Dynamic Low-Rank Training with Spectral Regularization: Achieving
Robustness in Compressed Representations

Steffen Schotthofer ! H. Lexie Yang? Stefan Schnake '

Abstract

Deployment of neural networks on resource-constrained devices demands models that are both compact and robust
to adversarial inputs. However, compression and adversarial robustness often conflict. In this work, we introduce a
dynamical low-rank training scheme enhanced with a novel spectral regularizer that controls the condition number
of the low-rank core in each layer. This approach mitigates the sensitivity of compressed models to adversarial
perturbations without sacrificing clean accuracy. The method is model- and data-agnostic, computationally
efficient, and supports rank adaptivity to automatically compress the network at hand. Extensive experiments
across standard architectures, datasets, and adversarial attacks show the regularized networks can achieve over 94%
compression while recovering or improving adversarial accuracy relative to uncompressed baselines. The code is
openly available at https://github.com/ScSteffen/Publication ICML_MOSS_Workshopl

1. Introduction

Deep neural networks excel in computer vision and data processing, but their significant computational and memory
requirements limit deployment in resource-constrained environments. While advances in models using data centers and
specialized hardware are notable, deploying accurate models on low-power platforms, e.g., unmanned aerial vehicles (UAVs)
or sensor arrays, present unique challenges due to limited power and compute resources.

Three interdependent challenges arise:

* Compression: Models must fit strict memory, compute, and energy limits.
* Accuracy: Compressed models must preserve high performance for critical decisions.
* Robustness: Models need resilience against noise and adversarial perturbations.

Recent findings indicate these objectives conflict. Low-rank (Schotthofer et al.,[2022) and sparsity techniques (Guo et al.|
2016)) can reduce accuracy. Compressed networks may also show heightened sensitivity to adversarial attacks (Savostianova,
et al., [2023). Adversarial robustness methods such as data augmentation (Lee et al.| [2017) and regularization (Zhang
et al.| 2019) often decrease clean accuracy, and many robustness enhancements add computational burdens during training
(Su et al.|, 2023} (Cheng et al., |2022) and inference (Cisse et al., |2017; |Hein & Andriushchenko} [2017; |Liu et al., [2010),
complicating deployment on restricted hardware.

Our Contribution. We summarize our contributions as follows:

* Low-rank compression framework. We propose a regularizer and training framework for low-rank compressed networks,
achieving over 10 x reductions in memory and compute costs while maintaining competitive accuracy and robustness.
* Theoretical guarantees. We derive an explicit bound on the condition number « as a function of the regularizer, enhancing
confidence in adversarial performance.
* Preservation of performance. We analytically and empirically demonstrate that our regularizer does not degrade training
performance or clean validation accuracy across various architectures.
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Our model-agnostic approach seamlessly integrates with existing adversarial defenses and maintains a low memory footprint.
By linking to dynamical low-rank integration schemes, we provide theoretical and algorithmic insights for the method.
Finally, interpretable spectral metrics improve the trustworthiness of the compressed models.

2. Controlling adversarial robustness through the singular spectrum

We define a neural network f as a sequence of L layers: z/T! = of(W*2%) with weight matrices W*¢ € R™*", input
2% € RP " and nonlinear activations o*. To simplify the presentation, we exclude biases, though they are included in
experiments. The input data X serves as the first layer input, 20 = X. We assume Lipschitz continuity for activations o*.
The network is trained on a locally bounded loss function £ with a locally Lipschitz gradient. We refer to this standard
architecture as a "baseline" network. While we focus on linear layers for the presentation, our method can extend to CNNs

via Tucker decomposition; see (Zangrando et al.| [2024al).

Low-rank Compression: Network compression during training and inference is achieved by approximating weight matrices
as low-rank factorizations W*¢ = U*S*V%T, where U, V! € R"*" and S¢ € R"*". We assume orthonormality for U*
and V* during training and inference. This assumption diverges from typical low-rank training methods such as LoRA (Hu
et al.}2021)), but provide better geometric properties (Zhang et al. 2023} [Schotthofer et al.| [2022}2025). For r < n, this
low-rank factorization is computationally efficient at O(2nr + r?) versus O(n?) for standard formats.

Adversarial Robustness: We measure the adversarial robustness of the network f using its relative sensitivity S to input

perturbations ¢ given by:
1 (X +6) = SO IXT]
S(f,X,0) := . 1
0 TESI ] w

We focus on #2 norm sensitivity where || - || = || - ||2. For networks with Lipschitz continuous activations, there holds the
bound (Savostianova et al., |[2023)):

S(f,X,0) < (ITy k(W) (T2, K(0?)) @)

where k(W) := |[W| ||WT|| is the condition number of matrix W and (c*) for activation functions. This allows us to
consider layer-wise conditioning, omitting the superscript for brevity.

