
Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model
Collaboration Paradigm for Small Language Models

Anonymous ACL submission

Abstract

Natural Language to SQL (NL2SQL) has seen001
significant advancements with large language002
models (LLMs). However, these models often003
depend on closed-source systems and high com-004
putational resources, posing challenges in data005
privacy and deployment. In contrast, small lan-006
guage models (SLMs) struggle with NL2SQL007
tasks, exhibiting poor performance and incom-008
patibility with existing frameworks. To address009
these issues, we introduce Feather-SQL, a010
new lightweight framework tailored for SLMs.011
Feather-SQL improves SQL executability and012
accuracy through 1) schema pruning and link-013
ing, 2) multi-path and multi-candidate genera-014
tion. Additionally, we introduce the 1+1 Model015
Collaboration Paradigm, which pairs a strong016
general-purpose chat model with a fine-tuned017
SQL specialist, combining strong analytical018
reasoning with high-precision SQL generation.019
Experimental results on BIRD demonstrate that020
Feather-SQL improves NL2SQL performance021
on SLMs, with around 10% boost for models022
without fine-tuning. The proposed paradigm023
raises the accuracy ceiling of SLMs to 54.76%,024
highlighting its effectiveness.025

1 Introduction026

Natural Language to SQL (NL2SQL) is the task of027

converting natural language questions into corre-028

sponding SQL queries, allowing users to retrieve029

structured data from databases without requiring030

proficiency in SQL language. In recent years, the031

field has seen significant advancements with the032

emergence of large language models (LLMs) such033

as GPT-4 (OpenAI et al., 2024), enabling frame-034

works like CHASE-SQL (Pourreza et al., 2024)035

and XiYan-SQL (Gao et al., 2025) to achieve state-036

of-the-art (SOTA) performance. However, two lim-037

itations hinder their practical adoption. First, main-038

stream methods depend on closed-source models,039

and their reliance on external APIs introduces data040

privacy risks in sensitive domains like healthcare041

Figure 1: NL2SQL performance on the BIRD DEV
dataset. EXE (Executability) measures successful query
executions, while ACC (Accuracy) measures correct
result matches.

and finance (Liu et al., 2024). Second, most open- 042

source research focuses on models with 7B–30B 043

parameters, leaving small language models (SLMs) 044

with 4B or fewer parameters relatively underex- 045

plored. Meanwhile, many relational databases 046

are deployed on high-performance systems with 047

limited GPU resources. With efficient inference 048

frameworks (e.g., Intel IPEX-LLM (Intel, 2024)) 049

or quantization techniques, SLMs can help drive 050

the broader adoption of NL2SQL in real-world sce- 051

narios while preserving data privacy. 052

In this paper, we focus on enhancing NL2SQL 053

performance using SLMs. As shown in Figure 054

1, SLMs face two key challenges: (1) one criti- 055

cal issue is their sharp decline in executability. 056

Unlike LLMs, which can effectively handle long- 057

context dependencies, SLMs struggle with complex 058

database schema and verbose prompts, often lead- 059

ing to confusion or hallucinated outputs (Nguyen 060

et al., 2024; Qu et al., 2024) (Figure 2); (2) existing 061

frameworks for NL2SQL tasks with LLMs are 062

incompatible with SLMs, as they rely on strong 063

instruction-following capabilities to produce inter- 064

mediate results, which SLMs lack. As illustrated in 065

Figure 3, SLM outputs frequently violate imposed 066

requirements: they often fail to conform to JSON 067

or array specifications and do not meet predefined 068

https://anonymous.4open.science/r/Feather-SQL-38E1/

https://anonymous.4open.science/r/Feather-SQL-38E1/

Figure 2: Examples of typical syntax errors produced by
small language models (SLMs) in an NL2SQL scenario.

