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ABSTRACT

We propose FALCUN, a novel deep batch active learning method that is label-
and time-efficient. Our proposed acquisition uses a natural, self-adjusting balance
of uncertainty and diversity: It slowly transitions from emphasizing uncertain in-
stances at the decision boundary to emphasizing batch diversity. In contrast, es-
tablished deep active learning methods often have a fixed weighting of uncertainty
and diversity. Moreover, most methods demand intensive search through a deep
neural network’s high-dimensional latent embedding space. This leads to high
acquisition times during which experts are idle as they wait for the next batch
to label. We overcome this structural problem by exclusively operating on the
low-dimensional probability space, yielding much faster acquisition times. In ex-
tensive experiments, we show FALCUNs suitability for diverse use cases, includ-
ing image and tabular data. Compared to state-of-the-art methods like BADGE,
CLUE, and AlfaMix, FALCUN consistently excels in quality and speed: while
FALCUN is among the fastest methods, it has the highest average label efficiency.

1 INTRODUCTION

Deep neural networks have proven their worth in various fields and are widely used for solving com-
plex tasks. Their great success depends largely on the availability of labeled data. However, while
large volumes of unlabeled data are often easily accessible, the labeling process is time-consuming
and costly. Especially for medical or industrial applications, ground truths are rare and annotations
are particularly expensive due to the need for domain experts. Active learning (AL) approaches
reduce annotation efforts by iteratively selecting and labeling the most valuable instances that con-
tribute most to improving performance. Due to the computational overhead of training neural net-
works, most DAL methods do not update the model after every single query but acquire entire
batches of instances for annotation at once (Ash et al., 2020). This batch setting introduces new
challenges: How can we select the most informative instances while minimizing the information
overlap? E.g., only selecting uncertain instances might result in very similar, redundant informa-
tion, while simply maximizing diversity might result in labeling uninformative samples.

To measure diversity, established AL methods often exploit the latent representations of a deep
learning model (Ash et al., 2020; Sener & Savarese, 2018; Prabhu et al., 2021; Zhdanov, 2019).
The learned features are used to obtain similarities between instances and subsequently for diversity
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Figure 1: Each simplex illustrates the probability space of a three-class subset of MNIST. Maximum
probabilities of each class are in the corners as also reflected by a darker color. Small black and
white dots are objects in L and U , respectively. Larger red dots indicate instances selected by an AL
method. FALCUN acquires objects very fast and returns a meaningful selection.
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selection. While the learned internal features of the model may eventually provide good discrimi-
nation between inputs, they can be very high dimensional depending on the domain and commonly
used models. E.g., the dimensionality of the last hidden layer for commonly used architectures
(see Kirsch et al. (2019); Ash et al. (2020); Parvaneh et al. (2022)) is 512 in ResNet18, 2048 in
ResNet50, and 4096 in VGG16. Thus, searching the feature space can be very time-intensive, lead-
ing to acquisition times of up to several days. However, especially for the main use cases of AL,
where annotation costs should be reduced, it is very costly to have professionals arrive on multiple
days instead of only once in the best case. Imagine an expert visiting an institution for only a short
time or a model that needs to be trained until an imminent deadline. Unnecessarily long computa-
tion times are also prohibitive from an ecological point of view. We aim at a fast method that has
reliably low runtimes and high quality independently of the model complexity.

Diversity and uncertainty are the two main ingredients for effective AL methods. However, how to
best combine both is an open research question. Current approaches often treat the latent and prob-
ability spaces separately (Parvaneh et al., 2022; Prabhu et al., 2021), requiring an additional step
to merge the extracted information into a coherent acquisition. One drawback of such handcrafted
combinations is the risk of overemphasizing either uncertainty or diversity, resulting in inconsistent
label efficiency across various datasets. Furthermore, these combinations may rely on additional pa-
rameters (Zhdanov, 2019), that are hard to select in advance. Others try to unify all information into
one large representation (e.g.,Ash et al. (2020)). While this enables simultaneous uncertain and di-
verse selection, it increases the acquisition time. We aim at a natural combination of uncertainty
and diversity without complicated merging processes or threshold parameters.

Our new AL approach called FALCUN (Fast Active Learning by Contrastive UNcertainty) queries
instances that lead to high-quality results for deep learning (DL) while simultaneously being faster
than comparative methods. We achieve that by using the output probabilities of the DL model as
a low-dimensional representation to determine the similarity between input samples. FALCUN’s
acquisition is largely independent of the model architecture and depends only on the number of
output classes, which is usually much smaller than the latent representations. Figure 1 shows the
runtimes and selected samples of different AL methods for a subset of the MNIST dataset with three
classes: our approach selects diverse and informative samples while it is among the fastest. We
discuss this figure in more detail in Section 3. The main benefits of FALCUN are:

• Label Efficiency: Across varying datasets, active learning settings and model architectures FAL-
CUN is always one of the most label-efficient methods.

