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Abstract

This paper addresses the problem of maintaining safety during training in Rein-1

forcement Learning (RL), such that the safety constraint violations are bounded2

at any point during learning. Whilst enforcing safety during training might limit3

the agent’s exploration, we propose a new architecture that handles the trade-off4

between efficient progress in exploration and safety maintenance. As the agent’s5

exploration progresses, we update Dirichlet-Categorical models of the transition6

probabilities of the Markov decision process that describes the agent’s behaviour7

within the environment by means of Bayesian inference. We then propose a way to8

approximate moments of the agent’s belief about the risk associated to the agent’s9

behaviour originating from local action selection. We demonstrate that this ap-10

proach can be easily coupled with RL, we provide rigorous theoretical guarantees,11

and we present experimental results to showcase the performance of the overall12

architecture.13

1 Introduction14

Traditionally, RL is principally concerned with the policy that the agent generates by the end of the15

learning process. In other words, the agent’s policy during learning is overlooked to the benefit of16

learning how to behave optimally. Accordingly, many standard RL methods rely on the assumption17

that the agent selects each available action at every state infinitely often during exploration [30, 28].18

A related technical assumption that is often made is that the MDP is ergodic, meaning that every19

state is reachable from every other state under proper action selection [25]. These assumptions may20

sometimes be reasonable, e.g., in virtual environments where restarting is always an option. However,21

in safety-critical systems, these assumptions might be unreasonable, as we may explicitly require22

the agent to never visit certain unsafe states. Indeed, in a variety of RL applications the safety of the23

agent is particularly important, e.g. expensive autonomous platforms or robots that work in proximity24

of humans. Thus, researchers are recently paying increasing attention not only to maximising a25

long-term task-driven reward, but also to enforcing avoidance of unsafe training.26

Related Work The general problem of Safe RL has been an active area of research in which27

numerous approaches and definitions of safety have been proposed [3, 12, 26]. In [25], safety is28

defined in terms of ergodicity, with the goal of safety being that an agent is always able to return to29

its current state after moving away from it. In [8], safety is pursued by minimising a cost associated30

with worst-case scenarios, when cost is associated with a lack of safety. Similarly, [24] defines the31

safety constraint in terms of the expected sum of a vector of measurements to be in a target set. Other32

approaches [21, 16, 17, 18, 4, 19] define safety by the satisfaction of temporal logical formulae of the33

learnt policy, but do not provide safety while training such policy. Many existing approaches have34

been concerned with providing guarantees on the safety of the learned policy sometimes under the35

assumption that a backup policy is available [10, 27, 13, 22, 9, 23]. These methods are applicable to36
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systems if they can be trained on accurate simulations, but for many other real-world systems we37

instead require safety during training.38

There has also been much research done into the development of approaches to maintaining safety39

during training. For instance, [2, 20, 15] leverage the concept of a shield that stops the agent from40

choosing any unsafe actions. The shield assumes the agent has to observe the entire MDP (and41

opponents) to construct a safety (game) model, which will be unavailable for many partially-known42

MDP tasks. The approach in [11] assumes a predefined safe baseline policy that is most likely43

sub-optimal, and attempts to slowly improve it with a slightly noisy action-selection policy, while44

defaulting to the baseline policy whenever a measure of safety is exceeded. However, this measure45

of safety assumes that nearby states have similar safety levels, which may not always be the case.46

Another common approach is to use expert demonstrations to attempt to learn how to behave safely [1],47

or even to include an option to default to an expert when the risk is too high [32]. Obviously, such48

approaches rely heavily on the presence and help of an expert, which cannot always be counted upon.49

Other approaches on this problem [35, 7, 33] are either computationally expensive or require explicit,50

strong assumptions about the model of agent-environment interactions. Crucially, maintaining safety51

in RL by efficiently leveraging available data is an open problem [31].52

Contributions We tackle the problem of synthesising a policy via RL that optimises a discounted53

reward, while not violating a safety requirement during learning. This paper puts forward a cautious54

RL scheme that assumes the agent maintains a Dirichlet-Categorical model of the MDP. We incorporate55

higher-order information from the Dirichlet distributions, in particular we compute approximations56

of the (co)variances of the risk terms. This allows the agent to reason about the contribution of57

epistemic uncertainty to the risk level, and therefore to make better informed decisions about how58

to stay safe during learning. We show convergence results for these approximations, and propose a59

novel method to derive an approximate bound on the confidence that the risk is below a certain level.60

The new method adds a functionality to the agent that prevents it from taking critically risky actions,61

and instead leads the agent to take safer actions whenever possible, but otherwise leaves the agent62

to explore as normal. The proposed method is versatile given that it can be added on to general RL63

training schemes, in order to maintain safety during learning.64

2 Background65

2.1 Problem Setup66

Definition 2.1 A finite MDP with rewards [30] is a tuple M = 〈Q,A, q0, P,Re〉 where Q =67

{q1, q2, q3, ..., qN} is a finite set of states, A is a finite set of actions, without loss of generality q068

is the initial state, P (q′|q, a) is the probability of transitioning from state q to state q′ after taking69

action a, and Re(q, a) is a real-valued random variable which represents the reward obtained after70

taking action a in state q. A realisation of this random variable (namely a sample, obtained for71

instance during exploration) will be denoted by re(q, a).72

An agent is placed at q0 ∈ Q at time step t = 0. At every time step t ∈ N0, the agent selects an action73

at ∈ A, and the environment responds by moving the agent to some new state qt+1 according to the74

transition probability distribution, i.e., qt+1 ∼ P (·|qt, at). The environment also assigns the agent a75

reward re(qt, at). The objective of the agent is to learn how to maximise the long term reward. In the76

following we explain these notions more formally.77

Definition 2.2 A policy π assigns a distribution over A at each state: π(a|q) is the probability of
selecting action a in state q. Given a policy π, we can then define a state-value function

vπ(q) = Eπ
[ ∞∑
t=0

γtre(qt, at)

∣∣∣∣∣ q0 = q

]
,

where Eπ[·] denotes the expected value given that actions are selected according to π, and 0 < γ ≤ 178

is a discount factor.79

Specifically, this means that the sequence q0, a0, q1, a1, ... is such that an ∼ π(·|qn) and qn+1 ∼80

P (·|qn, an). The discount factor γ is a pre-determined hyper-parameter that causes immediate81

rewards to be worth more than rewards in the future, as well as ensuring that this sum is well-defined,82

provided the standard assumption of bounded rewards. The agent’s goal is to learn an optimal policy,83

namely one that maximises the expected discounted return. This is actually equivalent to finding a84

policy that maximises the state-value function vπ(q) at every state [30].85
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Definition 2.3 A policy π is optimal if, at every state q, vπ(q) = v∗(q) = maxπ′ vπ′(q).86

Definition 2.4 Given a policy π, we can define a state-action-value function vπ(q, a) =87

Eπ [
∑∞
t=0 γ

tre(qt, at)| q0 = q, a0 = a] , similarly to the state-value function. This allows us to88

reinterpret the state-value function as vπ(q) =
∑
a vπ(q, a)π(a|q), and thus we can see that an89

optimal deterministic policy π must assign zero probability to any action a that doesn’t maximise the90

state-action value function.91

2.2 Dirichlet-Categorical Model of the MDP92

We consider a model for an MDP with unknown transition probabilities [14]. The transition probabili-93

ties for a given state-action pair are assumed to be described by a categorical distribution over the next94

state. We maintain a Dirichlet distribution over the possible values of those transition probabilities:95

since the Dirichlet distribution is conjugate to the categorical distribution, we can employ Bayesian96

inference to update the Dirichlet distribution, as new observations are made while the agent explores97

the environment.98

Formally, for each state-action pair (qi, a), we have a Dirichlet distribution pi1a , p
i2
a , ..., p

iN
a ∼99

Dir(αi1a , α
i2
a , ...α

iN
a ). The random variable pija represents the agent’s belief about the transition100

probability P (qj |qi, a). At the start of learning, the agent will be assigned a prior Dirichlet distribution101

for each state-action pair, according to its initial belief about the transition probabilities. At every102

time step, as the agent moves from some state qi to some state qk by taking action a, it will generate103

an event qi a−→ qk, which constitutes new data for the Bayesian inference. From Bayes’ rule:104

Pr(pi
a = xi

a|qi
a−→ qk) ∝ Pr(qi a−→ qk|pi

a = xi
a)Pr(pi

a = xi
a)

= xika
∏
j

(xija )α
ij
a −1 = [

∏
j 6=k

(xija )α
ij
a −1](xika )(αik

a +1)−1,

which immediately yields105

Pr(pi
a = xi

a|qi
a−→ qk) = Dir(αi1a , α

i2
a , ..., α

ik
a + 1, ..., αiNa ).