constraints. Directly applying these frameworks to069

SLMs may further degrade executability.070

To address these challenges, we propose071

Feather-SQL, a lightweight framework tailored072

for SLMs to enhance both executability and accu-073

racy in NL2SQL tasks. Feather-SQL consists of six074

key components: schema pruning, schema linking,075

multi-path generation, multi-candidate generation,076

correction, and selection. Designed specifically077

for SLMs, schema pruning streamlines input pro-078

cessing by discarding irrelevant tables, allowing079

models to concentrate on essential database ele-080

ments. Schema linking improves alignment be-081

tween questions and database schema, ensuring082

accurate column selection. To mitigate errors from083

linking and pruning, multi-path generation explores084

diverse query formulation strategies, enhancing ro-085

bustness. Multi-candidate generation further im-086

proves the model’s executability and accuracy by087

enhancing the variety of generated SQL queries,088

thereby increasing the likelihood of producing cor-089

rect candidates. The best candidate is then selected090

through execution validation and ranking. Comple-091

menting these components, we introduce extraction092

and simplification prompting strategies. Extraction093

selectively retrieves key information, while simpli-094

fication removes extraneous prompt details to lower095

computational overhead. By integrating these tech-096

niques, Feather-SQL enables SLMs to generate097

SQL queries more reliably despite their inherent098

limitations.099

A common approach to enhancing SLMs is fine-100

tuning. However, while fine-tuned SLMs for SQL101

generation tasks (e.g., Prem-SQL (Anindyadeep,102

2024), CodeS (Li et al., 2024a)) outperform103

general-purpose chat models on core NL2SQL104

tasks, they suffer from catastrophic forgetting105

(Luo et al., 2025; Kotha et al., 2024) on auxiliary106

tasks—where task-specific fine-tuning erodes their107

foundational reasoning abilities. To counter this,108

we propose 1+1 Model Collaboration Paradigm,109

Figure 3: Experiments conducted on a CHESS-provided
BIRD subset for schema linking. Models are required to
output a JSON-formatted response containing no more
than five relevant columns related to the question, with-
out generating any extraneous content.

