additive aggregation function is assumed, i.e., the unit-level outcome is the sum of
the component’s outcomes. A three-layer, fully connected MLP architecture is used for neural
network models with hidden layer dimension = 64 and ReLU activations. Models were trained
using Adam optimizer with a learning rate of 0.01. For unobserved component-level outcomes,
a mixture of experts (MoE) architecture (Jacobs et al., 1991; Shazeer et al., 2016) is used
where each expert receives the high-dimensional covariates X ∈ Rd, initialized with the same
number of experts as a number of distinct modules in the domain. We use a simple addition of
the experts’ outcomes for the gating mechanism, as our data sets satisfy additive composition.
For unobserved component-level covariates, entire unit-level covariates are passed to each
component model to learn component-specific representations as part of learning component
outcome functions.

Baselines: X-learner and non-parametric double machine learning implementation is from
Econml library and random forests were used as the base models. TNet (Curth and Van der Schaar,
2021) implementation is taken from the GitHub repository catenets.

Appendix G. Additional Results

Appendix H. Algorithms

H.0.1. HIERARCHICAL COMPOSITION MODEL
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(b) Parallel Composition
Compositional (Xj obs., Yj obs.)
Compositional (Xj obs., Yj unobs.)
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Figure 14: Role of component-level data access and composition structure in the performance
of compositional models:PEHE error (in log) for models evaluated on compositional generalization
task with varying degrees of component-level data access. (Lower is better). We observe that end-to-
end trained models incorporating just modular structure compositionally generalize as trained on
more module combinations. Unitary models show compositional generalization for additive parallel
composition but perform comparably only for in-distribution combinations (K=10) for sequential
composition, except X-learner. Note that the number of training samples increases as training depth
increases.

Figure 15: Compositional generalization scatter plot for unitary model (X-learner): This figure
shows the scatter plot for test performance for the compositional generalization experiment. The
training depths are varied from left to right K = 3 to 8 (left to right)

Figure 16: Compositional generalization scatter plot for compositional model: This figure shows
the scatter plot for the predicted test performance of the compositional model on the test depth=8
when trained on increasing depths K = 3 to 8 (left to right).
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Figure 17: Distribution mismatch due to structure-based treatment assignment for manufac-
turing data. These density plots (top) and scatter plots (bottom) show the distribution mismatch
between treatment and control groups at the unit level and component level. The plots are generated
by first projecting the high-dimensional unit-level and component-level covariates to 1-dimensional
using TSNE. The observational bias is created using tree_depth feature of the hierarchical structure.

37



PRUTHI JENSEN

Algorithm 1 Hierarchical Composition Model: Training

1: Input: Factual data set: DF = {qi : {xij}j=1:mi , ti, yi, {yij}j=1:mi}i=1:n, number of distinct
components k.

2: Result: Learned potential outcome models for each component: {f̂θ1 , f̂θ2 , f̂θ3 . . . f̂θk}
3: while not converged do
4: loss_1, loss_2, loss_3, loss_k = 0
5: for i = 1 to n do
6: Get the order of the components in which input is processed by using post-order traversal

of the tree Gi.
7: orderedList← post_order_traversal(Gi)
8: for component j in orderedList do
9: o← component_class_index(j)

10: // Potential outcome of a component depends on the potential outcome of the parent
components according to graph Gi (assuming binary tree)

11: if component j has parents in Gi then
12: ŷij = f̂θo(xij , {ylti}l∈Pa(cj), ti)
13: else if component l does not have parents then
14: ŷij = f̂θo(xij , ti)
15: end if
16: loss_o = loss_o+ (ŷij − yij)2
17: end for
18: end for
19: Calculate gradients for the parameters for each module
20: for o = 1 to k do
21: δo ←△θo

1
No
loss_o

22: θo ← θo − αδo independent training of all the component models.
23: end for
24: Check convergence criterion
25: end while
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Algorithm 2 Hierarchical Composition Model: Inference

1: Input: Test data set: DT = {qi : {xij}j=1:mi}i=1:n, learned potential outcome models for each
component: {f̂θ1 , f̂θ2 , f̂θ3 . . . f̂θk},

2: Result: CATESamples

3: Procedure:
4: CATESamples← {}
5: for i = 1 to n do
6: Get the order of the operation in which input is processed by post-order traversal of the tree
7: orderedList← post_order_traversal(Gi)
8: for component j in orderedList do
9: o← component_class_index(j)

10: if component j has parents in Gi then
11: ŷijti = f̂θ∗o (xij , {ŷilti}l∈Pa(cj), ti)
12: else if component l does not have parents then
13: ŷijti = f̂θ∗o (xij , ti)
14: end if
15: end for
16: τ̂(qi) = ŷimi(1)− ŷimi(0), get the difference between estimated potential outcomes of the

last component in Gi
17: CATESamples← CATESamples ∪ {(qi, τ̂(qi))}
18: end for

Algorithm 3 Additive Parallel Composition Model: Training

1: Input: Factual data set: DF = {qi : {xij}j=1:mi , ti, yi, {yij}j=1:mi}i=1:n, number of distinct
components k.

2: Result: Learned potential outcome models for each component: {f̂θ1 , f̂θ2 , f̂θ3 . . . f̂θk}
3: Procedure:
4: D1 ← {},D2 ← {},D3 ← {} . . .Dk ← {}
5: for i = 1 to n do
6: for j = 1 to mi do
7: o← component_class_index(j) index of distinct component class for jth component

instance.
8: Do ← Do ∪ {xij , ti, yij}
9: end for

10: end for
11: for o = 1 to k do
12: No ← len(Do)
13: θo := argminθ

1
No

∑No
m=1(f̂θo(xm, tm)− ym)2 independent training of all the component

models.
14: end for
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Algorithm 4 Additive Parallel Composition Model: Inference

1: Input: Test data set: DT = {qi : {xij}j=1:mi}i=1:n and potential outcome models for each
component: {f̂θ1 , f̂θ2 , f̂θ3 . . . f̂θk},

2: Result: CATESamples

3: Procedure:
4: CATESamples← {}
5: for i = 1 to n do
6: for j = 1 to mi do
7: o← component_class_index(j)
8: ŷij1 ← f̂θ∗o (xij , 1)

9: ŷij0 ← f̂θ∗o (xij , 0)
10: end for
11: ŷi1 =

∑mi
j=1 ŷij1

12: ŷi0 =
∑mi

j=1 ŷij0
13: τ̂(qi) = ŷi1 − ŷi0
14: CATESamples← CATESamples ∪ {(qi, τ̂(qi))}
15: end for
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