• Speed: Among competitors reaching similar accuracy, FALCUN is the fastest.
• Scalability, flexibility, and robustness: FALCUN’s speed and quality are independent of the

model architecture and complexity as it does not rely on high-dimensional latent representations.
• Diversity: Even on high-redundancy data sets, FALCUN finds a diverse set of instances.
• Explainability and simplicity: FALCUN is easy to understand and implement, as we use the

output probabilities instead of the latent (”black box”) representations. Our code is available
under https://anonymous.4open.science/r/falcun-F1C1.

2 METHODOLOGY OF FALCUN

2.1 NOTATION

Our task is multi-class classification on an input space X and a set of labels Y = {1, . . . , C} for
C classes. We consider pool-based AL, where a small initial labeled set L ⊂ X is uniformly
drawn from the unlabeled data distribution. The remaining data objects belong to the unlabeled set
U = X \ L of size N . At each AL round, Q samples are selected for annotation and retraining
of the model. A classification model f(x; θ) → RC with parameters θ maps a given input x ∈ X
to a C-dimensional vector. Correspondingly, f(x; θ−1) → RD denotes the D-dimensional latent
representation w.r.t. the penultimate layer of the classifier. The softmax function applied on the
model output given by f(x; θ) for an object x returns the output probability vector p(x) ∈ [0, 1]C .
We measure the distances between two instances x1 and x2 based on their probabilities using the L1
norm || · ||1: dist(p(x1),p(x2)) := ||p(x1)− p(x2)||1 =

∑C
i=1 |pi(x1)− pi(x2)|.
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Algorithm 1 Our AL Algorithm FALCUN
Input: Unlabeled data pool U , initially labeled data pool L, number of acquisition rounds R,
query-size Q, model f(x; θ), relevance factor γ

1: Train initial weights θ0 on L by minimizing EL[lce(f(x; θ), y)]
2: for r = 1, 2, . . . , R do
3: Initialize empty query set: Q = {}
4: ∀x ∈ U : Compute class probabilities p(x)
5: ∀x ∈ U : Initialize uncertainty u(x) and diversity d(x) scores with Equations (1) and (2)
6: for q = 1, . . . , Q do
7: ∀x ∈ U : Calculate relevance score r(x) with Equation (5)
8: Sample from distribution with probability proportional to relevance using Equation (6)
9: Q = Q∪ xq

10: ∀x ∈ U : Update diversity values d(x) using Equations (3) and (4)
11: end for
12: Receive new labels from oracle for instances in Q
13: L = L ∪Q
14: U = U \ Q
15: Train new model θr from scratch on L by minimizing EL[lce(f(x; θ), y)]
16: end for
17: return Final parameters θR obtained in round R

2.2 ACQUISITION

In contrast to many previous methods, FALCUN only operates on the model’s output probabilities.
Instead of employing two independent aspects exploiting the latent space for diversity and the prob-
ability space for uncertainty, FALCUN directly uses the probability representation to select diverse
and uncertain instances.

Uncertainty Component For uncertainty, we use the margin uncertainty, i.e., the difference be-
tween the probabilities of its two most probable classes:

u(x) := 1− (p(x)[c1]− p(x)[c2]), (1)

where 0 ≤ u(x) ≤ 1. Margin is a common choice for uncertainty (Roth & Small, 2006; Bahri et al.,
2022; Jiang & Gupta, 2021) and naturally captures the class boundaries between each class pairs. In
contrast to other simple uncertainty scores like entropy or least confidence, the margin uncertainty
has an extremal function that contains a diverse set of samples: its optima lie on the class boundaries
in the probability space. Hence, it emphasizes diverse regions to be of equal interest and naturally
captures more dissimilar concepts.

Diversity Component A common way to incorporate diversity is to favor instances with large
distance to the current batch of instances. However, a good initialization for the diversity is hard
to measure when the query batch is still empty. Some methods measure the distance to the already
labeled instances, but a problem is that this again requires vast computations depending on the size
of the labeled set and does not necessarily reflect the difference between hard-to-learn concepts vs
easy-to-learn concepts. A good starting point is to target instances that contain highly contrasting
concepts to those that are already easy to classify. (i.e., the corners of the simplex with 100%
prediction probability for one class).

