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Abstract

Despite possessing impressive skills, Large001
Language Models (LLMs) often fail unpre-002
dictably, demonstrating inconsistent success in003
even basic common sense reasoning tasks. This004
unpredictability poses a significant challenge005
to ensuring their safe deployment, as identify-006
ing and operating within a reliable “safe zone”007
is essential for mitigating risks. To address008
this, we present PredictaBoard, a novel col-009
laborative benchmarking framework designed010
to evaluate the ability of score predictors (re-011
ferred to as assessors) to anticipate LLM er-012
rors on specific task instances (i.e., prompts)013
from existing datasets. PredictaBoard eval-014
uates pairs of LLMs and assessors by consid-015
ering the rejection rate at different tolerance016
errors. As such, PredictaBoard stimulates017
research into developing better assessors and018
making LLMs more predictable, not only with019
a higher average performance. We conduct il-020
lustrative experiments using baseline assessors021
and state-of-the-art LLMs. PredictaBoard022
highlights the critical need to evaluate pre-023
dictability alongside performance, paving the024
way for safer AI systems where errors are025
not only minimised but also anticipated and026
effectively mitigated. Code for our bench-027
mark can be found at https://github.com/028
predictablebenchmark/PredictaBoard029

1 Introduction030

A key component of safety in high-stakes scenarios031

is knowing the operating conditions of the system032

in use, namely, the specific task instances in033

which the system succeeds (Leveson, 2002; Bahr,034

2014; Hendrickx et al., 2024; Zhou et al., 2024a).035

Consider, for example, two autonomous driving036

systems. System A always detects pedestrians037

correctly in day time but has a predictably high038

failure rate at night, allowing for safety measures039

(e.g., requiring a human intervention). System040

B, on the other hand, although generally better041

Figure 1: PredictaBoard evaluates pairs of AI systems
and score predictors (assessors). Top: System A is
applied to a dataset of instances giving an accuracy
of 0.66 (average of the scores). Assessor A attempts
to predict the probability of success for each instance,
with a mean squared error (Brier score) in these score
predictions of 0.132. Bottom: System B is applied to the
same dataset, giving an accuracy of 0.5. Assessor B for
System B has an error in the score predictions of 0.029.
While System A is better than System B on average,
System A is much less predictable with Assessor A
than System B with Assessor B. Considering the non-
rejection rate at different tolerance errors (e.g., 1%, 5%
and 10%), the pair ⟨ System B, Assessor B ⟩ wins.

performing, has random, unpredictable failures that 042

leave the driver uncertain about when to intervene. 043

Even if System B has higher performance across 044

the typical range of conditions encountered by 045

drivers, System A is safer due to its predictability. 046

This is visualised in a Q&A domain in Figure 1. 047

This principle extends to frontier AI systems, 048
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such as Large Language Models1 (LLMs), which049

are rapidly being integrated into high-stakes050

scenarios (Kim et al., 2024; Huang et al., 2024;051

Javaid et al., 2024). Their growing adoption052

introduces the potential for high-consequence053

harm – significant negative impacts on individuals,054

organisations, or society as a whole– thus requiring055

robust safeguards to ensure both high performance056

and safety (Hendrycks et al., 2023). Here as well,057

a key component to risk mitigation is validity058

predictability, namely, enabling users to anticipate059

and reject inputs that cause the AI systems to060

produce undesirable outputs or outcomes (Zhou061

et al., 2024a; Hendrickx et al., 2024; Vafa et al.,062

2024a); Sec 2 discusses this more in detail.063

However, humans struggle to predict when064

LLMs will be correct (Carlini, 2024), can be065

biased by prior interactions (Vafa et al., 2024a) and066

even struggle to evaluate explanations provided by067

LLMs (Steyvers et al., 2025). Additionally, align-068

ment using Reinforcement Learning from Human069

Feedback (RLHF, Ouyang et al., 2022) and other070

techniques lead to LLMs potentially deceiving071

humans more often (Wen et al., 2024; Williams072

et al., 2024), resulting in unpredictable and unsafe073

behaviour (Anwar et al., 2024; Zhou et al., 2024b).074

Technical solutions, including Uncertainty Quan-075

tification (UQ, Shorinwa et al., 2024) or external as-076

sessors (Hernández-Orallo et al., 2022) have been077

proposed to predict the success of and LLM on indi-078

vidual cases (see Figure 2). However, UQ methods079

require the input to be passed though the LLM, are080

not always reliable (Pawitan and Holmes, 2024;081

Kapoor et al., 2024) and are degraded by RLHF082

(Tian et al., 2023); on the other hand, assessors’ per-083

formance is limited by LLMs’ idiosyncrasies, such084

as prompt perturbation leading to wildly different085

results (Dhole et al., 2022; Shen et al., 2024) and086

success on difficult task instances not guaranteeing087

success on easy ones even within the same domain088

(Zhou et al., 2024b). Most importantly, no stan-089

dardised framework exists to track performance of090

validity prediction methods and thus stimulate re-091

search into better ones and more predictable LLMs.092

To address this, we introduce PredictaBoard,093

the first collaborative benchmarking framework094

that jointly assesses LLM performance and the095

predictability of that performance. The subjects096

of PredictaBoard are LLM-assessor pairs, with097

1Many of which can also interpret images and, increas-
ingly, audio and video.

Figure 2: Example of the score prediction problem. The
displayed assessor is trained on the performance of a
LLM on a split of the LLM test data, allowing it to
anticipate the LLM’s failures on novel test instances.
Assessors can however be built in different ways.

the latter predicting the LLM’s score on each 098

benchmark instance (i.e., prompt). Solely ranking 099

pairs based on assessor’s performance would 100

however lead to the LLM that always fails (whose 101

score is perfectly predictable) dominating. Hence, 102

as metric, PredictaBoard combines the LLM per- 103

formance and the quality of the score predictions 104

into an Accuracy-Rejection Curve (ARC, Nadeem 105

et al., 2009) representing the LLM’s performance 106

on instances for which the assessor predicts prob- 107

ability of success above different threshold values. 108

From this curve, practitioners can determine the 109

threshold for their error tolerance and determine the 110

size of the predictably valid2 operating region (see 111

Fig 1). Alternatively, the Area Under the ARC can 112

be used to combine performance of LLM-assessor 113

pairs over all error tolerance levels (Sec. 4.2). 114

To compete in PredictaBoard, we require as- 115

sessors to not rely on the LLM’s outputs. While 116

these could be used without comparing them to 117

ground truths, avoiding them entirely eliminates 118

implicit reliance on the latter, makes assessors ro- 119

bust to manipulation by the LLMs (similarly to how 120

relying on human feedback makes LLM outputs 121

more persuasive Wen et al., 2024; Williams et al., 122

2024) and avoids wasted computations on instances 123

where the LLM will predictably fail. However, we 124

allow the use of internal LLM activations to the 125

input. Essentially, this requirement distinguishes 126

assessors from filters or verifiers of LLM answers 127

and makes PredictaBoard representative of the 128

real world, where the ground truth is unknown. 129

To increase the predictably valid region, re- 130

2By ‘predictably valid’, we refer to cases where the validity
on a task instance can be reliably anticipated (Zhou et al.,
2024a).
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searchers can either 1) develop assessors that better131