Sensitivity for low-rank networks can be analyzed using the orthonormal properties of U and V' to show x(USV ") = x(S).
Thus, we only need to manage the condition number «(S), derivable via the singular value decomposition (SVD) of S,
which is feasible to compute for r < n.

Adversarial Robustness-Aware Low-Rank Training: Enhancing adversarial robustness during low-rank training focuses
on controlling the conditioning of S, which can be challenging. DLRT schemes (Schotthofer et al.l[2022) often exhibit ill-
conditioned behavior, as shown in Figure[I] where a rank 64 factorization yields singular values ranging from o,—; = 2.7785
t0 0,—¢4 = 0.8210, resulting in x(.S) = 3.3844. Comparatively, the baseline network achieves x(.5) = 1.9722 with singular
values 0,—1 = 1.8627 to g,-128 = 0.9445. Consequently, an 2-FGSM attack with strength € = 0.3 lowers the baseline
accuracy to 54.96% versus 43.39% for the low-rank network, as shown in Table
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Figure 1: The singular values o; (W) of sequential layer 7 in VGG16 for baseline training, DLRT, and RobustDLRT with
B = 0.075. The matrix W is formed as the first-mode unfolding of the convolutional tensor. Conditioning of the regularized
low-rank layer is significantly improved compared to the non-regularized low-rank and baseline layer. We note that the
difference between the low-rank and regularized singular spectrum may be less pronounced for other layers and architectures.
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3. Related work

Low-rank compression is a key method for reducing memory and computational costs in deep networks by constraining
weights to low-rank subspaces. Early techniques utilized post-hoc matrix (Denton et al., 2014) and tensor decompositions
(Lebedev et al., |2015)), while recent methods integrate low-rank constraints during training for improved efficiency.

Dynamical Low-Rank Training (DLRT) (Schotthofer et al.|2022)) evolves network weights on a low-rank manifold, allowing
significant reductions in memory and FLOPs without full-rank weight storage. This method extends to tensor-valued layers
(Zangrando et al.l 2024b) and federated learning (Schotthofer & Laiul 2024)). In contrast, low-rank fine-tuning techniques
like LoRA (Hu et al.|[2021) introduce trainable low-rank updates into frozen pre-trained models, enabling efficient adaptation
but failing to reduce overall training and inference costs, thereby limiting computational efficiency.

Improving adversarial robustness with orthogonal layers has gained attention in the literature. Soft methods impose
orthogonality weakly via regularizers; examples include the soft orthogonal (SO) regularizer (Xie et al.l 2017), double soft
orthogonal regularizer (Bansal et al.| [2018)), mutual coherence regularizer (Bansal et al.}2018]), and spectral normalization
(Miyato et al.l 2018)). These approaches are flexible, enabling rank adaptation and transfer learning, but weak enforcement
of orthogonality cannot provide rigorous spectral bounds.

Conversely, hard methods enforce orthogonality and well-conditioned constraints by training on a manifold using Riemannian
optimization (Li et al.| 2020; |Absil & Malick, [2012). A notable hard approach for low-rank training clamped the spectrum
extremes to bound the condition number during training (Savostianova et al., 2023)). However, selecting the rank r as
a hyperparameter is critical; if chosen incorrectly, the clamping may act as a strong regularizer and negatively impact
validation metrics.

4. Improving conditioning via regularization

We design a computationally efficient regularizer R to control and decrease the condition number of each network layer
during training. The regularizer R only acts on the small r x r coefficient matrices S of each layer and thus has a minimal
memory and compute overhead over low-rank training. The regularizer is differentiable almost everywhere and compatible
with automatic differentiation tools. Additionally, R has a closed form derivative that enables an efficient and scalable
implementation of V'R. Furthermore, R is compatible with any rank-adaptive low-rank training scheme that ensures
orthogonality of U and V, e.g., (Zhang et al., 2023} |Schotthofer & Laiu} 2024)).

Definition 1. We define the robustness regularizer R for any S € R™*" by

R(S) =IS'S — a3 || 3)

where o = L||S||? and I = I, is the r x r identity matrix.

T r

The regularizer R can be viewed as an extension of the soft orthogonal regularizer (Xie et al.,[2017; Bansal et al.,|2018))
where we penalize the distance of S 'S to the well-conditioned matrix % I. Here aig is chosen such that ||S|| = ||asI]|.

