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Abstract
Editing signals using large pre-trained models,
in a zero-shot manner, has recently seen rapid
advancements in the image domain. However,
this wave has yet to reach the audio domain. In
this paper, we explore two zero-shot editing tech-
niques for audio signals, which use DDPM in-
version with pre-trained diffusion models. The
first, which we coin ZEro-shot Text-based Au-
dio (ZETA) editing, is adopted from the image
domain. The second, named ZEro-shot UnSu-
pervized (ZEUS) editing, is a novel approach for
discovering semantically meaningful editing di-
rections without supervision. When applied to
music signals, this method exposes a range of
musically interesting modifications, from control-
ling the participation of specific instruments to
improvisations on the melody. Samples, code,
and the full version of this paper can be found on
the project web page.

1. Introduction
Media creation and editing have seen a dramatic transforma-
tion with the recent advancements in text-based generative
models, particularly those based on denoising diffusion mod-
els (DDMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020). In
the audio domain, text-based editing has only very recently
started gaining traction. Recent works adapted methods
that were originally explored in the image domain (Brooks
et al., 2023; Gal et al., 2022; Kim et al., 2022; Kawar et al.,
2023; Ruiz et al., 2023; Zhang et al., 2023b). Those either
train models from scratch for specific editing tasks (Copet
et al., 2023; Han et al., 2023; Wang et al., 2023), or apply
test-time optimization (Paissan et al., 2023; Plitsis et al.,
2024). To date, zero-shot editing for audio signals has only
been illustrated in the AudioLDM work (Liu et al., 2023a),
using the naive SDEdit (Meng et al., 2021) approach.
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In this paper we explore two approaches for zero-shot audio
editing with pre-trained audio DDMs, one based on text
guidance and the other based on semantic perturbations that
are found in an unsupervised manner. Both approaches
rely on the recently introduced edit-friendly DDPM inver-
sion method (Huberman-Spiegelglas et al., 2024), which we
use for extracting latent noise vectors corresponding to the
source signal. To generate the edited signal, we use those
noise vectors in a DDPM sampling process (Ho et al., 2020),
while drifting the diffusion towards the desired edit. Our
zero-shot text-guided audio (ZETA) editing technique al-
lows a wide range of manipulations, from changing the style
or genre of a musical piece to changing specific instruments
in the arrangement (Fig. 1(c),(d)), all while maintaining high
perceptual quality and semantic similarity to the source sig-
nal. Our zero-shot unsupervised (ZEUS) technique allows
generating e.g., interesting variations in melody that adhere
to the original key, rhythm, and style, but are impossible to
achieve through text guidance (Fig. 1(a),(b)).

We compare our methods to state-of-the-art as well as to
zero-shot editing approaches for audio (Copet et al., 2023;
Meng et al., 2021; Song et al., 2021; Dhariwal & Nichol,
2021), in conjunction with the AudioLDM2 model (Liu
et al., 2023b). We show that our approaches outperforms
these methods in terms of generating semantically meaning-
ful modifications, while remaining faithful to the original
signal’s structure.

2. Method
2.1. DDPM Inversion

Denoising diffusion probabilistic models (DDPMs) (Ho
et al., 2020) generate samples through an iterative process,
which starts with a Gaussian noise vector xT ∼ N (0, I)
and gradually denoises it in T steps as

xt−1 = µt(xt) + σtzt, t = T, . . . , 1. (1)

Here, {zt} are standard Gaussian vectors, {σt} is an in-
creasing sequence of noise levels, and µt(xt) is a linear
function of x̂0|t, which is the MSE-optimal prediction of a
clean signal x0 from its noisy version

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I). (2)

The coefficients {ᾱt} monotonically decrease from 1 to 0.
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Figure 1. Zero-shot audio editing. We present two methods for editing audio signals using DDMs: ZEUS, a novel unsupervised approach
(left), and ZETA, a text-based approach adopted from the image domain (right). Both methods can edit a variety of concepts from
style to instrumentation. (a) The singer (curved pitches) is removed while the rest of the signal remains intact. (b) The melody notes
change, reflected by a change in the dominant pitch. (c) The genre is changed, affecting the entire statistics of the spectrogram. (d) The
instrumentation changes from a woodwind section to a piano, visible by the attack (abrupt starts) of the piano keys. All examples can
be listened to in our examples page. For (c),(d), Tstart = 100, 70, respectively (Sec. 2.2). For (a),(b), Tstart = 150, 200, t′ = 115, 80,
Tend = 1, using the top 3 PCs (Sec. 2.3).

Rather than generating a synthetic signal, here we are inter-
ested in editing a real audio excerpt, x0. To do so, we start
by extracting noise vectors {xT , zT , ..., z1} that cause the
sampling process (1) to generate the given signal x0 at t = 0.
This is called inversion. We then use those noise vectors
to sample a signal using (1) while steering the generation
towards a desired edit effect, as we detail in Sections 2.2
and 2.3. To extract the noise vectors, we use the edit-friendly
DDPM inversion method of Huberman-Spiegelglas et al.
(2024). Please see App. C for more details.

We note that a diffusion process can be either performed
in the raw waveform space or in some latent space (Rom-
bach et al., 2022). In this work we utilize the pre-trained
AudioLDM2 (Liu et al., 2023a;b) model, which works in a
latent space. AudioLDM2 generates mel-spectograms con-
ditioned on text. Those mel-spectograms are decoded into
waveforms using HiFi-GAN (Kong et al., 2020).

2.2. ZETA: Text-Based Audio Editing

The first editing approach we consider uses text guidance.
In this setting, our goal is to edit a real audio signal x0

by using a text prompt pedit describing the desired result.
Optionally, a user may also want to describe the original
signal with some text prompt, psrc, so as to achieve a more
fine-grained modification.

To achieve this goal, we adopt the method of Huberman-

Spiegelglas et al. (2024), which has been only explored in
the image domain. Here, we explore this approach in the
context of text-to-audio models, and demonstrate its transfer-
ability to a new domain. Specifically, we start by inverting
the signal x0 using DDPM Inversion. We do this while
injecting to the denoiser network the prompt describing the
source, psrc. This is illustrated in the left pane of Fig. 2. We
then run the generative process (1) with the extracted noise
vectors, while injecting the prompt pedit describing the de-
sired output (top-right pane of Fig. 2). In both directions, we
use classifier-free guidance (Ho & Salimans, 2021) (CFG)
for the text guidance. The noise vectors extracted from the
source signal ensure that the generated signal has the same
“coarse structure” as the source, while the change in the text
conditioning affects more fine-grained features, and leads
to the editing effect.

The balance between adhering to the target text and remain-
ing loyal to the original signal can be controlled using two
parameters. The first is the CFG strength factor. Increasing
this parameter steers the generation more strongly towards
the desired text at the expense of departing from the origi-
nal signal. The second parameter is the timestep Tstart from
which we begin the generation process. The smaller it is, the
more the edited signal remains consistent with the source
signal, and the less it adheres to the target text. We explore
its effect in more detail in App. I. In App. J we extend this
editing technique to support user-provided target segments

2

https://hilamanor.github.io/AudioEditing/


Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion

Original Signal

𝐳𝑡 𝑡=𝑇
1

𝐱𝑡 𝑡=𝑇
1

DDPM 

inversion

𝑝src
A jazz song.

Text-Based Editing

Unsupervised Editing

𝐱Tstart

𝑝edit
A rock song.

𝛍

𝐳Tstart 𝐳Tstart−1

𝛍

𝑝edit
A rock song.

𝐳1

𝛍

𝑝edit
A rock song.

𝛍

𝑝edit
A rock song.

𝑝src
A jazz song.

𝛍

𝐳Tstart

PC

𝑝src
A jazz song.

𝛍

𝐳Tend

PC

𝑝src
A jazz song.

𝛍

𝐳Tend−1

𝑝src
A jazz song.

