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ABSTRACT

Self-supervised learning has recently begun to rival supervised learning on com-
puter vision tasks. Many of the recent approaches have been based on contrastive
instance discrimination (CID), in which the network is trained to recognize two
augmented versions of the same instance (a query and positive) while discrimi-
nating against a pool of other instances (negatives). The learned representation is
then used on downstream tasks such as image classification. Using methodology
from MoCo v2 (Chen et al., 2020c), we divided negatives by their difficulty for a
given query and studied which difficulty ranges were most important for learning
useful representations. We found a minority of negatives—the hardest 5%—were
both necessary and sufficient for the downstream task to reach nearly full accu-
racy. Conversely, the easiest 95% of negatives were unnecessary and insufficient.
Moreover, the very hardest 0.1% of negatives were unnecessary and sometimes
detrimental. Finally, we studied the properties of negatives that affect their hard-
ness, and found that hard negatives were more semantically similar to the query,
and that some negatives were more consistently easy or hard than we would ex-
pect by chance. Together, our results indicate that negatives vary in importance
and that CID may benefit from more intelligent negative treatment.

1 INTRODUCTION

In recent years, there has been tremendous progress on self-supervised learning (SSL), a paradigm
in which representations are learned using a pre-training task that uses only unlabeled data. These
representations are then used on downstream tasks, such as classification or object detection. Since
SSL pre-training does not require labels, it can leverage unlabeled data, which is can be abundant
and cheaper to obtain than labeled data. In computer vision, representations learned from unlabeled
data have historically underperformed representations learned directly from labeled data. Recently,
however, newly proposed SSL methods such as MoCo (He et al., 2019; Chen et al., 2020c), SimCLR
(Chen et al., 2020a;b), SwAV (Caron et al., 2020), and BYOL (Grill et al., 2020) have dramatically
reduced this performance gap.

The MoCo and SimCLR pre-training tasks use contrastive instance discrimination (CID), in which
a network is trained to recognize different augmented views of the same image (sometimes called
the query and the positive and discriminate between the query and the augmented views of other
random images from the dataset (called negatives).1)

Despite the empirical successes of CID, the mechanisms underlying its strong performance remain
unclear. Recent theoretical and empirical works have investigated the role of mutual information
between augmentations (Tian et al., 2020), analyzed properties of the learned representations such
as alignment and uniformity (Wang & Isola, 2020), and proposed a theoretical framework (Arora
et al., 2019), among others. However, existing works on CID have not investigated the relative
importance or semantic properties of different negatives, even though negatives play a central role
in CID. In other areas, works on hard negative mining in metric learning (Kaya & Bilge, 2019) and
on the impact of different training examples in supervised learning (Birodkar et al., 2019) suggest
that understanding the relative importance of different training data can be fruitful.

1In MoCo, these are called the query and positive and are treated slightly differently; in SimCLR, both are
treated the same and are called positives. The other SSL methods listed (not SimCLR and MoCo) are not CID.
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Figure 1: Schematic summary of main results. Easy negatives are unnecessary and insufficient (green) and
are more often dissimilar (i.e., in unrelated ImageNet classes) to the query (light blue) compared to harder
negatives. Hard (but not the very hardest) negatives were necessary and sufficient (orange) and are more often
semantically similar to the query compared to easier negatives. The very hardest negatives are unnecessary and
sometimes detrimental and also are more often in the same class as the query, compared to easier negatives
(red). This is an illustrative schematic; images and trees are not from ImageNet.

In this work, we empirically investigate how the difficulty of negatives affects the downstream per-
formance of the learned representation. We measure difficulty using the dot product between the
normalized contrastive-space embeddings of the query and the negative. A dot product closer to 1
suggests a negative that is more difficult to distinguish from the query. We ask how different nega-
tives, by difficulty, affect training. Are some negatives more important than others for downstream
accuracy? If so, we ask: Which ones? To what extent? And what makes them different?