Thus, the posterior distribution is also a Dirichlet distribution. This update is repeated at each time step:106

the relevant information to the agent’s posterior belief about the transition probabilities is the starting107

prior Dir(αi1a , α
i2
a , ...α

iN
a ) and the “transition counts” cija , keeping track of the number of times that108

qi
a−→ qj has occurred. The agent’s posterior is then (pi1a , p

i2
a , ..., p

iN
a ) ∼ Dir(αi1a , αi2a , ...αiNa ): from109

this distribution, we can distill the expected value p̄ija of each random variable pija , as well as the110

covariance of any two pija and pika (therefore also the variance of a single pija ):111

p̄ija = E[pija ] =
αija
αi0a

, Cov[pija , p
ik
a ] =

αija (δjkαi0a − αika )

(αi0a )2(αi0a + 1)
,

where αi0a =
∑N
k=1 α

ik
a , and δjk is the Kronecker delta.112

3 Risk-aware Bayesian RL for Cautious Exploration113

In this section we propose a new approach to Safe RL, which will specifically address the problem of114

how to learn an optimal policy in an MDP with rewards, while avoiding certain states classified as115

unsafe during training. The agent is assumed to know which states of the MDP are safe and which116

are unsafe, but instead of assuming that the agent has this information globally, namely for all states117

of the MDP, we find it more reasonable that the agent observes states within an area around itself.118

This closely resembles real-world situations, where systems may have sensors that allow them to119

detect close-by danger areas, but not necessarily know about danger zones that are far away from120

them. In particular, we assume that there is an observation “boundary” O, such that the agent can121

observe all states that are reachable from the current state within O steps and distinguish which of122

those states are safe or unsafe. The rest of this section is structured as follows:123

1. In Section 3.1, we define the risk rmc (a) over m steps of taking an action a at the current124

state, denoted as qc. We then introduce a random variable Rmc (a) representing the agent’s125

belief about the risk;126

2. In Section 3.2,we leverage a method from [6] to approximate the expected value and variance127

of the random variable Rmc (a). We provide convergence results on the approximations of128

the expectation and variance of Rmc (a);129
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3. In Section 3.3, we show how the Cantelli Inequality [5] allows us to estimate a confidence130

bound on the risk rmc (a);131

4. In Section 3.4, we prescribe a methodology for incorporating the expectation and variance132

of risk into the action selection during the training of an RL agent.133

3.1 Definition and Characterisation of the Risk134

Given the observation boundary O, we reason about the risk incurred over the next m steps after135

taking a particular action a in the current state qc, for any m ≤ O. However, note that there is a136

dependence between the agent’s estimate of such a risk and the use of that estimate to inform its137

action selection policy. In order to solve this dilemma we severe the dependency between the risk that138

we calculate and the actions selected generating that risk by fixing a policy over the m-step horizon,139

and calculating the risk given that policy. Similar to temporal-difference learning schemes, this is140

done by assuming best-case action selection, namely, the m-step risk rmc (a) at state qc after taking141

action a is defined assuming that after selecting action a, the agent will select subsequent actions142

to minimize the expected risk going forward. Assuming that the agent is at state qc, we define the143

agent’s approximation of the m-step risk R̄mc (a) by back-propagating the risk given the “expected144

safest policy” over m steps, as follows:145

R̄0
k = 1(qk is observed and unsafe); (1)

R̄n+1
k (a) =

{
1 if qk is observed and unsafe∑N
j=1 p̄

kj
a R̄

n
j otherwise;

(2)

R̄n+1
k =

{
1 if qk is observed and unsafe
mina∈A R̄

n+1
k (a) otherwise.

(3)

We terminate this iterative process at n+ 1 = m and once we have calculated R̄mc (a) (c = k) for all146

actions a. Note that, despite the use of progressing indices n, this is an iterative back-propagation147

that leverages the expected values of agent’s belief about the transition probabilities, i.e., p̄kja . Thus,148

R̄mc (a) is the agent’s approximation of the expectation of the probability of entering an unsafe state149

within m steps by selecting action a at state qc, and thereafter by selecting actions that it currently150

believes will minimize the probability of entering unsafe states over the given time horizon.151

The term p̄kja = E[pkja ] is used as a point estimate of the true transition probability tkja = P (qj |qk, a).152

The value of R̄mc only relies on states which the agent believes are reachable from qc within m steps.153

In particular so long as the horizon m is less than the observation boundary O, the agent is able to154

observe all states which are relevant to the calculation of R̄mc (a), so specifically, 1(qj is unsafe) =155

1(qj is observed and unsafe) for all relevant states qj (see Appendix G for more details).156

3.2 Approximation of Expected Value and Covariance of the Risk157

Let x denote the vector of variables xija where i, j range from 1 to N and a ranges over A, i.e.,158

x =
(
(xija )i,j=1,...,N and a∈A

)
. We assume that these indices are ordered lexicographically by (i, a, j).159

This is because i and a will be used to signify a state-action pair (qi, a), and j will be used to signify160

a potential next state qj . Introduce a set of functions (we shall see they take the shape of polynomials)161

gnk [x] defined, for each state qk, as follows:162

g0
k[x] := 1(qk is observed and unsafe);

gn+1
k (a)[x] :=

{
1 if qk is observed and unsafe∑N
j=1 x

kj
a g

n
j [x] otherwise;

gn+1
k [x] :=

{
1 if qk is observed and unsafe
gn+1
k

(
arg mina R̄

n+1
k (a)

)
[x] otherwise.

Then we can write the risk (of selecting action a in state qc, over m steps) defined above as163

rmc (a) = gmc (a)[t], where t =
(
(tija )i,j=1,...,N and ∀a∈A

)
is a vector of all “true” transition prob-164

abilities tija := P (qj |qi, a). We can similarly write the agent’s approximation of the risk as165

R̄mc (a) = gmc (a)[p̄], where similarly p̄ =
(
(p̄ija )i,j=1,...,N and a∈A

)
. We refer to the actions spec-166

ified by these argmin operators as the agent’s expected safest action in each state over the next167

m steps. Now, crucially, we can also define a new random variable Rmc (a) = gmc (a)[p], where168
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p =
(
(pija )i,j=1,...,N and ∀a∈A

)
. Since the pija s are random variables representing the agent’s beliefs169

about the true transition probabilities tija , we in fact have that this random variable Rmc (a) represents170

the agent’s beliefs about the true risk rmc (a). In the following, we show that R̄mc (a) can be viewed as171

an approximation of E[Rmc (a)], and we provide and justify an approximation of V ar[Rmc (a)]. These172

approximations can be used by the agent to reason about the true risk rmc (a).173