𝛍

Edited Signal

Edited SignalDDPM Inversion

𝐱Tstart

Figure 2. Overview of our text-based and unsupervised editing methods. We start by extracting the noise vectors corresponding to an
input signal using DDPM inversion, optionally conditioned on a text prompt psrc. For the text-based editing approach, we then continue
the reverse process with a different text prompt. For the unsupervised approach, we continue the reverse process when applying PCs
calculated on the forward process. Red color shows what changed in the reverse process.

for editing. This allows more control over the resulting
edited signal, which can be particularly important for edit-
ing lengthy audio data.

2.3. ZEUS: Unsupervised Editing

Editing using text guidance is limited by the expressiveness
of the text prompt and by the model’s language understand-
ing. This is arguably very significant in music, where a
user may want to generate e.g., variations, improvisations,
or modifications to the arrangement of the piece, which
are virtually impossible to precisely describe by text. To
support these kinds of edits, here we pursuit a different
approach, which extracts in an unsupervised manner seman-
tically meaningful editing directions in the noise space of
the diffusion model. As we show, these directions can be
used to perturb the generation process in multiple ways,
enabling controllable semantic modifications to the signal.

As in Sec. 2.2, we start by performing edit-friendly DDPM
inversion to extract noise vectors corresponding to x0, op-
tionally using a text-prompt describing the signal, psrc. We
then use those vectors in the sampling process (1), but with
perturbations. Specifically, recall from Sec. 2.1 that each
timestep t involves x̂0|t, the MSE-optimal prediction of x0

from xt. This prediction, obtained from the denoiser, corre-
sponds to the posterior mean E[x0|xt]. Our approach is to
perturb this posterior mean along the top principal compo-
nents (PCs) of the posterior, i.e., the top eigenvectors of the
posterior covariance Cov[x0|xt].

To compute the posterior PCs, we adapt the method of
Manor & Michaeli (2024) for the generative pipeline. This
work showed that the posterior covariance in Gaussian de-
noising is proportional to the Jacobian of the MSE-optimal

denoiser. It further showed that extracting the top eigen-
vectors and eigenvalues of this Jacobian can be done using
the subspace iteration method (Saad, 2011), where each
iteration can be approximated using a single forward pass
through the denoiser network. See App. D for an algorithm.

Having computed the posterior PCs {vi|t′} and their corre-
sponding eigenvectors {λi|t′} at some timestep t′, in App. D
we show we can add or subtract each of them to the denoised
signal x̂0|t at every timestep t ∈ [Tstart, . . . , Tend], multiplied
by some factor, ct, by simply modifying the generation pro-
cess from Eq. (1) into

xt−1 = µt(xt)+γctλ
1/2
i|t vi|t′+σtzt, t = T, . . . , 1, (3)

where γ is a user-chosen parameter controlling the strength
of the modification. We additionally explore in App. D two
different approaches for choosing which PCs to add. Note
that instead of adding a single PC, vi|t′ , we can add a linear
combination of PCs, thereby creating a new direction that
changes multiple semantic elements at once.

3. Experiments
To evaluate our editing methods we used AudioLDM2 (Liu
et al., 2023b) as the pre-trained model. In our text-based
editing experiments we compare to MusicGen (Copet et al.,
2023) conditioned on melody using their medium check-
point, and to DDIM inversion (Song et al., 2021; Dhariwal
& Nichol, 2021) and SDEdit (Meng et al., 2021) using the
same AudioLDM2 checkpoint as we use. DDIM inversion
is typically applied for the entire diffusion process, i.e.,
when Tstart is set to T . In App. E we include a compari-
son to Partial DDIM Inversion, a version that applies the
inversion only up to Tstart. To evaluate our unsupervised
editing method, we compare it to SDEdit, where we supply
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… a dog barking… → … a gun shooting… … a cat meowing. → … a dog barking. A kid talking loudly. → A rooster crowing.

Figure 3. Text-based zero-shot editing. ZETA editing enables changing a plethora of elements in a signal, from the genre of a song, to
the objects heard in a recording. All examples can be listened to in Sec. 1.1 of our examples page. The source and target text prompts are
shown above the spectrograms, where bold marks changed text. The parameter Tstart (Sec. 2.2), from top to bottom and left to right, is 90,
90, 80, 100, 150, 110. The first row of original-edited pairs used the music checkpoint of AudioLDM2, while the second used the large
general checkpoint.

it with a prompt describing the source signal (rather than the
desired edited signal). This baseline performs uncontrolled
modifications to the signal, whose strength we choose using
the starting timestep.

We do not compare to AUDIT (Wang et al., 2023) and
InstructME (Han et al., 2023), which train a model specifi-
cally for editing purposes, as they did not share their code
and trained checkpoints. Additionally, we do not compare
to DreamBooth and Textual Inversion as demonstrated on
audio by Plitsis et al. (2024), since they solve a different
task – that of personalization. This task aims at learning
a concept from a reference audio, rather than consistently
modifying the input itself. Thus, personalization may allow
e.g., changing a genre, but cannot be used for fine-grained
edits such as changing a specific instrument into a different
one. In fact, as Plitsis et al. (2024) show, both methods have
difficulty preserving the key and dynamics of the original
piece, where textual inversion fails to even retain the same
tempo. We encourage the reader to listen to our results and
qualitative comparisons on our examples page.

Both of our methods incur a negligible memory overhead
w.r.t. to the memory consumed by the diffusion model, and
are comparable in inference speed to all evaluated compet-
ing methods. A detailed analysis can be found in App. G.

For evaluation we use the MusicDelta subset of the Med-
leyDB dataset (Bittner et al., 2014), comprised of 34 musical
excerpts in varying styles and in lengths, and create and re-
lease a corresponding small but varied dataset of manual

text-prompts, named MedleyMDPrompts, sub-sampled ran-
domly for evaluation. More information can be found in
App. F. Audio signals are taken from AudioSet (Gemmeke
et al., 2017).

We quantitatively evaluate the results using three types of
metrics; a CLAP (Wu et al., 2023; Chen et al., 2022) based
score to measure the adherence of the result to the target-
prompt (higher is better); LPAPS (Iashin & Rahtu, 2021;
Paissan et al., 2023), an audio LPIPS (Zhang et al., 2018)
measure to quantify the consistency of the edited audio rela-
tive to the source audio (lower is better); and FAD (Kilgour
et al., 2019), an audio FID (Heusel et al., 2017) metric to
measure the distance between two distributions of audio
signals. More details, as well as hyper-parameters con-
figurations, can be found in App. F. A discussion on the
limitations of our methods is presented in App. B.

3.1. Text-Based Editing.

Results for different effects achieved with ZETA editing
are shown in Fig. 1(c),(d) and Fig. 3. Text-based editing
allows changing the global semantics of the signal, e.g.,
by changing one instrument to another or by changing the
genre of the song. All examples and more can be listened to
in Sec. 1.1 of our examples page.

To quantitatively measure the adherence of the edited signals
to the target prompt and their fidelity to the source excerpts,
we plot the CLAP-LPAPS results for all methods in Fig. 5.
For SDEdit and for our method we plot results for multiple
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Figure 4. Unsupervised zero-shot editing. Our ZEUS editing directions carry semantic meanings, ranging from separation of the persons
in a conversation (a) to the vibrato of a singer (b) or a change in melody (c), all while retaining high semantic similarity to the source.
Directions can be easily calculated and applied on a segment of the signal using a mask (c) (see App. J). All examples can be listened to in
Sec. 1.2 of our examples page. In (a) we use t′ = t, Tstart = 115, Tend = 95, in (b) we fix t′ = 120 and use Tstart = 150, Tend = 1, and
in (c) t′ = 95, Tstart = 150, Tend = 50. The PCs shown are the 1st ,3rd, and a combination of the first 3 PCs, respectively. The speech
example uses the large checkpoint of AudioLDM2, without a source prompt, and the rest use the music checkpoint, with a source prompt
randomly chosen from our prompts dataset.

Tstart values. It is evident that MusicGen, which is trained to
be conditioned on a chromagram of the input signal, does
not enable transferring a concept in the same way as the
zero-shot editing methods we explore. As can be seen, our
method outperforms all other methods under any desired
balance between fidelity and text-adherence. Qualitative
comparisons can be listened to in Sec. 2.1 of our examples
page. A visual comparison can be found in App. H.