in which a general-purpose chat model handles 110

reasoning-intensive auxiliary tasks (e.g., schema 111

linking and candidate selection), while a fine-tuned 112

SQL specialist focuses on query generation. This 113

collaboration leverages both models’ strengths: the 114

general model provides broad reasoning ability, 115

while the specialist delivers domain-specific pre- 116

cision. Experiments confirm that the paradigm 117

improves overall performance. Our main contribu- 118

tions are as follows: 119

• We introduce Feather-SQL, an NL2SQL 120

framework for SLMs to address their unique 121

challenges of low executability and incompat- 122

ibility with existing LLM-based frameworks. 123

• We propose a novel 1+1 Model Collabora- 124

tion paradigm that mitigates catastrophic for- 125

getting in fine-tuned SLMs by delegating 126

reasoning-intensive tasks to a general-purpose 127

chat model. 128

• Extensive experiments on the Spider and 129

BIRD datasets demonstrate that Feather-SQL 130

consistently achieves strong performance with 131

various SLMs, and when paired with the 132

paradigm, it yields SOTA results on BIRD 133

within the scope of SLMs. 134

2 Related Work 135

2.1 Conventional Methods 136

Extensive research on NL2SQL has been carried 137

out. Early investigations (Zelle and Mooney, 1996; 138

Li and Jagadish, 2014; Saha et al., 2016) predomi- 139

nantly employed rule-based or template-based ap- 140

proaches, necessitating considerable manual effort 141

and thereby limiting both their adaptability and 142

generalizability. 143

2

To address the shortcomings of earlier meth-144

ods, sequence-to-sequence models have been pro-145

posed. In such models, encoders are responsible146

for learning the semantic representations of natu-147

ral language questions and the associated database148

schema, while decoders generate the correspond-149

ing SQL based on these representations. Represen-150

tative approaches in this category include IRNet151

(Jha et al., 2019), SQLNet (Xu and et al., 2017),152

Seq2SQL (Zhong et al., 2017), RyanSQL (Choi153

et al., 2021), and RESDSQL (Li et al., 2023a), each154

contributing to advancements in query generation.155

Meanwhile, some methods choose to fine-tune156

pre-trained language models such as BERT (Devlin157

et al., 2019) and T5 (Raffel et al., 2023), leveraging158

the broad knowledge captured during pre-training159

to enhance accuracy and robustness. For instance,160

Graphix-T5 (Li and et al., 2023) integrates a pre-161

trained transformer with specialized graph-aware162

layers, improving performance on tasks requiring163

graph-structured data analysis. Nonetheless, these164

strategies often demand extensive training data and165

face considerable challenges when dealing with166

complex questions and database schema.167

2.2 Emerging LLM and SLM Approaches168

More recently, the emergence of LLMs has marked169

a watershed moment. LLM-based NL2SQL meth-170

ods (Dong et al., 2023; Pourreza and Rafiei, 2023;171

Gao et al., 2023; Wang et al., 2024; Li et al., 2024b;172

Qu et al., 2024; Talaei et al., 2024; Ren et al., 2024;173

Pourreza et al., 2024; Gao et al., 2025) have risen174

to prominence as leading solutions. For example,175

DIN-SQL (Pourreza and Rafiei, 2023) decomposes176

the NL2SQL task into subtasks—such as schema177

linking, difficulty classification, and SQL genera-178

tion—thereby streamlining decision-making and179

enabling more accurate query outputs. CHESS (Ta-180

laei et al., 2024) adopts a multi-agent framework in181

which each agent is assigned a specific model and182

a few-shot prompting strategy to handle different183

subtasks. While these approaches offer impressive184

performance, they introduce security risks and lead185

to steep increases in computational costs.186

Employing SLMs to address NL2SQL tasks has187

the potential to alleviate the aforementioned chal-188

lenges. CodeS (Li et al., 2024a) incorporates in-189

cremental pre-training and bi-directional data aug-190

mentation to fine-tune a series of models (1B, 3B,191

7B, and 15B parameters). Models specifically192

finetuned for NL2SQL tasks, such as premSQL193

(Anindyadeep, 2024) and SQLCoder (Defog), have194

likewise demonstrated notable success. Neverthe- 195

less, these models remain susceptible to the effects 196

of catastrophic forgetting, which diminishes their 197

capacity to perform general reasoning tasks—such 198

as schema linking—within the broader NL2SQL 199

workflow. 200

3 Methodology 201

3.1 Feather-SQL 202

As shown in Figure 4, we propose Feather-SQL 203

to enhance the performance of SLMs in NL2SQL. 204

This framework comprises several components, in- 205

cluding Schema Pruning, Multi-Path, and Multi- 206

Candidate Generation, which are specifically de- 207

signed to address the challenges of SLMs. We will 208

elaborate on these components in the following 209

sections. 210

Schema Pruning. This step dynamically reduces 211

schema complexity by identifying and filtering out 212

irrelevant tables. Given the complete set of Data 213

Definition Language (DDL) statements for all ta- 214

bles, the model analyzes semantic relevance to de- 215

termine which tables are pertinent to the question. 216

Only the DDLs of these relevant tables are retained 217

in the subsequent processing pipeline. This se- 218

lective retention mechanism prevents SLMs from 219

processing long inputs, thereby mitigating their 220

limitations in handling long text while preserving 221

essential information. 222

Schema Linking. This step aligns the question 223

with the database schema by identifying relevant 224

columns through semantic analysis. As a com- 225

monly adopted practice, schema linking extracts 226

pertinent columns from the complete schema based 227

on the given question, facilitating downstream pro- 228

cessing. By establishing precise mappings be- 229

tween natural language expressions and database 230

elements, this process significantly enhances SQL 231

generation accuracy. 232

Multi-Path Generation. This step employs four 233

distinct prompt types: (1) with both schema link- 234

ing and pruning, (2) linking only, (3) pruning only, 235

and (4) without either operation. The multi-path 236

design mitigates the risk of information loss caused 237

by pruning errors and reduces potential misunder- 238

standings arising from linking inaccuracies. 239

Multi-Candidate Generation. This step gener- 240

ates multiple SQL queries in parallel to increase 241

the likelihood of producing a correct result. To en- 242

sure diversity, beam search is employed alongside 243

carefully tuned temperature and top-p parameters. 244

3

Figure 4: An overview of the Feather-SQL framework for small language models (SLMs) in NL2SQL tasks. The
pipeline comprises six core modules—schema pruning, schema linking, multi-path generation, multi-candidate
generation, correction, and selection—which collaboratively boost query executability and accuracy. Additionally,
the 1+1 Model Collaboration Paradigm pairs a general-purpose chat model for auxiliary reasoning with a SQL
fine-tuned model for query generation, balancing broad contextual understanding with domain-specific precision.