However, e.g., simply maximizing the distance to the one-hot, perfect prediction would activate
the most central place in the probability simplex in a convex way as there is a global optimum
(where all classes are equally probable). This would initially lead to a low diversity, as a group of
similar instances would be chosen instead of instances of diverse concepts. Thus, an optimization
function for diverse samples should not have a global optimum. As previously mentioned, the
margin uncertainty u(x) fulfills this property. It incorporates the distance from the best and second
best prediction. In Appendix A.2, we show the relation of margin uncertainty and the distances of
objects to the one-hot encodings of their two most probable classes in the probability space. Because
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of that strong relation, we initialize the diversity score with the already calculated margin uncertainty
and update it with every chosen sample xq:

d′init(x) := u(x) (2) d′(x)← min(d′(x), dist(p(x),p(xq)) (3)

Finally, we normalize the values to [0, 1] to align it with the uncertainty scores:

d(x) :=
d′(x)−min

x∈X
(d′(x))

max
x∈X

(d′(x))−min
x∈X

(d′(x))
. (4)

Final Relevance Score For every point x, we calculate a relevance score 0 ≤ r(x) ≤ 2, which
changes over the course of each AL round. We combine the uncertainty and the diversity component
by defining r(x) as the sum of the uncertainty u(x) and the normalized adaptive diversity score d(x):

r(x) := u(x) + d(x). (5)

Note that the values in u(x) are static within one acquisition, but the diversity scores d(x) are
updated with every chosen query instance. Thus, the diversity slightly overshadows when the regions
with highest uncertainty are exhausted. When there is decent coverage in the probability space and
diversity scores denote a uniform distribution, the focus is more on uncertainty. Hence, there is
always a natural balance between uncertain and diverse selection depending on the current query
batch. Given the relevance scores, we choose x as a next query sample xq with probability

xq ∼
r(x)γ∑

x∈U r(x)γ
, (6)

where γ is a parameter that controls the influence of the relevance scores. Note that γ = 0 cor-
responds to a uniform selection and larger values for γ result in a stronger focus on the calculated
relevance scores getting more and more deterministic (rich values get richer). Thus, γ controls the
trade-off between exploration (more randomness) and exploitation (more focus on larger values in
r(x)). We analyze the effect of γ in Section 4.4.

One acquisition round stops when the batch Q contains B samples and returns the query batch Q,
which will be sent to the oracle for annotation. The pseudo-code for FALCUN’s acquisition function
and the superordinate AL loop with all steps is shown in Algorithm 1.

3 RELATED WORK

We give an overview of the most important state-of-the-art methods, which also serve as our com-
parative methods in Section 4. A visual comparison including runtimes is given in Figure 1.

Querying the most uncertain instances is a key concept in AL. It indicates high informativeness such
that the model can effectively refine the decision boundary and enhance generalization performance
if included in the training (Settles, 2009). To reduce training times, it is common to re-train only
after multiple instances were sent to the oracle in batches instead of after each single annotation.
This batch-setting poses additional challenges: To minimize the information overlap within a batch,
diversity is an important criterion in addition to informativeness. E.g., in Figure 1, Entropy (Wang
& Shang, 2014) as a non-diversity aware method selects only duplicates.

Diversity-based approaches (e.g.,Sener & Savarese (2018); Sinha et al. (2019); Kirsch et al. (2019))
focus on minimizing the redundancy in the query-batch. An early and prominent representative
is KCENTERGREEDY (Sener & Savarese, 2018). However, it only focuses on coverage, which can
lead to the selection of instances that are not improving the model. E.g., in Figure 1, KCenterGreedy
focuses on the corners of the triangle where the model’s prediction already has a very high certainty.

To overcome the challenges of solely uncertainty or diversity-based methods, hybrid ap-
proaches (Kirsch et al., 2019; Ash et al., 2020; Prabhu et al., 2021) combine both paradigms. How-
ever, how to best combine uncertainty and diversity is an ongoing challenge. Similarly to KCenter-
Greedy, many methods perform a thorough search on the latent features to determine the diversity
between instances. E.g., BADGE (Ash et al., 2020) performs k-Means++ sampling on so-called
gradient embeddings where large gradients are an indicator of uncertainty. However, these gradi-
ent embeddings can have high dimensionalities as they depend on the number of classes times the
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hidden dimensionality of the penultimate layer and get very high-dimensional. Thus, the distance
calculation is computationally expensive. Other methods perform weighted k-Means clustering on
the latent representations (Prabhu et al., 2021; Zhdanov, 2019) where weights are some kind of un-
certainty estimate and select the most central point from each cluster for annotation. Due to the
repeated clustering, these methods are also computationally expensive. AlfaMix (Parvaneh et al.,
2022) also performs k-means clustering on latent representations. In contrast to other methods, Al-
faMix only clusters on a candidate pool determined by interpolating features in the latent space.
The distance calculation is not performed on the whole unlabeled pool, which increases the com-
putational efficiency. However, as shown in Figure 1, AlfaMix oversamples the decision boundary.
This might lead to the selection of redundant instances, especially for highly repetitive datasets.
CDAL (Agarwal et al., 2020) uses a similar approach as KCenterGreedy but works on the output
probabilities. It selects instances where the predicted probability is furthest away from already la-
beled instances. However, a problem is that some concepts in the data might be harder to learn
than others. If instances get labeled, but the model needs more information in such a region, CDAL
would not choose instances in the region. Task-specific hard-to-learn concepts might be ignored.