We focus on MoCo v2 (Chen et al., 2020c) and the downstream task of linear classification on
ImageNet (Deng et al., 2009), and have similar results for SimCLR in Appendix A.2. We make the
following contributions (see Figure 1 for summary):

• The easiest 95% of negatives are unnecessary and insufficient, while the top 5% hard-
est negatives are necessary and sufficient: We reached within 0.7 percentage points of
full accuracy by training on the 5% of hardest negatives for each query, suggesting that the
95% easiest negatives are unnecessary. In contrast, the easiest negatives are insufficient
(and, therefore, the hardest negatives are necessary): accuracy drops substantially when
training on only the easiest 95% of negatives. The hardest 5% of negatives are especially
important: training on only the next hardest 5% lowers accuracy by 15 percentage points.

• The hardest 0.1% of negatives are unnecessary and sometimes detrimental: Down-
stream accuracy was unchanged or improved when we removed these hardest negatives.
These negatives were more often in the same ImageNet class as the query, compared to
easier negatives, suggesting that semantically identical (but superficially dissimilar) nega-
tives were unhelpful or detrimental.

• Properties of negatives: Based on our observations that the importance of a negative varies
with its difficulty, we investigate the properties of negatives that affect their difficulty.

– We found that hard negatives were more semantically similar to the query than were
easy negatives: the hardest 5% of negatives were more likely to be of the same Im-
ageNet class as the query, compared to easier negatives. These hard negatives were
also closer to the query as measured by depth of the least common ancestor for the
negative and the query in the WordNet tree (which ImageNet is built upon).

– We also observed that the pattern is reversed for the ≈50% of easier negatives: there,
the easier the negative, the more semantically similar it is to the query.

– There exist negatives that are more consistently hard across queries than would be
expected by random chance.
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We emphasize that our primary aim is to better understand the differences between negatives and
the impact of these differences on existing methods rather than to propose a new method. However,
our results suggest that there may be unexploited opportunities to reduce the cost of modern CID
methods (Chen et al., 2020c). For any particular query, only a small fraction of the negatives are
necessary. Our observations on differences in negative importance can serve as a valuable building
block for the understanding and improvement of contrastive learning methods.For example, there
may be further room to choose specific examples for training, similar to hard negative mining and
curriculum learning (Chen et al., 2020a; Chuang et al., 2020; Kaya & Bilge, 2019), to reduce costs
and improve performance per data sample.

2 METHODS AND PRELIMINARIES

Contrastive instance discrimination and momentum contrast. Momentum Contrast (MoCo v2)
is a CID method that reaches accuracy within 6 percentage points of supervised accuracy on Im-
ageNet with ResNet-50 (Chen et al., 2020c). In MoCo, the task is to learn a representation that
succeeds at the following: given a query (an augmented view of an image), correctly pick a positive
(a different augmented view of the same image) from a large set of negatives (augmented views of
randomly chosen images). Our experiments focus on aspects that are common between CID meth-
ods rather than those specific to MoCo. We discuss implementation details that may be specific to
MoCo v2 here.

The MoCo v2 encoder is a ResNet-50 network. For pre-training, the outputs of this base network are
fed into a multi-layer perceptron (MLP) head; we refer to the normalized output from the MLP head
as the contrastive-space embedding. For downstream tasks, the MLP head is discarded and only the
base network is used; we refer to the output of the base network as the learned representation. A
distinguishing feature of MoCo is that it has two encoders, one of which is actively trained (used for
the query) and the other which is a moving average of the trained encoder (used for the positive and
negatives). MoCo stores the embeddings of each batch of positives in a large queue and uses them
as negatives for future batches, enabling the use of more negatives than can fit in a batch.

MoCo uses the InfoNCE loss (Gutmann & Hyvärinen, 2010; van den Oord et al., 2018):

Lq = − log
exp(q · k+/τ)∑K
i=1 exp(q · ki/τ)

where q is the embedding of a query (using the learned encoder), k+ is the embedding of a positive
(using the momentum encoder), and ki are the embeddings of the negatives in the queue (added
using previous states of the momentum encoder). τ is a temperature hyperparameter.