In order to construct approximations of the expectation and variance of Rmc (a), we make use of174

the first-order Taylor expansion of gmc (a)[x] around x = p̄, following a method in [6]. The Taylor175

expansion is176

gmc (a) [x] = gmc (a) [p̄] +

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(xijb − p̄

ij
b ) + remainder, (4)

where the partial derivatives are also evaluated at p̄. Now we can turn equation 4 into a statistical177

approximation by dropping the remainder and reasoning over the random variables p for x, namely:178

gmc (a) [p] ≈ gmc (a) [p̄] +

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(pijb − p̄

ij
b ). (5)

We can then take the expectation of both sides, obtaining179

E[gmc (a) [p]] ≈ E[gmc (a) [p̄]] + E[

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(pijb − p̄

ij
b )]

= gmc (a) [p̄] +

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
E[(pijb − p̄

ij
b )] = gmc (a) [p̄] ,

where the above steps follow since the only random term in the right-hand side is pijb , for which180

E(pijb ) = p̄ijb . Recall that gmc (a) [p] = Rmc (a) and gmc (a) [p̄] = R̄mc (a). Thus, we now have R̄mc (a)181

as an approximation of the expectation of Rmc (a). For the approximation of the variance of the182

agent’s believed risk, which is again a random variable, we can write:183

V ar(gmc (a)[p]) ≈ E[(gmc (a)[p]− gmc (a)[p̄])2]

≈ E


 N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(pijb − p̄

ij
b )

2
 (from equation 5)

=

N∑
i,j,s,t=1

∑
b1,b2∈A

∂gmc (a)

∂xijb1

∂gmc (a)

∂xstb2
Cov(pijb1 , p

st
b2)

=

N∑
i=1

∑
b∈A

N∑
j,t=1

∂gmc (a)

∂xijb

∂gmc (a)

∂xitb
Cov(pijb , p

it
b ) = V̄ mc (a), (6)

where V̄ mc (a) is the approximation for the variance of Rmc (a), i.e., ≈ V ar(Rmc (a)), and the last184

line follows from the fact that the covariance between two transition probability beliefs pijb1 and pstb2185

is always 0, unless they correspond to the same starting state-action pair (qi, b). In other words,186

Cov(pijb1 , p
st
b2

) = 0 unless i = j and b1 = b2. Next, we show consistency of the estimate in the limit187

(see Appendix E for the proof).188

Theorem 3.1 Under Q-learning convergence assumptions [34], namely that reachable state-action189

pairs are visited infinitely often, the estimate of the mean of the believed risk distribution R̄mc (a)190

converges to the true risk rmc (a), and it does so with the variance of the believed risk distribution191

V ar(gmc (a)[p]) approaching the estimate of that variance V̄ mc (a). Specifically,192 (
R̄mc (a)− rmc (a)

)√
V̄ mc (a)

→ N (0, 1) in distribution.
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3.3 Estimating a Confidence on the Approximation of the Risk193

So far we have shown that when the agent is in the current state qc, for each possible action a,194

approximations of the expectation and variance of its belief Rmc (a) about the risk rmc (a) can be195

formally obtained: we denote these two approximations by R̄mc (a) and V̄ mc (a), respectively. We196

describe a method for combining these approximations to obtain a bound on the level of confidence197

that the risk rmc (a) is below a certain threshold.198

We appeal to the Cantelli Inequality, which is a one-sided Chebychev bound [5]. Having computed199

R̄mc (a) and V̄ mc (a), for a particular confidence value 0 < C < 1 we can define Pa := R̄mc (a) +200 √
V̄m
c (a)C
1−C . From the Cantelli Inequality we then have201

Pr(Rmc (a) ≤ Pa) ≥ C.

Specifically, Pa is the lowest risk level such that, according to its approximations, the agent can be at202

least 100× C % confident that the true risk is below level Pa. The agent can therefore leverage Pa203

when attempting to perform safe exploration (please refer to Appendix F for more details).204

3.4 Risk-aware Bayesian RL for Cautious Exploration (RCRL)205

We propose a setup for Safe RL that leverages the expectation and variance of the risk to allow an206

agent to explore the environment safely, while attempting to learn an optimal policy. In order to pick207

the most optimal yet safe action at each state, we propose a double-learner architecture, referred to208

as Risk-aware Cautious RL (RCRL) and explained next.209

The first learner is an optimistic agent that employs Q-learning (QL) to maximize the expected210

cumulative return. The second learner is a pessimistic agent that maintains a Dirichlet-Categorical211

model of the transition probabilities of the MDP. In particular, this agent is initialized with a prior212

Pri that encodes any information the agent might have about the transition probabilities. For each213

state-action pair (qi, a) we have a Dirichlet distribution pi1a , p
i2
a , ..., p

iN
a ∼ Dir(αi1a , αi2a , ...αiNa ). As214

the agent explores the environment, the Dirichlet distributions are updated using Bayesian inference.215

For each action a available in the current state qc, the pessimistic learner computes the approximations216

R̄mc (a) and V̄ mc (a) of its belief Rmc (a) of the risk over the next m steps of taking action a in qc. The217

“risk horizon” m is a hyper-parameter that, as discussed, should be set at most as the observation218

boundary O. The pessimistic learner is also initialized with two hyper-parameters Pmax and C(n):219

Pmax represents the maximum level of risk that the agent should be prepared to take, whereas C(n) is220

a decreasing function of the number of times n that the current state has been visited, which satisfies221

C(0) < 1 and limn→∞ C(n) = 0. From Section 3.3, the agent can then compute, for each action a,222

the value223

Pa = R̄mc (a) +

√
V̄ mc (a)C(n)

1− C(n)
, (7)

which can thus define a set of safe actions: these are all the actions that the agent believes have risk224

less than Pmax, with confidence at least C(n), namely225

Asafe = {a ∈ A|Pa ≤ Pmax}.

In case there are no actions a such that Pa ≤ Pmax, the agent instead allows226

Asafe = {a ∈ A|R̄mc (a) = min
a′

R̄mc (a)}. (8)

Finally, the agent selects an action a∗ from the set of safe actions using softmax action selection [30]227

according to the Q-values of those actions, with some temperature t > 0:228

Pr(a∗ = a) =
eQ(qc,a)/t∑

a∈Asafe
eQ(qc,a)/t

. (9)

The pseudo-code for the full algorithm is available in Appendix B.229

In summary, we effectively have two agents learning to accomplish two tasks. The first agent230

performs Q-learning to learn an optimal policy for the reward. The second agent determines the231

best approximation of the expected value and variance of each action, enabling it to prevent the232

first agent from selecting actions that it cannot guarantee to be safe enough (with at least a given233
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Table 1: Total successes and failures. Gridworld: different priors and acceptable risks Pmax, averaged
over 10 agents. PacMan: varying risk horizon m, single agent.