User study. We additionally evaluated our method via a
user study conducted through Amazon Mechanical Turk
(AMT). AMT users were asked to answer a sequence of 16
questions, after completing a single practice question with
provided feedback. In each question, first the original music
signal was played to the user, following the reveal of the
target text-prompt for editing. Next, our edited result and
one edit from a random competing method were played in a
random order. Users were instructed to select the edit that
better matches the text prompt while keeping the rest of the
essence of the original signal. The data used for evaluation
consisted of 8-second long random segments from each of
the songs in the MusicDelta subset, edited with a randomly
selected target text-prompt from our MedleyMDPPrompts
dataset. To allow fair comparison to MusicGen, we removed
prompts that referred to singing. For our method and SDEdit

we arbitrarily chose Tstart = 100. Each of the competing
methods was compared using 50 workers over two batches.
Each sequence of 16 questions included a vigilance question,
during which one of the compared signals was random noise.
Out of 300 participants only 277 passed the vigilance test
(i.e., did not choose the random noise), and their results
for all methods are reported in Fig. 6. As can be seen, our
method was clearly preferred over all competing methods.
More details on the user study can be found in App. M.

3.2. Unsupervised Editing

Next, we perform experiments using ZEUS editing. The
strength of the modification is controlled by the parameter γ.
As can be seen in Figs. 1(a),(b), and 4, and can be listened
to in Sec. 1.2 of our examples page, the modifications can
range from effects like voice emphasis, to more stylistic
changes e.g., in a singer’s vibrato. An interesting change is
more apparent in music, where the semantic editing direc-
tions can take the form of an improvisation on the original
piece, obtained by changing the melody, as shown in Fig. 4c.

The PCs of the posterior covariance convey the uncertainty
of the denoising model at the current timestep. The synthesis
process is inherently more uncertain at earlier timesteps
in the sampling process (i.e., at larger t). Therefore, the
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Figure 5. Adherence to target prompt vs. fidelity to the orig-
inal signal. The plot compares MusicGen (Copet et al., 2023),
SDEdit (Meng et al., 2021), DDIM Inversion (Song et al., 2021;
Dhariwal & Nichol, 2021) and our method over the MusicDelta
subset in MedleyDB (Bittner et al., 2014), using our prompts
dataset. Our method and SDEdit are shown with Tstart values rang-
ing between 40 and 100. Our results achieve lower (better) LPAPS
for any level of CLAP (higher is better), indicating a good balance
between text adherence and signal fidelity.

DDIMOurs 70.05

MusicGenOurs 60.31
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Figure 6. User study. We report the percentage of users who
preferred our method over DDIM inversion (Song et al., 2021;
Dhariwal & Nichol, 2021), MusicGen (Copet et al., 2023) and
SDEdit (Meng et al., 2021), when answering which edited sig-
nal better matches the text prompt, while keeping the rest of the
essence of the original signal. The error bars indicate the calcu-
lated Wilson score interval.

extracted directions {vi|t} generally exhibit more global
changes spread over larger segments of the samples for
earlier timesteps, and more local changes for later timesteps
(see App. K for further discussion).

Qualitative comparisons can be listened to in Sec. 2.2 of our
examples page. Here for a quantitative analysis we measure
the FAD to two different datasets. The first is the original
Music Delta subset. This measures the strength of the edit,
as it quantifies the deviation from the original distribution.
The second is the FMA-pop dataset, a subset of FMA (Def-
ferrard et al., 2017) proposed by Gui et al. (2024). This
FAD gives an idea about the musical quality of the edited
output on its own. Please see App. F for more information
on the choice of metrics. We plot the two metrics in Fig. 7,
using different Tstart configurations for SDEdit and different
t and t′ values for our approach. Our method achieves a
higher quality (lower FAD to general music) for any desired
edit strength. See App. H for additional results, App. L for
validation of the semantics of our directions, and App. N
for their applicability in other domains, e.g., images.
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Figure 7. Unsupervised editing strength vs. quality. We compare
SDEdit (Meng et al., 2021) to our method over the MusicDelta
subset of MedleyDB (Bittner et al., 2014), using our prompts
dataset. SDEdit is shown with Tstart values ranging between 30
and 115, and our method is shown for different t′ values (indicated
on the plot) and Tstart values (indicated in the legend). We use
Tend = 1. For any level of perceptual deviation from the original
signal, our method retains a higher quality (w.r.t. FMA-pop (Gui
et al., 2024; Defferrard et al., 2017)).

4. Conclusion
We presented two methods for zero-shot editing of audio
signals using pre-trained diffusion models. To the best of
our knowledge, this is the first attempt to fully explore zero-
shot editing in the audio domain. In addition to a text-based
method, which we adopted from the image domain, we pro-
posed a novel unsupervised method for discovering editing
directions. We demonstrated both qualitatively and quanti-
tatively that our methods outperform other methods for text-
based editing, and illustrated that our unsupervised method
is able to create semantically meaningful modifications and
improvisations to a source signal.
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using our method for copyright infringement. In this work
we worked on audio licensed under Creative Commons
Attribution, and as this is an academic work it is in fair use.
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to develop methods for automatically detecting whether
AI-based methods have been applied to audio signals.
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G., Adi, Y., and Défossez, A. Simple and controllable
music generation. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. 1, 3, 6, 10, 15,
16, 18

Defferrard, M., Benzi, K., Vandergheynst, P., and Bres-
son, X. FMA: A dataset for music analysis. In 18th
International Society for Music Information Retrieval
Conference (ISMIR), 2017. 6, 16

Dhariwal, P. and Nichol, A. Diffusion models beat GANs
on image synthesis. In Ranzato, M., Beygelzimer, A.,

Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 34, pp. 8780–8794. Curran Associates, Inc., 2021.
1, 3, 6, 10, 13, 15, 16, 17

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano,
A. H., Chechik, G., and Cohen-or, D. An image is worth
one word: Personalizing text-to-image generation using
textual inversion. In The Eleventh International Confer-
ence on Learning Representations, 2022. 1, 10

Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A.,
Lawrence, W., Moore, R. C., Plakal, M., and Ritter, M.
Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
776–780, New Orleans, LA, 2017. IEEE. 4

Gui, A., Gamper, H., Braun, S., and Emmanouilidou, D.
Adapting Frechet audio distance for generative music
evaluation. In Proc. IEEE ICASSP 2024, 2024. 6, 15, 16

Haas, R., Huberman-Spiegelglas, I., Mulayoff, R., and
Michaeli, T. Discovering interpretable directions in the
semantic latent space of diffusion models. arXiv preprint
arXiv:2303.11073, 2023. 10, 12

Han, B., Dai, J., Song, X., Hao, W., He, X., Guo, D., Chen,
J., Wang, Y., and Qian, Y. InstructME: An instruction
guided music edit and remix framework with latent diffu-
sion models. arXiv preprint arXiv:2308.14360, 2023. 1,
4, 10

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F.,
Jansen, A., Moore, R. C., Plakal, M., Platt, D., Saurous,
R. A., Seybold, B., et al. CNN architectures for large-
scale audio classification. In 2017 ieee international
conference on acoustics, speech and signal processing
(icassp), pp. 131–135. IEEE, 2017. 15

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch,
Y., and Cohen-or, D. Prompt-to-prompt image editing
with cross-attention control. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.
10

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local nash equilibrium. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. 4

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021. 2

7



Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 6840–
6851. Curran Associates, Inc., 2020. 1

Huberman-Spiegelglas, I., Kulikov, V., and Michaeli, T. An
edit friendly DDPM noise space: Inversion and manipu-
lations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.
1, 2, 10, 11

Iashin, V. and Rahtu, E. Taming visually guided sound gen-
eration. In British Machine Vision Conference (BMVC),
2021. 4

Jeong, J., Kwon, M., and Uh, Y. Training-free content injec-
tion using h-space in diffusion models. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 5151–5161, January 2024.
10

Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel,
T., Mosseri, I., and Irani, M. Imagic: Text-based real
image editing with diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6007–6017, 2023. 1, 10

Kilgour, K., Zuluaga, M., Roblek, D., and Sharifi, M.
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A. Related Work
Specialized audio editing models. The most common approach for editing audio is to train specialized models for this
particular task. MusicGen (Copet et al., 2023) and MusicLM (Agostinelli et al., 2023) train language based models for
generating audio conditioned on text, and optionally also on a given melody. Editing a music excerpt with MusicGen is
achieved by conditioning the generation on the excerpt’s chromagram while supplying a text prompt describing the desired
edit. However, because of its reliance on chromagrams, it typically fails in editing polyphonic music. MusicLM conditioning
is built on a novel proprietary joint music-text embedding space, named MuLan, built to encode monophonic melodies. A
different approach, borrowed from the image domain (Brooks et al., 2023), is to train an instruction based diffusion model
for editing. This has been done for general audio (Wang et al., 2023) as well as specifically for music (Han et al., 2023).
These methods are limited to a small set of modifications (e.g., “Add”, “Remove”, “Replace”) and require training on a large
dataset of triplets (text prompt, input audio, and output audio). Our methods require no training and are not limited to a fixed
set of instructions.