Difficulty of negatives. To compute the difficulty for a set of negatives given a particular query,
we calculate the dot product between the normalized contrastive-space embedding of each negative
with the normalized contrastive-space embedding of the query. We then sort the dot products and
consider the negatives with dot products closer to 1 to be harder negatives and those with smaller
dot products to be easier negatives. We use this terminology because it fits intuition: all else being
equal, harder negatives increase the loss. Since embeddings are normalized, the dot product is the
cosine of the angle between the embeddings of the instances and ranges from -1 to 1.

Note that difficulty is defined per query and that it is a function of the current state of the network.
Thus, a negative can be easy for some queries and hard for others, and the hardness of a negative for
a given query can vary over training epochs and across different training runs and configurations.

Experimental setting. Our experiments focus on MoCo v2 (Chen et al., 2020c), an improved
version of MoCo which combines MoCo v1 (He et al., 2019) with several features of SimCLR (Chen
et al., 2020a). We use ImageNet for pre-training and evaluate performance using linear classification
on ImageNet from the representation learned in the pre-training CID task. The network used, as in
MoCo v2, is a ResNet-50 with MLP head, and trained for 200 epochs. Unless otherwise noted, we
run each experiment three times with different seeds; error bars represent mean± standard deviation.
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Figure 2: Easy negatives are neither necessary nor sufficient, while hard negatives are both necessary
and sufficient. a-b) Top-1 (a) and Top-5 (b) performance of networks trained on only segments of 5% of
negatives ordered by difficulty. For example, 95-100% means that only the top 5% hard negatives were used
for training. c-d) Top-1 (c) and top-5 (d) performance of networks trained on increasingly larger fractions of
the easiest negatives. Error bars are standard deviation across 3 seeds.

3 WHICH NEGATIVES ARE NECESSARY OR SUFFICIENT?

We examine which negatives, by difficulty, are necessary or sufficient for learning representations
that have strong downstream performance. Outside of CID, there are varying perspectives on the
value of easy negatives. Research on hard negative mining suggests that harder negatives can be
more important than easier negatives for relevant tasks (Kaya & Bilge, 2019). However, in some
supervised contexts, much or all training data seems important for reaching the highest accuracy
(Birodkar et al., 2019). We aim to experimentally assess which of these perspectives applies when
using MoCo v2 on ImageNet classification.

To determine whether a set of negatives was necessary, we removed the corresponding negatives
on each pre-training step; if the resulting representations still led to accuracy close to baseline on
the downstream task, then we considered those negatives to have been unnecessary. To determine
whether a set of negatives was sufficient, we removed all negatives except those in that range on
each pre-training step; if the resulting representations still led to strong accuracy on the downstream
task, then we considered the negatives in that range to have been sufficient.2

The easy negatives are unnecessary; the hard negatives are sufficient. First, we asked whether
the easy negatives were necessary (or equivalently, whether the hard negatives were sufficient).
That is, does the network maintain downstream accuracy when it is pre-trained without the easy
negatives? To test this, we evaluated how accuracy changed as different subsets of negatives were
removed. Interestingly, we found that using only the hardest 5% of negatives was largely sufficient
to recover baseline accuracy (Figure 2a-b, 95-100%), suggesting that the overwhelming majority
of the easier negatives were unnecessary. Moreover, the hardest 5% (95-100%) were substantially
more informative than the next 5% (90-95%): top-1 accuracy dropped by only 0.7 percentage points
when trained on only the hardest 5% vs. 15 percentage points for the next hardest 5% (90-95%) and
47 percentage points for the third 5% (85-90%; Figure 2a-b). Going forward, we use 5% as a cutoff
and call the negatives harder than this cutoff hard and those easier than this cutoff easy.

The easy negatives are largely insufficient; the hard negatives are necessary. We next asked
whether the easy negatives were sufficient (or, equivalently, whether the hard negatives were neces-
sary). Although we found in the previous section that the easy negatives were unnecessary, that does
not necessarily mean they are insufficient. For example, it could be that the easy negatives, while
individually less important, collectively provide sufficient signal for learning good representations
on the downstream task. Alternatively, it is possible that the information contained in all of the easy
negatives still lacks enough signal; in this case, the easy negatives, even when combined together,
would still be insufficient.