identify patterns in task instances influencing LLM132

success, 2) train LLMs which are intrinsically more133

predictable, or 3) develop LLM-assessor pairs with134

joint high performance and predictability. To en-135

able research in the first direction, PredictaBoard136

provides instance-level results for state-of-the-art137

LLMs on popular datasets, allowing to test both138

in-distribution and out-of-distribution predictabil-139

ity (Sec. 4.1). Alongside this, PredictaBoard in-140

cludes baseline anticipative assessor architectures141

(predicting success before the LLM has seen the142

instance Hernández-Orallo et al., 2022), thus facili-143

tating research in the second direction (Sec. 4.3). A144

leaderboard ranking pairs of LLMs and assessors145

can be set up, thus ensuring overall progress in pre-146

dictability. This paper reports initial results with147

the baseline assessors on state-of-the-art LLMs in-148

cluded in PredictaBoard (Sec. 5).149

The current version of PredictaBoard focuses150

on success scores, but the same framework can151

be applied to safety and alignment benchmarks152

(Zhang et al., 2024; Mazeika et al., 2024). More-153

over, the PredictaBoard framework can be ap-154

plied to any other type of AI system, such as LLM155

agents, embodied agents and vision systems. Ulti-156

mately, the long-term vision of PredictaBoard is157

to shift AI benchmarking to consider predictability158

alongside performance, aligning it with traditional159

risk assessment practices that evaluate both factors160

(Leveson, 2016; Aven, 2016; Amodei et al., 2016).161

2 AI Predictability and Safety162

In this paper, we focus on instance-level predictabil-163

ity of validity (see App. A for a formal definition).164

For LLMs, an instance is a specific input prompt,165

and validity can refer to any performance indicator166

(e.g. success or safety scores, or other metrics for167

biased or unethical outcomes). As shown in Figure168

1, for each LLM we build one or more assessors3169

(Hernández-Orallo et al., 2022) to predict the valid-170

ity of the LLM output on a specific instance.171

Validity predictability contributes to safety in172

high-stakes environments, filtering out the inputs173

that lead to unacceptable behaviour can prevent174

harms—inputs can be rejected, redirected to a more175

reliable system, or supervised by humans. Thus,176

reliable assessors provide a cost-efficient safety177

layer of safety that complements built-in model mit-178

igations and post-generation filtering (Hernández-179

3Also known as “rejector” (Hendrickx et al., 2024).

Orallo et al., 2022; Zhou et al., 2024a). 180

In terms of developing safer models, scalable 181

oversight methods (Leike et al., 2018; Christiano 182

et al., 2018; Burns et al., 2023; Kenton et al., 2024) 183

already use weaker AI models for high-quality 184

feedback for training and overseeing complex AI 185

models. Here, assessors can signal inputs where su- 186

pervision may fail, or flag prompts that induce con- 187

vincing but invalid outputs (e.g., in RLHF settings). 188

Finally, while red-teaming efforts (Hacking Pol- 189

icy Council, 2023) are directed at finding harm- 190

ful inputs, the ability to predict such inputs en- 191

ables scalable vulnerability detection and design 192

guardrails. While this could also be used by bad 193

actors to exploit system vulnerabilities, the ability 194

of safety researchers to more effectively address 195

those vulnerabilities before deployment likely leads 196

to a positive net effect in reducing risks. On the 197

negative side, pairing AI systems with assessors 198

may lead to over-reliance by conflating increased 199

and absolute safety (automation bias). While this 200

should be considered in system design and miti- 201

gated through user education, the safety benefits 202

outlined above outweigh this concern. 203

3 Related Work 204

Aggregate LLM performance prediction Previ- 205

ous studies explored aggregate performance predic- 206

tion across computational scales (scaling laws, Ka- 207

plan et al., 2020; Hernandez and Brown, 2020) and 208

predicted LLMs’ accuracy on BIG-Bench (Srivas- 209

tava et al., 2023) tasks using factors such as parame- 210

ters or compute usage (Ye et al., 2023; Owen, 2024). 211

Relatedly, Ruan et al. (2024) predicted aggregate 212

task performance using latent factors derived from 213

benchmark performance and compute usage of mul- 214

tiple LLMs. In contrast, PredictaBoard focuses 215

on instance-level predictability. 216

How human users predict LLM performance 217

Humans were found to only marginally beat ran- 218

dom guess in predicting GPT-4’s performance 219

(Carlini, 2024). Relatedly, Vafa et al. (2024a) 220

showed humans overestimate LLM future perfor- 221

mance based on prior interactions, especially with 222

larger models in high-stakes contexts. They ar- 223

gue that “the best LLM is the one that allows hu- 224

mans to make the most reliable inferences about 225

where it will succeed”, closely aligning with 226

PredictaBoard’s motivation. Zhou et al. (2024b) 227

indicated that human predictions become unreliable 228

as AI systems become more capable and Steyvers 229
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et al. (2025) found LLM-produced explanations230