Note that all mentioned and tested methods are either slower than FALCUN or yield less label-
efficient results. Results in Figure 1 that are surrounded by a gray triangle (Entropy, CDAL, KCen-
terGreedy) are less label-efficient than FALCUN in 31-51% of all experiments (and worse than
random sampling in 13-31%). Methods yielding similar label-efficiency as FALCUN (BADGE,
CLUE) have acquisition times that are multiple times larger than FALCUN’s. Even the most recent
method, AlfaMix, has grave disadvantages compared to FALCUN: it oversamples at the decision
boundary leading to the selection of many duplicates in highly redundant datasets.

4 EXPERIMENTS

We evaluate the effectiveness of established AL methods and FALCUN regarding quality and ac-
quisition runtime in isolation as well as in combination to get a complete picture. We use a broad
range of datasets including grayscale images (MNIST (LeCun et al., 1998), FashionMNIST (Xiao
et al., 2017), and EMNIST), colored images (SVHN (Netzer et al., 2011), BloodMNIST, DermaM-
NIST (Yang et al., 2023)), and tabular datasets from the Openml benchmark 1 suite (Ids: 6, 155,
156). We further include challenging versions of MNIST containing duplicate images, similar to
RepeatedMNIST proposed in Kirsch et al. (2019). For this, we randomly keep 20%, 10%, and 5%
unique original images and fill the rest with duplicated versions with added Gaussian noise. For the
grayscale images, we use LeNet as a model architecture and use 20 epochs without early stopping.
Due to the higher complexity of the colored data, we perform experiments using pre-trained weights
and initializing the model with the weights from the previous round as proposed in Parvaneh et al.
(2022). We include LeNet and Resnet18 for classification. We train 100 epochs with early stopping
when training accuracy reaches 99% following the setting of Ash et al. (2020). We use a learning rate
of 0.001 and an Adam optimizer. For the tabular data sets, we use a simple multi-layer-perceptron
(MLP) with two layers as proposed in Ash et al. (2020) with a hidden dimensionality of 1024. The
learning rate is 0.0001 with an Adam optimizer. We also use early stopping when a training accuracy
of 99% is reached. We do not use weight decay or a learning rate scheduler. We perform all ex-
periments with different seeds five times and ten acquisition rounds. We compare to state-of-the-art
methods using diversity and uncertainty: BADGE (Ash et al., 2020), CDAL (Agarwal et al., 2020),
CLUE (Prabhu et al., 2021), and ALFAMIX (Parvaneh et al., 2022). We also include a diversity
baseline: KCENTERGREEDY (Sener & Savarese, 2018), an uncertainty baseline: ENTROPY sam-
pling (Settles, 2009), and the passive baseline RANDOM sampling. For FALCUN, we set γ = 10 as
elaborated in Section 4.4.

4.1 LABEL EFFICIENCY

A major goal of AL is to minimize the number of samples that experts need to label to ob-
tain an as good as possible model. Figure 2 shows the learning curves of diverse architec-
tures and query sizes for the evaluated datasets. The x-axis depicts the labeling budget and
the y-axis gives the average accuracy for varying AL methods. We see that FALCUN is
among the best-performing methods for varying query sizes, data types, and model architectures.

1https://www.openml.org/
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Figure 2: Average test accuracy vs labeling budget for all active learning methods evaluated on
greyscale (a,d), RGB (b, e) and tabular data (c, f).
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Figure 3: Final average test accuracy for
varying redundancy ratios.

FALCUN is not only a good choice for image data,
but also yields the strongest results on the tabular
data: in contrast to all other competitors, it consis-
tently outperforms random sampling on the Openml-
156 dataset. Note that the ranking of the best-
performing methods is not the same over varying set-
tings. E.g., Entropy, an only uncertainty-based tech-
nique, yields good results on the bloodmnist dataset,
but underperforms on certain other datasets such as
EMNIST, RepeatedMNIST or Openml-156. In con-
trast, KCenterGreedy, a solely diversity-based ap-
proach, only yields fairly good results on the highly
redundant dataset RepeatedMNIST, but is perform-
ing poorly on Openml-156. Not surprisingly, some
datasets and settings benefit more from uncertainty
and others might work better with diversity. However, in a real-world scenario, it is hard to predict
which strategy will work best for a certain use case. Hence, a good active learning strategy has to be
successful on a broad range of settings.