Each path consistently generates a fixed number of245

candidate queries, maintaining a balanced explo-246

ration of possible solutions. Notably, while LLMs247

often generate executable answers on the first at-248

tempt with minimal accuracy improvement from249

additional candidates, SLMs benefit significantly250

from multi-candidate generation, which enhances251

both executability and accuracy (Appendix B).252

Correction. This step executes each generated253

query and handles it based on the outcome. If a254

query executes successfully, it is directly added to255

the array of executable SQL queries. For failed256

queries, error feedback is used to revise the query257

through a self-correction approach, generating two258

new candidate queries. If any of these revised259

queries are executable, they are also stored in the260

array of executable SQL queries.261

Selection. This step employs a selection ranking262

method to evaluate all executable queries based on263

their alignment with the expected answer. If a query264

yields a limited number of results, the evaluation265

considers both the query and its execution outcome.266

In contrast, the evaluation focuses solely on the267

query itself. The selection process is repeated three268

times, and the mode of the rankings is returned as269

the final result.270

3.2 Prompting Strategies271

Extraction. As mentioned in Section 1, SLMs272

struggle to meet structural constraints, thus we pro-273

pose an extraction strategy to avoid rigid struc-274

tural outputs by allowing SLMs to freely gener-275

ate responses. This improves accuracy on reason-276

ing tasks by bypassing syntactic constraints. We 277

have two methods to achieve that: (1) Lexical 278

Matching: This method identifies valid schema 279

elements by matching table/column names explic- 280

itly mentioned in the natural language response 281

against the database schema. For instance, when 282

the SLM outputs "The required tables include cus- 283

tomer and orders", the system verifies and extracts 284

customer/orders only if they exist in the schema. 285

(2) Pattern Matching: This method extracts the 286

final answer by identifying predefined patterns in 287

the model’s output, such as "answer is" or "An- 288

swer:". For example, if the model generates “The 289

answer is 128", the framework detects the pattern 290

and extracts "128" as the final result. 291

Simplification. The simplification strategy reduces 292

computational overhead by minimizing prompt ver- 293

bosity. In Feather-SQL, we achieve this by remov- 294

ing superfluous details and using concise instruc- 295

tions with the fewest effective examples (Appendix 296

C). This approach refines the input by eliminat- 297

ing unnecessary complexity, avoiding the need for 298

SLMs to process lengthy inputs while maintaining 299

the clarity of the task. 300

3.3 1+1 Collaboration Paradigm 301

Our paradigm categorizes NL2SQL pipeline tasks 302

into two types: reasoning-intensive tasks and SQL 303

generation tasks. Reasoning tasks, such as schema 304

linking and candidate evaluation, require strong 305

contextual understanding and adaptability, while 306

SQL generation demands precision in query synthe- 307

sis. To optimize performance, we employ two spe- 308

4

Method Qwen2.5-1.5B Yi-Coder-1.5B Phi3-Mini-3.8B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 19.36 53.52 15.84 54.82 27.44 71.90
FEQ 21.51 68.25 18.71 73.60 30.12 67.93
MAC-SQL 18.06 52.28 7.63 59.52 29.99 77.64
CHESS 18.71 43.55 2.48 7.82 18.12 39.70
Feather-SQL (Ours) 31.81 88.33 25.23 90.61 36.64 83.70

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 27.57 69.30 47.07 88.14 24.19 59.32
FEQ 29.34 63.89 51.63 92.70 25.03 57.50
MAC-SQL 37.35 81.68 8.67 (8.87*) 17.01 (19.23*) 10.10 (13.23*) 40.87 (56.26*)
CHESS 28.42 54.43 24.64 43.22 26.53 56.91
Feather-SQL (Ours) 40.09 87.02 49.28 98.04 33.96 85.31

Table 1: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different methods on the
BIRD DEV dataset. The best and second-best results are highlighted by Bold and underline, respectively. ∗ denotes
results with the extraction strategy.