Proposition 1 (Properties of R). (a) The gradient of R is given by
VR(S) =2S(S'S — al)/R(S). 4)

(b) R is a scaled standard deviation of the set {o;(S)*}7_,; namely,

r

T 2
1 1 1
IR(S)2 = = (a2 _ (L (5)2)
SRS = 2D (o)) = (2D ailS) 5)
i=1 i=1
(c) R is a unitarily invariant regularizer; namely, R(USV ") = R(S) for orthogonal U,V € R"*".
(d) We have the condition number bound: for any S € R"*" there holds
1

K(S) < exp (\/WR(S)> (0)
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Figure 2: UCM Dataset, (S(t)) and R(S(t)) of layer 4 of VGG16 for different regularizations strengths 3. Each line is the
median of 5 training runs. Higher /3 values lead to faster reduction of the layer condition x(S), which quickly approaches its
minimum value 1, and faster decay of R. Unregularized training, i.e. 5 = 0 leads to x(.S) > 1e3 after few iterations.

See Appendix [D|for the proofs. Figure 2(a) and (b) show the dynamics of R(S(t)) and x(S(t)) during regularized training.
We see that «(S(t)) decays as R(S(¢)) decays, validating Proposition

When U and V are not orthonormal, e.g. in simultaneous gradient descent training (LoRA), Proposition[Ijc)|does not hold.
Moreover, the smallest n — r singular values of U S VT are zero-valued; thus the bound in Propositionis not useful.
Table [T] shows that the clean accuracy and adversarial accuracy of regularized LoRA is significantly lower than baseline
training or regularized training with orthonormal U and V.

5. A rank-adaptive, adversarial robustness increasing dynamical low-rank training scheme

We integrate the regularizer R into a rank-adaptive, orthogonality preserving, and efficient low-rank training scheme. We
are specifically interested in a training method that 1) enables separation of the spectral dynamics of the coefficients S from
the bases U, V' and 2) ensures orthogonality of U, V' at all times during training to obtain control layer conditioning in a
compute and memory efficient manner. These criteria are both achieved by the two-step DLRT scheme in (Schotthofer &
Laiul 2024). The method dynamically modifies the rank of the factorized layers depending on the training dynamics and
the complexity of the learning problem at hand. Consequently, the rank of each layer is no longer a hyper-parameter that
needs fine-tuning, c.f. (Hu et al., 2021} Savostianova et al.,2023)), but is rather an interpretable measure for the inherent
complexity required for each layer.

Our method, which we call RobustDLRT, combines DLRT with our robustness regularizer R defined in Definition [[]by
training on the regularized loss function £ = £ + SR with regularization parameter 5 > 0. We refer the reader to
Appendix |Alfor specifics of the method.

6. Numerical Results

We evaluate the numerical performance of RobustDLRT compared with non-regularized low-rank training, baseline training,
and several other robustness-enhancing methods on the VGG16 architectures and the Cifar 10 dataset. Further tests of
different attacks and archetecture are given in Appendix [C] We measure the compression rate (c.r.) as the relative amount
of pruned parameters of the target network, i.e. c.r. = (1 — M) x 100. Detailed descriptions of the models,

. o ##params baseline net . . :
data-sets, pre-processing, training hyperparameters, and competitor methods are given in Appendix [B]

Table 1: VGG16 on UCM data. Comparison of adversarial robustness of LoORA and DLRT trained networks under the ¢2-
FGSM attack with similar compression rate (c.r.). Orthogonality of U and V increases adversarial performance significantly.

Method cr. [%] | clean Acc [%] | (2-FGSM, € = 0.1
RobustDLRT, 8 = 0.0 95.30 93.92 7241
RobustDLRT, # = 0.075  95.84 94.61 78.68
LoRA, 8 = 0.075 95.83 | 8857 | 73.81
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Table 2: Comparison to literature on CIFAR10 with VGG16 under the /*-FGSM. The first three rows list the computed mean
over 10 random initializations. The values of all other methods, given below the double rule, are taken from (Savostianova
et al.| 2023| Table 1). RobustDLRT has higher adversarial accuracy at higher compression rates than all listed methods.

0'-FGSM, ¢
Method cr. [%] 0.0 0.002 0.004 0.006
RobustDLRT 5 = 0.15 94.35 89.35 78.72 66.02 54.15
DLRT 94.58 89.55 74.71 59.61 47.56
Baseline 0 89.83 78.61 64.66 53.71
Cayley SGD (Li et al., [2020) 0 89.62 7446 58.16 45.29
Projected SGD (Absil & Malick, [2012) 0 89.70 74.55 58.32 45.74
CondLR (Savostianova et al.,2023) £ = 0.5 50 89.97 7225 60.19 50.17
CondLR (Savostianova et al.,2023) £ = 0.5 80 89.33 68.23 48.54 36.66
LoRA (Hu et al., [2021) 50 89.97 67.71 48.86 38.49
LoRA (Hu et al., [2021)) 80 88.10 64.24 42.66 29.90
SVD prune (Yang et al.,2020) 50 89.92 67.30 47.77 36.98
SVD prune (Yang et al., [2020) 80 87.99 63.57 42.06 29.27