Experiment Setup # Successes # Failures Total Episodes

Gridworld

Prior 1, Pmax = 0.33 404.3 54.2 500
Prior 1, Pmax = 0.01 506.0 417.9 1500
Prior 2, Pmax = 0.01 384.6 0.5 500
Prior 3, Pmax = 0.01 407.4 14.4 500
Prior 3, Pmax = 0.0033 421.3 1.1 500
Native Q-Learning 414.6 990.5 1500

PacMan
Risk Horizon m = 2 234 77 311
Risk Horizon m = 3 207 68 275
Native Q-Learning 0 1500 1500

confidence). When instead the pessimistic agent cannot guarantee that any action is safe enough, it234

forces the optimistic learner to go into “safety mode”, i.e., to forcibly select the actions that minimize235

the expected value of the risk, as per equation 8. From an empirical perspective, implementing this236

concept of a “safety mode” allows for continued progress, and pairs extremely well with the definition237

of the risk: namely, when the agent deems that a state is too risky, it will go into this “safety mode”238

until it is back in a state with sufficiently safe actions.239

Finally, note that C(n) represents the level of confidence that the agent requires in an action being240

safe enough for it to consider taking that action. When the agent starts exploring and C(n) is at its241

highest, the agent only explores actions that it is very confident in. However, it may need to take242

actions that it is less confident in order to find an optimal policy. Thus, as it continues exploring,243

C(n) is reduced, allowing the agent to select actions upon which it is not as confident. However,244

in the limit, when C(n) → 0, we have that Pa = R̄mc (a), which means that the agent never takes245

an action if its approximation of the expected value of the risk R̄mc (a) is more than the maximum246

allowable risk Pmax.247

4 Experiments248

Gridworld - We first evaluated the performance of RCRL on a Slippery Gridworld Bridge example.249

The states of the MDP consist of a 20× 20-grid, as depicted in Figure 2a (Appendix C). The agent is250

initialized at q0 in the bottom-left corner (green). The agent’s task is to get to the goal region without251

ever entering an unsafe state. In particular, upon reaching a goal state, the agent is given a reward252

of 1 and the learning episode is terminated; at every other state it receives a reward of 0, and upon253

reaching an unsafe state the learning episode terminates with reward 0. At each time step the agent254

might move into one of the 4 neighbouring states, or stay in its current position; thus, the agent has255

access to 5 actions at each state, A = {right , up, left , down, stay}. If the agent selects action a ∈ A,256

then it has a 96% chance of moving in direction a, and a 4% chance of “slipping”, namely moving257

to another random direction. If any movement would ever take the agent outside of the grid, then258

the agent will just remain in place. The agent is assumed to have an observation boundary O = 2259

steps. Note that due to the slipperiness of the grid and the narrow passage to reach the goal state,260

minimizing the risk is not aligned with maximizing the expected reward.261

We tested RCRL with 5 different combinations of a prior Pri and a maximum acceptable risk Pmax.262

The following additional hyper-parameters of the algorithm were kept constant: the maximum number263

of steps per episode max_steps = 400, the maximum number of episodes max_episodes = 500264

(although this was increased to 1500 in two cases when the agent did not converge to near-optimal265

policy within the first 500, cf. Table 1); the learning rate µ = 0.85; the discount factor γ = 0.9;266

and the risk horizon m = 2 (Appendix B). Recall that a prior consists of a Dirichlet distribution267

pi1a , ..., p
iN
a ∼ Dir(αi1a , ..., αiNa ) for every state-action pair (qi, a). We considered three priors:268

• Prior 1 - completely uninformative: in this case we assigned a value of 1 to every α. This269

yields a distribution that is uniform over its support.270

• Prior 2 - weakly informative: we assigned a value of 12 to the α corresponding to moving in271

the correct direction, and a value of 1 to all other α’s. This gives a distribution in between272

Prior 1 and Prior 3 in both degree of bias and concentration.273

• Prior 3 - highly informative: we assigned a value of 96 to the α corresponding to moving in274

the correct direction, and a value of 1 to all other α’s. This gives a distribution that is highly275
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concentrated, and for which the mean values of the transition probability random variables276

are the true transition probabilities of the MDP, and hence unbiased.277

We tested the algorithm with all three priors and a maximum acceptable risk of Pmax = 0.01 and278

repeating each experiment 10 times to take averages. On average, the agent with the highly informative279

prior (Prior 3) entered unsafe states 14.4 times, and always converged to near-optimality within280

about 200 steps, successfully crossing the bridge 407.4 times. For the other 78.2 episodes, the agent281

reached the episode limit within crossing the bridge or entering an unsafe state. The agent with Prior282

2 interestingly only entered unsafe states an average of 0.5 times per experiment, and converged to a283

near-optimal policy within about 300 episodes, successfully crossing the bridge 384.6 times. On the284

other hand, the agent with Prior 1 only crossed the bridge less than 30 times. We therefore increased285

the total number of episodes to 1500 and tried again, yet still over half the time it did not converge to286

a near-optimal policy (Appendix A).287

We then tested Prior 1 with a more lenient maximum acceptable risk of Pmax = 0.33, and found that288

the agent this time managed to converge to near-optimality within around 200 episodes, entering289

unsafe states 54.2 times and successfully crossing the bridge 404.3 times. We also tested Prior 3 with290

a stricter Pmax = 0.0033 and found out that it entered unsafe states only 1.1 times and succeeded291

421.3 times, converging to near-optimality within 150 episodes (Appendix A).292

Finally, we tested native Q-learning, without any safe learning scheme. This native scheme had293

almost no successful crossings of the bridge in the first 500 episodes, so we ran it for 1500 episodes294

and found that it only converged to a near-optimal policy about half the time, on average entering295

unsafe states 990.5 times and successfully crossing the bridge 414.6 times.296

Table 1 summarizes the number of successes and failures for each agent. To understand better the297

rate of convergence to near-optimality, Figure 1 (Appendix A) displays the number of steps taken by298

the agent to cross the bridge at every successful episode (it displays 400 if the agent never managed299

to cross the bridge) averaged over the 10 experiments. On each graph we display for comparison300

the theoretical least number of steps it could cross the bridge in, which is 22. Note that because the301

grid-world is slippery, even an optimal policy would have fluctuations above the 22-steps line.302

Discussion The first result of note is how poorly Prior 1 performs with Pmax = 0.01. It mostly fails303

to converge to near-optimal behaviour even with 1500 steps as can be seen in Figure 1b (Appendix A),304

in fact seeming to converge slower than native Q-learning. This occurs because the maximum305

allowable risk is set too low for the given prior. In particular, there are two main issues with this.306

The first issue is a type of degenerate behaviour specific to our algorithm and to the completely307

uninformative prior with overly strict Pmax: given that the agent starts with no information on the308

transition probabilities, it is unable to tell which actions are safe and which are unsafe. In particular,309

with Pmax at 1%, the first time the agent arrives at any state qc from which it can observe some310

unsafe state, it immediately goes into safety mode as it judges that the risk of every action is above311

1%. Since it has no information on which action is safest, it randomly selects an action (assuming the312

Q-values were initialized to 0). If that randomly-selected action does not take the agent closer to a313

risky state, then after updating the agent’s beliefs about the transition probabilities for that action, it314

will believe that action is the safest one from that state. Thus every time it encounters that state again,315

it will always select that action, never attempting any other actions. This behaviour can be seen in316

Figure 2b (Appendix C). The state (13, 1) has been visited significantly more often than any other317

state. This has occurred because the first time the agent encountered that state, it chose action stay,318

and as above, from then on always chose stay in state (13, 1). This would cause the agent to remain319

in (13, 1) until it slipped off of that state.320

The second issue with having such a strict Pmax could involve any prior. In this case Pmax is set321

so low that actions that may be optimal are simply never tested, as the agent’s initial belief about322

those actions causes the expected risk associated with them to always be greater than Pmax. This323

should not be viewed as an undesirable consequence of the algorithm, but rather as the algorithm324

working as intended. With the maximum allowable risk level Pmax set so low, the agent judges that325

certain actions are riskier than acceptable and therefore does not take them. However, this does raise326

a more general question about the nature of safe learning in general: ensuring safety while learning327

necessarily means avoiding actions we believe are too dangerous, so if we want any guarantees on328

safety, then we must accept that the agent may be unable to explore the entire state space.329

The second result of note is that Prior 3 performs much less safely than Prior 2 does at Pmax = 0.01.330

This seems counter intuitive at first, given that Prior 3 is more accurate and more confident than Prior331

2. However, the explanation is quite simple. Prior 3 (initially) causes the agent’s expected belief to332

correctly predict that there is only a 1% chance of moving to an unsafe state on a particular step if the333
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agent selects the action to move away from it. On the other hand, Prior 2 causes the agent’s expected334

belief to predict there is a 6.25% chance of this happening. Thus, Prior 3 (correctly) evaluates the335

risk of moving within 1 step of a risky state as much lower than Prior 2 does. It is likely that at some336

points in the experiments, the agent with Prior 3 chose to move within 1 step of an unsafe state where337

an agent starting with Prior 2 (with the same experiences) would have rejected that action as too risky.338

