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ABSTRACT

While Large Language Models (LLMs) have demonstrated remarkable potential
in natural language generation and instruction following, a persistent challenge
lies in their susceptibility to “hallucinations”, which erodes trust in their out-
puts. Although Uncertainty Quantification (UQ) presents a promising solution,
its accurate implementation within the context of LLMs remains a significant
hurdle. To address this critical roadblock, our research originates from a fun-
damental heuristic insight: tokens within auto-regressive LLM-generated text do
not equally reflect the underlying meaning. Some tokens carry greater relevance
and representativeness than others, owing to the phenomenon of “linguistic redun-
dancy”, wherein a select few keywords suffice to convey the essence of lengthy
sentences. Regrettably, existing methodologies treat all tokens with equal im-
portance when estimating uncertainty, disregarding these inherent generative in-
equalities. Our analysis reveals a significant issue with state-of-the-art: numer-
ous tokens (and sentences) of limited semantic significance receive equal or even
excessive weighting during uncertainty estimation. To rectify this bias, we pro-
pose to jointly Shifting Attention to more Relevant (SAR) components, at both the
token- and the sentence-levels for accurate uncertainty estimation. We conduct ex-
tensive experiments involving a range of popular “off-the-shelf” LLMs, including
instruction-tuned LLMs such as Vicuna, WizardLM, and LLaMA-2-chat, as well
as pretrained LLMs like OPT and LLaMA, with model sizes extending up to 33B
parameters. We carry out evaluation across various free-form question-answering
tasks, encompassing domains such as reading comprehension, science Q&A, and
medical Q&A. Our experimental results, coupled with a comprehensive demo-
graphic analysis, demonstrate the superior performance of SAR in addressing the
challenges of uncertainty estimation within the realm of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable capabilities in intent understanding He
& Garner (2023), multi-round conversation Long (2023); Chen et al. (2023), logical reason-
ing Creswell et al. (2022); Pan et al. (2023), and also disclose great potential in scientific discov-
ery Birhane et al. (2023). For instance, the recent ChatGPT, BARD, GPT-4, pre-trained on large-
scale corpora and carefully aligned to human preferences Christiano et al. (2017); Ouyang et al.
(2022), profoundly shape the range of what AIs could do, and how they communicate with humans.

Despite the surprising progress, LLMs are proven to be vulnerable to widely known reliability is-
sues, such as hallucination Manakul et al. (2023a) and factual errors Bian et al. (2023); Karpinska &
Iyyer (2023); Gekhman et al. (2023). Uncertainty estimation is one of the most popular approaches
to answering when humans can trust the generations of LLMs, which is critical for Human-AI in-
teraction applications (e.g., therapy and mental health Lin et al. (2023); Sharma et al. (2023)) where
humans need to densely communicate with LLMs. In these applications, the resulting behaviors will
be largely affected by the generations from LLMs.

Unfortunately, uncertainty estimation still remains challenging due to various uncertainty
sources (e.g., aleatoric uncertainty and epistemic uncertainty Kendall & Gal (2017)).
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Question: What is the ratio of the mass of an object to its volume?
Ground Truth: density

LLMs Generation: density of an object
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Figure 1: Irrelevant tokens (or sentences) may com-
mit majority uncertainty in free-form generations,
such as the token “of” committing extremely large
uncertainty misleads the uncertainty estimation of
LLMs. We term these observations as generative in-
equalities and tackle them by shifting attention to
more relevant components.

Especially for free-form language models
where the model complexity is high and the
solution domain is effectively unbounded,
i.e., any generation that has the same se-
mantic as the ground-truth answer should be
deemed as correct, the uncertainty estima-
tion problem is significantly different from
the well-studied classification models or any
other models that have specific labels.

Prior works in this direction estimate uncer-
tainty by prompting LLMs to answer con-
fidence Lin et al. (2022a); Kadavath et al.
(2022a) or designing logits- or entropy-
based measurements Malinin & Gales (2021;
2020); Kuhn et al. (2023). The most recent
work proposes Semantic Entropy (SE) Kuhn
et al. (2023) where generations sharing the
same meaning (or semantic equivalence sen-
tences) are gathered in a semantic cluster.
Then the cluster-wise entropy is calculated as
the uncertainty measurement.

Our motivation is derived from an intuitive
fact: tokens are created unequally in present-
ing semantics. Namely, some tokens (e.g.,
nouns, verbs) are more meaningful than other
tokens (e.g. definite articles). For example,
for a given question “What is the ratio of the
mass of an object to its volume?” and a model generation “density of an object”. It is clear that
“‘density” is the most relevant token in presenting semantics than the rest tokens. We term the for-
mer as relevant tokens and the rest tokens as irrelevant tokens. Prior works treat each token equally
when estimating uncertainty, which is counter-intuitive ( Figure 1). Therefore, we ask:

Are relevant tokens more critical than irrelevant tokens when estimating uncertainty?