FALCUN yields strong results on all datasets. We especially want to emphasize that though only
operating on the output probabilities, FALCUN’s success is not diminished on RepeatedMNIST.
Figure 3 shows how the performance of all AL methods drops for varying redundancy ratios of the
RepeatedMNIST dataset. Besides Entropy sampling, AlfaMix’s quality decreases heavily for high
redundancy as it only samples from a certain region, which leads to queries with high similarity (see
also Figure 1). All learning curves of all conducted experiments can be seen in the Appendix.

Dueling Matrix Over All Experiments In AL, it is hard to compare all learning curves
from all experiments, and sometimes a clear winner is hard to find. Hence, similar to pre-
vious works (Ash et al., 2020; Parvaneh et al., 2022), we provide the dueling matrix for
a comprehensive analysis of the methods’ performance over all experimental settings. The
column-wise entries in the matrix in Figure 4 show the amount of losses, and the row-
wise entries indicate the amount of wins against each other method (in %). A win means
that for a specific experimental setting, i.e., a specific dataset, acquisition round, query size,
and model architecture, comparing the results of 5 runs, a method has statistically bet-
ter accuracy than the other method (with p-value=0.05). A loss is defined analogously.
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Figure 4: Duelling matrix: The last column gives the
percentage of wins of the respective method. The last
row gives the percentage of losses.

Losses and wins do not necessarily sum
up to 100% as two methods can perform
comparably well with no statistical differ-
ence. When discussing the quality of an
AL method it is hence important to evalu-
ate the wins as well as the losses. The bot-
tom row and the rightmost column denote
the average losses and wins over all ex-
periments compared to all other AL meth-
ods. Designing a robust method is hard
when the characteristics of a dataset are
unknown in advance. E.g., some datasets
benefit more from diversity (e.g., Repeat-
edMNIST), some work well with plain un-
certainty (e.g., SVHN), some do not bene-
fit from the active acquisition in general,
and others work best with specific com-
binations. Thus, methods with a subopti-
mal combination of uncertainty and diver-
sity or such focusing on only one direction
only succeed in particular tasks. In contrast, FALCUN is consistently strong over a wide range of
datasets, as the dueling matrix in Figure 4 shows. FALCUN has the most wins (highest numbers in
every column) compared to every other method and also the most wins over random sampling. Si-
multaneously, it has the fewest losses. Besides FALCUN, only BADGE is never worse than random
sampling, which is one of the most important criteria for successful AL methods.

Table 1: Time complexity of acquisitions w.r.t.
query size Q, unlabeled pool size Nu, number of
classes C, size of the labeled pool Nl, number of
cluster rounds i, and a method-specific candidate
pool in AlfaMix Ncp, which is smaller than Nu.

Algorithm Time Complexity

CLUE O(Q ·Nu · i ·D)
KCenterGreedy O(Nl ·Nu ·D +Q ·Nu)
CDAL O(Nl ·Nu · C +Q ·Nu)
BADGE O(Q ·Nu · C ·D)
AlfaMix O(Q ·Ncp · i ·D)
FALCUN (Ours) O(Q ·Nu · C)

Table 2: Min. and max. average cumulated query
time (after the whole querying budget is ex-
hausted) among all experiments within the scala-
bility analysis for all methods.

min max

Entropy 1.8 sec 21 min
CDAL 1 min 80 min
FALCUN (Ours) 1.5 min 97 min
AlfaMix 7.3 min 175 min
KCenterGreedy 11.8 min 25 hrs
BADGE 31.5 min 208 hrs
CLUE 92 min >227 hrs

4.2 QUERY TIME EFFICIENCY

The training for the grayscale image datasets and tabular datasets is arguably fast (around 1 minute
for the last AL round). For the colored image data, training takes around 75 minutes in the last
round. In such situations, the limiting factor for the overall runtime is the query time. We show the
runtime complexities in Table 1. Note that the runtime complexity of our acquisition is dependent
on the size of the unlabeled pool, the query size and the number of classes (O(Q ·Nu ·C)) but not on
the hidden dimensionality D. BADGE, one of the strongest competitors regarding label efficiency,
has a worse runtime complexity with O(Q · Nu · C) ∈ O(Q · Nu · C ·D). That leads to multiple
times higher run times compared to FALCUN as shown in Table 2.