The agent with Prior 3 would then be at risk of slipping into an unsafe state. In Figure 2c and 2d339

(Appendix C), we can see exactly this happening, where Prior 3 regularly visits state (13, 8), which is340

adjacent to the unsafe state (12, 8). Prior 2 instead regularly moves one more state to the right before341

moving up to row 13, since (12, 9) is safe.342

Prior 3 with Pmax = 0.0033 shows how we can make use of a highly accurate prior to guarantee even343

less risk, and in this case the agent almost never enters unsafe states, while converging faster than any344

other setup to near-optimality.345

The final result is that the rate of convergence of the native Q-learning agent is much slower on this346

MDP than the other agents (excluding Prior 1 with the inappropriate Pmax = 0.01). As in Figure347

1 (Appendix A), Q-learning took between 300 and 1500 episodes to converge when it did, and348

occasionally failed to converge, compared to 150-300 episodes for the four other agents to converge349

in all 10 experiments. This was even the case for the agent with the completely uninformative prior,350

with Pmax = 0.33. This is a key result: it shows that not only can RCRL keep the agent safe during351

learning when possible, it may also direct the agent to explore more fruitful areas of the state-space.352

In this case study in particular, the native Q-learning agent entered unsafe states so often initially that353

it took many episodes before it was able to access the bridge and find the reward at the other side.354

Conversely, since the safe agents mostly avoided “sinking” situations, they were able to explore much355

more of the state space on each episode.356

PacMan - We also evaluated the performance of RCRL on a PacMan example. Figure 3a (Ap-357

pendix D) depicts the initial state of the environment, where the agent (PacMan) must get to both358

yellow dots (food) without getting caught by the ghost. Note that because both the agent and the359

ghost move through the maze, the PacMan MDP has about 10 times more states than the Gridworld,360

and up to 5 times more possible next states at any given state. Upon picking up the second piece of361

food, the agent is given a reward of 1 and the learning episode stops. Every other state incurs a reward362

of 0 and if the ghost catches PacMan, the learning episode stops with reward 0. The agent has access363

to four actions at each state, A = {right , up, left , down} and will move in the direction selected,364

or if that direction moves into a wall, then it will stay still. The ghost will with 90% probability365

move in the direction that takes it closest to the agent’s next location, and with 10% probability366

will move in a random direction. For this setup, we assumed an observation boundary O = 3 and367

compared two values of the risk horizon, m = 2, 3. We therefore kept constant the other parameters368

and hyper-parameters: the learning rate µ = 0.85; the discount factor γ = 0.9; the maximum number369

of steps per episode max_steps = 400; the maximum acceptable risk Pmax = 0.33; the prior, which370

we set to be a completely uninformative prior as in the Gridworld example; the maximum number of371

episodes, which we set as 1500 or the number of episodes before the total rate of successful episodes372

exceeded 75%.373

As in Table 1, the agent with a risk horizon of m = 2 steps exceeded a success rate of 75% after 311374

episodes, having failed 77 times. The agent with the larger risk horizon of m = 3 only took 275 steps375

to exceed that success rate, and only failed 68 times. Figures 3b-3c (Appendix D) display the number376

of steps taken by the agent to win (or 400 if they lose) for each agent, as well as the running average377

number of steps over the previous 50 episodes.378

Discussion The improvement in performance fromm = 2 to 3 is likely due to the increased foresight379

of the agent leading it to move away from excessively risky scenarios further in advance, potentially380

avoiding entering a state from which entering a dangerous state is unavoidable. However, it may also381

be simply due to the fact that increasing the risk horizon leads to an overall increase in risk estimates,382

which will naturally cause more actions to be considered too risky and may reduce the number of383

failures. In other words, we may have been in a situation where decreasing the maximum acceptable384

risk Pmax would have led to similar improvements, and the increase in risk horizon was behaving385

functionally more like a decrease in Pmax. Both risk-aware agents compare very favourably against386

the Native Q-Learning agent, which did not succeed once in 1500 episodes.387
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Appendices480

A Appendix A. Gridworld: Average Number of Steps to Succeed481

(a) (b)

(c) (d)

(e) (f)

Figure 1: The number of steps it takes the agent to cross the bridge for every episode where it crosses.
Averaged over 10 experiments. Results for Q-learning only and for RCRL across different priors and
values of risk Pmax. As Q-learning converges, it approaches the lower bound on the optimal number
of steps per episode.
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B Appendix B. Risk-aware Cautious RL – Pseudo Code482

Algorithm 1: Risk-aware Cautious RL (RCRL)
input :Pri, C(n), Pmax, max_steps, max_episodes, µ, γ, m

(1) initialize Q(q, a) for each state-action pair (q, a);
(2) initialize num_steps = 0 ;
(3) initialize num_episodes = 0 ;

while num_episodes < max_episodes do
(4) qc ← q0;
(5) num_episodes← num_episodes+ 1;

while num_steps < max_steps and qc is not unsafe do
(6) calculate R̄mc (a) as in (2) ;
(7) calculate V̄ mc (a) as in (6) ;
(8) calculate Pa as in (7) ;
(9) Asafe := {a ∈ A|Pa ≤ Pmax} ;

if Asafe = ∅ then
(10) Asafe ← {a ∈ A|R̄mc (a) = mina′ R̄

m
c (a)} ;

end
(11) choose action a∗ according to (9) ;
(12) pass action a∗ to environment and receive next state q′ and reward re(qc, a∗) ;
(13) update belief p as in section 2 ;
(14) update Q(qc, a∗)← (1− µ)Q(qc, a∗) + µ (re(qc, a∗) + γmaxa′ Q(q′, a′)) ;
(15) qc ← q′ ;
(16) num_steps← num_steps+ 1;

end
end

483
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C Appendix C. Gridworld Experiment details484

(a) (b)

(c) (d)

Figure 2: (a) Slippery Gridworld setup: agent is represented by an arrow surrounded by the observa-
tion area (white line). Labels denote target (yellow), unsafe (red) and safe states (blue), and initial
state (q0, green). (b) For a single experiment, number of state-visitations for Prior 1 at Pmax = 0.01.
(c-d) Number of state-visitations, for Priors 2 and 3 at Pmax = 0.01.
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D Appendix D. PacMan Experiment details485

(a)

(b) (c)

Figure 3: (a) PacMan Setup: agent (PacMan) starts at position (1,3). Food is denoted by yellow
dots, and the ghost starts in the top right corner. (b-c) Number of steps taken to win (i.e. eat both
foods without being caught by the ghost) on episodes where the agent does win (or 400 if the agent is
caught), for risk horizon 2 and 3. The orange line denotes the running average number of steps to win
over the previous 50 episodes.
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E Appendix E. Convergence Results for the Approximations of the Expected486

Value and Variance of the Risk487

Theorem E.1 Under Q-learning convergence assumptions [34], namely that reachable state-action488

pairs are visited infinitely often, the estimate of the mean of the believed risk distribution R̄mc (a)489

converges to the true risk rmc (a), and it does so with the variance of the believed risk distribution490

V ar(gmc (a)[p]) approaching the estimate of that variance V̄ mc (a). Specifically,491 (
R̄mc (a)− rmc (a)

)√
V̄ mc (a)

→ N (0, 1) in distribution

Proof.
Let us first rewrite the expressions in equation 6 in vector form, first introducing the following
covariance matrix for p:

Σ =


Cov(p11

b1
, p11
b1

) Cov(p11
b1
, p12
b1

) ...
Cov(p12

b1
, p11
b1

) Cov(p12
b1
, p12
b1

)
...