Cifar10 dataset: We compare RobustDLRT with full rank training and non-regularized DLRT for different adversrial
attacks in Table|5|and observe that Robust DRLT achieves high compression rates of 95% while maintaining the adversarial
accuracy of the baseline training, sometimes surpassing it. Furthermore, we compare our method in Table [2| to several
methods of the recent literature, see Section [3, We compare the adversarial accuracy under the /1-FGSM attack, see
Appendix [B.1.2]for details, for consistency with the literature results. We find that our proposed method achieves the highest
adversarial validation accuracy for all attack strengths €, even surpassing the baseline adversarial accuracy. Additionally,
we find an at least 15% higher compression ratio with RobustDLRT than the second best compression method, CondLR
(Savostianova et al., [2023)).

7. Conclusion

RobustDLRT enables highly compressed neural networks with strong adversarial robustness by controlling the spectral
properties of low-rank factors. The method is efficient and rank-adaptive that yields an over 94% parameter reduction across
diverse models and attacks. The method achieves competitive accuracy, even for strong adversarial attacks, surpassing the
current literature results by a significant margin. Therefore, we conclude the proposed method scores well in the combined
metric of compression, accuracy and adversarial robustness.
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A. Robust DLRT Algorithm

Below we summarize the proposed method, called RobustDLRT, along with the changes induced by adding our robustness
regularizer.

Basis Augmentation: The method first augments the current bases ViwL 4
Ut, V' at optimization step ¢ by their gradient dynamics Vi £, Vy L :
via

U = orth([U' | VyLU'S'VET)]) € R™*?,

(7
V =orth([V!| VyLU'S'VET)]) € RM¥2,

to double the rank of the low-rank representation and subsequently
creates orthonormal bases U,V. Since R(USVT) = R(S),
VuR(USVT) = VyR(USVT) = 0; hence VyL = Vy L and
VVZ = Vy L are used in (7). The span on U contains U, which is
needed to ensure of the loss does not increase during augmentation,
and a first-order approximation of the basis for W**! using the exact
gradient flow for U, see (Schotthdfer & Laiul, 2024, Theorem 2) for
details. Geometrically, the latent space

S={UzVT:Z e R>*?} (8)

can be seen as subspacd!| of the tangent plane of M, at U*S'V% T,

see Figure 3] Figure 3: Geometric interpretation of Robust-

DLRT . First, we compute the parametrization
of the tangent plane 7x4,. Then we compute the
projected gradient update with VL. Lastly, we
retract the updated coefficients back onto the man-
ifold M,.. The regularizer R effectively changes
the local curvature of M,..

Latent Space Training: We update the latent coefficients S viaa
Galerkin projection of the training dynamics onto the latent space
S. The latent coefficients S are updated by integrating the projected
gradient flow S = —(A]TVWEIA/ = —ng using stochastic gradi-
ent descent or an other suitable optimizer for a number of s, local
iterations, i.e.

Set1 =S8, = AVgL — BVSR(S,), ©)
Equation (9) is initialized with S = U TUS'VETV € R22r and we set § = S,
Truncation: Finally, the latent solutionf?g VT is retracted back onto the manifold M,.. The retraction can be computed
efficiently by using a truncated SVD of S that discards the smallest r singular values. To enable rank adaptivity, the new
rank 7 instead of 7 can be chosen by a variety of criteria, e.g., a singular value threshold || [0, , ..., 02,]|, < ¥. Once a

suitable rank is determined, the bases U and V' are updated by discarding the basis vectors corresponding to the truncated
singular values.

Computational cost: The computational cost of the above described scheme is asymptotically the same as LoRA, since the
reconstruction of the full weight matrix W is never required. The orthonormalization accounts for O(nr?), the regularizer
R for O(r?), and the SVD for O(r3) floating point operations. When using multiple coefficient update steps s, > 1, the
amortized cost is indeed lower than that of LoRA, since only the gradient with respect to Sis required in most updates.

B. Details to the numerical experiments of this work
B.1. Recap of adversarial attacks

In the following we provide the defintions of the used adversarial attacks. We use the implementation of
https://github.com/YonghaoXu/UAE-RS for the /2-FGSM, Jitter, and Mixup attack. For the /!-FGSM attack,
we use the implementation of https://github.com/COMPiLELab/CondLR.