supporting a statement do not lead humans to reli-231

ably assess whether that statement is correct, even232

when the LLM’s token-level probabilities are cali-233

brated. Finally, in a specific use case, Bansal et al.234

(2024) reported that the failures of an LLM soft-235

ware engineer agent cannot be reliably anticipated.236

Instance-level LLM performance prediction237

Various disciplines offer approaches for instance-238

level performance prediction. For instance, Dra-239

pal et al. (2024b) combined novelty detection with240

meta-learning to reject instances that are likely241

to cause AI failure. Additionally, Item Response242

Theory (IRT), originally developed to predict hu-243

man performance (Embretson and Reise, 2013),244

has been adapted for machine learning and NLP245

(Martínez-Plumed et al., 2019; Lalor et al., 2016;246

Kipnis et al., 2024; Polo et al., 2024; Vania et al.,247

2021), although it requires previously processed248

instances, limiting predictability for new inputs.249

Some works trained “assessors” to predict250

instance-level LLM performance. Kadavath et al.251

(2022) trained LLMs to predict the probability of252

succeeding on a question without reference to a253

specific answer, which performed satisfactorily but254

struggled with novel tasks. Schellaert et al. (2024)255

effectively predicts the performance of LLMs on256

100+ BIG-bench tasks, outperforming subject sys-257

tems in confidence, and maintaining predictability258

across different model sizes, suggesting scalabil-259

ity. Zhou et al. (2022) showed that smaller LLMs260

can predict performance of larger models on cer-261

tain tasks, almost halving errors and computational262

costs. Drapal et al. (2024a) obtained explainable263

meta-rules from trained assessors to identify re-264

gions of predictable performance. Finally, while265

assessors allow to avoid prompting models on task266

instances causing failures, their training requires267

generating a failure/correctness dataset specific to268

each LLM. Single assessors sharing information269

across many LLMs Pacchiardi et al. (2024) reduce270

the instances on which each LLM must be tested.271

All these techniques can be used as assessors for272

PredictaBoard.273

Machine learning with reject options Surveyed274

by Hendrickx et al. (2024), these models are closely275

related to the subjects of PredictaBoard, with “re-276

jectors” analogous to our interpretation of asses-277

sors. Hendrickx et al. (2024) categorise rejectors278

according to their reliance on the “predictor” model.279

Their “separated” rejectors are trained without in-280

volving the predictor, yet more powerful assessors 281

can be trained using the observed LLM validity In 282

any case, Hendrickx et al. (2024) advocates for the 283

development of benchmarks for ML with reject op- 284

tions, exemplified by PredictaBoard, which can 285

evaluate all kinds of rejectors and assessors. 286

LLM Uncertainty Quantification (UQ) 287

Shorinwa et al. (2024) splits UQ methods for LLMs 288

into token-level (Kadavath et al., 2022), verbalisa- 289

tion (Lin et al., 2022; Kapoor et al., 2024) and “se- 290

mantic similarity” (prompting the model multiple 291

times and grouping answers with the same mean- 292

ing, Kuhn et al., 2023). White-box approaches that 293

rely on model activations also exist (Ferrando et al., 294

2025). However, in general, the performance of 295

UQ methods is debated (Kapoor et al., 2024); for in- 296

stance, Pawitan and Holmes (2024) found different 297

methods to extract confidence to be poorly corre- 298

lated and only partly indicative of correctness. Ad- 299

ditionally, in contrast to the anticipative assessors 300

we use as baselines, UQ methods require inputs to 301

be passed through the LLM, making them close to 302

the “integrated rejectors” described in (Hendrickx 303

et al., 2024). Nevertheless, PredictaBoard can 304

be used to evaluate these methods too. 305

LLM routing LLM routers (Lee et al., 2023; 306

Šakota et al., 2024; Lu et al., 2023; Shnitzer et al., 307

2023; Ding et al., 2024) direct task instances to 308

the most appropriate LLM from a pool trading 309

off performance, cost, response time or other fac- 310

tors4. This mechanism is similar to delegating 311

classifiers where initial classifiers delegate diffi- 312

cult tasks to specialised ones (Ferri et al., 2004). 313

Although assessors can act as routers by predicting 314

LLM-specific probabilities of success, routers of- 315

ten bypass this step by directly selecting the model 316

most likely to succeed. RouterBench (Hu et al., 317

2024) ranks routers based on their selection from a 318

fixed set of LLMs, whereas PredictaBoard eval- 319

uates each LLM paired with an assessor. While 320

PredictaBoard focuses on metrics measuring the 321

size of operating conditions, RouterBench uses an 322

aggregate metric of quality and cost to optimise the 323

use of LLMs in low-risk scenarios. 324

Model behaviour analysis Various disciplines 325

help to understand the performance of AI mod- 326

els. Surrogate modelling (Ilyas et al., 2022) antic- 327

ipates model behaviour from training data, while 328

4See Martian for a commercially-available router.
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error analysis methods (Amershi et al., 2015) iden-329

tify weaknesses and incorrect predictions. Out-of-330

Distribution (OOD) detection (Hendrycks and Gim-331

pel, 2016; Liang et al., 2017) targets unpredictable332

input behaviour (e.g., outliers). Unlike OOD meth-333

ods, PredictaBoard focuses on anticipating per-334

formance for inputs both in and out-distribution.335

Guaranteed/SafeGuarded AI Different re-336

search agendas (Dalrymple et al., 2024; DARPA,337

2024) propose the development of “safeguarded”338

AI systems, that come with (possibly probabilistic,339

Bengio et al., 2024) performance guarantees in340

particular operating regions. PredictaBoard can341

empirically test these methods.342

4 PredictaBoard343

4.1 Dataset344

Our dataset consists of the instance-level perfor-345

mances of various LLMs on MMLU-Pro (Wang et al.,346

2024) and the BIG-Bench-Hard (BBH, Suzgun347

et al., 2022), for a total of 11383 and 5761 in-348

stances respectively. The results for 38 LLMs for349

both MMLU-Pro and BBH were obtained from350

HuggingFace’s Open LLM Leaderboard v2, which351

ranks open-source LLMs on these benchmarks;352

further, the results for 3 versions of GPT-4o for353

MMLU-Pro were obtained from the original repos-354

itory (Table 2 in the Appendix includes the full355

list). To ensure fair comparison, PredictaBoard356

includes fixed randomly-sampled train, validation357

and test splits of MMLU-Pro: assessors can be358

trained and selected using the training and valida-359

tion splits, and the performance on the test splits is360

reported. Additionally, we use the whole of BBH361

as Out-Of-Distribution (OOD) data to evaluate as-362

sessors trained on the train split of MMLU-Pro.363

4.2 Metrics364

While PredictaBoard primarily employs metrics365

jointly assessing the validity of the LLM and the366

quality of the assessor’s score predictions (§4.2.3,367

to be used for the forthcoming associated compe-368

tition), it also includes LLM-only metrics (§4.2.1)369

and assessor-only metrics (§4.2.2), as the best370

choice of metrics varies based on the considered371

application’s requirements.372

Let xi ∈ X denote some features of the i-th373

instance, with X denoting the space of instance374

features, and let vi ∈ {0, 1} denote the validity375

(in our case, the success in providing the correct376

answer) of the considered LLM on instance i. An377

assessor a : X → [0, 1] estimates the probability 378

P (vi = 1|xi). Assume we have n instances on 379

which the assessor is tested and the subject scored 380

(i.e., a dataset (xi, vi)ni=1) 381

4.2.1 LLM-Only: Accuracy 382

The accuracy of the LLM is the average success 383

over the dataset. 384

4.2.2 Assessor-Only: Brier Score, AUROC 385

The following assessor-only metrics treat the asses- 386

sor as a probabilistic binary classifier. 387

Area Under the ROC Curve (AUROC, Bradley, 388

1997), evaluating an assessor’s discrimination abil- 389

ity between positive and negative labels. As the 390

value of AUROC for perfect and random assessors 391

are insensitive to label distribution, it can be seam- 392

lessly used to compare assessors for LLMs with 393

different accuracy. Details in App. B.1. 394

Brier Score (BS, Gneiting and Raftery, 2007) 395

measures the mean squared error between the as- 396

sessor predictions and the actual success: 397

BS =
1

n

n∑
i=1

(a(xi)− vi)
2

398

A perfect assessor achieves a BS of 0, and larger 399

scores indicate poorer predictions. The BS can be 400

decomposed into calibration and refinement com- 401

ponents (the latter is related to AUROC). However, 402

its scale depends on the ratio of positive to nega- 403

tive labels, thus making it inconvenient to directly 404

compare across LLMs. Details in App. B.2. 405

Winkler’s Score Winkler (1994) introduced a 406

transformation of the BS which, in our case, re- 407

lies on the average LLM success, thus making the 408

score comparable across LLMs (formulation in 409

App. B.3). The resulting score is maximised to 410

1 for a perfect assessor and 0 for an assessor pre- 411

dicting the average LLM success; negative values 412

indicate worse performance than the average. 413

4.2.3 Combined: ARC and PVR 414

An Accuracy-Rejection Curve (ARC, Nadeem 415

et al., 2009) is built by varying the rejection thresh- 416

old of the assessor and computing the accuracy of 417

the LLM on the non-rejected instances. The x-axis 418

represents the rejection rate (0 to 1), while the y- 419

axis shows the accuracy on non-rejected instances. 420

The ARCs always converge at (1, 1), indicating 421

100% accuracy at 100% rejection rate. They start 422
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at (0, acc), where acc is the accuracy without rejec-423

tion. An example comparing two systems is shown424

in Figure 3.425

0

1

a

Non-rejection rate (80%)

20% error
tolerance

System A

System B

b

Non-rejection rate (60%)

Rejection Rate

A
cc
ur
ac
y

0 1

Figure 3: Accuracy Rejection Curves (ARC) allow
graphical comparison of system accuracy based on re-
jection rates. At 20% error tolerance, System A (blue)
has a rejection rate of 80% and System B (pink) has a
rejection rate of 60%.