We found that even when the easiest 95% of negatives were combined together, accuracy was 5.4%
below baseline (Figure 2c-d). In contrast, recall that using only the hardest 5% of negatives (19x
fewer) achieved top-1 performance within 0.7% of baseline (Figure 2a). Using the easiest 90% of
negatives harms accuracy even further (0-90%; Figure 2c-d). Together, these results demonstrate that
the easiest negatives, even when they comprise the vast majority of negatives, are still insufficient.

The very hardest negatives are harmful at lower temperatures. We have found that the hard
negatives, i.e. the 5% hardest, are largely necessary and sufficient for CID. However, top-1 accuracy
actually improved slightly when we removed the very hardest 0.1% of negatives (p = 0.03 for an

2We removed sets of negatives by treating them as through they were not present in the queue.
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Figure 3: The hardest 0.1% of negatives hurt, especially at lower temperatures. Top-1 (a) and top-5 (b)
accuracy of networks trained on all but hard and hardest negatives, at different temperatures. The baseline
temperature is 0.2.

unpaired t-test).3 This effect was most pronounced at lower temperatures (Figure 3); for example,
at temperature 0.1 (as opposed to baseline temperature 0.2), training without the hardest 0.1% of
negatives improved downstream top-1 accuracy by 0.23% (p = 0.0003) and top-5 accuracy by
0.67%. One might expect such a difference between temperatures because the hardest negatives
are weighted more in the loss at lower temperatures. Interestingly, the effect was larger for top-5
accuracy than top-1 accuracy (compare Figure 3b with 3a).

One hypothesis for why the hardest negatives hurt is that because negatives are randomly sampled,
some negatives can be too similar to the query (e.g. augmentations of near-duplicates to the query).
Because negatives are randomly sampled, they can included augmented views of images that are
near-duplicates of the query or otherwise visually very similar to the query. If both the query and
negative contain identical semantic content, the contrastive loss might rely on non-semantic features
to distinguish between them, thus emphasizing these non-semantic features in the representation
(Figure 1). These same-class negatives may thus be harmful to learning representations for down-
stream linear classification.

If this is the case, we would expect that removing same class negatives would improve performance,
perhaps even more than removing the hardest 0.1% of negatives overall. As shown in Table 1,
removing same-class negatives indeed leads to slightly higher accuracy than removing the hardest
0.1% of negatives. Removing only the subset of the hardest 0.1% of negatives with the same class
as the query accounts for all of the improvement from removing the hardest 0.1% of negatives.
Alternatively, removing only the subset of the 0.1% hardest negatives with different classes shows
no improvement over baseline and in fact decreases top-1 accuracy at low temperature.

These results demonstrate that the accuracy benefit of removing the 0.1% hardest negatives can
entirely be accounted for by the fact that it removes many elements of the same class as the query, so
that removing the 0.1% hardest negatives approximates removing the same-class negatives without
requiring access to privileged label data. This observation is also consistent with recent work which
has attempted to “debias” contrastive learning away from same-class negatives (Chuang et al., 2020).

4 UNDERSTANDING NEGATIVES BY DIFFICULTY

Hard negatives are more semantically similar to the query. We have shown that easy negatives
are unnecessary and insufficient, and that, inversely, hard negatives are necessary and sufficient.
However, the properties that distinguish easy from hard negatives are not yet understood. Intu-
itively, we might imagine that to learn a representation that is useful for a fine-grained classification
task such as ImageNet, a network must learn to distinguish between categories that are similar but
semantically distinct, e.g., different breeds of dogs. If this were the case, we would expect that the
5% hardest negatives, which were both necessary and sufficient for training, would also be more
semantically similar to the query than the 95% easiest negatives.