We systematically analyzed the scalability of all tested methods by varying dataset size, query size,
and hidden dimensionality of the multilayer perceptron evaluated for the largest of all datasets (i.e.,
Openml-156) and report the results in Figure 18 in Appendix D. Table 2 summarizes these extensive
experiments by giving the smallest and largest average query times among all of those experiments.
We stopped each experiment after 10 days (e.g. CLUE). CDAL, followed closely by FALCUN, is
the fastest among all tested methods. In the fastest setting, when the unlabeled pool contains 20,000
objects, FALCUN is only half a minute slower than CDAL. In the most challenging setting with a
latent dimension of 4096, FALCUN is only 17% slower.
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Figure 5: Runtimes (black bars, smaller is better) and improvement over random sampling in average
test accuracies (colored bars, larger is better) for all acquisition rounds for tabular data (Openml-155
and Openml-156) and grayscale data (RepeatedMNIST, EMNIST).

(a) 1st Query. (b) 2nd Query.

(c) 10th Query. (d) 100th Query.

Figure 6: Exemplary course of relevance scores
r(x) and their dependency of selected queries
(red) on 3-class MNIST, t-SNE visualization.

(a) Openml-156. (b) BloodMNIST.

Figure 7: Hue in the t-SNE visualizations in-
dicates the predictive accuracy of the model on
the respective class. Initially sampled objects are
blue, samples chosen by FALCUN in the first ac-
quisition round are red. FALCUN selects diverse
instances favoring classes that are harder to dis-
tinguish by the current model: ”darker” classes
contain more red dots.

Regarding quality and runtime together, Figure 5 shows the improvement over random sampling in
terms of average accuracy per method (colored bars) and the corresponding query time in minutes in
a certain acquisition round (black thin bars) for all tested methods. Large accuracy bars are better
whereas smaller time bars are better. FALCUN (red bars) has strong performance on all datasets
and never has worse average accuracy than random sampling (i.e., values smaller than zero). CLUE
and especially BADGE perform on par in some settings, but their query times are much higher, in
some cases up to > 200 hours. AlfaMix is fast and has good quality on Openml-155 and decent
performance on EMNIST. However, AlfaMix is prone to duplicates: it performs even worse than
random sampling on RepeatedMNIST in all acquisition rounds. CDAL is quite fast but performs
worse than random sampling more often, especially for small budgets on EMNIST and both tabular
datasets. It is worse than FALCUN on all four datasets. Entropy is fast, but not label-efficient.
KCenterGreedy is fast for smaller datasets (e.g., RepeatedMNIST and EMNIST) but does not scale
well to larger datasets (see Openml-156) and is only comparably label-efficient for the redundant
dataset RepeatedMNIST because it has the strongest emphasis on maximizing diversity. FALCUN
has a robust performance across all datasets and low query times (never above 10 minutes).
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Table 3: Ablation Study: Average test accuracies over 5 runs for varying γ and deterministic sam-
pling (”det.”) with and without diversity (d(x)) and uncertainty (u(x)). Red numbers indicate worst
and bold numbers indicate best accuracy in a column. Note that γ = 0 equals random sampling.

EMNIST RepeatedMNIST (90%) BloodMNIST Openml-6
γ u(x) d(x) 400 1000 2000 1000 2500 5000 1000 2500 5000 2000 5000 10000

0 - - 39.00 56.03 67.64 92.71 95.88 96.99 78.10 85.47 89.36 82.60 89.16 93.03

1 ✓ 38.45 57.20 68.65 94.95 97.40 97.60 81.05 88.30 92.95 85.1 92.6 95.0
1 ✓ 38.05 57.00 67.95 93.85 96.45 97.25 80.10 85.95 91.55 85.3 93.1 95.0
1 ✓ ✓ 38.30 56.55 68.20 93.85 96.60 97.30 78.20 85.50 91.45 85.2 92.7 95.1

5 ✓ 38.75 57.95 69.90 95.15 97.40 97.50 78.45 88.60 93.05 85.8 93.5 95.2
5 ✓ 38.60 57.20 68.05 93.80 96.30 97.15 79.45 86.10 91.80 85.4 93.9 95.1
5 ✓ ✓ 38.45 57.70 68.80 94.50 96.95 97.35 79.35 87.45 91.80 85.8 93.7 95.1

10 ✓ 39.20 58.10 69.45 95.35 97.45 97.45 78.75 89.20 92.80 85.4 93.4 95.2
10 ✓ 38.00 57.00 67.80 93.60 96.10 97.15 79.70 88.40 92.60 85.4 93.8 95.2
10 ✓ ✓ 40.10 58.50 69.65 95.00 97.20 97.65 80.8 89.12 93.33 85.4 93.9 95.2
20 ✓ 38.35 58.20 69.10 95.15 97.40 97.55 79.45 89.10 93.05 85.3 93.3 95.2
20 ✓ 38.05 57.15 68.15 93.35 95.95 97.05 79.45 86.10 91.80 85.7 93.9 95.0
20 ✓ ✓ 39.45 58.50 69.65 95.20 97.55 97.55 78.40 87.40 93.25 85.2 93.7 95.1

det. ✓ 37.60 59.40 71.20 95.40 97.50 97.30 79.90 89.10 92.80 85.6 93.5 95.1
det. ✓ 38.40 58.30 70.10 92.00 95.10 96.60 78.70 88.70 92.90 85.3 93.7 95.2
det. ✓ ✓ 37.60 58.90 71.00 95.20 97.50 97.50 81.30 88.80 92.50 85.3 93.5 95.2