Test-time optimization. Instead of training a model from scratch, some works leverage large pre-trained models for
editing. Paissan et al. (2023) and Plitsis et al. (2024) demonstrated the effectiveness of test-time optimization methods,
adopted from the image domain (Gal et al., 2022; Kawar et al., 2023; Ruiz et al., 2023), to editing of audio signals. These
methods either fine-tune the diffusion model to reconstruct the given signal (Ruiz et al., 2023), optimize the text-embedding
to reconstruct the signal (Gal et al., 2022), or use some combination of these approaches (Kawar et al., 2023). However,
performing optimization for each new signal at test-time is computationally intensive. Moreover, these methods struggle
with changing specific concepts, e.g., replacing only the piano in a music piece with a banjo. Our techniques avoid test-time
optimization, and can achieve focused edits.

Zero-shot editing. Some works focus on zero-shot editing using pre-trained diffusion models. Perhaps the simplest
approach is SDEdit (Meng et al., 2021), which adds noise to the signal and then runs it through the reverse diffusion process
with a different text prompt. SDEdit was recently used for audio (Liu et al., 2023a) as well as for piano-roll music (Zhang
et al., 2023a). However it suffers from a severe tradeoff between adherence to the text and adherence to the original signal.
Another direction, which has become popular in the image domain, is to use inversion techniques that extract the diffusion
noise vectors corresponding to the source signal. One method for doing so is DDIM inversion (Song et al., 2021; Dhariwal
& Nichol, 2021). This method was found suboptimal for editing images on its own, and is therefore typically accompanied
by intervention in the attention maps during the diffusion process (Hertz et al., 2022; Cao et al., 2023; Tumanyan et al.,
2023). A concurrent work by Zhang et al. (2024) recently proposed to edit audio by using DDIM inversion combined with
latent space manipulations. However, inline with our observations about DDIM inversion, their method’s applicability to
real audio signals is limited. Another approach is DDPM inversion (Huberman-Spiegelglas et al., 2024; Wu & De la Torre,
2023), which is conceptually similar, but applies to the DDPM sampling scheme. Here we adopt the DDPM inversion
method of Huberman-Spiegelglas et al. (2024), which has shown state-of-the-art results in the image domain.

Unsupervised editing. Finding semantic editing directions in an unsupervised manner, without any guidance or reference
samples, has been exhaustively studied in the context of GANs (Spingarn et al., 2020; Shen et al., 2020; Shen & Zhou,
2021; Wu et al., 2021). Recently, several works proposed ways for finding editing directions in the bottleneck features
(h-space) (Kwon et al., 2022) of a diffusion model (Haas et al., 2023; Park et al., 2023; Jeong et al., 2024) in an unsupervised
manner. The unsupervised method we explore in this paper finds editing directions in the noise space of the diffusion model.
This is done through adaptation of the method of Manor & Michaeli (2024), which quantifies uncertainty in Gaussian
denoising.

B. Limitations
As in all zero-shot editing methods, the quality of the edited outputs are limited by the quality of the pre-trained audio model.
This is most noticeable in text-based editing, as lack of proficiency in the textual information given in the target prompt can
limit the edited output.

In unsupervised editing this concern is mitigated since no prompt is needed. However, as in all unsupervised methods, there
rises the drawback of uncontrollability of the extracted PCs. A user cannot know in advance his PC of interest, and finding a
PC for a user’s liking is not guaranteed.
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C. DDPM Inversion Details
As detailed in Sec. 2.1, to edit a real signal we follow the general approach of Huberman-Spiegelglas et al. (2024) and Wu
& De la Torre (2023) for applying inversion. This process extracts noise vectors {xT , zT , ..., z1} that cause the sampling
process (1) to generate the given signal x0 at t = 0. We can then use those noise vectors to sample a signal using (1) while
steering the generation towards a desired edit effect, as we detail in Sections 2.2 and 2.3.

To extract the noise vectors, we use the edit-friendly DDPM inversion method of Huberman-Spiegelglas et al. (2024). This
method accepts as input the source signal x0 and generates from it an auxiliary sequence of vectors

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̃t, t = 1, . . . , T, (4)

where ϵ̃t are sampled independently from N (0, I). It then extracts the noise vectors by isolating them from (1) as

zt = (xt−1 − µt(xt))/σt, t = T, . . . , 1. (5)

While the noise vectors constructed this way have a different distribution than those participating in the original generative
process (1), they have been shown to encode the global structure of the signal x0 more strongly, making them particularly
suitable for editing tasks.

D. Unsupervised Editing Implementation Details
Consider the multivariate denoising problem observation y = x+n, where x is a random vector and the noise n ∼ N (0, σ2)
is statistically independent of x. Then, Manor & Michaeli (2024) show that the posterior covariance relates to the Jacobian
of an MSE-optimal denoiser,

Cov[x|y = y] = σ2 ∂E[x|y = y]

∂y
, (6)

where y is the noisy sample. The work further showed that extracting the top eigenvectors and eigenvalues of the posterior
covariance can be done using the subspace iteration method (Saad, 2011), where each iteration can be approximated using a
single forward pass through the denoiser network.

In DDMs, Eq. (2) can be rearranged to fit the aforementioned observation model:

xt√
ᾱt

= x0 +

√
1− ᾱt√
ᾱt

ϵt, t = 1, . . . , T. (7)

Therefore, x = x0, y = xt/
√
ᾱt, and n ∼ N (0, (1− ᾱt)/ᾱtI). Under this point of view, each timestep t in the diffusion

process is a Gaussian denoising problem, and we get

Cov

[
x0

∣∣∣∣ xt√
ᾱt

]
=

1− ᾱt

ᾱt
·
∂E

[
x0

∣∣∣ xt√
ᾱt

]
∂ xt√

ᾱt

Cov [x0|xt] =
1− ᾱt

ᾱt
· ∂E [x0|xt]

∂xt
. (8)

This allows for using the algorithm proposed by Manor & Michaeli (2024) at every desired timestep t′ of the diffusion
model, to extract semantic directions {vi|t′} and their corresponding factors {λi|t′}.
These directions are PCs of the posterior covariance, and as such they need to be added to the primal space, and in particular
to x̂0|t′ . As described in Sec. 2.1, the reverse process of a diffusion model is written in Eq. (1) as xt−1 = µt(xt) + σtzt,
where {zt}Tt=1 ∼ N (0, I), z0 = 0, {σt} is an increasing sequence of noise levels, and µt(xt) is a function of a neural
network trained to predict ϵt from xt.