. . .
Cov(pNNbM , pNNbM )

 .

Recall that the variables pija are ordered lexicographically by (i, a, j). Here we wrote b1 for the first492

action in A and bM for the last one, assuming |A| = M . Using matrix Σ, we can rewrite equation 6493

for the approximate variance as494

V ar(Rmc (a)) ≈ (∇gmc (a)[p̄])
T

Σ (∇gmc (a)[p̄]) , ∇gmc (a)[p̄] =



∂gmc (a)

∂x11
b1

∂gmc (a)

∂x12
b1

...
∂gmc (a)

∂xNN
bM



∣∣∣∣∣∣∣∣∣∣∣∣
x=p̄

, (10)

where ∇gmc (a)[p̄] is the gradient vector of gmc (a) evaluated at p̄.495

In the following, we employ the ‘Delta Method’ as described in [6] to allow us to derive a convergence
result for the approximations for the mean and variance of Rmc (a) that we defined above. Let
us introduce a semi-vectorised representation of equation 6 where we still leverage the fact that
covariances across different state-action pairs are 0, i.e.,

Σib =


Cov(pi1b , p

i1
b ) Cov(pi1b , p

i2
b ) ...

Cov(pi2b , p
i1
b ) Cov(pi2b , p

i2
b )

...
. . .

Cov(piNb , piNb )


is the variance-covariance matrix for

(
(pijb )j=1,...,N

)
. Since Σ is built by listing the Σib along the496

diagonal for i = 1, ..., N and b ∈ A, with zeros elsewhere, we have that equation 6 can be rewritten497

as498

V ar(Rmc (a)) ≈
N∑
i=1

∑
b∈A

(
∇ibgmc (a)[p̄]

)T
Σ
(
∇ibgmc (a)[p̄]

)
, ∇ibgmc (a)[p̄] =


∂gmc (a)

∂xi1
b

∂gmc (a)

∂xi2
b

...
∂gmc (a)

∂xiN
b



∣∣∣∣∣∣∣∣∣∣∣
x=p̄

,

(11)

where ∇ibgmc (a)[p̄] is the gradient vector (∇gmc (a)[p̄]) restricted to entries ∂gmc (a)

∂xij
b

for j = 1, ..., N .499

We refer to this approximation for the variance of Rmc (a) as V̄ mc (a) (≈ V ar(Rmc (a))).500

Consider the random vector X = (Xij
a )i,j=1,...,N and a∈A (with the previously discussed lexicographic

order on the Xij
a ) where each (Xij

a )Nj=1 follows a Categorical distribution with probabilities tija - i.e.
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a realisation of the vector X represents the result of taking one transition from every state-action pair.
Wherever Xij

a = 1 it represents a transition qi a−→ qj . X then has means t and covariances

Cov(Xij
a , X

st
b ) =

{
−tija tstb if i = s and a = b

0 otherwise

We can then write the variance-covariance matrix for X as

ΣXX =


Cov(X11

b1
, X11

b1
) Cov(X11

b1
, X12

b1
) ...

Cov(X12
b1
, X11

b1
) Cov(X12

b1
, X12

b1
)

...
. . .

Cov(XNN
bM

, XNN
bM

)

 ,

If we observe independent random samples X(1),X(2), ...,X(n) and denote the sample means as501

X̂ij
b = 1

n

∑n
k=1(Xij

b )(k), or X̂ = 1
n

∑n
k=1 X(k) then for the function gnc (a) [x] we have,502

gmc (a)[X̂] ≈ gmc (a)[t] +

N∑
i,j=1

∑
b∈A

∂gmc (a)

∂xijb
(X̂ij

b − t
ij
b ),

This is a direct result from the first-order Taylor expansion around t, and therefore the derivatives are503

evaluated at t. In vector notation, we have504

gmc (a)[X̂] ≈ gmc (a)[t] + (∇gmc (a)[t])T (X̂− t),
where505

(∇gmc (a)[t]) =


∂gmc (a)

∂x11
b

∂gmc (a)

∂x12
b

...
∂gmc (a)
∂xNN

z



∣∣∣∣∣∣∣∣∣∣∣
x=t

From the ‘Multivariate Delta Method’ theorem [6], as long as

τ2 := (∇gmc (a)[t])TΣXX(∇gmc (a)[t]) > 0,

which we will prove later in Lemma 1 and Lemma 2, we have the following convergence:506

√
n
(
gmc (a)[X̂]− gmc (a)[t]

)
→ N (0, τ2) in distribution. (12)

Note that this is equivalent to507

√
n
(
gmc (a)[X̂]− gmc (a)[t]

)
τ

→ N (0, 1) in distribution, (13)

where τ :=
√
τ2.508

In the following we define p̄(n) and Σ(n) to be what p̄ and Σ would have been had the agent started509

with it’s prior about the transition probabilities p and then witnessed exactly the transitions represented510

by the random sample X(1),X(2), ...,X(n). Formally, suppose that the agent’s starting prior was, for511

each state-action pair (qi, b), that pi1b , p
i2
b , ..., p

iN
b ∼ Dir(αi1b , αi2b , ..., αiNb ). Then we can consider512

the random variables pi1b
(n), pi2b

(n), ..., piNb
(n) ∼ Dir(αi1b + nX̂i1

b , α
i2
b + nX̂i2

b , ..., α
iN
b + nX̂iN

b ).513

Since nX̂ij
b is the count of the number of times Xij

b was 1 in the random sample, this new distribution514

is exactly the result of performing Bayesian inference on the prior given the random sample as our515

new data. We then let516

p̄ijb
(n) := E

[
pijb

(n)
]

=
αijb + nX̂ij

b∑N
k=1

(
αikb + nX̂ik

b

) ,
17



and we also define Σ(n) as the covariance matrix of the pijb
(n) over all i, j, b, namely

Σ(n) =


Cov(p11

b
(n), p11

b
(n)) Cov(p11

b
(n), p12

b
(n)) ...

Cov(p12
b

(n), p11
b

(n)) Cov(p12
b

(n), p12
b

(n))
...

. . .
Cov(pNNz

(n), pNNz
(n))

 ,

From Lemma 1, we have517

√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

→ 0 in probability, (14)

and this allows us to use the well-known Slutsky’s Theorem [29] on equation 14 and equation 13 to518

show that519

√
n
(
gmc (a)[p̄(n)]− gmc (a)[t]

)
τ

→ N (0, 1) in distribution. (15)

We must make one more modification to this result. Let

(τ (n))2 :=
(
∇gmc (a)[p̄(n)]

)T
Σ(n)

(
∇gmc (a)[p̄(n)]

)
.

We would like to show that n(τ (n))2 → τ2 in probability. To do this, first note that p̄(n) → t in520

probability, so since gmc (a) has continuous derivatives we have that (∇gmc (a)[p̄(n)])→ (∇gmc (a)[t])521

in probability. Next we note that nΣ(n) → ΣXX in probability. This is because for the522

(i, b1, j), (s, b2, t)-entry we have 0→ 0 if i 6= s or b1 6= b2, and otherwise we have523

nCov(pijb
(n), pitb

(n)) =
−n(αijb + nX̂ij

b )(αitb + nX̂it
b )

(
∑N
k=1(αikb + nX̂ik

b ))2(1 +
∑N
k=1(αikb + nX̂ik

b ))

=
−n(αijb + nX̂ij

b )(αitb + nX̂it
b )

(n+
∑N
k=1 α

ik
b )2(n+ 1 +

∑N
k=1 α

ik
b )

→ −tijb t
it
b = Cov(Xij

b , X
it
b ).