4.3 QUALITATIVE EVALUATION

Figure 6 illustrates the selection of instances and the course of FALCUN’s relevance scores r(x) over
one acquisition round on a 3-class MNIST task (also used for the visualisation in Figure 1) for better
interpretability. Yellow regions indicate a high score promoting regions of high interest. Initially,
all instances with high uncertainty, primarily located at the decision boundary, receive higher scores
(see Figure 6a). The score in the surrounding of the selected instance (red circle) gets darker as the
objects located close to it receive a smaller diversity score (see Figure 6b). In the first iterations,
uncertain, but still diverse instances are preferred. In Figure 6d we derive a diverse set located
in all three clusters mainly consisting of objects from uncertain areas. In Figure 7, we analyze
FALCUN’s selection on Openml-156 (Figure 7a) and BloodMNIST (Figure 7b). It effectively finds
instances majorly located in regions where the classifier has more confusion (darker areas) while
still enhancing diversity and not oversampling certain regions. E.g., on the right, most instances are
chosen from the two most uncertain classes (∼ 55% accuracy). In contrast, only two objects are
selected from the most confident class where the model already achieves ∼ 99% accuracy.

4.4 ABLATION

Table 3 shows the influence of individual components of FALCUN for representative datasets from
each investigated type of data. We vary γ, where smaller values lean towards uniform selection and
larger values lean towards deterministic selection, including a completely deterministic selection
(det.). The worst results (red values) are always reported for a complete random selection (γ = 0, top
row) or a complete deterministic selection (bottom rows). We note that plain uncertainty sampling
(second last row) is not suitable for the highly redundant RepeatedMNIST. Combining uncertainty
and diversity for the relevance score is mostly better than only focusing on one aspect for a specific
γ value. Overall, our default value γ = 10 yields very good results on all datasets. Note that
FALCUN’s performance is largely not influenced by the exact choice for γ in the range of 5 to 20.

5 CONCLUSION

We introduced FALCUN, a novel deep AL method that employs a natural transition from empha-
sizing uncertain instances at the decision boundary towards enhancing more batch diversity. This
natural balance ensures robust label efficiency on varying datasets, query sizes, and architectures,
even on highly redundant datasets. Moreover, FALCUN only operates on the output probability
vectors, denoting faster acquisition times than many established methods that perform a thorough
search through the high-dimensional embedding space of a neural network.
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A FURTHER BACKGROUND AND EXPLANATIONS OF FALCUN

...

Latent Space Prediction Space

Figure 8: FALCUN selects diverse and uncertain instances (colored circles) in the probability space
(see 3-class simplex on the right). In the latent space on the left, they cover the most informative
regions (yellow) while being highly diverse and stemming from different clusters.

FALCUN harmoniously leverages the probability space for an efficient, diverse, and uncertain selec-
tion. Consider the three-class classification problem shown in Figure 8 as an example. The original
data inputs (left) are forwarded through the network. The second and third columns visualize the
latent and the probability space in a 2D t-SNE visualization. The colors indicate uncertainty, with
yellow, lighter regions indicating higher uncertainty. On the right, the 3-dimensional simplex S
is given by S = {(p1, p2, p3)|pi ≥ 0, p1 + p2 + p3 = 1}, where p1, p2, p3 denote the posterior
probability for classes 1, 2, and 3, respectively. The corners indicate a high probability for a certain
class reflected by a darker color. The opposite side corresponds to zero probability for this class
and uniform distribution for the other two classes. The center corresponds to a uniform posterior
distribution over all classes. Small black and white dots indicate objects in L and U, respectively.
Larger blue, red, and white circles indicate instances selected by FALCUN: they are prevalently in
very informative regions in the latent space while being highly diverse.

A.1 FROM DETERMINISTIC TO UNIFORM SELECTION

Figure 9 shows the selection probabilities of points depending on their relevance scores for differ-
ent values for γ. While small values for γ lean toward a uniform selection, larger values for γ
approximate a deterministic selection of the most relevant instance according to r(x).