This function can be expressed as the sum of two elements:

µt =
√
ᾱt−1P

(
ft(xt)

)
+D

(
ft(xt)

)
. (9)

Here, ft(xt) is the aforementioned neural network trained to predict ϵt from xt. P
(
ft(xt)

)
is given by

P
(
ft(xt)

)
=

(
xt −

√
1− ᾱtft(xt)

)
/
√
ᾱt, (10)
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and is the predicted x0 at timestep t, noted as x̂0|t. D
(
ft(xt)

)
is the direction pointing to xt, given by

D
(
ft(xt)

)
=

√
1− ᾱt−1 − σ2

t ft(xt). (11)

Note that P
(
ft(xt)

)
gives a simple connection between x̂0|t and ft(xt), the neural network, and therefore changing one is

equivalent to changing another. Specifically, suppose we apply an edit to µt by adding γ
√
λi|tvi|t′ to x̂0|t in Eq. (9). We

denote this edited µt as µedit
t :

µedit
t (xt) =

√
ᾱt−1

(
P
(
ft(xt)

)
+ γ

√
λi|tvi|t′

)
+D

(
ft(xt)

)
. (12)

By substituting Eq. (10) into Eq. (12) we get

µedit
t (xt) =

√
ᾱt−1

(xt −
√
1− ᾱtft(xt)√
ᾱt

+ γ
√
λi|tvi|t′

)
+D

(
ft(xt)

)
=
√
ᾱt−1 ·

xt −
√
1− ᾱtft(xt) + γ

√
ᾱt

√
λi|tvi|t′√

ᾱt
+D

(
ft(xt)

)
=
√
ᾱt−1 ·

xt −
√
1− ᾱt

(
ft(xt)− γ

√
ᾱt√

1−ᾱt

√
λi|tvi|t′

)
√
ᾱt

+D
(
ft(xt)

)
=
√
ᾱt−1P

(
ft(xt)− γ

√
ᾱt√

1− ᾱt

√
λi|tvi|t′

)
+D

(
ft(xt)

)
. (13)

This is an asymmetric reverse process formulation (Asyrp), since the two functions P and D that compose µedit
t are operating

on different variables. A symmetric reverse process is then given by also changing D
(
ft(xt)

)
accordingly,

µedit
t (xt) =

√
ᾱt−1P

(
ft(xt)− γ

√
ᾱt√

1− ᾱt

√
λi|tvi|t′

)
+D

(
ft(xt)− γ

√
ᾱt√

1− ᾱt

√
λi|tvi|t′

)
. (14)

This means effectively subtracting γ
√
ᾱt√

1−ᾱt

√
λi|tvi|t′ from the noise prediction network output. Similar to Haas et al.

(2023), we empirically find that the difference between the two formulations only changes the amplification of the editing
effect, and therefore opt to use a symmetric reverse process for simplicity.

Finally, we can write µedit
t explicitly by using both Eq. (10) and Eq. (11):

µedit
t (xt) =

√
ᾱt−1

(xt −
√
1− ᾱtft(xt)√
ᾱt

+ γ
√
λi|tvi|t′

)
+

√
1− ᾱt−1 − σ2

t

(
ft(xt)− γ

√
ᾱt√

1− ᾱt

√
λi|tvi|t′

)
=
√
ᾱt−1

(xt −
√
1− ᾱtft(xt)√
ᾱt

)
+ γ
√
ᾱt−1

√
λi|tvi|t′

+
√

1− ᾱt−1 − σ2
t ft(xt)− γ

√
1− ᾱt−1 − σ2

t

√
ᾱt√

1− ᾱt

√
λi|tvi|t′

=
√
ᾱt−1P

(
ft(xt)

)
+D

(
ft(xt)

)
+ γ

√
λi|tvi|t′

(√
ᾱt−1 −

√
1− ᾱt−1 − σ2

t

√
ᾱt√

1− ᾱt

)
= µt(xt) + γ

√
λi|tvi|t′ ·

(√
ᾱt−1 −

√
ᾱt√

1− ᾱt

√
1− ᾱt−1 − σ2

t

)
. (15)

Then, by setting

ct =
√
ᾱt−1 −

√
ᾱt√

1− ᾱt

√
1− ᾱt−1 − σ2

t , (16)

we get Eq. (3):
xt−1 = µt(xt) + γctλ

1/2
i|t vi|t′ + σtzt, t = T, . . . , 1.

The addition of PCs can be done in two different ways. The first is to use t′ = t in (3), so that each denoising step is
perturbed with its own PCs. The second way involves extracting a direction from some specific timestep t′, and adding it at
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all timesteps t ∈ [Tstart, . . . , Tend], where t′ need not necessarily be a member of this set. In this case, it is important to use
the factor λi|t that matches the timestep t to which the perturbation is added, and not the factor λi|t′ corresponding to the
timestep at which the PC was computed. The role of this factor is to match the applied change to the uncertainty level at the
current timestep.

Adding the same direction at all timesteps usually strongly modifies a specific element, e.g., a single note or the strength of a
vibrato effect. Adding to each timestep its own PC can lead to a larger deviation from the original signal, e.g., emphasizing a
singer or changing a melody. This is because the extracted PCs can wildly differ in semantics and locality across a large
range of timesteps. Here, as in Sec. 2.2, the editing directions can be confined to a user-chosen segment by applying a mask
during the computation of the posterior PCs.

PCs computed using subspace iterations for each timestep separately are calculated independently of one another. As such,
PCs for adjacent timesteps might be highly correlated. This is because in adjacent timesteps the noise level and uncertainty
level are similar. Specifically, PCs from adjacent timesteps might be highly negatively correlated, as the positive directions
are independently chosen at each timesteps. As explained in Sec. 2.3, one way of editing using Eq. (3) involves setting
t′ = t, so that each denoising step is perturbed with its own PCs. Therefore, it is possible that when perturbing the signal
using PCs from neighboring timesteps they will cancel each other, thereby lessening the editing effect. To that end, at the
end of the PCs computation for each timestep we compare the current PCs, vi|t, to those calculated during the previous
timestep, vi|t+1. When the PCs correlation is lower than some threshold ρ < 0, we swap the direction of the current PCs,
vi|t.

We empirically find that for each PC index i, the values of {λi|t}Tt=1 are similar across signals and AudioLDM2 checkpoints.
We therefore compute their average value over a dataset once, and use these average values for all signals.

In addition to publishing the code repository, we provide in Alg. 1 the complete algorithm for the unsupervised PC
computation described here and in Sec. 2.3 for reference.

E. Partial DDIM Inversion
DDIM inversion (Song et al., 2021; Dhariwal & Nichol, 2021) is usually used only when Tstart is set to T . The intuition
behind this plain manner is that in DDIM sampling, the denoising process is deterministic given the noise map at t = T .
The DDIM inversion process extracts this single noise map at t = T , and is usually not stopped at some mid-way timestep.
The disadvantage of this approach is that it accumulates error which leads to poor reconstruction even when using the
same prompt for the generation stage (Mokady et al., 2023). Contrary to that, DDPM sampling is a stochastic process, and
therefore stopping DDPM inversion at any t is both theoretically motivated and can provide different edited results for the
same text-prompt, using different inverted noise maps. The choice of t for DDPM inversion is completely up to the user and
allows for determining how much the edited signal should diverge from the original signal.

Nevertheless, for the sake of completeness we choose to also compare here to a version of DDIM inversion that does stop
mid-way, hence the name Partial DDIM Inversion. We use the same CFG parameters used for the plain DDIM Inversion
approach, and plot the CLAP-LPAPS results for our method, the competing methods, and partial DDIM inversion for
multiple Tstart values, in the same manner as in Sec. 3.1. For each method the Tstart values range is shown up to its turning
point, that is due to the divergence between the training dataset distributions of CLAP and the text-encoder of AudioLDM2.
The results appear in Fig. 8. Interestingly, this uncommon yet simple approach achieves relatively good results, however it is
a bit lacking in text-adherence compared to other methods.

F. Experimental Details
In all experiments using AudioLDM2, we use 200 inference steps as recommended by the authors (Liu et al., 2023b). In
all of our unsupervised editing experiments, we run 50 subspace iterations for extracting PCs, and set C = 10−3 as the
small approximation constant as described by Manor & Michaeli (2024). We use MusicGen with their default parameters
provided in their official implementation demo. Additionally, we opt to not use negative prompts in all experiments.