!Technically the latent space contains extra elements not in the tangent space, but this extra information only helps the approximation.
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B.1.1. /2-FGSM ATTACK

The Fast Gradient Sign Method (FGSM)(Kurakin et al.} 2017) is a single-step adversarial attack that perturbs an input in the
direction of the gradient of the loss with respect to the input. Given a neural network classifier fy with parameters 6, an
input , and its corresponding label y, the attack optimizes the cross-entropy loss Lcg(fp(x), y) by modifying x along the
gradient’s sign. The adversarial example is computed as:

- VaLce(fo(2),y)
[VaLee(fo(2), )00’

where a controls the perturbation magnitude. To ensure the perturbation remains bounded, the difference 2’ — x is clamped
by an € bound, i.e.,

¥y=x+a

(10)

r' = z + max(—e, min(a’ — z,¢)). (11)
In this work we fix oo = €. The attack can be iterated to increase its strength.
B.1.2. /*-FGSM ATTACK

The ¢'-FGSM attack (Tramer et al., [2020) is used in the reference work of (Savostianova et al, 2023) and uses the same
workflow as (B-1.1)), where (I0) is changed to

o SETaLe(fo(w). 1)

==z > ,

(12)

where X denotes the standard deviation of the data-points in the training data-set and the sign of the gradient matrix is taken
element wise.

B.1.3. JITTER ATTACK

The Jitter attack (Schwinn et al.l|2021) is an adversarial attack that perturbs an input by modifying the softmax-normalized
output of the model with random noise before computing the loss. Given a neural network classifier fy with parameters 6,
an input z, and its corresponding label y, the attack first computes the network output z = fy () and normalizes it using the

£°° norm:
% = Softmax (“) , (13)
1]l o
where s is a scaling factor. A random noise term ) ~ N (0, 02) isadded to z, i.e.,
F=2to-m. (14)
The attack loss function is a mean squared error between perturbed input and target, given by
L=z-yls (15)

The adversarial example is then computed using the gradient of £ with respect to x:

V.l
¥=r+a  ———. (16)
V2Ll
To ensure the perturbation remains bounded, the modification ’ — z is clamped within an € bound:
2’ = x + max(—e¢, min(x’ — ,¢)). (17)

In this work, we fix a = € and set ¢ = 0.1. The Jitter attack can be performed iteratively. Then, for each but the first
iteration k, the attack loss is normalized by the perturbation of the input image,

L i3
A

k>0 (18)

In this work, we use 5 iterations of the Jitter attack for each image.

9
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Table 3: Training hyperparameters for the UCM and Cifar10 Benchmark. The first set hyperparameters apply to both DLRT
and baseline training, and we train DLRT with the same hyperparameters as the full-rank baseline models. The second set of
hyper-parameters is specific to DLRT. The DLRT hyperparameters are selected by an initial parameter sweep. We choose
the DLRT truncation tolerance relative to the Frobenius norm of S, i.e. ¥ = 7||.S]| r, as suggested in (Schotthofer et al.,
2022).

Hyperparameter VGG16 VGGI11 ViT16-b
Batch Size (UCM) 16 16 16
Batch Size (Cifar10) 128 128 128
Learning Rate 0.001 0.001 0.001
Number of Epochs 20 20 5

L2 regularization 0 0 0.001
Optimizer Adam Adam Adam
DLRT rel. truncation tolerance 7 0.1 0.05 0.08
Coefficient Steps 10 10 10
Initial Rank 150 150 150

B.1.4. MIXUP ATTACK

The Mixup attack is an adversarial attack that generates adversarial samples that share similar feature representations with
an given virtual example (Xu & Ghamisi, [2022). Inspired by the Mixup data augmentation technique, this attack aims to
create adversarial examples that maintain characteristics of both the original sample and its adversarial counterpart. Given a
neural network classifier fy with parameters 6, an input x, and its corresponding label y, the attack first computes a linear
combination of cross-entropy and negative KL-divergence loss,

5
T
£mixup :ﬁZ‘cCE(fe(ﬁ)ay) _LKL (19)
k=1
2L )
5o, Vakeelfo(x)y) (20)
IVaLer(fo(x), )0
Equation @I) features a scale invariance attack applied to the loss (Lin et al.l 2020} Section 3.3).
The final adversarial example is computed as a convex combination of the original input and its perturbed version:
2 =Xx+ (1 - \)(x+0), (21)

where \ ~ Beta(/3, 3) is sampled from a Beta distribution with hyperparameter 3, controlling the interpolation between clean
and perturbed inputs. The perturbation is further constrained within an e-ball to ensure bounded adversarial modifications:

7’ = x + max(—e¢, min(x’ — x,¢)). (22)

In this work, we fix & = 1 and set 8 = 1073. The attack can be iterated to increase its effectiveness, refining the adversarial
perturbation at each step. We use 5 iterations of the Mixup Attack for each image.