To answer this question, we first investigate how token-level generative inequality affects uncertainty
estimation in LLMs. Specifically, we first measure the relevance score of each token by comparing
the semantic change before and after removing this token from the generation. A larger semantic
change means more relevance for this token and vice versa. Then we quantify the uncertainty pro-
portions, i.e., the uncertainty committed by this token. At last, we analyze the correlation between
relevance and uncertainty proportion. Our results reveal that there are large amounts of tokens con-
taining very limited semantics yet are weighted equally or even heavily when evaluating uncertainty.
We further generalize to the sentence-level inequality by assessing relevant sentences and irrelevant
sentences where similar observations are observed.

Based on these observations, we propose a simple attention-shifting method, by jointly examining
the relevance of each component and reassigning its attention, from both the token level and the
sentence level, termed as Shifting Attention to Relevance (SAR). SAR is evaluated on multiple pop-
ular open-source instruction-tuned LLMs (e.g., Vicuna Zheng et al. (2023), LLaMA-2-chat Touvron
et al. (2023b), WizardLM Xu et al. (2023)), with model size up to 33B, and popular pre-trained
LLMs (e.g., OPT Zhang et al. (2022), LLaMA Touvron et al. (2023a)) with model sizes up to 30b,
over cross-domain free-form question-answering tasks, such as the conventional NLP domain (e.g.,
CoQA Reddy et al. (2019), TriviaQA Joshi et al. (2017) and SciQ Welbl et al. (2017)) and med-
ical domain (e.g., MedQA Jin et al. (2020), MedMCQA Pal et al. (2022)). Experimental results
demonstrate SAR’s superior performance. Our contributions can be summarized as the following:

• We disclose that uncertainty estimation is significantly affected by token- and sentence-
level generative inequality, i.e., irrelevant tokens or sentences might be over-valued when
estimating uncertainty.
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• We mitigate the two inequality biases by Shifting Attention to Relevance (SAR), which
jointly examines the relevance of each token and sentence, and reassigns attention when
estimating uncertainty.

• We conduct experiments over “off-the-shelf” instruction-tuned LLMs and popular pre-
trained LLMs, across various free-form question-answering tasks. Experimental results
demonstrate that SAR outperforms previous state-of-the-art by a large margin.

2 RELATED WORKS

Uncertainty Estimation in Conventional NLP Tasks. Uncertainty Estimation of machine trans-
lation (MT) has been studied for years to evaluate the performance of MT better. Ott et al. (2018)
access uncertainty by comparing multiple model outputs to multiple references with inter-sentence
BLEU. Glushkova et al. (2021) measure uncertainty through techniques of Monte Carlo dropout Gal
& Ghahramani (2016) and deep ensembles Lakshminarayanan et al. (2017). Fomicheva et al. (2020)
use uncertainty quantification methods to improve probability estimates in neural networks for bet-
ter quality estimation. Lahlou et al. (2021) proposed Direct Epistemic Uncertainty Prediction, a
model-agnostic framework, for estimating epistemic uncertainty in machine learning models. For
regression tasks, Wang et al. (2022) use uncertainty estimation to address both data uncertainty and
model uncertainty, and Malinin et al. (2020) proposes a method for uncertainty estimation using
Prior Networks to obtain interpretable measures of uncertainty at a low computational cost. For
Natural Language Understanding tasks, Talman et al. (2023) use uncertainty estimation by applying
Bayesian uncertainty modeling using Stochastic Weight Averaging-Gaussian.

Uncertainty Estimation in LLMs. Although uncertainty estimation has been thoroughly exam-
ined in models with distinct labels, such as classification models Ulmer et al. (2022); Vazhentsev
et al. (2022), it is still under-explored for popular free-form LLMs, e.g., GPT Radford et al. (2019),
OPT Zhang et al. (2022), LLaMA Touvron et al. (2023a). These models present a unique challenge
in uncertainty estimation as their solution domains are flexible and effectively infinite, i.e., any gen-
eration can be deemed correct as long as the semantics align consistently with the real answer.

Xiao et al. (2022) conducts large-scale empirical evaluations on how the configuration (e.g., model
size, architecture, training loss) of LLMs affect uncertainty. Lin et al. (2022a); Kadavath et al.
(2022a) propose to quantify uncertainty by directly prompting the language models to answer the
uncertainty with respect to their generations. Manakul et al. (2023b) measures the faithfulness
of generations by quantifying the consistency of generations, i.e., generations should be consis-
tent if the model really captured the concept. Malinin & Gales (2021) examines the uncertainty
of free-form LLMs by calculating the accumulative predictive entropies over multiple generations.
Recently, Semantic Entropy (SE) Kuhn et al. (2023) is presented to tackle the “semantic equiva-
lence” difficulty in uncertainty quantification. SE gathers generations sharing the same semantics
into clusters and performs cluster-wise predictive entropy as the uncertainty measurement.

We aim to design metrics from multiple generations to characterize the uncertainty of LLMs. Our
work focuses on the token- and sentence-level generative inequalities, which are not explored by
prior works in uncertainty estimation.