The ARC shows the rejection/performance bal-426

ance of the LLM-assessor pair. To obtain a single427

score for ranking, we look at the non-rejection rate428

for a given error tolerance. This is the propor-429

tion of accepted instances at the lowest threshold430

(corresponding to the minimum rejection rate) that431

ensures LLM errors are below the desired error432

level, such as 20%. See Figure 3 for details. To433

account for different error tolerances in different434

applications, we provide the non-rejection rates at435

5%, 10% and 20% error tolerance levels. We also436

refer to this metric as the Predictably Valid Region437

(PVR) up to a given error tolerance.438

PVR is a suitable metric when safety is important439

and an error threshold can be established. To ag-440

gregate across all rejection thresholds, we suggest441

using the Area under the ARC (AUARC), which is442

in [0, 1] and is maximised by a perfect LLM.443

4.3 Baseline Assessors444

PredictaBoard includes several baseline antici-445

pative assessors (Hernández-Orallo et al., 2022),446

which predict the success of the LLM before it is447

exposed to inputs. These assessors go beyond sim-448

ply avoiding reliance on the LLM’s output; they449

also operate without access to internal activations,450

making their training architecture-agnostic. We en-451

courage researchers to explore and develop asses-452

sors that leverage internal activations for potentially453

enhanced predictive capabilities.454

In particular, we build assessors leveraging input455

text embeddings5. We plan to incorporate addi-456

5We also fine-tuned small LLMs to predict the success of

tional approaches as they are developed (such as 457

few-shot LLMs or extrapolating performance from 458

similar examples) in future releases. 459

To obtain representations we train assessors on, 460

we used four different embedding schemes (Kusner 461

et al., 2015): OpenAI embeddings6 (Neelakantan 462

et al., 2022) generated by models developed by 463

OpenAI; Word2Vec (Mikolov, 2013) for learning 464

word embeddings using neural networks; Fasttext 465

(Bojanowski et al., 2017) that considers subword 466

information; and n-grams (Sidorov et al., 2014) 467

using contiguous sequences of n items. 468

Table 1 shows the classifiers we trained to be our 469

assessors, with each of the four embeddings. Our 470

41 LLMs, 4 embedding schemes and 3 classifiers, 471

gave us 492 LLM-assessor pairs in our baseline. 472

Table 1: Classifiers used as assessors.

Id Classifier Hyperparameters

LR-l1 Logistic
Regression

solver= ‘liblinear’, penalty = ‘l2’

LR-l2 Logistic
Regression

solver=‘liblinear’, penalty = ‘l1’, C=1

XGB XGBoost Default

4.4 Testing New LLMs or Assessors 473

By relying on the baseline assessors provided 474

in PredictaBoard, researchers can easily eval- 475

uate a new LLM. At the same time, re- 476

searchers can develop novel assessor methods us- 477

ing PredictaBoard’s comprehensive collection of 478

instance-level LLM results. This flexibility facili- 479

tates independent research into both areas. Addi- 480

tionally, entirely new LLM-assessor pairings can 481

be evaluated. 482

5 Experimental Results with Baselines 483

and Existing LLMs 484

This section presents the results with our LLM- 485

assessor baseline pairs. We trained assessors on 486

the training split of the MMLU-Pro dataset and the 487

scores of each LLM; then, we compute metrics on 488

the test split of MMLU-Pro and on BBH. 489

5.1 In-Distribution Evaluation 490

Firstly, we compare assessor methods by consider- 491

ing the distribution of assessor-only metrics over 492

the LLMs. Figure 4 shows the distribution of the 493

another LLM. As the performance of these was not competi-
tive with the other assessors we do not report these, however
those results are available in our repository.

6Endpoint text-embedding-3-large.
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AUROC and the Winkler’s score. Most LLM-494

assessor pairs are slightly better or worse than ran-495

dom or constant baselines, with only a few being496

noticeably better (AUROC near 0.7 or Winkler’s497

score near 0.15). No choice of embeddings method498

consistently outperforms the other, while the XG-499

Boost classifier performs worse in terms of Win-500

kler’s score (indicating issues with calibration).501
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Figure 4: Distribution (over LLMs) of assessor-only per-
formance metrics across different embedding schemes
and classifiers. Top: AUROC; the red line shows the
expected performance of a random assessor. Bottom:
Winkler’s score by classifier type; the red line shows the
expected performance of a constant assessor predicting
the LLM accuracy. Each boxplot displays median, quar-
tiles, support and outliers of the distribution, while the
green dashed line shows the mean.

Next, to score LLM-assessor pairs, we consider502
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Figure 5: PVR at thresholds of 0.8, 0.9, and 0.95,
and the area under the ARC curve for the union of
the top 5 top LLM-assessor pairs at each threshold (in-
distribution).

the size of the PVR and the Area Under the ARC 503

(AUARC). In Figure 5 we show the size of PVR at 504

thresholds 0.8, 0.9 and 0.957 for the 5 top subject- 505

assessor pairs at each threshold; the AUARC is 506

also reported to capture predicability across the full 507

range of error thresholds. Notice how, as expected, 508

the best pairs all include LLMs in the upper quar- 509

tile in terms of average accuracy (see Figure 10 in 510

the Appendix). In particular, LLM-assessor pairs 511

get a good score at a threshold of 0.8. This is to be 512

expected when the LLMs are fairly good at the task 513

(the best LLM has 75% accuracy), as the assessor 514

can predict success most of the time. When the 515

threshold is raised to 0.9 and above, we see a dras- 516

tic drop in PVR, as this poses a greater requirement 517

for assessors to make predictions that the LLM will 518

fail. It is interesting, however, how the pair ranking 519

is not preserved across the different thresholds. 520

To demonstrate how the choice of assessor im- 521

pacts the ARC, in Figure 6 we compare the ARCs 522

obtained with different assessors for the LLM 523

“OpenAI/GPT-4o-2024-08-06”, which achieves the 524

highest accuracy on MMLU-Pro. The ARC varies 525

substantially depending on assessor. In Figure 7, 526

we examine two selected examples from our base- 527

lines. These show a case in which one of the two 528

LLM-assessor pairs has a better PVR at a threshold 529

of 0.8, and the other at a threshold of 0.9. 530

7At higher thresholds, PVR drops to near zero for all asses-
sors. However, very low tolerance rates are crucial when AI
systems pose catastrophic risks (Hendrycks et al., 2023). In
future iterations, we will include higher thresholds and encour-
age researchers to design AI systems and assessors capable of
operating under minimal error tolerance.
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Figure 6: A comparison of the ARC curves for
the different assessors of the highest accuracy LLM
(“OpenAI/GPT-4o-2024-08-06”) in our dataset.
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Figure 7: A comparison of two ARC curves in which
one has a better performance at a PVR threshold of 0.8,
and the other at a PVR threshold of 0.9.

5.2 Out-of-Distribution Evaluation531

To assess the robustness of our LLM-assessor pairs,532

we evaluated them on BBH after training on the533

train split of MMLU-Pro. Figure 8 replicates Fig-534

ure 5 for the BBH benchmark. We use the same se-535

lection criteria as for the in-distribution results: the536

union of the top 5 PVR performers at each thresh-537

old. The lower values in Figure 8 highlight the538

difficulty of predicting performance OOD. Addi-539

tionally, the top pairs differ from the in-distribution540

ones, suggesting the latter may may not have the 541

highest generalisation power. Other metrics for this 542

OOD scenario are available in App. D. 543
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Figure 8: PVR at thresholds of 0.8, 0.9, and 0.95, and
the area under the ARC curve for the union of the top 5
top LLM-assessor pairs at each threshold (OOD).