B.2. Network architecture and training details

In this paper, we use the pytorch implementation and take pretrained weights from the imagenetlk dataset as initialization.
The data-loaded randomly samples a batch for each batch-update which is the only source of randomness in our training
setup.

* VGG16 is a deep convolutional neural network architecture that consists of 16 layers, including 13 convolutional layers
and 3 fully connected layers.

* VGGI11 is a convolutional neural network architecture similar to VGG16 but with fewer layers, consisting of 11 layers:
8 convolutional layers and 3 fully connected layers. It follows the same design principle as VGG16, using small 3x3
convolution filters and 2x2 max-pooling layers.

10
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Table 4: Overview of the 3 for best performing regularization strength for RobustDLRTof Table

UCM Dataset Cifar10 Dataset
Architecture | FGSM  Jitter Mixup ‘ FGSM Jitter Mixup
Vggl6 0.075 0.2 0.15 0.05 0.05 0.05
Vggll 0.1 0.05 0.15 0.15 0.05 0.2
ViT-16b 0.1 0.15 0.15 0.01 0.01 0.05

* ViT-16b is a Vision Transformer with 16x16 patch size, a deep learning architecture that leverages transformer models for
image classification tasks.

The full training setup is described in Table [3] We train DLRT with the same hyperparameters as the full-rank baseline
models. It is known (Schotthofer et al., [2025) that DLRT methods are robust w.r.t. common hyperparameters as learning
rate, and batch-size, and initial rank. The truncation tolerance 7 is chosen between 0.05 and 0.1 per an initial parameter
study. These values are good default values, as per recent literature (Schotthofer & Laiul 2024} Singh et al., [2021). In
general, there is a trade-off between target compression ratio and accuracy, as illustrated e.g. in (Schotthofer et al., [2022) for
matrix-valued and (Singh et al.| 2021) for tensor-valued (CNN) layers.

B.3. UCM

The University of California, Merced (UCM) Land Use Dataset is a benchmark dataset in remote sensing and computer
vision, introduced in (Yang & Newsam, [2010). It comprises 2,100 high-resolution aerial RGB images, each measuring
256x256 pixels, categorized into 21 land use classes with 100 images per class. The images were manually extracted from
the USGS National Map Urban Area Imagery collection, covering various urban areas across the United States. The dataset
contains images with spatial resolution approximately 0.3 meters per pixel (equivalent to 1 foot), providing detailed visual
information suitable for fine-grained scene classification tasks.

We normalize the training and validation data with mean [0.485, 0.456, 0.406] and standard deviation [0.229, 0.224, 0.225]
for the rgb image channels. The convolutional neural neural networks used in this work are applied to the original 256 x 256
image size. The vision transformer data-pipeline resizes the image to a resolution of 224 x 224 pixels. The adversarial
attacks for this dataset are performed on the resized images.

The regularizer confidently increases the adversarial validation accuracy of the networks.

B.4. Cifar10
The Cifar10 dataset consists of 10 classes, with a total of 60000 rgb images with a resolution of 32 x 32 pixels.

We use standard data augmentation techniques. That is, for CIFAR10, we augment the training data set by a random horizontal
flip of the image, followed by a normalization using mean [0.4914, 0.4822, 0.4465] and std. dev. [0.2470, 0.2435,0.2616].
The test data set is only normalized. The convolutional neural neural networks used in this work are applied to the original
32 x 32 image size. The vision transformer data-pipeline resizes the image to a resolution of 224 x 224 pixels. The
adversarial attacks for this dataset are performed on the resized images.

B.5. Computational hardware

All experiments in this paper are computed using workstation GPUs. Each training run used a single GPU. Specifically, we
have used 5 NVIDIA RTX A6000, 3 NVIDIA RTX 4090, and 8 NVIDIA A-100 80G.

The estimated time for one experimental run depends mainly on the data-set size and neural network architecture. For
training, generation of adversarial examples and validation testing we estimate 30 minutes on one GPU for one run.

C. Extended Numerical Results

We evaluate the numerical performance of RobustDLRT compared with non-regularized low-rank training, baseline training,
and several other robustness-enhancing methods on various datasets and network architectures. We measure the compression
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Table 5: UCM and Cifar10 benchmark. Clean and adversarial accuracy means and std. devs. of the baseline and regularized
low-rank networks for different architectures. We report the low-rank results for unregulated, 5 = 0.0, and the best
performing /3, given in Table[d] RobustDLRT is able to match or surpass baseline adversarial accuracy values at compression
rates of up to 95% in most setups.