3 GENERATIVE INEQUALITY IN UNCERTAINTY ESTIMATION

Tokens are created unequally in reflecting the meaning of the generation yet they are treated equally
when estimating uncertainty. We term these inequalities as generative inequalities and investigate
how they affect uncertainty estimation.

3.1 PRELIMINARIES

LLMs normally generate sentences in a free-form and auto-regressive manner, i.e., progressively
predicting the probability distribution of the next token. We denote by x the input (or the prompt)
and s the generated sentence with the length of N . Then, for a given LLM, the probability of
generating zi as the i-th token can be described as p(zi|s<i, x)(1 ≤ i ≤ N), where s<i refers to the
previously generated tokens {z1, ..., zi−1}.
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Baseline. We use the popular Predictive Entropy (PE), described in Kadavath et al. (2022b), as the
baseline and investigate how it is affected by generative inequalities in this section. The Predictive
Entropy (PE) is defined as the entropy over the whole sentence s:

PE(s,x) = − log p(s|x) =
∑
i

− log p(zi|s<i,x). (1)

It can be interpreted as the accumulation of the token-wise entropy.

3.2 TOKEN-LEVEL GENERATIVE INEQUALITY

As mentioned before, generative inequality refers to an observation where some tokens contain
limited semantics yet are equally valued when estimating the uncertainty of a generation, which is
counter-intuitive. To outline this observation, we specify two quantities for each token: how much
semantics the token contains, i.e., the relevance, and how much uncertainty the token committed,
i.e., the uncertainty proportion.

For a given prompt x and the generated sentence s consisting of N tokens, i.e., s = {z1, z2, ..., zN},
we quantify the relevance and uncertainty proportion of token zi:

Relevance. To measure how important zi is in reflecting the semantics of s, we compare the seman-
tic change before and after removing this token:

RT(zi, s,x) = 1− |g(x ∪ s,x ∪ s \ {zi})|, (2)

where g(·, ·), calculating sentence similarity on a scale of 0 to 1, can be any semantic similarity
measurement. In our experiments, we leverage the Cross-Encoder Reimers & Gurevych (2019b)-
RoBERTa-large Liu et al. (2019) as this measurement since it is one of the most powerful sen-
tence similarity evaluation models provided by the popular SentenceTransformers Library Reimers
& Gurevych (2019a). Generally, larger RT(zi, s,x) means removing zi will lead to significant se-
mantic changing, which indicates the importance of zi and vice versa.

Uncertainty Proportion. To measure the proportion of uncertainty committed by zi, we simply
derive the ratio from Eq. (1):

UPT(zi, s,x) =
− log p(zi|s<i,x)

PE(s,x)
. (3)

Larger UPT(zi, s,x) means zi commits more uncertainty when estimating the uncertainty of sen-
tence s; vice versa.

3.3 SENTENCE-LEVEL GENERATIVE INEQUALITY

It has been widely shown that involving multiple generations benefits estimating uncertainty Ka-
davath et al. (2022b). For instance, PE will usually be the arithmetic mean of multiple sentences
in practice, i.e., 1

K

∑
k PE(sk,x) (1 ≤ k ≤ K) where S = {s1, s2, ..., sK} consisting of K gen-

erated sentences regarding x and sk ∈ S is the k-th sentence. Therefore it is necessary to study
sentence-level generative inequality. Following Section 3.2, for a given sentence si, we define the
sentence-level relevance of si as the probability-weighted semantic similarity with other sentences.

RS(si, S,x) =
∑

j=1,j ̸=i

g(si, sj)p(sj |x), (4)

where 1 ≤ i, j ≤ K and p(sj |x) is the generative probability of sj . It is out of an intuitive assump-
tion that sentences are more convincing if they are semantically consistent with other generations.
Namely, a sentence that is semantically close to other generations is considered more representative.
Besides, the generative probability p(sj ,x) provides more confidence for sentence sj as measuring
relevance, i.e., higher p(sj ,x) makes sj more compelling.

Similar to the token-level situation, the sentence-level uncertainty proportion of si is defined as:

UPS(si, S,x) =
PE(si,x)∑
k PE(sk,x)

, (5)

where 1 ≤ k ≤ K. It is the proportion of uncertainty committed by si,
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Figure 2: Distributions of relevance scores in
both token-level and sentence-level situations.
It is shown that there are considerable irrelevant
tokens and sentences that appear over genera-
tions, especially for the token situations where
most tokens are irrelevant.
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Figure 3: Correlations between relevance scores
and uncertainty proportions in both token-level
and sentence-level situations. Irrelevant tokens
dominate the total volume of uncertainty esti-
mation. Irrelevant sentences dominate both to-
tal volume and average.

3.4 ANALYTICAL INSIGHTS

We will leverage the defined relevance and uncertainty proportion to characterize the generative
inequality observations in this section. We utilize CoQA as the dataset and OPT-13b as the model
to be examined. For each prompt in CoQA, we will generate 10 sentences, i.e., K = 10 in Eq. (4)
and Eq. (5). More details of generation can be found in Appendix A.