F.1. MedleyMDPrompts

To enable a systematic analysis and quantitative comparison to other editing methods, we create and release with our
code base a corresponding small dataset of prompts, named MedleyMDPrompts. This prompts dataset includes 3-4 source
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Algorithm 1 Unsupervised PCs Computation

1: Inputs:
2: Timesteps to extract PCs for {Tstart, . . . , Tend},
3: Inverted noise vectors {xTstart , zTstart , . . . , zTend},
4: Number of PCs N ,
5: DDPM Denoiser ft(·),
6: coefficients {ᾱTstart , . . . , ᾱTend},
7: noise-levels {σTstart , . . . , σTend},
8: Threshold for correlation swap ρ,
9: Approximation constant C ≪ 1,

10: Iterations amount K
11:
12: Initialize xt ← xTstart

13: for t← Tstart to Tend do
14: x0|t ←

(
xt −

√
1− ᾱtft(xt)

)
/
√
ᾱt {Run a normal reverse pass.}

15: µt ←
√
ᾱt−1x0|t +

√
1− ᾱt−1 − σ2

t ft(xt)
16: xt−1 ← µt + σtzt
17: {v(0)

i|t }Ni=1 ← N (0, I) {Extract PCs using K subspace iterations over x0|t.}
18: for k ← 1 to K do
19: for i← 1 to N do
20: xshifted

t ← xt + C
√
ᾱtv

(k−1)
i|t

21: xshifted
0|t ←

(
xshifted
t −√1− ᾱtft(x

shifted
t )

)
/
√
ᾱt

22: v
(k)
i|t ← 1

C

(
xshifted
0|t − x0|t

)
23: end for
24: Q,R← QR Decomposition([v(k)

1|t · · · v
(k)
N |t])

25: [v
(k)
1|t · · · v

(k)
N |t]← Q

26: end for
27: vi|t ← v

(K)
i|t {Save the computed PCs and EVs for timestep t.}

28: λi|t ← 1/ᾱt−1
C

∥∥xshifted
0|t − x0|t

∥∥
29: for i← 1 to N do
30: if vi|t · vi|t+1 < ρ then
31: vi|t ← −vi|t {Swap the PCs direction if it is highly negatively correlated

with the previous PC.}
32: end if
33: end for
34: xt ← xt−1

35: end for
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Figure 8. Adherence to target prompt vs. fidelity to the original signal. The plot compares MusicGen (Copet et al., 2023), SDEdit (Meng
et al., 2021), DDIM Inversion (Song et al., 2021; Dhariwal & Nichol, 2021) and our method over the MusicDelta subset in MedleyDB (Bit-
tner et al., 2014), using our prompts dataset. Our method and SDEdit are shown with Tstart values ranging between 40 and 100. DDIM
Inversion is shown both in its plain version, and its partial version when stopped mid-way using Tstart values ranging between 50 and 125.
Our results achieve lower (better) LPAPS for any level of CLAP (higher is better), indicating a good balance between text adherence and
signal fidelity.

prompts for each signal, and 3-12 editing target prompts for each of the source prompts, totalling 107 source prompts and
696 target prompts, all labeled manually by the authors. We design the prompts to complement each other, e.g., if the source
prompt mentions a saxophone is playing, its target prompts may swap only the word “saxophone” with “guitar” or “piano”.
We additionally design some of the target prompts such that they do not require a complementary source prompt, and should
provide enough information to edit a signal on their own (e.g., for genre change). In our supervised text-guided experiments
we randomly sub-sample a third of the source-target prompts pairs for each signal (where we include additional pairs with
an empty source prompt where applicable). Thus, we evaluate our supervised prompt-based method on 324 signal-text pairs.
In our unsupervised uncertainty-based experiments we randomly sub-sample one of the source-prompts per audio signal.

We remark that some works use MusicCaps (Agostinelli et al., 2023) to quantitatively evaluate synthesized samples.
However, this dataset contains only 10-second long music excerpts, while real music pieces can vary wildly over longer
segments, changing instruments, genre or key completely. This aspect is important in the context of text-based editing,
where the signal may be a minute long, and the edit should remain consistent across the entire piece (e.g., when changing
one instrument into another).

F.2. Metrics

FAD has been used in the past with deep features of VGGish (Hershey et al., 2017) or other convolutional neural networks
(CNNs) trained on VGGSound (Chen et al., 2020). However, Gui et al. (2024) have shown that using such methods as
a perceptual metric for music signals is sub-optimal, and so we follow their suggestion by using instead a trained large
CLAP model (Wu et al., 2023) for the deep features of the FAD calculation. LPAPS has also been used in the past using
CNNs trained on VGGSound, nevertheless we continue with the same reasoning and use intermediate features from the
same CLAP model as LPAPS’ backbone in our evaluations. In particular, we use the output layers of the four intermediate
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Figure 9. Comparison of different target classifier-free guidance strengths used in the text-based editing process. The plot compares
SDEdit (Meng et al., 2021), DDIM Inversion (Song et al., 2021; Dhariwal & Nichol, 2021) and our method over the MusicDelta subset in
MedleyDB (Bittner et al., 2014), using our prompts dataset. Our method and SDEdit are shown with target-prompt CFG strengths ranging
between 8 and 16, when Tstart is set to 100. DDIM Inversion is shown both in its plain version (Tstart = 200), with target-prompt CFG
strengths ranging between 3 and 12, and in its partial version when Tstart is set to 100, with target-prompt CFG strengths ranging between
3 and 7. The floating numbers indicate the target-prompt CFG strength for each method. The chosen strength for SDEdit (12) and DDIM
Inversion (5) are the best considering the trade-off between text-adherence and fidelity to the original signal. Our method can achieve even
slightly better LPAPS scores while retaining the same CLAP score when lowering the strength below the value of 12, which we used in
our experiments.

Swin-transformer blocks (Liu et al., 2021) of the CLAP model as LPAPS’ features. For the CLAP model used in the
CLAP, LPAPS, and FAD metrics calculation, we follow Gui et al. (2024) and MusicGen (Copet et al., 2023), and use the
“music audioset epoch 15 esc 90.14.pt” checkpoint of LAION-AI (Chen et al., 2022; Wu et al., 2023). Since this checkpoint
was trained for 10-second long segments, to calculate the score of a signal we first split the signal into overlapping 10-second
long segments, calculate the score of each segment separately, and take the mean of the scores as the score of the entire
signal. In all evaluations and for both metrics we use an overlap of one second.

Quantifying unsupervised edits in music can be challenging as the editable aspects of music vary widely, from rhythm,
melody, instrumentation, mood and genre. Therefore, for this task, LPAPS is less fitting for measuring the “strength” of an
edit. Specifically, a semantically small change like a slight shift in rhythm that occurs across the entire signal can throw
off LPAPS completely, even though it is barely perceived by humans. Similarly, a short melodic change will rank low on
LPAPS distance, but can shift the perceived mood of the piece. Therefore, instead of LPAPS, in our unsupervised editing
experiments we measure the FAD to two different datasets. The first is the original Music Delta subset. This measures the
strength of the edit, as it quantifies the deviation from the original distribution. The second is the FMA-pop dataset, a subset
of FMA (Defferrard et al., 2017) proposed by Gui et al. (2024). This subset contains the 30 most popular songs for each of
the 163 genres in the FMA dataset, and as such contains a large variety of genres and styles. This FAD gives an idea about
the musical quality of the edited output on its own. This is because the songs in FMA-pop corresponds to the top listens and
thus represent “likeability”.

F.3. Classifier-Free Guidance Strength.