UCM Data Clean Acc [%] for £2-FGSM, ¢ Acc [%] for Jitter, e Acc [%] for Mixup, €
Method c.r. [%] Acc. [%] 0.05 0.1 0.3 \ 0.035 0.045 \ 0.025 0.1 0.75
©  Baseline 0.0 94.40+£0.72 | 86.71£1.90 76.40+2.84 54.96+2.99 | 89.58+2.99 85.05+3.40 | 77.77+1.61 37.254+3.66 23.05+3.01
8 DLRT 95.30 93.92+0.23 | 87.95+1.02 72.41+2.08 43.39+4.88 | 83.99+1.22 67.41+1.63 | 85.79+1.51 40.42+2.839 20.13+2.92
> RobustDLRT 95.84 94.61+0.35 | 89.124+1.33  78.68+2.30 53.30+3.14 | 88.33+1.20 79.81+0.93 | 90.33+0.90 70.12+3.08 47.31+2.78
— Baseline 0.0 94.23+0.71 | 89.93+1.33 78.66+2.46 39.45+2.98 | 90.25+1.66 85.24+1.90 | 83.10+1.47 40.34+4.88 22.01+3.21
8 DLRT 94.89 93.70+£0.71 | 86.58+£1.22 67.55+2.16 28.92+2.65 | 83.90+1.36 63.41+1.39 | 87.15+1.18 40.17+4.96 14.18+3.78
> RobustDLRT 94.59 93.57+0.84 | 87.90+0.91 72.96+1.55 32.85+2.46 | 86.77+0.76 74.31+1.50 | 88.00+1.13 60.97+4.18 28.56+3.64
8 Baseline 0.0 96.72+0.36 | 93.02+£0.38  92.18+0.31 89.71+0.28 | 93.71+£1.22 93.21+1.17 | 89.62+1.81 51.05+3.17 43.91+3.97
; DLRT 86.7 96.38+0.60 | 91.21+0.44 82.10+0.32 62.45+0.41 | 86.67+£1.05 79.81+0.81 | 80.48+1.82 41.524+3.24 3591+3.76
5 RobustDLRT 87.9 96.41+£0.67 | 92.57+£0.34 85.67+0.41 69.94+0.42 | 91.03+0.86 84.19+1.39 | 87.33+1.81 46.394+2.75 40.76+3.88
Cifar10 Data
©  Baseline 0.0 89.824+0.45 | 76.22+1.38 63.784+2.01 34.97+2.54 | 78.60+1.12 73.54+1.55 | 71.51+1.31 37.36+2.60 16.12+2.12
8 DLRT 94.37 89.234+0.62 | 74.07+£1.23 59.55+1.79 28.74+2.21 | 72.51+1.04 66.21+1.41 | 79.56+1.15 59.88+2.26 38.98+1.94
> RobustDLRT 94.18 89.494+0.58 | 76.04+1.18 62.08+1.69 32.774+2.04 | 75.53+0.98 69.93+1.22 | 87.62+1.07 84.80+2.01 81.26+2.15
— Baseline 0.0 88.34+0.49 | 75.89+1.42 64.21+1.96 31.76+2.45 | 74.96+1.09 68.59+1.63 | 74.774+1.26 40.88+2.58 08.95+1.98
8 DLRT 95.13 88.13+0.56 | 72.02+1.34 55.83+1.92 21.59+2.16 | 66.98+1.05 58.574+1.55 | 79.424+1.08 47.95+2.18 22.92+1.77
> RobustDLRT 94.67 87.974+0.52 | 76.04+£1.26 63.82+1.83 30.77+2.30 | 71.06£1.00 65.63+1.38 | 84.93£1.10 78.35+1.89 65.93+2.04
8 Baseline 0.0 95.42+0.35 | 79.94+£0.95 63.66+1.62 32.09+2.05 | 84.65+0.88 77.20+1.04 | 52.17+1.49 16.03+2.34 13.29+2.01
; DLRT 73.42 95.39+£0.41 | 79.50£0.91 61.62+1.48 30.32+1.94 | 83.33+0.80 76.16+0.95 | 58.32+1.44 17.43+2.28 14.49+1.92
5 RobustDLRT 75.21 94.66+0.38 | 82.03+0.88 69.29+1.43 38.05+1.99 | 87.97+0.75 83.03+0.91 | 74.49+1.32 27.80+2.11 18.34+1.87

rate (c.r.) as the relative amount of pruned parameters of the target network, i.e. cr. = (1 — M) x 100.
. . . . Lo Rarams baseline net .
Detailed descriptions of the models, data-sets, pre-processing, training hyperparameters, and competitor methods are given
in Appendix [B] The reported numbers in the tables represent the average over 10 stochastic training runs. We observe in
Table E] that clean accuracy results exhibit a standard deviation of less than 0.8%; the standard deviation increases with the
attack strength € for all tests and methods. This observation holds true for all presented results, thus we omit the error bars

in the other tables for the sake of readability.