We first quantify the distributions of token-level relevance scores and sentence-level relevance
scores. Results are summarized in Figure 2. For token-level relevance, it is clear that most of the
tokens are irrelevant tokens, i.e., they have low relevance scores. It indicates that linguistic redun-
dancy exists widely. In terms of the sentence-level situation, although the distribution is flatter than
the token-level situation, the irrelevant sentences still take a considerable amount of all sentences.

We further investigate the correlations between relevance and uncertainty proportions, i.e., how
much uncertainty is committed by tokens and sentences with various relevance scores. We calculate
these quantities by first independently gathering tokens and sentences into 10 bins with uniform
relevance ranges and then averaging the uncertainty proportions of tokens/sentences contained in
the same bin. Results are summarized in Figure 3.

For the token-level situation, although tokens with large relevance scores commit slightly higher
uncertainty on average, due to a large number of irrelevant tokens, the irrelevant tokens still dominate
uncertainty estimation from the perspective of total volume (the dashed line). For the sentence-
level situation, it is clear that irrelevant sentences commit more uncertainty than relevant sentences
regardless of the average or the total.

These observations demonstrate the existence of generation inequalities and also the uncertainty
estimation is highly affected by these inequalities.

4 SHIFTING ATTENTION TO RELEVANCE

A natural hypothesis derived from Section 3.4 is that shifting the attention to those relevant com-
ponents may benefit uncertainty estimation. In this section, we introduce the proposed Shifting
Attention to Relevance (SAR) in detail.

4.1 NOTATIONS

We reuse the notations defined in Section 3.1 where we denote by x the prompt and S the generated
K sentences. There will be Nj tokens for each sentence sj ∈ S (1 ≤ j ≤ K).
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4.2 RELEVANCE DISCOVERY AND SHIFTING

SAR corrects generative inequalities by reviewing the relevance of each token and/or sentence and
emphasizing uncertainty estimation attention to those more relevant components. Here we introduce
token-level shifted measurement and sentence-level shifted measurements:

Token-Level Shifting. For a generation sj regarding prompt x, sj = {z1, z2, ..., zNj} contains Nj

tokens. We first calculate the normalized relevance score for each token zi (1 ≤ i ≤ Nj) based
on Eq. (2), i.e., RT(zi, sj ,x):

R̃T(zi, sj ,x) =
RT(zi, sj ,x)∑Nj

n RT(zn, sj ,x)
(6)

Then we enlarge the uncertainty proportions of relevant tokens by re-weighting token entropy ac-
cording to their normalized relevance scores:

ET(zi, sj ,x) = − log p(zi|s<i,x)R̃T(zi, sj ,x). (7)

The token-level shifted predictive entropy defined over sj can be formulated as:

TOKENSAR(sj ,x) =
Nj∑
i

ET(zi, sj ,x). (8)

The reason we normalize relevance score in Eq. (6) is two-fold: a) to make tokens comparable
across sentences; b) to mitigate the bias posed by sentence length, like the length normalization in
Length-normalized Predictive Entropy (LN-PE) Malinin & Gales (2020). In this way, the uncertainty
proportions of tokens containing strong relevance will be enlarged when estimating uncertainty.

Sentence-Level Shifting. As mentioned in Section 3.3, sentences that have higher relevance scores,
i.e., semantically consistent, are more convincing than others. Therefore, we simply reduce sentence
uncertainty by enlarging sentence generative probability with a relevance-controlled quantity:

ES(sj , S,x) = − log(p(sj |x) +
1

t
RS(sj , S,x))

= − log(p(sj |x) +
∑

k ̸=j g(sj , sk)p(sk|x)
t︸ ︷︷ ︸

sentence relevance

),
(9)

where p(sj |x) =
∏

i p(zi|s<i,x) is the generative probability of sj and t is the temperature used
to control the scale of shifting. Then, the sentence-level shifted predictive entropy over K sentences
can be formulated as:

SENTSAR(S,x) =
1

K

∑
k

ES(sk, S,x). (10)

Note that Eq. (9) shares a similar form with SE Kuhn et al. (2023), i.e., reducing the uncertainty
of semantically consistent sentences. Differently, SE achieves this with bi-directional entailment
prediction and we achieve this with weighted relevance scores. With manual examination, we found
that around 36.7% of the entailment predictions are undesirable, over the long generations that have
more than 20 tokens on average (120 questions in total). Instead, our sentSAR leverages the more
“soft” sentence similarity to calculate the relevance score, which is more desirable for long and
complex sentences.

4.3 OVERALL MEASUREMENT

Token-level shifting and sentence-level shifting are conceptually different as they emphasize differ-
ent perspectives of generations. However, they are orthogonal and can be naturally combined to shift
attention from both token-level and sentence-level, resulting in more effective uncertainty quantifi-
cation. To achieve that, we simply replace the generative probabilities in Eq. (9), i.e., p(si|x) and
p(sj |x), with the token-shifted probability derived from Eq. (8), i.e. p′(si|x) = e−TOKENSAR(si,x)

and p′(sj |x) = e−TOKENSAR(sj ,x):

ET,S(sj , S,x) = − log(p′(si|x) +
∑

k ̸=j g(sj , sk)p
′(sj |x)

t
). (11)
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Table 1: Uncertainty estimation AUROCs of TOKENSAR, SENTSAR, SAR, and baseline methods,
across various “off-the-shelf” LLMs and datasets (e.g., CoQA, and Trivia QA). Rouge-L with a
threshold of 0.5 is used as the correctness metric.