The classifier-free guidance strength for the source parameter was set to 3, as recommended by Liu et al. (2023a). In the
unsupervised editing approach, this is the only classifier-free guidance strength hyper-parameter, as the prompt (if used) and
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Figure 10. Comparison of different source classifier-free guidance strengths used in the text-based editing process. The plot compares
DDIM Inversion (Song et al., 2021; Dhariwal & Nichol, 2021) and our method over the MusicDelta subset in MedleyDB (Bittner et al.,
2014), using our prompts dataset. All methods are shown with source-prompt CFG strengths ranging between 2 and 4. DDIM version is
shown both in its plain version (Tstart = 200, and in its partial version. For both our method and partial DDIM inversion Tstart is set to
100. The floating numbers indicate the source-prompt CFG strength for each method. The chosen strength for DDIM inversion (3) is a
balanced choice, whereas for our method different strengths achieve largely similar scores.

its strength is not changed during the editing process. In the text-based editing approach, the strength used for the target
prompt was chosen such that the resulting edits achieve a good balance between their CLAP and their LPAPS scores. To
verify the chosen classifier-free guidance strengths for the different methods, we conduct two ablations, and display the
results in Fig. 9 and Fig. 10. We include in the ablation the results for the partial DDIM inversion approach discussed in
App. E, and set its Tstart value to 100. We set the same Tstart value for our method for and SDEdit (Meng et al., 2021).

For the target CFG ablation, we keep the source prompt guidance strength set to 3 for all methods. The results depicted in
Fig. 9 show that the chosen strength for SDEdit (12) and DDIM Inversion (Song et al., 2021; Dhariwal & Nichol, 2021)
(5) are the best considering the trade-off between text-adherence, measured with CLAP, and fidelity to the original signal,
measured with LPAPS. Our method can achieve even slightly better LPAPS scores when retaining the same CLAP score
when lowering the strength below the value of 12, which we used in our experiments. In the source CFG ablation, we keep
the chosen target prompt guidance strengths, i.e., 5 for DDIM inversion and 12 for our method. As can be seen in Fig. 10,
the chosen hyper-parameter is a balanced choice for DDIM inversion, whereas for our method the different strengths achieve
simliar CLAP and LPAPS scores.

G. Memory Requirements and Inference Speed
Let T be the total number of sampling steps (e.g., in all our experiments we used T = 200), and S a Boolean indicating
whether a source prompt is used. Whenever any prompt is used by applying classifier-free guidance, this involves two passes
through the diffusion model’s UNet, and therefore two neural function evaluations (NFEs).

We will start by addressing the text-based editing approach. Our method and DDIM Inversion require (3 + S)Tstart neural
function evaluations (NFEs). (1+S)Tstart NFEs account for the inversion process (which runs from t = 0 up to t = Tstart),
and 2Tstart NFEs account for the prompt-accompanied generation (which runs from t = Tstart to t = 0). For DDIM
inversion, Tstart is usually always taken to be T , as discussed in App. F. We also compare to a DDIM inversion process
which stops mid-way, so this DDIM inversion version takes the same amount of NFEs as our method. SDEdit adds noise
to the signal and then generates the edited output using 2Tstart NFEs. Note, however, that SDEdit does not allow using a
source prompt to help guide the editing process. MusicGen is a non-diffusion based model, trained specifically for editing,
and is therefore not comparable using NFEs. From our experiments, for a 30 seconds long audio signal, a single NFE takes
an average 123 milliseconds to complete. In a realistic editing scenario, without a source prompt (i.e., setting S = 0), and
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Figure 11. Comparison of methods for text-based editing. We compare our method, SDEdit (Meng et al., 2021), DDIM Inversion, and
MusicGen (Copet et al., 2023) for editing of the same signal. All of the results achieve a CLAP score of ∼ 0.34, however the LPAPS
values are 4.29, 4.87, 6.26, 5.74, respectively. This means that our method is most loyal to the original structure. Here for our method we
use Tstart = 80 and for SDEdit Tstart = 70.

setting D = 200, Tstart = 100, our method takes 37 seconds to complete, while MusicGen takes 35.5 seconds. All methods
except MusicGen can easily set a lower D to shorten the sampling time substantially.

In the unsupervised editing approach, we will assume for this calculation no prompts. When a prompt is used to accompany
the editing process, the results are just multiplied by a factor of two. Here we have an additional overhead in the calculation
of the PC, which requires running K subspace iterations (per PC), meaning K NFEs. In our experiments we set K = 50,
resulting in a 6-seconds long overhead for a 30-seconds long signal. We note that empirically we saw that a smaller K can
suffice as well. In the unsupervised case, SDEdit still takes Tstart NFEs. For our method, when t′

leTstart, we first invert the signal up to Tstart, then compute the PCs, and finally run the generation, totaling in 2Tstart +K
NFEs. When t′ > Tstart, we extend the inversion process up to t′, yielding t′ + Tstart +K NFEs.

Finally, we consider the memory consumption of our methods. In all methods, both the used diffusion model and the noise
tensors must be held in the memory of the GPU. We find that in the average case, the memory overhead of the noise tensors
are negligible w.r.t. to the memory consumed by the diffusion model itself. For example, for a 30-seconds long signal, 200
noise tensors occupy 0.65GB, compared to 5.6GB occupied by the diffusion model.

H. More Results
We include a visual comparison of results using the compared text-based editing methods in Fig. 11. Fig. 12 shows the role
different PCs can take in unsupervised editing.
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Figure 12. The role of different PCs. Our unsupervised editing method allows extracting different semantic editing directions for the
same signal. These enable editing different semantic concepts that can complement each other. For example, the first PC shown here
controls how much the singer is heard, at the expense of the lead guitar, while the second PC controls the whether the drums are dominant
on the expense of the singer. Here t′ = t, Tstart = 115, and Tend = 80. This example can be listened to in Sec. 1.2.2 of our examples page.

I. The Effect of Tstart on Text-Based Editing
The balance between adhering to the target text and remaining loyal to the original signal can be controlled using two
parameters. The first is the strength factor of the classifier free guidance. Increasing this parameter steers the generation
more strongly towards the desired text at the expense of departing from the original signal. The second parameter is the
timestep Tstart from which we begin the generation process. This timestep can generally be smaller than T , and the smaller it
is, the more the edited signal remains consistent with the source signal.

Fig. 13 shows the effect of Tstart. This parameter controls the trade-off between the adherence of the edited signal to the
target prompt pedit, and its fidelity to the original signal. This effect can also be listened to in Sec. 1.1.2 of our supplemental
examples page.

J. Editing Over a User-Chosen Segment
Editing can be confined to a user-chosen segment, rather than the whole signal, by using a mask during the generative
process. When doing so, at each timestep t, after computing xt−1 using (1) or (3), for text-based editing and unsupervised
editing respectively, we enforce the parts of the signal outside the mask to shift back closer to the original signal at that
timestep. We do this by setting

xt−1 ←M ⊙ xt−1 + (1−M)⊙ (δxorig
t−1 + (1− δ)xt−1), (17)

where M is the mask, and δ is some small constant which we fix to 0.025 in all experiments.

This shift is necessary due to “data leakage” caused by the architecture of the diffusion model. The term data leakage
refers to the phenomenon where a localized edit, e.g., a PC calculated for a specific segment of the signal using a mask,
unintentionally affects the rest of the signal. This is commonly caused by the use of a UNet and attention modules as
backbones for the diffusion model. The effect of the data leakage can be viewed in Fig. 14. The extracted PC at this timestep,
t = 80, affects the snare of the drums beats. Without shifting the parts outside the mask back to the original signal, the snare
changes across the entire signal. By setting δ > 0 the change is localized to the masked region.

We notice empirically that the strength of the data leakage depends on the type of edit, however, generally it is not known a
priori. Additionally, we would like to note that setting δ > 0 is application specific and its effect is subjective. On the one
hand, using a mask implies that changes outside the mask region are unwanted. However, allowing the edit to have a more
global influence across the entire signal, could result in a more consistent result (e.g., it might make more sense that the
drum beats’ snare changes across an entire musical piece).

K. The Effect of Using PCs From Different Timesteps {t′}
As mentioned in Sec. 3.2, modifications resulting from different choices of {t′} vary in their extent of global impact. This
can be measured quantitatively by calculating the entropy of the PC when summing over the different channels and height of
the tensors. Fig. 15 displays the average entropy results for the first 3 PCs over the MusicDelta subset dataset used in the
paper. Global changes that spread across large segments of the signal are characterized by a higher entropy, whereas lower
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Figure 13. The effect of Tstart in text-based editing. Here, an orchestral piece is edited by using only a target prompt, pedit=“A recording
of a funky jazz song.”. The signal retains more elements of the original signal as editing starts at a later timestep, denoted by Tstart. This
comes at a cost of adherence to the desired text description, e.g., less coherent beats as expected by a funky jazz song, and more elongated
notes as in the original orchestral piece. This example can be listened to in Sec. 1.1.2 of our supplemental examples page.

entropy is an indicator for localized modifications. As can be seen, the entropy decays for smaller timesteps (later timesteps
in the reverse diffusion process).