We observe in Table [5] that RobustDLRT can compress the VGG11, VGG16 and ViT-16b networks equally well as the
non-regularized low-rank compression and achieves the first goal of high compression values of up to 95% reduction of
trainable parameters. Furthermore, the clean accuracy is similar to the non-compressed baseline architecture; thus, we
achieve the second goal of (almost) loss-less compression. Noting the adversarial accuracy results under the £2-FGSM, Jitter,
and Mixup attacks with various attack strengths €, we observe that across all tests, the regularized low-rank network created
by RobustDLRT significantly outperforms the non-regularized low-rank network. For the #2-FGSM attack, our method is
able to recover the adversarial accuracy of the baseline network. For Mixup, the regularization almost doubles the baseline
accuracy for VGG16. By targeting the condition number of the weights, which gives a bound on the relative growth of
the loss w.r.t. the size of the input, we postulate that the large improvement could be attributed to the improved robustness
against the scale invariance attack (Lin et al., 2020)[Section 3.3] included in Mixup. We refer the reader to Appendix [B.1.4]
for a precise definition of the Mixup attack featuring scale invariance. However, this hypothesis was not further explored
and is delayed to a future work. Finally, we are able to recover half of the lost accuracy in the Jitter attack. Overall, we
achieved the third goal of significantly increasing adversarial robustness of the compressed networks. We refer to Table ]
for the used values of 5 and to Appendix for extended numerical results for a grid of different § values. The Cifar10
results are similar to the UCM results across the test cases.
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D. Proofs

For the following proofs, let
(A, B) = trace(B" A) = ZA”BU
be the Frobenius inner product that induces the norm ||A|| = 1/ (A4, A). By the cyclic property of the trace, we have
(AB,CD) = (B,CDA") = (C"AB, D). (23)

for matrices A, B, C, and D of appropriate size.

Proof of Proposition[I} Given S € R"*", the Fréchet derivative for @ = R? at S is a linear operator Z — VQ(S)[Z] for
Z € R™*". Denote WS STS — oI which is symmetric. Since Q is an inner product, we calculate VQ(S)[Z] as

iVO(9)[Z] = Ws,Z'S+S'Z - 2(8,2)I)
=(Ws,Z'S)+ (Ws,S'Z) — 2(S,2)(Ws, I) o4
( WS7 ) (SW57Z)_%(S>Z)(W57I)
=2(S(S'S —a%l),Z) — (S, Z)(STS — aZl,I).
Note by definition of a2,
(STS —aZI, 1) = |S|*> — o%||1|)* = 0. (25)
Hence
VO(S) =4S5(STS — aZI). (26)
Since R2 = Q, therefore s
VR(S) = s 27)
The desired estimate follows. The proof is complete. O
Proof of Proposition We calculate
R(8)? = (S'S —al, 878 — a3l) = [|STS|* —2a%(S7S, 1) + (1, 1) = ||STS|I* — 1|1 S||*
(28)

_ gai(sTS)Q - ,1«(;%(5)2)2 - T(i;f’i(f‘g)? - (i;ai(sﬂz)'

Since S5 is symmetric positive semi-definite, o; (S TS) = o;(S)?. Applying this substitution yields Proposition The
proof is complete. O

Proof of Proposition The result follows from Proposition [[[b)} O

Proof of Proposition From Proposition and noting 0;(S1S) = 0;(5)?, we obtain

r T 2
— % > oi(STS)? - (i > a,-(sTS)> . (29)
=1 i=1

From (29), 1R(S)? is the variance of the sequence {5;(S'S)}/_;. The Von Szokefalvi Nagy inequality (Nagyl [1918)
bounds the variance of a finite sequence of numbers below by the range of the sequence (see (Sharma et al.,[2010)). Applied
to (29), this yields

1 a2 o (01(57S) —0:(878))* _ (01(8)* — 0:(5)%)?

;R(S) Z 2r - 2r ' (30)

Hence
V2R(S) > 01(S)? — 0,(5)>. (31)
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An application of the Mean Value Theorem for logarithms (see (Nenov et al., 2024, Proof of Theorem 2.2)), gives

01(5)* = 0:(5)°

1 S)) < 32
Combining and yields
1
In(k(5)) < ———R(S5), 33
(8(8) £ e RS) (33)
which, after exponentiation, yields Proposition[I{d)] The proof is complete. O
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