Dataset Model LS PE LN-PE SE TOKENSAR SENTSAR SAR

CoQA

OPT-2.7b 0.531 0.692 0.706 0.699 0.707 0.717 0.735
OPT-6.7b 0.542 0.696 0.723 0.717 0.724 0.722 0.750
OPT-13b 0.545 0.695 0.727 0.726 0.729 0.720 0.753
OPT-30b 0.505 0.696 0.719 0.726 0.723 0.723 0.748

LLaMA-7b 0.488 0.666 0.681 0.682 0.677 0.658 0.697
LLaMA-13b 0.487 0.654 0.668 0.667 0.666 0.647 0.684

TriviaQA LLaMA-7b 0.506 0.724 0.788 0.814 0.797 0.815 0.823
LLaMA-13b 0.616 0.488 0.606 0.732 0.614 0.743 0.695

Average 0.528 0.664 0.702 0.720 0.705 0.718 0.736

Then the token- and sentence-level shifted predictive entropy over K generations can be defined as
SAR = 1

K

∑
k ET,S(sk, S,x).

We denote TOKENSAR, SENTSAR, and SAR as the token-shifted predictive entropy, sentence-shifted
predictive entropy, and both token- and sentence-shifted predictive entropy respectively, in the rest
of this paper.

5 EMPIRICAL EVALUATIONS

We conduct comprehensive experiments and detailed demographic analyses to evaluate the perfor-
mance of SAR in this section.

5.1 EXPERIMENTAL SETTINGS

Baselines. We consider 4 baseline methods in our experiments, including Lexical Similarity Lin
et al. (2022b), Semantic Entropy (SE) Kuhn et al. (2023), Predictive Entropy (PE) Kadavath et al.
(2022b), and Length-normalized Predictive Entropy (LN-PE) Malinin & Gales (2020). Lexical Sim-
ilarity considers the similarities among multiple generations. SE introduces the “semantic equiva-
lence” difficulty in the uncertainty estimation of free-form LLMs and tackles this issue by gathering
sentences containing the same meaning into clusters and calculating cluster-wise entropy. LN-PE is
the length normalized PE, i.e., divided by sentence length N : LN-PE(s,x) = 1

N PE(s,x).

Models. We conduct experiments over popular “off-the-shelf” LLMs, including instruction-tuned
LLMs (e.g., Vicuna Zheng et al. (2023), LLaMA-2-chat Touvron et al. (2023b), WizardLM Xu et al.
(2023)) and pre-trained LLMs (e.g., OPT Zhang et al. (2022) and LLaMA Touvron et al. (2023a)),
with model size up to 33B. More details of the used LLMs can be found in A

Datasets. We consider 5 free-form question-answering datasets: CoQA Reddy et al. (2019), Trivia
QA Joshi et al. (2017), SciQ Welbl et al. (2017), MedQA Jin et al. (2021) and MedMCQA Pal et al.
(2022). More details of the used datasets and the splittings can be found in B.

Correctness Metrics. We adopt the popular Rouge-L Lin (2004) as the metric when evaluating the
correctness of LLMs’ generations. Rouge-L deems a generation as correct if its longest common
subsequence, regarding ground truth, is larger than a threshold. We set the threshold of Rouge-L
as 0.5 by default. We also consider sentence similarity as the correctness metric. We simply deem
generations having above 0.5 semantic similarities with the ground truth as correct, measured by
SentenceTransformers Reimers & Gurevych (2019a) and use DistillRoBERTa Sanh et al. (2019) as
the backbone. We will study the sensitivity of SAR to these thresholds in Section 5.4.

Evaluation Metric. Following prior work Kuhn et al. (2023), we evaluate uncertainty estimation
by predicting the correctness of the model’s generations regarding a given question, i.e. to what
extent the generated answers can be trusted. The area under the receiver operator characteristic
curve (AUROC) indicates the probability that a random correct generation has a lower uncertainty
than a random incorrect generation, predicted by uncertainty estimation methods. AUROC equals
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Table 2: Uncertainty estimation AUROCs of TOKENSAR, SENTSAR, SAR, and baseline methods,
across various instruction-tuned open-source LLMs, over different datasets (e.g., SciQ, and Trivia
QA). The threshold of Rouge-L is set to 0.5. Underline means the second best method.