3For this section, to remove a set of negatives, we replace them with slightly older negatives, so that the
total number of negatives used does not change. To accommodate this change, the queue is made slightly larger,
with the additional length remaining unused except to replace negatives we want to remove.
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Temperature = 0.07 Temperature = 0.2
Top-1 Acc Top-5 Acc Top-1 Acc Top-5 Acc

Baseline (remove none) 64.78 ± 0.31 85.86 ± 0.12 67.48 ± 0.07 87.93 ± 0.05
Remove 0.1% hardest 66.25 ± 0.23 86.98 ± 0.09 67.64 ± 0.22 87.88 ± 0.07
Remove same class 66.61 ± 0.10 86.96 ± 0.07 68.07 ± 0.12 88.30 ± 0.15
Remove 0.1% hardest ∩ same class 66.43 ± 0.04 86.78 ± 0.06 67.67 ± 0.02 88.09 ± 0.18
Remove 0.1% hardest ∩ different class 63.69 ± 0.04 85.44 ± 0.00 67.38 ± 0.06 87.86 ± 0.08
Remove 99.9% easiest ∩ same class 65.06 ± 0.11 85.91 ± 0.01 67.79 ± 0.07 88.05 ± 0.05

Table 1: The hardest 0.1% negatives hurt because of same-class negatives: Downstream accu-
racy when removing negatives of same/different class as the query and easier/hardest negatives at
different temperatures. At temperature 0.07, accuracy improves when removing same-class nega-
tives and/or hard negatives. At temperature 0.2 (default), there is a similar but smaller effect.
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Figure 4: Semantic similarity is higher for the 5% of hard negatives than for the 95% of easy negatives
Proportion of shared labels (higher is more similar) (a) and WordNet distance as depth of least common ancestor
(lower is more similar) (b) for the 5% of hard negatives and the 95% of easy negatives. Error bars are standard
deviation on plot values across 3 seeds.

To test this hypothesis, we first examined the fraction of the easy and hard negatives that had the same
class as the query label.4 Similar to our results above regarding the 0.1% very hardest negatives, we
found that negatives of the same class were significantly overrepresented among the 5% hardest
negatives relative to the easy negatives (p = 5.1 · 10−7, unpaired t-test; Figure 4a).

However, this experiment can only tell us whether the hard negatives contain more negatives that
are semantically identical to the query (in that they have the same class); it cannot distinguish be-
tween negatives of different semantic similarity with the query (which have classes that are related,
but distinct from the query). To evaluate semantic similarity we used the ImageNet class hierarchy
derived from WordNet (Deng et al., 2009). For each negative, we computed the tree depth of the
least common ancestor between the negative and the query; higher WordNet similarity means that
the least common ancestor is deeper in the tree and that the negative is therefore more similar to
the query.5 As shown in Figure 4b, we found that the hard negatives were significantly more se-
mantically similar to the query than the easy negatives (p=4.8e-7, unpaired t-test). Together, these
results demonstrate that semantic similarity is a property that distinguishes easy and hard negatives;
however, evaluation of whether this relationship is causal is left for future work.

Some of the easiest negatives are both anti-correlated and semantically similar to the query.
Perhaps surprisingly, we also found that a small subset of the very easiest examples are anti-
correlated with the query (i.e., the dot product between these negatives and the query is highly
negative; Figure 5c). While the presence of negatives orthogonal to the query might be expected (as
the two might be unrelated to one another) the presence of a high magnitude negative dot product
suggests that the network learned to anti-correlate these negatives with the query.

Moreover, these negatives are also substantially more semantically similar to the query than the ma-
jority of easy negatives (Figure 5b); in fact, by the WordNet tree similarity (depth of least common
ancestor), their semantic similarity nearly matches those of the hard negatives. In addition, quali-
tatively, the positive and negative classes with the highest mean pairwise negative dot product are