6 Conclusion 544

PredictaBoard introduces a novel benchmark 545

concept, evaluating pairs of models and validity 546

predictors (assessors). This aligns with the notion 547

of validity predictability (Zhou et al., 2024a), 548

highlighting how uncertainty on errors or safety, 549

initially perceived as aleatoric, can become epis- 550

temic through pattern discovery (Hüllermeier and 551

Waegeman, 2021). Leveraging external predictors 552

to extract instance-level patterns contributes to 553

making AI systems predictable and understandable, 554

something that intrinsic uncertainty estimation 555

falls short of. This stresses the critical importance 556

of joint progress on LLMs and their assessors. An 557

LLM is only as predictable as the quality of its 558

assessors, and an assessor method is only effective 559

if it performs well for state-of-the-art LLMs. 560

PredictaBoard creates a unique opportunity to 561

explore advancements in both LLMs and assessors, 562

offering potential gains on these two fronts. 563

This paper aimed to release an initial version 564

of the benchmark and allow the community to 565

guide its future extensions, that can possibly in- 566

clude developing assessors that function across 567

multiple LLMs and predicting safety indicators 568

(Zhang et al., 2024; Mazeika et al., 2024), rather 569

than performance. Additionally, comparing with 570

human performance as assessors, as examined in 571

recent studies (Carlini, 2024; Vafa et al., 2024b; 572

Gao et al., 2024; Zhou et al., 2024b), could provide 573

insights into the differences in LLM predictability 574

from automated and human perspectives. 575
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7 Limitations576

There are some limitations in the current version577

of PredictaBoard. First, our baselines only in-578

clude external anticipative assessors. In principle,579

the PredictaBoard allows for non-external asses-580

sors (including self-confidence) and can be eas-581

ily extended to consider the output of the model582

as well, using “verifiers” instead of assessors (al-583

though not relying on outputs has some advan-584

tages, highlighted in §2). Additional conditions585

could also be considered, such as the invertibility586

of the assessor—-whether, by using the assessor,587

one can generate inputs that ensure the model’s per-588

formance exceeds a given score, given constraints589

on the input. This capability would be particularly590

valuable for red-teaming applications or enhanc-591

ing explainability (e.g., generating counterfactuals).592

Considering variations for these additional condi-593

tions and others (like the computational cost of the594

LLM-assessor pair) could allow to study properties595

of the assessors, such as the exploration of scaling596

laws for pairs of LLMs and assessors, or explore sit-597

uations where the assessor cannot be n times more598

costly than the LLM. We leave all these considera-599

tions for future versions and specific competitions.600

Some obvious limitations are the number of met-601

rics, datasets and baseline methods. For metrics,602

one could also consider Pareto-dominance rather603

than single metrics, plotting the evolution of LLMs604

and assessors bidimensionally. Similarly, we could605

have considered cost-based metrics, such as those606

discussed in Hendrickx et al., 2024, Section 3.3,607

assigning a relative cost to rejections with respect608

to errors and computing the total cost using a fixed609

rejection threshold. Unlike the non-rejection rate610

metric we use (which is a specific case of cost-611

based metrics), these metrics require the definition612

of application-specific rejection costs and a maxi-613

mum total cost, making them more complex to use614

in a standardised benchmark. For datasets, it is not615

always easy to find good sources covering a wide616

range of state-of-the-art LLMs at the instance level617

(Burnell et al., 2023), but more and more bench-618

marks with instance-level test results are available619

to be included, such as the remaining benchmarks620

involved in the Open-LLM Leaderboard, among621

others. These could be used to train assessors on622

more diverse data as well as for evaluating them623

out of distribution. In future releases, we thus plan624

to expand the coverage of our analysis and the625

datasets included in PredictaBoard.626
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A AI ecosystems, predictability and1021

assessor models1022

In this appendix, we provide formal definitions of1023

predictability as used in this paper, adapted from1024

Zhou et al. (2024a). In this regard, we model the1025

AI system and its interactions within an AI ecosys-1026

tem (ranging from single AI systems interacting1027

with individual users for specific tasks to complex1028

socio-technical environments, with different levels1029

of granularity) as follows: I is the set of problem1030

instances (e.g., input prompts). S is the set of AI1031

systems considered (e.g., LLMs). U is the set of1032

users or operators interacting with the AI systems.1033

O is the set of possible outputs from the AI sys-1034

tems. R ⊆ I×S×U×O capture the relationships1035

and interactions among instances, systems, users,1036

and outputs. An AI ecosystem at time t is then1037

represented as a tuple Et = ⟨It,St,Ut,Rt⟩ where1038

the components may change over time.1039

We consider a distribution over ecosystems de-1040

noted as Et, and the complete history of inter-1041

actions up to time t is represented by: H≤t =1042

⟨E≤t,O<t, V<t⟩, where Vt is a random variable1043

indicating the validity of outputs at time t (e.g.,1044

whether the LLM provides a correct answer for1045

instance i).1046

Predictability is then formalised through the1047

conditional probability distribution: p(Vt+h |1048

H≤t), which represents the probability of observ-1049

ing a valid output at a future time t+ h, given the1050

history up to time t. We define unpredictability1051

Q as the minimum expected loss over a family of1052

predictors Fb constrained by resource budgets b:1053

Q(p,Ht,Fb) := min
p̂∈Fb

E
H≤t∼H≤t

v∼p(Vt+h|Ht)

S(p̂(Vt+h|H≤t), v)