0.0 0.5 1.0
r(x)

0.00

0.05

0.10

Pr
ob

ab
ilit

y =0
=1
=5

=10
=50
=100

Figure 9: Selection probability of an instance x for different γ values as a function of its relevance
score r(x).

A.2 CONNECTION OF UNCERTAINTY AND INITIAL DIVERSITY

In the following, we show the relation between margin uncertainty and distances to the one-hot
encodings in the probability space.

Let p̂ be a one-hot encoding p̂i = δik of p(x) where δik is the Kronecker Delta function and
k = argmax

c
(p(x)) is the index of the most probable class. Further, let p̂2 be a one-hot encoding
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p(x) with p̂2i = δik2 where k2 = argmax2
c

(p(x)) is the index of the second most probable class.

dinit(x) =1− 1/2 · |dist(p̂,p(x))︸ ︷︷ ︸
Distance to most

probable class

− dist(p̂2,p(x)))|︸ ︷︷ ︸
Distance to 2nd most

probable class

(7)

=1 + 1/2 ·

(
C∑
i=1

|p̂i − pi(x)| −
C∑
i=1

|p̂2i − pi(x)|

)

=1 + 1/2 ·

(
1− p(x)[c1] +

C∑
i=1

(i ̸= k)pi(x)−

(
1− p(x)[c2] +

C∑
i=1

(i ̸= k2)pi(x)

))
=1 + 1/2 · (2 · (1− p(x)[c1])− 2 · (1− p(x)[c2])) = 1− (p(x)[c1]− p(x)[c2]) = u(x)

Therefore we initialize the diversity score with the uncertainty estimate: dinit(x) := u(x).
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B EXPERIMENTAL DETAILS

B.1 TRAINING AND ACTIVE LEARNING PARAMETERS

The implementation is in Python and uses PyTorch (Paszke et al., 2017), NumPy (Harris et al.,
2020), and scikit-learn (Pedregosa et al., 2011). Our experiments have been evaluated on GPUs
(NVIDIA GeForce RTX 2080 Ti) in an Ubuntu 20.04.2 LTS environment. For more details, we
refer to our publicly available code base. An overview of the evaluated dataset and statistics is given
in Table 4. BloodMNIST contains images from different normal cells belonging to eight classes, and
DermaMNIST consists of dermatoscopic images categorizing seven different diseases (Yang et al.,
2023). Example images are shown in Figure 11. We rescale images from the medical datasets from
28x28 to 32x32 with nearest-neighbor interpolation.

B.2 DATASET PROPERTIES

We give an overview of our real-world examples’ properties in Table 4. We regard image data in
gray as well as colored and tabular data.

Table 4: Data set properties: number of points N , number of classes C, and number of features F .

Type Data set N C F

Im
ag

e
(G

ra
y)

MNIST 60,000 10 28x28
RepeatedMNIST 60,000 10 28x28
FashionMNIST 60,000 10 28x28
EMNIST 131,600 47 28x28

Im
ag

e
(C

ol
or

) SVHN 73,257 10 32x32x3
BloodMNIST 11,959 8 28x28x3
DermaMNIST 7007 7 28x28x3

Ta
bu

la
r OpenML-6 16,000 26 17

OpenML-156 800,000 5 11
OpenML-155 829,201 10 11

B.3 REDUNDANCY IN REAL WORLD DATA SETS

Figure 11 shows some of the medical images from the Blood MNIST and the DermaMNIST data
sets. We can see that within a class, images can be very similar, s.t. their information is redundant.
A good AL method should not select such redundant objects for labeling in order to optimize the
learning process.
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(a) BloodMNIST.
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(b) DermaMNIST.

Figure 11: Exemplary images from the medical MNIST datasets.
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C ALL LEARNING CURVES

In this Section, we report all learning curves for all tested datasets and settings, including grayscale
data with varying query sizes (see Figure 13), RGB data with varying model architecture (see Fig-
ure 14), redundant data (see Figure 16), and tabular data (see Figure 17).
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Figure 13: AL Curves grayscale images.
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Figure 14: AL Curves colored image datasets.
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Figure 16: AL Curves on RepeatedMNIST.
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Figure 17: AL Curves for tabular data.
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D SCALABILITY

We perform a systematic scalability analysis using the largest of the evaluated datasets Openml-156,
where we change the size of the unlabeled pool N , the query size Q and the hidden dimensionality
D of the used network (see Figure 18). We stopped experiments after 10 days. The only methods
exceeding this limit are BADGE and CLUE. FALCUN denotes fast and robust runtimes over varying
settings.
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Figure 18: Average cumulated acquisition times (y-axis) on a log-scale vs. annotated samples (x-
axis) over varying unlabeled pool sizes N (first row), query sizes Q (second row), and dimensionality
of the penultimate layer D (third row).
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