Therefore we have that the products converge in probability:524

n(τ (n))2 =
(
∇gmc (a)[p̄(n)]

)T
nΣ(n)

(
∇gmc (a)[p̄(n)]

)
→ (∇gmc (a)[t])TΣXX(∇gmc (a)[t]) = τ2.

Since τ2 is always positive, and the square root function is therefore continuous at τ2, we have that525 √
nτ (n) → τ , and so τ√

nτ(n) → 1 in probability. Now we can finally apply Slutsky’s Theorem to526

obtain our final result, which is527

(
gmc (a)[p̄(n)]− gmc (a)[t]

)
τ (n)

→ N (0, 1) in distribution. (16)

Recall that gmc (a)[t] is the actual risk in the current state qc, gmc (a)[p̄(n)] is the agent’s approximation528

of the expectation of the risk given it’s beliefs, and (τ (n))2 is the agent’s approximation of the529

variance of the risk given it’s beliefs (both, in this case, assuming it has seen exactly n transitions530

from each state). So indeed our estimate of the mean of the believed risk distribution converges531

to the true risk with enough data, and it does so with the variance of the believed risk distribution532

approaching our estimate of that variance.533
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Lemma 1 Given the definition of the polynomial gmc (a)[x], we have the following:
√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

→ 0 in probability

Proof.
As required for the convergence results in Theorem 3.1, one can see that all of the coefficients in
gmc (a)[x] are either 0 or 1. This means that we can rewrite it as a sum of terms of the form∏

i,j,b

(
xijb

)nij
b

for exponents nijb . This means that we can write
√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

as a sum of terms of the form534

√
n

τ

∏
i,j,b

(
p̄ijb

(n)
)nij

b −
∏
i,j,b

(
X̂ij
b

)nij
b

 .

Substituting in the definition of p̄ijb
(n) to this expression yields535

√
n

τ

∏
i,j,b

 αijb + nX̂ij
b∑N

k=1

(
αikb + nX̂ik

b

)
nij

b

−
∏
i,j,b

(
X̂ij
b

)nij
b


And we can simplify this by leveraging that

∑N
k=1

(
nX̂ik

b

)
= n, to get536

√
n

τ

∏
i,j,b

(
αijb + nX̂ij

b

n+
∑N
k=1 α

ik
b

)nij
b

−
∏
i,j,b

(
X̂ij
b

)nij
b


Now, the αijb are constants, as is τ , and the values of X̂ij

b are all bounded between 0 and 1. Thus to537

show that this expression converges to 0 in probability, we will write it as one quotient, and show538

that some term in the denominator dominates all terms in the numerator. Let M :=
∑
i,j,b n

ij
b . The539

expression above is equal to540

√
n

τ


∏
i,j,b

(
αijb + nX̂ij

b

)nij
b −

∏
i,j,b

(
X̂ij
b

(
n+

∑N
k=1 α

ik
b

))nij
b

∏
i,j,b

(
n+

∑N
k=1 α

ik
b

)nij
b



Now on the numerator of the inner quotient, there are only two terms of order nM . One is an

nM
∏
i,j,b

(
X̂ij
b

)nij
b

that comes from the product on the left, and one is a

−nM
∏
i,j,b

(
X̂ij
b

)nij
b

from the product on the right, and these cancel each other out. This means the numerator is entirely
of order nM−1 or less. On the other hand, the denominator of the inner quotient contains the term
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nM . Therefore, even after multiplying by the
√
n
τ on the outside, which would mean the highest order

term on in the numerator could be as high as nM−
1
2 , the nM in the denominator still dominates and

the expression as a whole will converge to 0 in probability. Since
√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

was a sum of expressions of that form, and they all converge to 0 in probability, we get the result we541

desired, which is that542

√
n
(
gmc (a)[p̄(n)]− gmc (a)[X̂]

)
τ

→ 0 in probability

Lemma 2 The defined variable τ2 := (∇gmc (a)[t])TΣXX(∇gmc (a)[t]) is strictly greater than zero,543

namely τ2 > 0.544

Proof.545

Note that the covariance matrix can be written as ΣXX = E[(X− t)(X− t)T ] (recall t is the mean546

vector for X). So we have547

τ2 = E[(∇gmc (a)[t])T (X− t)(X− t)T (∇gmc (a)[t])

= E[((∇gmc (a)[t])T (X− t))2]

where we note that s := (∇gmc (a)[t])T (X− t) is a real-valued random variable, so sT = s. Thus548

to prove τ2 > 0 we simply have to show that s 6= 0 for some value of X that occurs with non-zero549

probability.550

Now,551

s =
∑
i,j,b

∂gmc (a)

∂xijb

∣∣∣∣∣
x=t

(Xij
b − t

ij
b )

=
∑

state-action pairs (qi,b)

 ∑
possible next states qj

∂gmc (a)

∂xijb

∣∣∣∣∣
x=t

(Xij
b − t

ij
b )


So let sib :=

∑
states qj

∂gmc (a)

∂xij
b

∣∣∣
x=t

(Xij
b − t

ij
b ), then s =

∑
state-action pairs (qi,b) s

i
b.552

We need to show that there is some possible value of X such that s 6= 0. Now the value of X is553

determined by the values of Xi
b := (Xij

b )Nj=1 for each state-action pair (qi, b). Furthermore, these Xi
b554

are independent, and the value of sib depends only on the value of Xi
b. So if there is some state-action555

pair (qi, b) such that two possible values of Xi
b yield two distinct values of sib both with nonzero556

probability, then we can fix the values of the Xhj
b′ for all j and all (h, b′) 6= (i, b) to be some values557

that occur with non-zero probability, which would fix the value of s− sib, and so we could use our558

two distinct values of sib to find two distinct values of s. Both cannot be 0, so we would be done.559

Now, the value of Xib is characterized by picking one j s.t. Xij
b = 1, and setting all other Xil

b = 0 for560

l 6= j. This means that to find two different values of some sib, we just need to find states qi, qj , ql and561

an action b such that the derivatives ∂gmc (a)

∂xij
b

∣∣∣
x=t

and ∂gmc (a)

∂xil
b

∣∣∣
x=t

are distinct. Then setting Xij
b = 1562

would yield a different value of sib from setting Xil
b = 1. So long as the events Xij

b = 1 and Xil
b = 1563

both have nonzero probability, we would be done.564

In order to show that such states qi, qj , ql and such an action b exist, we must introduce vectors An
that will effectively keep track of each state’s contribution towards gmc (a)[t] at the nth step of the
risk backpropagation. First, define the N -by-N matrix P ′n[x] for n = 0, 1, ...,m− 2 such that

(P ′n[x])ij =


1 if i = j and qi is unsafe and observed
0 if i 6= j and qi is unsafe and observed
xijbin otherwise
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where where bin := arg minb R̄
n
i (b). Define P ′m−1[x] as565

(P ′m−1[x])ij =


1 if i = j and qi is unsafe and observed
0 if i 6= j and qi is unsafe and observed
xija otherwise

Then the P ′n[x] represent the transition probabilities used in the calculation of gmc (a)[x]. Specifically,566

we have that567

• gnk [x] is the kth entry of the vector (P ′n−1[x])...(P ′0[x])g0 for n < m568

• gmk (a)[x] is the kth entry of the vector (P ′m−1[x])(P ′m−2[x])...(P ′0[x])g0569

• So the risk at current state qc, gmc (a)[t], is the cth entry of the vector570

(P ′m−1[t])(P ′m−2[t])...(P ′0[t])g0571

where g0 is the vector with entries (g0)k := 1(qk is observed and unsafe). We can now define the572

vectors An for n ≤ m by573

Ani :=

{(
(P ′n−1[t])(P ′n−2[t])...(P ′0[t])g0

)
i

if qi is safely reachable from qc in exactly m− n steps
0 otherwise

Where in this case a state qsn is defined to be safely reachable from the current state qs0 = qc in574

exactly n steps if575

• there are states qs1 , qs2 , ..., qsn−1 such that each t
spsp+1

bs1
> 0 for actions bs0 = a and576

bsk := arg minb R̄
m−k−1
sp (b) determined by the agent’s expected safest policy, and577