(1)1054

where S is a scoring function assessing the accu-1055

racy of predictions, such as the Brier Score.1056

In our context of PredictaBoard, an assessor1057

model a belongs to a family of predictors Fb, con-1058

strained by computational resources and the infor-1059

mation it relies on (e.g., not using the LLM’s out-1060

puts). An assessor is thus defined as a : I → [0, 1],1061

predicting the validity of the LLM’s output on1062

individual instances, namely P (vi = 1 | xi)),1063

where xi is the feature representation of instance i,1064

and vi ∈ {0, 1} indicates the validity (e.g. suc-1065

cess) of the LLM on that instance. The goal1066

is thus to find an assessor that minimises unpre-1067

dictability Q by minimising the expected loss:1068

mina∈Fb
1
n

∑n
i=1 S

(
a(xi), vi

)
, over a test set of n 1069

instances, where S is the scoring function. 1070

B Assessor metrics 1071

B.1 Area Under the Receiving Operating 1072

Characteristic Curve (AUROC) 1073

The AUROC assesses the quality of a binary prob- 1074

abilistic classifier by measuring its ability to dis- 1075

criminate between positive and negative instances 1076

across various thresholds. Specifically, the AUC 1077

plots the True Positive Rate (TPR) against the False 1078

Positive Rate (FPR) at different threshold levels on 1079

this probability, obtaining a curve known as the 1080

Receiver Operating Characteristic Curve (ROC) 1081

curve. The AUROC is then calculated as the inte- 1082

gral of this curve, providing a single scalar value 1083

that summarises the overall performance of the 1084

considered binary classifier. An AUROC of 1 in- 1085

dicates perfect discrimination, while an AUROC 1086

of 0.5 suggests no better performance than random 1087

chance. These extreme values are insensitive to the 1088

ratio of positively and negatively labelled instances 1089

in the dataset; thus, the AUROC can be seamlessly 1090

used to compare different scenarios where those ra- 1091

tios differ. This characteristic is particularly useful 1092

when comparing (LLM, assessor) pairs. However, 1093

the AUROC is insensitive to monotonic transforma- 1094

tions of the probabilities predicted by the classifier. 1095

This implies that a miscalibrated classifier can still 1096

achieve a high AUROC. While increasing the AU- 1097

ROC will enhance the discrimination between the 1098

two classes, it does not necessarily improve the 1099

calibration of the classifier. 1100

B.2 Brier Score 1101

The Brier Score (BS) is equivalent to computing 1102

the mean squared error between the assessor pre- 1103

dictions for each instance xi and the actual success 1104

vi: 1105

BS =
1

n

n∑
i=1

(a(xi)− vi)
2 . 1106

A perfect assessor would achieve a BS of 0, and 1107

larger scores indicate poorer predictions. The BS is 1108

an example of a strictly proper scoring rule (Gneit- 1109

ing and Raftery, 2007) — that is, a scoring method 1110

for probabilistic predictions that encourages recov- 1111

ery of the true data distribution when minimised. 1112

As such, the BS can be decomposed into calibration 1113

and refinement components (with the latter related 1114

to AUROC). This decomposition means that the BS 1115
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incentivises assessors to improve both calibration1116

and discrimination.1117

However, the scale of the BS depends on the1118

ratio of positive to negative elements vi for the1119

considered subject. Specifically, an assessor that1120

always predicts the proportion of positive samples q1121

in the dataset achieves a BS of q(1− q) as n → ∞.1122

B.3 Winkler’s score1123

Winkler (1994) presented a generic way to correct1124

binary scoring rules so that the score achieved by1125

assessors that always predict the average success1126

rate for subjects with different success rates is the1127

same, and so can be easily compared. This relies on1128

transforming a symmetric score (namely, for which1129

S(p, 1) = S(1− p, 0)) into a non-symmetric one.1130

Applying this transformation to the Brier Score1131

leads to (Gneiting and Raftery, 2007, Sec. 3.2):1132

WS =
1

n

n∑
i=1

αi

βi
,1133

where1134

αi = [(1− c)2 − (1− a(xi))
2]1{vi = 1}

+ (c2 − a(xi)
2)1{vi = 0},

βi = c21{a(xi) ≤ c}+ (1− c)21{a(xi) > c},
1135

where c is the average accuracy of the considered1136

LLM and 1 is the indicator function. The score for1137

the assessor predicting the observed success rate is1138

0 while that for a perfect assessor is 1.1139

C LLMs1140

Our dataset consists of the instance-level perfor-1141

mances of various LLMs on MMLU-Pro (Wang et al.,1142

2024) and the BIG-Bench-Hard (BBH, Suzgun1143

et al., 2022), for a total of 11383 and 5761 instances1144

respectively. The results for a selection of 38 open-1145

source LLMs for both MMLU-Pro and BBH were1146

obtained from HuggingFace’s Open LLM Leader-1147

board v2, which ranks open-source LLMs on these1148

benchmarks; the selection includes a diversity of1149

models from several well-known families, each1150

with different architectures (LLama, GPT, Qwen,1151

Mistral, etc.) and parameter sizes (up to 95B pa-1152

rameters). Further, the results for 3 versions of1153

GPT-4o for MMLU-Pro were obtained from the1154

original repository (Wang et al., 2024). Table 21155

includes the full list of considered LLMs.1156

Moreover, Figures 10 and 11 show the perfor-1157

mance of the different LLMs on the MMLU-Pro and1158

BBH benchmarks respectively.1159
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Figure 9: Distribution (over LLMs) of assessor-only per-
formance metrics across different embedding schemes
and classifiers, evaluated OOD on the BBH dataset.

D OOD AUROC and Winkler’s score 1160

In this section we replicate the results of Figure 1161

4 for OOD assessment on the BBH dataset (see 1162

Figure 9). The results are worse, as expected, espe- 1163

cially in calibration. This simply encourages more 1164

work on further abstraction and different partitions 1165

when training the assessors, and PredictaBoard is 1166

a tool for that. Note that OOD is a situation where 1167

simply extrapolating the accuracy of one bench- 1168

mark to another is useless, and small improvements 1169

in OOD results can make a difference. 1170
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Table 2: List of LLMs used in our experimental setting. PredictaBoard includes instance-level results for MMLU-
Pro and BBH for all of them except the three GPT-4o versions, for which BBH results are unavailable.

Index HuggingFace’s Model Name Family Size Version

1 calme-2.1-qwen2.5-72b Qwen 72B 2.5-Instruct
2 DCLM-7B DCLM 7B
3 gemma-2-2b-ORPO-jpn-it-abliterated-18-gemma-2-2b Gemma 2B v2 ORPO
4 GPT-4o-2024-05-13 GPT - 4o-2024-05-13
5 GPT-4o-2024-08-06 GPT - 4o-2024-08-06
6 GPT-4o-mini GPT - 4o-mini
7 GutenLaserPi Mistral 7B -
8 Hermes-3-Llama-3.1-70B Llama 70B 3.1
9 Jallabi-34B Llama 34B v1.6
10 L3.1-ClaudeMaid-4x8B Llama 4x8B ClaudeMaid v1.0
11 LayleleFlamPi Mistral 7B -
12 leniachat-gemma-2b-v0 Gemma 2B leniachat v0
13 leniachat-qwen2-1.5B-v0 Qwen 1.5B leniachat v0
14 llama-3.1-8B-Galore-openassistant-guanaco Llama 8B 3.1-Galore-openassistant-guanaco
15 Llama-3.1-8B-Lexi-Uncensored Llama 8B 3.1-Lexi-Uncensored
16 Llama-3.1-8B-Lexi-Uncensored-V2 Llama 8B 3.1-Lexi-Uncensored-V2
17 Llama-3.1-8B-MagPie-Ultra Llama 8B 3.1-MagPie-Ultra
18 Llama-3-70B-Synthia-v3.5 Llama 70B Synthia-v3.5
19 Llama-3-8B-Synthia-v3.5 Llama 8B Synthia-v3.5
20 llama-3-luminous-merged Llama 8B luminous-merged
21 Meta-Llama-3.1-70B-Instruct Llama 70B v3.1-Instruct
22 Mistral-7B-v0.1-signtensors-1-over-4 Mistral 7B v0.1
23 Mistral-7B-v0.1-signtensors-3-over-8 Mistral 7B v0.1
24 Mistral-7B-v0.1-signtensors-5-over-16 Mistral 7B v0.1
25 Mistral-7B-v0.1-signtensors-7-over-16 Mistral 7B v0.1
26 neural-chat-7b-v3-1 Neural Chat 7B v3-1
27 neural-chat-7b-v3-2 Neural Chat 7B v3-2
28 neural-chat-7b-v3-3 Neural Chat 7B v3-3
29 pythia-410m-roberta-lr_8e7-kl_01-steps_12000-rlhf-model Pythia 410M -
30 Qwen2.5-95B-Instruct Qwen 95B 2.5-Instruct
31 qwent-7b Qwen 7b -
32 solar-pro-preview-instruct Solar Pro 22B instruct
33 SuperHeart Llama 8B v3.1 SuperNova-Lite
34 Tess-3-7B-SFT Mistral 7B 3-SFT
35 Tess-3-Mistral-Nemo-12B Mistral 12B Tess v3
36 Tess-v2.5.2-Qwen2-72B Qwen 72B Tess v2.5.2
37 Tess-v2.5-Phi-3-medium-128k-14B Phi 14B Tess v2.5.2.5
38 Trinity-2-Codestral-22B Mistral 22B Codestral v0.1
39 Trinity-2-Codestral-22B-v0.2 Mistral 22B Codestral v0.1
40 VisFlamCat Mistral 7B -
41 Yarn-Llama-2-13b-128k Llama 13B v2