Models & Datasets LS PE LN-PE SE TOKENSAR (∆SE) SENTSAR(∆SE) SAR(∆SE)

Vicuna-13b w./ 5 sentences are generated for each question

Trivia QA 0.560 0.690 0.624 0.630 0.692 (+6.2%) 0.745 (+11.5%) 0.749 (+11.9%)
SciQ 0.589 0.708 0.668 0.675 0.706 (+3.1%) 0.745 (7.0%) 0.741 (+6.6%)

Vicuna-33b w./ 5 sentences are generated for each question

Trivia QA 0.565 0.644 0.639 0.651 0.652 (+0.1%) 0.715 (+6.4%) 0.710 (5.9%)
SciQ 0.584 0.665 0.668 0.674 0.665 (-0.9%) 0.717 (+4.3%) 0.710 (+3.6%)

WizardLM-13b w./ 5 sentences are generated for each question

Trivia QA 0.519 0.647 0.615 0.634 0.657 (+2.3%) 0.743 (+10.9%) 0.744 (+11.0%)
SciQ 0.574 0.677 0.638 0.649 0.681 (+3.2%) 0.719 (+7.0%) 0.707 (+5.8%)

LLaMA-2-13b-chat w./ 5 sentences are generated for each question

Trivia QA 0.504 0.647 0.615 0.622 0.654 (+3.2%) 0.698 (+7.6%) 0.704 (+8.2%)
SciQ 0.578 0.718 0.688 0.692 0.718 (+2.6%) 0.737 (+4.5%) 0.725 (+3.3%)

Average 0.555 0.675 0.644 0.653 0.678 (+2.5%) 0.727 (+7.4%) 0.724 (+7.1%)
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Figure 4: The performance of SAR and baseline
methods over various numbers of generations.
Results are obtained from the OPT-13b model
on the CoQA dataset.
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Figure 5: The performance of SAR over var-
ious Rouge-L and Sentence Similarity thresh-
olds. Results are obtained from the OPT-13b
model on the CoQA dataset.

0.5 means the assigned uncertainty is no better than random guessing, i.e., they can not differentiate
between correct and incorrect generations. AUROC equals 1 means all the correct generations are
assigned lower uncertainty than all incorrect generations.

Hyperparameters. For OPT-2.7b/6.7b/13b, we generate 10 sentences for each question, i.e. K=10.
For other models, we generate 5 sentences. The temperature t introduced in Eq. (9) is set to 0.001.
We leverage greedy search for all the most likely generations which are used to evaluate correctness,
and multinominal sampling for reference generations which are used to estimate uncertainty. More
details can be found in Appendix A. All the experiments are conducted on a server with one Intel(R)
Xeon(R) Platinum 8358 CPU and two NVIDIA A100 GPUs.

5.2 UNCERTAINTY ESTIMATION FOR PRE-TRAINED LLMS

We compare SAR, TOKENSAR, and SENTSAR with state-of-the-art methods. Results are summarized
in Table 1. Generally, our methods significantly outperform prior methods in most of the settings.
For instance, SAR outperforms other methods by at most 3.6% AUROC over the CoQA dataset,
measured by Rouge-L 0.5. The results of setting Rouge-L to 0.3 can be found in Appendix C.4.

Also, the synergy of TOKENSAR and SENTSAR achieves remarkable improvements. For instance,
TOKENSAR and SENTSAR achieve 0.723 AUROC in the OPT-30b-CoQA setting yet combining
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them results in 0.748 AUROC. It indicates that TOKENSAR and SENTSAR are compatible and can
be incorporated effectively.

5.3 UNCERTAINTY ESTIMATION FOR INSTRUCTION-TUNED LLMS

Table 3: The performance of SAR and baseline meth-
ods over medical Q&A datasets. Our method achieves
better performances for most settings.

Model Dataset LN-PE SE SAR

Vicuna-13b MedQA 0.572 0.599 0.598
MedMCQA 0.649 0.685 0.717

LLaMA-2-13b-chat MedQA 0.562 0.609 0.616
MedMCQA 0.647 0.655 0.702

WizardLM-13b MedQA 0.609 0.620 0.635

We estimate the uncertainty of pow-
erful instruction-tuned LLMs, including
Vicuna-13b/33b, LLaMA-2-chat-13b, and
WizardLM-13b. All these models are ob-
tained from Huggingface, without any fur-
ther modifications. Results are summarized
in Table 2. It is shown that S consistently
beat baseline methods in most situations.
For example, SAR outperforms SE by 7.1%
AUROC on average, evaluated by Rouge-L
0.5. We also evaluate SAR over the AI for
science scenarios, such as medical domains.
As shown in Table 3, we perform experiments over MedQA Jin et al. (2020) and MedMCQA Pal
et al. (2022) datasets and our methods achieve better performance for most of the settings. This
indicates the potential impacts of our methods on the real world.

5.4 ABLATION STUDIES

Number of Generations. The effects of the number of generations are summarized in Figure 4.
It is shown that our SAR is generation-efficient, i.e., it achieves 0.750 AUROC with only 5 genera-
tions and it can be consistently boosted with more generations, while other methods may even drop
slightly when more generations are provided.