• the states qs1 , qs2 , ..., qsn−1 are all safe (note that qsn can still be unsafe)578

The purpose of these An is just to restrict our attention to the states at step n of the backpropagation579

that actually influence gmc (a)[t]. It is easy to see that580

(
(P ′m−1[t])...(P ′n[t])An

)
c

= gmc (a)[t] for every n = 0, 1, ...,m (17)

Now we will be able to argue that if gmc (a)[t] is not equal to 0 or 1, there are states qi, qj , ql and581

an action b such that tijb and tilb are both non-zero (so there is a positive probability of the events582

Xij
b = 1 and Xil

b = 1) and such that ∂gmc (a)

∂xij
b

∣∣∣
x=t

>
∂gmc (a)

∂xil
b

∣∣∣
x=t

.583

So assume that gmc (a)[t] is not equal to 0 or 1. Let n0 be the largest index such that An0 contains an584

entry (An0)l that is equal to 0 and such that ql is safely reachable from qc in exactly m− n0 steps -585

so (An0)l is a 0 that came from (P ′m−1[t])((P ′m−2[t])...(P ′0[t])g0)l.586

Since gmc (a)[t] is not 0, n0 < m, and since ql is safely reachable in m − n0 steps, let qc =587

qs0 , qs1 , ..., qsm−n0 = ql be a path along which ql is safely reachable. Then let qi = qsm−n0−1 , and588

we have that qi is safe, and tilbsm−n0−1
> 0. For brevity, write b′ := bsm−n0−1589

Now since qi is safely reachable in m − (n0 + 1) steps, (An0+1)i cannot be equal to 0 (since n0590

was maximal), so there must be some state qj such that tijb′ > 0 and An0
j > 0, (in order for the term591

tijb′A
n0
j to contribute some positive value to An0+1

i ). Finally, let p be the probability of safely entering592

qi in m− (n0 + 1) steps (i.e., the sum over all paths that safely reach qi of the probability of taking593

that path by choosing the actions specified by the agent’s expected safest policy). Then by the chain594

rule,595

∂gmc (a)

∂xijb′

∣∣∣∣∣
x=t

= p

(
1×An0

j + tijb′ ×

(
(P ′n0−1[x])...(P ′0[x])g0

)
j

∂xij

∣∣∣∣∣
x=t

)
> 0

since clearly
((P ′n0−1[x])...(P ′0[x])g0)

j

∂xij

∣∣∣∣
x=t

cannot be negative. On the other hand,596
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∂gmc (a)

∂xilb′

∣∣∣∣
x=t

= p

(
1× (An0)l + tilb′ ×

(
(P ′n0−1[x])...(P ′0[x])g0

)
l

∂xilb′

∣∣∣∣∣
x=t

)

= p

(
1× 0 + tilb′ ×

(
(P ′n0−1[x])...(P ′0[x])g0

)
l

∂xilb′

∣∣∣∣∣
x=t

)
= 0

since only one of tilb′ and
((P ′n0−1[x])...(P ′0[x])g0)

l

∂xil
b′

∣∣∣∣
x=t

can be nonzero - if increasing the value of tilb′597

could increase the value of (An0)l =
(
(P ′n0−1[t])...(P ′0[t])g0

)
l

from 0 to greater than 0, then tilb′598

must have been 0 since
(
(P ′n0−1[t])...(P ′0[t])g0

)
l

is a sum of products of values from t, all of which599

are non-negative.600

Hence we have found states qi, qj , ql and an action b′ such that the derivatives ∂gmc (a)

∂xij

b′

∣∣∣∣
x=t

and601

∂gmc (a)

∂xil
b′

∣∣∣
x=t

are distinct. Hence the claim.602

The only detail left to note is that we assumed that gmc (a)[t] is not either equal to 0 or 1. This603

assumption is reasonable to make, because if it did not hold, then either our agent would be doomed604

to enter an unsafe state within m steps, or there is no chance of entering an unsafe state within m605

steps, according to the agent’s expected safest actions. Since what matters to us is how the agent606

manages risk, situations involving risk 1 or risk 0 are irrelevant.607
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F Appendix F. Confidence Bound on the Risk608

To estimate a confidence bound on the risk, we appeal to the Cantelli Inequality, which is a one-sided609

Chebychev bound [5], and states that for a real-valued random variable R with expectation E[R] and610

variance V ar[R], for λ > 0 we have611

Pr(R ≤ E[R] + λ) ≥ 1− V ar[R]

V ar[R] + λ2

If we let C := 1− V ar[R]
V ar[R]+λ2 , then rearranging we get that λ =

√
V ar[R]C

1−C . Thus for a variable R612

that represents some sort of risk, and for some value of 0 < C < 1, we can say613

Pr(R ≤ P ) ≥ C

where P := E[R] +
√

V ar[R]C
1−C . In words, “there is at least C chance that the risk is at most P .”614

Alternatively, “we are at least C
100% confident that the risk is at most P .”615
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G Appendix G616

To understand what exactly R̄mc (a) is an approximation of, consider instead calculating this risk617

using the true transition probabilities tkja , We would get618

r0
k := 1(qk is observed and unsafe) (18)

rn+1
k (a) :=

{
1 if qk is observed and unsafe∑N
j=1 t

kj
a r

n
j otherwise

(19)

rn+1
k :=

{
1 if qk is observed and unsafe
rn+1
k

(
arg mina∈A R̄

n+1
k (a)

)
otherwise

(20)

Note that we crucially still take the minimum risk action a according to the agent’s approximation619

R̄n+1
k (a). In this case, the term rmc (a) is the true probability of entering an unsafe state after selecting620

action a in the agent’s current state qc and thereafter selecting the actions that the agent currently621

believes will minimize the probability of entering an unsafe state over the horizon m. R̄mc (a) is the622

agent’s approximation of rmc (a).623

We will later justify the use of R̄mc (a) as an approximation of rmc (a), but for now let us consider why624

it makes sense to define m-step risk as rmc (a). This because the action a that minimizes believed risk625

is the action that the agent would choose if it was trying to behave as safely as possible, what I will626

call going into ‘safety mode’. Consider the motivating example of a pilot learning to fly a remote627

control helicopter by incrementally expanding the set of actions they feels safe taking. They start by628

generating just enough lift to begin flying, then immediately land back down again. They repeat this629

process a few times until they feel that they have a good understanding of how the helicopter responds630

to this limited range of inputs. Then they take a risk (by either flying a bit higher, or attempting to631

move horizontally) and once again immediately land. As they repeat this process of taking small risks632

and landing to remain safe, they begin to expand their comfort zone. At some point after taking a633

risk, they will feel comfortable just coming back to a hovering position rather than landing, once they634

have become confident that they can hover safely. This suggests that a natural process for learning635

to operate in the face of risks is to repeatedly take small risks followed by going into safety mode636

until back in a confidently safe state. Thus, when calculating how risky an action is, it makes sense637

to consider the probability of entering an unsafe state given that after the action the agent will enter638

safety mode. rmc (a) does exactly this.639

As mentioned earlier, the other reason for defining the risk rmc (a) in this way is that it makes it possible640

for the agent to attempt to calculate the risk without having to reason about the inter-dependency641

between the calculated risk and the agent’s future actions. However, it does more than this. We642

will see in the next section that it in fact allows the agent to view R̄mc (a) as (an approximation of)643

the expected value of a random variable for the believed risk, where we can also approximate the644

variance of that random variable, allowing for deeper reasoning about action-selection for Safe RL.645
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