E Failure analysis1171

Models that always fail or always succeed are1172

highly predictable. This is why we use the AU-1173

ROC and Winkler’s score as assessor metrics, be-1174

cause they are balanced, useful to counteract this1175

effect and compare assessors for models of differ-1176

ent accuracy. However, can we still find that more1177

performant models are more predictable, even after1178

controlling for this?1179

We explore this question in Figure 12, show-1180

ing the relation between the accuracy and AUROC1181

for all models and assessors respectively using the1182

MMLU-Pro dataset (trained on the train split and1183

evaluated on the test split). Recall that a classi-1184

fier randomly guessing would produce AUROC of1185

0.5, while AUROC of 1 corresponds to perfect dis-1186

crimination. We see a positive correlation, but the1187

oriented interpretation is more interesting: asses-1188

sors with high AUROC always correspond with1189

models of high accuracy (the opposite is less clear).1190

There are also two clear clusters in the plot, and1191

the one on the top right has negative correlation. 1192

Moreover, in that cluster, the assessors using the 1193

most powerful features (the OpenAI embeddings) 1194

perform better. 1195

Figure 13 replaces the AUROC with Winkler’s 1196

score and shows a similar, but less clear behaviour, 1197

where again, higher Winkler’s score implies higher 1198

LLM accuracy. Recall that, for the Winkler’s score, 1199

a value of 0 corresponds to a constant assessor 1200

that always outputs the average accuracy; lower is 1201

worse and Winkler’s score is 1 for perfect predic- 1202

tions. From this graph, two considerations can be 1203

made: 1204

1. For the models with low accuracy, assessors 1205

are unable to get above the 0 (baseline level 1206

for a constant assessor) in terms of Winkler’s 1207

score. Moreover, considering individually 1208

each LLM with low accruacy, the least power- 1209

ful features (Ngrams-1) always lead to higher 1210

Winkler’s score for the assessors, while the 1211

most powerful ones lead to much lower score 1212
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Figure 10: The performance of the LLMs in the MMLU-Pro dataset, expressed as the proportion of questions
answered correct.
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Figure 11: The performance of the LLMs in the BBH dataset, expressed as the proportion of questions answered
correct.

(there is instead a mix for the two intermediate1213

features). This suggests that most powerful1214

features lead to the assessors overfitting on1215

the training set, hence suggesting that these1216

models have intrinsically poorly predictably.1217

2. Instead, for the models with high accuracy,1218

the opposite pattern can be observed: the most1219

powerful features (the OpenAI embeddings)1220

lead to higher Winkler’s score, indicating that1221

these features are encoding a general pattern 1222

impacting LLM performance. 1223

That influence suggests that we could inspect 1224

specific examples to see extreme differences be- 1225

tween the actual and the predicted outcome. In- 1226

deed, assessors can be a very useful tool to analyse 1227

errors, such as using counterfactuals as in explain- 1228

able AI (e.g., would the model fail if we changed 1229

the prompt in some particular way?). Also we can 1230
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Figure 12: Relation between AUROC per assessor and accuracy per model on the test split of the MMLU-Pro
dataset, for assessoras trained on the train split.

compare the confidence given by the assessor to1231

different failures or successes. For instance, we can1232

easily conduct a ranking of examples per bench-1233

mark according to their score predictability over1234

different models and assessors, and how this relates1235

to their difficulty (percentage of models that fail on1236

the example). Theoretically, this should be related1237

to the variance of a Bernoulli distribution, but it can1238

be very insightful to explore deviations from this:1239

failures of the model with high-confidence of suc-1240

cess from the assessor and successes of the model1241

with high-confidence of failure from the assessor.1242

To observe this, we selected the best1243

LLM-assessor pair based on 0.8 PVR1244

(OpenAI/GPT-4o-2024-08-06 with Logistic1245

Regression (l2) assessor based on OpenAI1246

embeddings, see Fig. 5), and printed the lowest1247

5 instances in terms of assessor confidence1248

which the LLM got right (Figure 14), and the1249

highest 5 which the LLM got wrong (Figure1250

15). The high-confidence-but-wrong instances1251

involve short questions, many of which seem1252

straightforward, from several disciplines. In1253

contrast, the low-confidence-but-correct instances1254

involve very long question and many of them are 1255

law- or engineering-related. This shows how these 1256

failures, at least for this model, were ultimately 1257

caused by the base model and not by the assessor 1258

giving unreasonable estimates. 1259
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PROMPT 1400, Prediction: 0.35163472465364426:
Federal law prohibits "willingly and knowingly" taking cash in excess of $10,000 from the U.S. into a foreign country without first reporting the

transaction in detail. An owner of a Detroit drug store takes his gross cash receipts each week into a city in Canada where he lives and does his
banking. The office of the Deputy Atty. General learned that the owner was doing this, and indicted him on 10 counts of "willingly and knowingly"
taking cash over $10,000 into a foreign country without reporting it. The owner's main defense is that he did not know of the law or that he was
breaking it. The trial judge instructed the jury that mistake of law is no defense. He was convicted and appealed. Will the federal appellate court
likely reverse the conviction?

↪→
↪→
↪→
↪→
↪→
A. No, because the owner's habitual actions imply intent to avoid reporting the cash.
B. No, the practice is so dangerous to the public interest that knowledge and specific intent are not required.
C. Yes, because willfulness clause requires proof of both knowledge of the law and a specific intent to commit the crime.
D. No, willfulness and knowledge are inferred by the habitual practice of transporting the cash.
E. Yes, because the owner was not intentionally breaking the law, he was simply unaware of it.
F. No, because ignorance of the law is not a valid defense.
G. Yes, because the owner is not a resident of the U.S. and therefore not subject to its laws.
H. No, because the owner is a business operator and therefore should be aware of such laws.
I. Yes, because treaties with Canada make all such reporting laws unenforceable.
J. Yes, because the owner was not given a fair chance to defend himself in court.
Answer:

PROMPT 1758, Prediction: 0.3642458853764882:
A man who owned a business believed that one of his employees was stealing computer equipment from the business. He decided to break into the employee's

house one night, when he knew that the employee and her family would be away, to try to find and retrieve the equipment. The man had brought a
picklock to open the employee's back door, but when he tried the door, he found that it was unlocked, so he entered. As the man was looking around
the house, he heard sounds outside and became afraid. He left the house but was arrested by police on neighborhood patrol. What is the man's
strongest defense to a burglary charge?