4In this section, use 2K query images and 2K negatives; use trained non-momentum encoder at 200 epochs.
5Although WordNet similarity is not a perfect measure, we do believe it is valuable.
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Figure 5: Semantic similarity with query increases with easier negatives, for the easy half of negatives
Similarity, as measured by proportion of shared labels (higher is more similar) (a) and depth of least common
ancestor in WordNet tree (higher is more similar) (b) increases with easier negatives, for the easy half of
negatives. Similarity also increases with negative difficulty for the harder half of negatives. Average negative
distance is negative for the easy half of negatives (c). Error bars are standard deviation on plot values across 3
seeds (for b and c, error bars are so small that they are not visible).

consistently of closely related classes such as similar breeds of dog (see Table A4). In contrast to
the hard negatives, however, these easiest negatives do not contain many negatives of the same class
as the query, although there is a slight increase for the very easiest negatives (see inset, Figure 5a).
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Figure 6: There exist negatives that are
consistently harder or easier than ex-
pected by chance. Distribution of nega-
tives based on the proportion of positives for
which a negative is in the hardest 5% for the
real data (blue) compared to the distribution
obtained by shuffling the negatives for each
query (orange).

Some negatives are consistently easy or hard across
queries. The hard negatives drive the majority of learning
in CID. However, the negatives are ranked independently
for each query, so a hard negative for one query may be
easy for another. Alternatively, are there negatives that are
consistently hard or easy across queries? To test this, we
started by measuring the percentage of queries for which
each negative was hard, i.e. in the hardest 5%. In Fig-
ure 6, we plot the empirical density of the frequency with
which each negative is hard; the median is 5% by defini-
tion. As a baseline for comparison, we randomized the
negatives for each query to approximate the distribution
we would expect by chance (orange in Figure 6). The
real data distribution (blue) is broader than that expected
by chance, so that there are indeed negatives that are more
consistently hard and easy than we would expect by ran-
dom chance. Perhaps maintaining consistently hard neg-
atives in the queue and removing consistently easy ones
could improve learning.

5 RELATED WORK

Contrastive instance discrimination. Recently, CID has been utilized in a number of works in-
cluding NPID (Wu et al., 2018), CMC (Tian et al., 2019), Moco (He et al., 2019), SimCLR (Chen
et al., 2020a), MoCo v2 (Chen et al., 2020c), in chronological order. Inspired by its impressive per-
formance, recent works have tried to understand CID from a variety of perspectives. In particular,
Tian et al. (2020) investigated the degree of shared information between two augmentations and how
it connects to downstream performance, Wang & Isola (2020) suggested that contrastive objectives
implicitly try to align similar instances while uniformly utilizing the embedding space, and Arora
et al. (2019) proposed a theoretical framework for understanding contrastive learning. Recent work
attempted to mitigate the effects of same-class negatives via a reweighting scheme (Chuang et al.,
2020), but did not study negatives by difficulty, which is our focus here.

Non-instance-discrimination self-supervised learning methods. Beyond CID, a number of other
approaches for self-supervised have been proposed that do not work within the CID paradigm, in-
cluding RotNet (Gidaris et al., 2018), Jigsaw (Noroozi & Favaro, 2016), DeepCluster (Caron et al.,
2018), SwAV (Caron et al., 2020), SeLa (Asano et al., 2020), PCL (Li et al., 2020), and BYOL
(Grill et al., 2020). Since these did not employ negatives in the same way as CID, our results do not
directly relate to these methods.
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Hard negative mining. There is a recurring theme in the machine learning literature of focusing
training on the most difficult examples. In active learning, for example, it is common to favor
examples on which the model is most uncertain (Fu et al., 2013). Work in object detection has
also benefited from efforts to find hard examples (Sung, 1996; Canévet & Fleuret, 2015; Shrivastava
et al., 2016). However, none of the aforementioned work explicitly involved negative examples in
the context of CID.

Closest to CID is work on metric learning, where the goal is to learn a representation for each
example that is conducive to clustering (Kaya & Bilge, 2019). A standard approach is to use a triplet
loss, where the loss encourages representing a query (often called an anchor) example in a fashion
that is close to positive examples from the same class and far from negative examples from other
classes (Weinberger & Saul, 2009). In this paradigm, selecting the hardest (Bucher et al., 2016) or
harder (Schroff et al., 2015) negatives has improved both the rate of learning and final performance.
Similar to our findings about MoCo, Wu et al. (2017) found that mining the very hardest negatives
hurts performance (purportedly because it increases the variance of the gradients); they suggested
mining harder (but not the hardest) negatives instead.