Table 4: Sensitivity of SAR to sentence similarity mea-
surements. We consider two more models from Sentence-
Transformers (Appendix D) and also the target LLMs as
the sentence similarity measurement.

SAR w. sentence similarity
OPT Size SE RoBERTa MiniLM MPNet OPT-13b

2.7b 0.699 0.735 0.723 0.723 0.716
6.7b 0.717 0.750 0.740 0.739 0.731
13b 0.725 0.753 0.741 0.740 0.733
30b 0.726 0.748 0.738 0.739 0.734

Sensitivity to Sentence Similarity. We
investigate the sensitivity of SAR to
various sentence similarity measure-
ments. Results are reported in Table 4.
These models are directly obtained from
sentence-transformer ( Appendix D).
We show that general-purpose sentence
similarity models are more effective
than the target LLMs (last column of 4).
It is because LLMs are not specifically
designed for sentence similarity while
these third-party models are designed
for this purpose.

Sensitivity to Correctness Metrics. The effects of applying different thresholds of correctness
metrics are presented in Figure 4. Higher thresholds mean the correctness standards are more harsh.
It is shown that the performances of uncertainty quantization will be affected as the metrics are
getting harsh. Still, our methods beat baseline methods consistently.

6 CONCLUSION

In this paper, we disclose the generative inequality observation in uncertainty estimation: tokens and
sentences are created unequally in reflecting semantics yet they are treated equally when estimating
uncertainty, which is counter-intuitive. We propose to tackle these inequalities by Shifting Attention
to Relevance (SAR) from both token-level (TOKENSAR) and sentence-level (SENTSAR). Experiments
over “off-the-shelf” LLMs demonstrate the superior performances of SAR.

Limitations and Ethics Statement Our method requires sentence similarity calculations, which
might bring additional latency in practice. In addition, our methods require access to token logits. It
still might restrict the potential applications of our methods. Our proposed method has the potential
to impact the credibility and reliability of LLMs, particularly in the context of reducing hallucination
and factual errors.
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APPENDIX

A DETAILS OF LLMS GENERATION

OPT models. We will generate 1 most likely generation with the greedy search for all the OPT
models. This generation will be used to evaluate the correctness. For OPT-2.7b/6.7b/13b, we will
generate 10 sentences for each question with multinomial sampling for uncertainty estimation. For
OPT-30b, we will generate 5 sentences. The temperature of generation is fixed at 0.5 for all models.
For OPT-2.6b/6.7b/13b, the max length of each generation is set to 256 tokens for the CoQA dataset
and SciQ dataset and is set to 128 tokens for the Trivia QA dataset. For OPT-30b, the max length of
each generation is set to 128 tokens for all the datasets.

LLaMA/Vicuna/WizardLM. We will generate 1 most likely generation with the greedy search and
5 sentences with multinomial sampling for all these models. The max length of each generation is
set to 128 tokens. The temperature of generation is set to 0.5.

B DATASETS

CoQA Reddy et al. (2019) is a large-scale conversational QA task, with more than 127,000 ques-
tions. Each question is equipped with a passage to provide contextual information. Trivia QA Joshi
et al. (2017) is a high-quality reading comprehension dataset that contains over 650k question-
answer pairs. These questions are obtained from trivia enthusiasts and answers from Wikipedia.
SciQ Welbl et al. (2017) dataset is a science-related QA dataset aimed at developing models’ capa-
bilities of understanding complex scientific texts. It consists of approximately 13,679 crowdsourced
science questions. MedQA Jin et al. (2020) is a free-form multiple-choice OpenQA dataset for solv-
ing medical problems, collected from the professional medical board exams. MedMCQA Pal et al.
(2022) is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address
real-world medical entrance exam questions.

Following Kuhn et al. (2023), we randomly select around 8,000 questions from the training split of
Trivia QA as the questions to be examined. For instruction-tuned experiments, we use 2,000 ques-
tions of Trivia QA. We utilize the full validation set (1,000 questions) of SciQ and the development
split (7,983 questions) of CoQA. For MedQA and MedMCQA, we also utilize their full validation
sets.

C ADDITIONAL EXPERIMENTAL ANALYSIS

C.1 EFFECTS OF SAR TEMPERATURE t

The hyperparameter t introduced in Eq. (9) is used to control the scale of sentence shifting. The
effects of t is provided in Table 5. It is shown that t marginally affects the performance of SAR.

Table 5: Effects of temperature t in Eq. (9). Results are evaluated by Rouge-L with 0.5 as the
threshold. Results are obtained from SAR/TOKENSAR.

t
OPT-13b LLaMA-7b

CoQA SciQ CoQA TriviaQA

1× 10−3 0.753/0.720 0.737/0.784 0.697/0.658 0.823/0.815
1× 100 0.752/0.719 0.739/0.786 0.695/0.656 0.822/0.816
1× 101 0.743/0.714 0.729/0.786 0.686/0.658 0.813/0.812

C.2 GENERATION EFFICIENCY

The generation-efficiency of SAR on LLaMA-7b-Trivia QA setting is presented in Figure 6.
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Figure 6: The performance of SAR over various numbers of generations. Results are obtained from
the LLaMA-7b model over the Trivia QA dataset.