Empirically we see that the ability of the subspace iteration method to converge at large timesteps is hampered. This is
also visible in Fig. 15, where the entropy is constant in the earliest timesteps. The uncertainty at the start of the diffusion
process is very large, which coincides with the existence of multiple PCs with similar strength, i.e., there are no dominant
directions. The subspace iteration method performs worse in such cases and is slower, and as such the extracted directions
at earlier timesteps are not very interesting. We also note that timesteps so early in the diffusion process are responsible
for very global semantics, therefore editing them will result in a very large deviation from the original signal. Effectively,
editing using those timesteps is equivalent to synthesizing a signal almost from scratch instead of editing it, which is not the
desired task. As the reverse process continues the uncertainty decreases, the signal’s general structure is set, and the PCs
display more fine-grained directions of editing.

We additionnally notice empirically that above a certain timestep the extracted directions are not interesting. We therefore
restrict ourselves here to t ≤ 135.

L. Comparison of Unsupervised Editing Directions With Random Directions
To ensure our computed PCs are significant and do indeed carry semantic meaning, we compare them to random directions
in Fig. 16, Fig. 17 and Fig. 18. Specifically, we compare for multiple signals the 1st PC computed using our method, or
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Mask

Figure 14. Example of data leakage in diffusion models editing. The extracted PC affects the snare of the drums beats, marked with
arrows. By shifting the parts of the signal outside the mask closer to the original signal at each timestep, the snare only changes in the
masked region. By not shifting the signal, the snare changes along the entire signal.

a combination of the first 3 PCs, using both editing ways: (i) Applying a specific timestep t′ and adding it to a range of
timesteps [Tstart, . . . , Tend], and (ii) setting t′ = t when adding the PCs to a range of timesteps. When using a specific
timestep, t′, across a range of timesteps, [Tstart, . . . , Tend], we sample a random direction from an isotropic Gaussian
distribution. When settings t′ = t, we randomly sample a direction for each timestep in the range [Tstart, . . . , Tend], sampled
i.i.d from an isotropic Gaussian distribution. In both cases, we normalize the randomly sampled directions to share the same
norm as our directions, the unit-norm, and use the same computed eigenvalues λ1/2

i|t in Eq. (3).

Our computed PCs display semantically meaningful editing directions, while using random directions over the strength γ
introduces almost imperceptible changes. Using a large γ factor introduces random changes that rapidly degrade the quality
of the modification. All examples can be listened to in Sec. 3 of our supplemental examples page.

M. User Study
We include screenshots from our user study interface in Fig. 19. For fairness, all samples are normalized at the same
loudness equal to −19.11 dBFS.

N. Unsupervised Editing in Images
We demonstrated our novel unsupervised editing approach on audio signals, since when applied on music it exposes a
range of musically interesting modifications, some of which are virtually impossible to describe by text precisely. However,
this approach is not limited to the audio domain. As a preliminary demonstration of its generalization ability, we leverage
Stable Diffusion (Rombach et al., 2022) to demonstrate in Figs. 20, 21 and Fig. 22 semantic editing directions extracted
for images from “modified ImageNet-R-TI2I” (Tumanyan et al., 2023), and contrast the results with both the well known
SDEdit (Meng et al., 2021) and our previously proposed random baseline (See App. L). In all of the examples, no source
prompts were used. Our editing directions encode meaningful direction that change semantic elements while keeping the
rest of the images, both its essence (e.g., a sketch of a cat) and its structure intact.
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Figure 15. Average entropy of the extracted PCs, across different timesteps. Higher entropy is an indicator for global PCs, that change
large segments of the signal. As the reverse process continues, the uncertainty in x̂0|t decreases, and the extracted PCs affect more
localized areas, and measure lower in entropy.
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(a) The first PC computed using our method, γ = 2.
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Figure 16. Our 1st PC vs. a random direction. While our method extract PCs with a clear semantic meaning (16a), e.g., chang-
ing the drums beat style from a simple 4/4 beat to a syncopated (off-beat) and snare-heavy beat, the effect of using random direc-
tions (16b),(16c),(16d) varies from producing unnoticeable changes with small γ factor to degrading the signal when large γ values are
used. This result can be listened to in Sec. 3 of our examples page. We fix here t′ = 80 for our method, and apply our or the random
directions for Tstart = 200, Tend = 1. Both samples were generated using the music checkpoint of AudioLDM2, with the following source
prompt randomly chosen from our prompts dataset: “A high quality recording of a man singing with a rock band accompaniment.”
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(a) The first PC computed using our method, γ = 40.
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Figure 17. Our 1st PC vs. a random direction. While our method extract PCs with a clear semantic meaning (17a), e.g., isolating a
man or a woman speaking in a given signal, the effect of using random directions (17b),(17c),(17d) varies from producing unnoticeable
changes with small γ factor to degrading the signal when large γ values are used. This result can be listened to in Sec. 3 of our examples
page. We fix t′ = t, and apply our or the random directions for Tstart = 115, Tend = 95. Both samples were generated using the large
checkpoint of AudioLDM2, without a source prompt.
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(a) The first 3 PCs combined computed using our method, γ = 2.
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Figure 18. Our PCs vs. random directions. While our method extract PCs with a clear semantic meaning (18a), e.g., isolating a singer
or a guitar in a given signal, the effect of using random directions (18b),(18c),(18d) varies from producing unnoticeable changes with
small γ factor to degrading the signal when large γ values are used. This result can be listened to in Sec. 3 of our examples page. We fix
t′ = 65 for our method, and apply our or the random directions for Tstart = 200, Tend = 1. Both samples were generated using the music
checkpoint of AudioLDM2, with the following source prompt randomly chosen from our prompts dataset: “A recording of an old timey
rock song from the sixties.”
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(a) Instructions presented to a worker.

(b) Example of a question screen.

Figure 19. Screenshots from our user study. After reading the instructions (upper), workers were shown 16 question screens (lower) to
choose their preferred edit.
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Figure 20. Unsupervised zero-shot editing of images. We demonstrate the applicability of our unsupervised approach for extract editing
directions using Stable Diffusion (Rombach et al., 2022) on images taken from “modified ImageNet-R-TI2I” (Tumanyan et al., 2023),
contrasted with SDEdit (Meng et al., 2021) and our previously proposed random baselines (See App. L. Our method extracts editing
directions that carry a semantic meaning, e.g., a direction for changing the species of the cat or making it a more distinct cat-breed, while
retaining the original essence of the image.
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Figure 21. Unsupervised zero-shot editing of images. We demonstrate the applicability of our unsupervised approach for extract editing
directions using Stable Diffusion (Rombach et al., 2022) on images taken from “modified ImageNet-R-TI2I” (Tumanyan et al., 2023),
contrasted with SDEdit (Meng et al., 2021) and our previously proposed random baselines (See App. L. Our method extracts editing
directions that carry a semantic meaning, e.g., thickening the beak of a bird or shortening it until it is no longer a bird and the wings
dissapear, while retaining the essence and structure of the image, e.g., not degrading the hand.
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Figure 22. Unsupervised zero-shot editing of images. We demonstrate the applicability of our unsupervised approach for extract editing
directions using Stable Diffusion (Rombach et al., 2022) on images taken from “modified ImageNet-R-TI2I” (Tumanyan et al., 2023),
contrasted with SDEdit (Meng et al., 2021) and our previously proposed random baselines (See App. L. Our method extracts editing
directions that carry a semantic meaning, e.g., turning a gun to a bonsai tree, while retaining the essence and structure of the image, e.g.,
keeping the jeep toy car relatively the same.
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