Example importance in classification. In contrast to our work and the aforementioned work on
hard negative mining in metric learning, nearly all examples are necessary in image classification.
No paper that we are aware of could eliminate more than 20% of examples from CIFAR-10 (Toneva
et al., 2018) or 10% from ImageNet (Vodrahalli et al., 2018; Birodkar et al., 2019) without decreases
in accuracy. However, not all examples are learned at the same time: the networks learn “easy”
examples first (Arpit et al., 2017; Mangalam & Prabhu, 2019) and “hard” examples later in training.
However, our notions of easy, hard, and necessary are different than this work: we determine these
qualities on a per-query basis (meaning different examples can be easy or hard for different queries)
while this work assigns these qualities to specific examples for all of training or across training runs.

6 DISCUSSION

Negatives are critical to CID. We studied the relative importance of subsets of negatives, by diffi-
culty, in the context of MoCo v2 Chen et al. (2020c), and found that negative importance varied
dramatically by difficulty (Figure 1): the vast majority (easiest 95%) of negatives were insufficient
without the hardest 5%, and were unnecessary when those 5% were included (Section 3). Moreover,
we found that the very hardest negatives were unhelpful or even harmful to performance and that this
could be accounted for by an over-representation of same-class negatives. To understand why the
hard negatives are helpful, we showed that the hard negatives are more semantically similar to the
query than the easy negatives (Section 4). We also found that there exist easy negatives that are both
anti-correlated and semantically similar to the query, and that some of the negatives are consistently
easy or hard across queries. Many of these observations are in line with what has been found in
other contexts on hard negative mining for metric learning, where accuracy and sample complexity
have improved through judicious negative selection methods. Insights from our work may motivate
approaches that yield benefits of a similar nature in CID.

6.1 LIMITATIONS AND FUTURE WORK

While we focused our experiments on MoCo v2, similar results may be observed for other CID
frameworks. However, we leave this to future work along with a study of other downstream tasks. It
is also possible that the lessons learned here may be useful for non-CID based contrastive approaches
such as SwAV (Caron et al., 2020) and PCL (Li et al., 2020).

One of our most surprising findings was that there exist negatives that are anti-correlated with the
query and also more semantically similar to it than average. This seems undesirable for a down-
stream task of linear classification. Why would the network learn to anti-align two closely related
concepts? Understanding the role of such negatives and discovering whether this behavior can be
exploited or corrected could be an important direction for future work.

Another avenue for future investigation involves exploring the use of curricula for negative difficulty.
For example, a larger quantity of easy negatives may be useful during the early stages of training
while harder negatives are more useful later. While developing a negative curriculum is beyond the
scope of this work, curricula have shown utility in many other contexts (Bengio et al., 2009).

8



Under review as a conference paper at ICLR 2021

REFERENCES

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi.
A theoretical analysis of contrastive unsupervised representation learning, 2019.

Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look
at memorization in deep networks. arXiv preprint arXiv:1706.05394, 2017.

Yuki-Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous
clustering and representation learning. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Hyx-jyBFPr.
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A APPENDIX

A.1 ADDITIONAL NECESSITY/SUFFICIENCY RESULTS

Train on only 85-90% 90-95% 95-100%
Top-1 accuracy (%) 19.47 ± 12.83 51.89 ± 1.00 66.69 ± 0.16
Top-5 accuracy (%) 36.78 ± 17.93 75.44 ± 0.74 87.35 ± 0.09

Train on only 85-100% 90-100% 95-100%
Top-1 accuracy (%) 67.22 ± 0.21 67.15 ± 0.10 67.32 ± 0.88
Top-5 accuracy (%) 87.67 ± 0.09 87.60 ± 0.02 87.52 ± 0.63

Table A1: Extended sufficiency results, 3 seeds each.