C.3 SENSITIVITY TO SENTENCE LENGTH.

To study how the SAR is affected by sentence length, we quantify the uncertainty rank change for
each sentence, caused by SAR and SENTßSAR. Assume a sentence has a rank of i among all the
sentences, evaluated by LN-PE and has a rank of j evaluated by SAR, then the uncertainty rank
change is |i − j|. The correlations between average uncertainty rank change and sentence length
are presented in Figure 7. It is shown that our methods tend to conclude medium- and long-length
sentences.
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Figure 7: Demographic analysis of sentence length. Uncertainty Rank Change between (Left) SAR
and LN-PE, and between (Right) SENTSAR and LN-PE. It is shown that SAR and SENTSAR are more
tend to affect medium- or long-length sentences.

C.4 DIFFERENT CORRECTNESS METRIC THRESHOLD

We report the results of Rouge-L (0.3) (same as Kuhn et al. (2023) in Table 6.

C.5 COMPUTATIONAL COSTS ANALYSIS

We would like to highlight that SENTSAR is more **generation-efficient**. It surpasses baseline
methods under significantly smaller computational constraints. We have quantified the time con-
sumed for each step in the overall uncertainty quantification pipeline. This includes sequence gen-
eration, computing logits, semantic clustering for SE, and sentence similarity for SENTSAR. We
exclude the time taken for aggregating logits/scores as it is negligible (less than 0.001 seconds for
all methods). The average time consumed per question, based on an evaluation of 1000 questions
from the Vicuna-13b + SciQ dataset, is provided. These measurements were taken using an AMD
EPYC 7302 16-Core CPU and a 1xA40 GPU server. Results are summarized in Table 7.
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Table 6: Uncertainty estimation AUROCs of TOKENSAR, SENTSAR, SAR, and baseline methods,
across various “off-the-shelf” LLMs and datasets (e.g., CoQA, and Trivia QA). Rouge-L with a
threshold of 0.3 is used as the correctness metric.

Dataset Model LS PE LN-PE SE TOKENSAR SENTSAR SAR

CoQA

OPT-2.7b 0.573 0.666 0.719 0.712 0.719 0.689 0.742
OPT-6.7b 0.588 0.671 0.745 0.741 0.746 0.696 0.768
OPT-13b 0.588 0.666 0.750 0.751 0.752 0.690 0.773
OPT-30b 0.550 0.671 0.742 0.751 0.746 0.698 0.767

LLaMA-7b 0.511 0.646 0.673 0.672 0.672 0.635 0.686
LLaMA-13b 0.522 0.617 0.653 0.652 0.653 0.610 0.665

Trivia QA LLaMA-7b 0.533 0.713 0.783 0.814 0.793 0.800 0.818
LLaMA-13b 0.655 0.492 0.627 0.758 0.635 0.749 0.716

Average 0.565 0.643 0.712 0.731 0.715 0.696 0.742

Table 7: Computational costs of SENTSAR and baseline methods. We report both SENTSAR with 5
generations and 2 generations.

Method Num. of Generations Generation Logits Computing Semantic Clustering Sentence Similarity Sum

PE 5 4.09s 1.19s 0s 0s 5.28s
LN-PE 5 4.09s 1.19s 0s 0s 5.28s
SE 5 4.09s 1.19s 1.5s 0s 6.78s
SENTSAR 5 4.09s 1.19s 0s 2.58s 7.86s

SENTSAR 2 1.64s 0.48s 0s 0.52s 2.64s

Then we compare the 2-generations SENTSAR with 5-generations baseline methods. Results are
summarized in Table 8. Our SENTSAR still surpasses the baseline methods while consuming less
than half the time, demonstrating its greater generation efficiency.

Table 8: Comparisons between 2-generations SENTSAR and 5-generations baseline methods.
SENTSAR achieves better performances with only less than half the time consumed by baseline.

Method Num. of
Generations

Llama-2-13b-chat on
SciQ/Trivia QA

Vicuna-13b on
SciQ/Trivia QA

Vicuna-33b on
SciQ/Trivia QA

WizardLM-13b on
SciQ/Trivia QA Average

PE 5 0.718/0.647 0.708/0.690 0.665/0.644 0.677/0.647 0.692/0.657
LN-PE 5 0.688/0.615 0.668/0.624 0.668/0.639 0.638/0.615 0.666/0.623
SE 5 0.692/0.622 0.675/0.630 0.674/0.651 0.649/0.634 0.673/0.634

SENTSAR 2 0.716/0.689 0.718/0.709 0.700/0.674 0.697/0.701 0.708/0.685

D SENTENCE SIMILARITY MEASUREMENT

The following is the sentence similarity measurement models we leveraged in Table 4:

• RoBERTa: cross-encoder/stsb-roberta-large
• MiniLM: sentence-transformers/all-MiniLM-L6-v2
• MPNet: sentence-transformers/all-mpnet-base-v2
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