↪→
↪→
↪→
↪→
A. The back door to the house was unlocked.
B. The man was scared and left the house before committing a crime.
C. The man did not actually use the picklock.
D. The man was arrested outside, not inside, the house.
E. The man was only trying to retrieve his own property.
F. The man did not intend to commit a crime inside the house.
G. The man believed the stolen property was his.
H. The house was not occupied at the time of his entry.
I. The man did not take anything from the house.
Answer:

PROMPT 996, Prediction: 0.36962361800041293:
A wife is the beneficiary of a policy issued by an insurance company, insuring the life of her husband, now deceased. The policy contained a clause

providing that double indemnity is payable in the event that death of the insured "results directly, and independently of all other causes, from
bodily injury effected solely through external violent and unexpected means. "The husband was found dead in the chicken shed of his farm. His death
resulted from wounds caused by a shotgun blast. The wife filed the necessary papers with the insurance company concerning proof of her husband's
death. The insurance company admitted liability for the face amount of the policy but rejected the wife's claim for double indemnity. The wife then
instituted suit against the insurance company demanding judgment according to the double indemnity provisions of the husband's insurance policy. At
trial, the wife was called to testify about the events on the day of her husband's death. The wife said that she was in the kitchen when she heard a
gunshot in the shed. As she rushed out of the house, she saw their neighbor running from the shed. The neighbor is present in court. As a witness,
the wife was

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
A. competent, because she can provide a first-hand account of the incident.
B. incompetent, because she was not an eyewitness to the actual event.
C. incompetent, because her testimony is based on her perception of events.
D. competent, because she was present on the scene after the event occurred.
E. competent, because she had personal knowledge of the matter.
F. competent, because the neighbor is available to testify.
G. incompetent, because her testimony could potentially be biased.
H. incompetent, because she was testifying to facts occurring after her husband's death.
I. competent, because she can corroborate her account with the neighbor's testimony.
J. incompetent, because she had a personal interest in the outcome of the lawsuit.
Answer:

PROMPT 2162, Prediction: 0.38607054185111:
There is a state statute making it a misdemeanor "to falsely report a fire either intentionally or recklessly. " There were three college roommates who

lived together in a small apartment. Two of the roommates decided to play a practical joke on the other roommate, which they liked to do from time to
time because he was gullible. The two roommates were seated in the living room of their apartment. The other roommate was in an adjoining room and
within earshot of the two roommates. Knowing that their roommate could hear their conversation, the two roommates falsely stated that a fire had been
set at the student center at the college. After overhearing this conversation, the other roommate phoned the fire department and reported this
information. Several fire trucks were dispatched to the college and determined the information to be false. If the two roommates are prosecuted for
violating the aforementioned statute, they should be found

↪→
↪→
↪→
↪→
↪→
↪→
A. guilty, because they intentionally misled their roommate.
B. guilty, because they deliberately provided false information.
C. not guilty, because they did not directly call the fire department.
D. guilty, because they caused the false report to be made.
E. guilty, because they knowingly spread false information within earshot of their roommate.
F. guilty, because they are accomplices to their roommate.
G. not guilty, because it was a practical joke and they did not intend harm.
H. not guilty, because they didn't knowingly believe that their roommate would report the information to the fire department.
I. not guilty, because they didn't report the information to the fire department themselves.
J. not guilty, because they did not confirm the presence of a fire themselves.
Answer:

PROMPT 485, Prediction: 0.38794118768882585:
A defendant was on the first day of her new secretarial job when her boss called her into his office. The boss directly suggested that if the defendant

did not go out on a date with him, she would be fired in one week. Every day during the remainder of the week, the boss approached the defendant with
his demand, and the defendant refused to cooperate. At the end of the week, when the boss called the defendant into his office and again tried to
pressure her to go out on a date with him, the defendant knocked him unconscious with a giant stapler and choked him to death. The defendant is tried
for murder. In accordance with the following statute, the state relies at trial on the presumption of malice:"When the act of killing another is
proved, malice aforethought shall be presumed, and the burden shall rest upon the party who committed the killing to show that malice did not exist.
"If the defendant is convicted of first-degree murder and challenges her conviction on the grounds of the above statute, on appeal she will

↪→
↪→
↪→
↪→
↪→
↪→
A. lose, because the presumption may be rebutted.
B. win, because the statute violates due process.
C. lose, because the presumption of malice aforethought is constitutional.
D. win, because she acted in self-defense.
E. lose, because her actions were premeditated.
F. win, because the statute is unjust.
G. lose, because she did not show that malice did not exist.
H. win, because the statute is discriminatory.
I. lose, because she failed to overcome the presumption.
Answer:

Figure 14: Lowest 5 instances in terms of assessor confidence which the LLM got right. This is shown for the best
LLM-assessor pair based on 0.8 PVR (OpenAI/GPT-4o-2024-08-06 with Logistic Regression (l2) assessor based
on OpenAI embeddings) and the MMLU-Pro dataset.
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PROMPT 365, Prediction: 0.9677333347366117:
A store sells two items for $10 each. One item costs $5.25, while the other costs $6.50. What ratio of items at each price must be purchased in order to

have an average markup based on the selling price of 40%?↪→
A. 3 to 1
B. 4 to 3
C. 1 to 2
D. 3 to 2
E. 2 to 3
F. 2 to 5
G. 1 to 4
H. 1 to 3
I. 4 to 1
J. 5 to 3
Answer:

PROMPT 929, Prediction: 0.9578498958041702:
What is criterion related validity?
A. Criterion-related validity evaluates the test's ability to predict future or past performance.
B. Criterion-related validity is the testing of an individual's knowledge
C. Criterion-related validity measures the extent to which test scores are unaffected by external factors.
D. Criterion-related validity measures the test's consistency
E. Criterion-related validity assesses the degree to which a test captures a comprehensive range of abilities within a domain.
F. Criterion-related validity is the extent to which a test measures a theoretical construct or trait.
G. Criterion-related validity refers to the bias in a test's results
H. Criterion-related validity is the degree to which a test aligns with another widely accepted standard test.
I. Criterion-related validity is concerned with the extent to which a test correlates with a concurrent benchmark.
J. Criterion-related validity refers to the effectiveness of a test in predicting an individual's behavior in specified situations.
Answer:

PROMPT 1241, Prediction: 0.9559929993297027:
A store has 3 boxes of shirts. Each box has 4 packages with 7 shirts in each package. The expression 3 × (4 x 7) can be used to find the total number of

shirts. Which expression can also be used to find the total number of shirts?↪→
A. 14 × 3
B. 21 × 4
C. 12 × 7
D. 7 × 12
E. 14 × 4
F. 4 × 21
G. 12 × 3
H. 28 × 4
I. 28 × 7
J. 21 × 3
Answer:

PROMPT 902, Prediction: 0.9389530358257672:
Even though there is no such thing as a "typical cell" - for there are too many diverse kinds of cells - biologists have determined that there are two

basic cell types. What are these two types of cells?↪→
A. Single-celled and Multi-celled
B. Animal and Plant cells
C. Procaryotic and Eucaryotic
D. Diploid and Haploid cells
E. Photosynthetic and Non-photosynthetic cells
F. Vascular and Non-vascular cells
G. Prokaryotic and Eukaryotic
H. Somatic and Germ cells
I. Autotrophic and Heterotrophic cells
J. Aerobic and Anaerobic cells
Answer:

PROMPT 1229, Prediction: 0.9381125294629535:
Which of the following about meiosis is NOT true?
A. Meiosis produces two haploid gametes.
B. Homologous chromosomes join during synapsis.
C. Sister chromatids separate during meiosis I.
D. Crossing-over increases genetic variation in gametes.
Answer:

Figure 15: Highest 5 instances in terms of assessor confidence which the LLM got wrong. This is shown for the
best LLM-assessor pair based on 0.8 PVR (OpenAI/GPT-4o-2024-08-06 with Logistic Regression (l2) assessor
based on OpenAI embeddings) and the MMLU-Pro dataset.
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