Train on all except 85-90% 90-95% 95-100%
Top-1 accuracy (%) 67.56 ± 0.12 67.53 ± 0.20 62.1 ± 0.24
Top-5 accuracy (%) 87.98 ± 0.12 87.94 ± 0.12 84.0 ± 0.15

Train on all except 85-100% 90-100% 95-100 %
Top-1 accuracy (%) 47.91 ± 0.79 56.96 ± 0.36 61.95 ± 0.16
Top-5 accuracy (%) 72.13 ± 0.83 80.14 ± 0.20 83.87 ± 0.28

Table A2: Extended necessity results, 3 seeds each.

A.2 SIMCLR RESULTS

An abridged set of experiments were run on SimCLR Chen et al. (2020a), with one seed each.
SimCLR was reimplemented in pytorch and tested with modifications analogous to experiments
elsewhere in this paper on MoCo v2, where only a portion of negatives, based on their hardness,
were used for pre-training. Pre-training was run for 200 epochs with batch size 4096 on a Resnet-
50. For training on the hardest 5% of negatives (95-100% in the table), the first pre-training epoch
was trained on all negatives, and all further pre-training epochs were trained on the hardest 5%;
pre-training on just the hardest 5% of negatives for all epochs did not converge.

Train on only 85-90% 90-95% 95-100 %
Top-1 accuracy (%) 55.60 62.70 66.34
Top-5 accuracy (%) 80.46 85.30 87.43

Train on only 0-90% 0-95% 0-100 %
Top-1 accuracy (%) 52.43 63.66 66.99
Top-5 accuracy (%) 78.46 86.06 87.73

Table A3: SimCLR results, 1 seed each.

For MoCo v2, the hardest 5% of negatives had been found to be both necessary and sufficient
for downstream linear classification accuracy (Figure 2). We find analogous results for SimCLR:
the accuracy for training on just the top 5% of negatives by difficulty (66.34%) is very close to
the accuracy for training on all negatives (66.99%), while there is a drop of several percentage
points when training on the bottom 95% of negatives by difficulty (63.66%). This suggests the most
difficult 5% of negatives are both necessary and sufficient for SimCLR, in addition to MoCo v2.
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A.3 MOST CORRELATED AND MOST ANTI-CORRELATED CLASSES
Mean dot product Negative Class Positive Class
-0.591357 Ibizan hound, Ibizan Podenco keeshond
-0.572822 Italian greyhound Kerry blue terrier
-0.562565 macaw ruddy turnstone
-0.494559 Staffordshire bullterrier affenpinscher
-0.487417 box turtle, box tortoise nematode
-0.476078 briard refrigerator
-0.471706 Border collie Mexican hairless
-0.467100 dalmatian chow, chow chow
-0.460264 sports car steam locomotive
-0.459015 Staffordshire bullterrier Tibetan terrier

Table A4: Most anti-correlated classes. Mean dot product was computed pairwise across each pair
of classes. Mean dot product Negative Class Positive Class

0.923779 monarch daisy
0.901869 ground beetle dung beetle
0.856066 rifle rubber eraser
0.823796 entertainment center home theater
0.798866 minibus police van
0.795254 bee monarch,
0.794521 maillot swimming trunks
0.789350 airliner wing
0.789099 altar organ, pipe organ
0.786902 dogsled ski

Table A5: Most correlated classes. Mean dot product was computed pairwise across each pair of
classes. Mean dot product Negative Class Positive Class

-1.112930e-07 hog totem pole
-2.239249e-07 canoe tennis ball
6.617499e-07 Great Pyrenees knot
6.956980e-07 magpie Cardigan
-7.122289e-07 china cabinet running shoe
-7.863385e-07 spiny lobster balance beam
8.588731e-07 screwdriver sunglasses
-8.760835e-07 limpkin packet
8.906354e-07 impala coho
-9.792857e-07 boathouse television

Table A6: Most orthogonal classes. Mean dot product was computed pairwise across each pair of
classes.
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