cialized models: the general-purpose chat Model309

for reasoning tasks and the SQL fine-tuned model310

for SQL generation. By leveraging their comple-311

mentary strengths, our approach improves overall312

NL2SQL accuracy and robustness.313

General-purpose Chat Model. This model is314

designed for reasoning-intensive tasks, leverag-315

ing broad linguistic and contextual comprehen-316

sion without domain-specific fine-tuning, which317

helps prevent catastrophic forgetting. Compared318

to the SQL Specialist Model, it is more effective319

in schema linking and evaluating SQL candidates,320

ensuring that the SQL generation process is guided321

by accurate and well-structured contextual infor-322

mation.323

SQL Fine-tuned Model. Optimized exclusively324

for SQL generation, this model is extensively325

trained on large-scale NL2SQL datasets, allowing326

it to achieve superior performance on SQL-specific327

tasks. Its focused training reduces hallucinations328

and enhances both query executability and accu-329

racy.330

4 Experiments331

4.1 Settings332

4.1.1 Datasets333

BIRD (Li et al., 2023b) as a representative and334

challenging benchmark dataset for NL2SQL, en-335

compasses databases over 37 professional domains.336

Due to the proprietary nature of the BIRD TEST337

dataset, we conduct our experiments using the pub-338

licly accessible BIRD DEV subset, which contains339

1,534 unique question-SQL pairs.340

Spider (Yu et al., 2019) is another large-scale341

benchmark dataset for cross-domain SQL genera- 342

tion, covering 138 different domains. Compared to 343

BIRD, Spider is relatively simpler, as its SQL struc- 344

tures and schema are generally less complex. Our 345

experiments utilize the SPIDER TEST set, com- 346

prising 2,147 question-SQL pairs. 347

4.1.2 Evaluation Metrics 348

Execution Accuracy (EX) (Li et al., 2023b) is 349

a widely adopted metric in NL2SQL evaluations, 350

measuring whether the result of executing the gen- 351

erated query matches the result of the ground truth 352

query. This metric allows for different query for- 353

mulations that yield the same result. It is calculated 354

as: 355

EX =
|{n ∈ N | E(Qgen) = E(Qgt)}|

N
× 100% 356

where N denotes the number of questions. Qgen 357

represents the SQL query generated by the model, 358

while Qgt is the ground truth answer. E is the exe- 359

cution function. 360

Execution Proportion (EP) is an auxiliary metric 361

we proposed, evaluating the proportion of gener- 362

ated SQL queries that can be executed on the cor- 363

responding database without syntax errors. This 364

metric reflects the model’s upper-bound capability 365

by assuming that any executable query is poten- 366

tially correct. It is defined as: 367

EP =
|{n ∈ N | E(Qgen) ̸= error}|

N
× 100% 368

4.1.3 Baselines 369

Direct Response (DR) directly generates an SQL 370

query from the natural language question without 371

5

Method Qwen2.5-0.5B Yi-Coder-1.5B DeepSeek-Coder-1.3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 28.50 56.45 45.23 87.24 49.28 90.68
FEQ 36.53 67.35 48.30 86.77 45.46 89.89
MAC-SQL 29.06 89.61 13.04 21.70 52.12 93.62
CHESS 15.42 29.16 3.68 10.29 30.18 46.30
Feather-SQL (Ours) 36.98 75.08 49.56 92.04 51.19 94.13

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 55.10 93.71 60.92 85.79 47.74 64.23
FEQ 55.75 89.52 64.23 85.75 49.60 64.65
MAC-SQL 25.01 38.47 0.14 (67.91*) 0.14 (100*) 0 (74.48*) 0 (100*)
CHESS 56.73 89.99 63.86 92.08 66.65 88.54
Feather-SQL (Ours) 58.92 94.18 66.60 92.78 63.25 88.96

Table 2: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different methods on the
Spider TEST dataset. The best and second-best results for EX are highlighted by bold and underline, respectively. ∗

denotes results with the extraction strategy.

applying any refinement techniques. The process372

follows a single-turn interaction.373

First Executable Query (FEQ) leverages the374

model’s ability to generate multiple SQL candi-375

dates. Among candidates, the first executable query376

is selected without any refinement. This approach377

simulates multi-turn query generation.378

MAC-SQL (Wang et al., 2024) is an LLM-based379

multi-stage framework, featuring a core Decom-380

poser agent for SQL generation supported by auxil-381

iary agents for sub-database acquisition and query382

refinement. It also utilizes few-shot chain-of-383

thought reasoning to enhance generation processes.384

CHESS (Talaei et al., 2024) comprises four special-385

ized agents: Information Retriever, Schema Selec-386

tor, Candidate Generator, and Unit Tester. Notably,387

it employs locality-sensitive hashing and vector388

databases to efficiently retrieve relevant data from389

extensive database values and catalogs.390

4.1.4 Implementation Details391

Backbone Models. Our implementation leverages392

both general-purpose chat models and SQL fine-393

tuned models. The chat models include Qwen2.5-394

0.5B, Qwen2.5-1.5B, Qwen2.5-Coder-1.5B (Hui395

et al., 2024), Yi-Coder-1.5B (AI et al., 2025),396

DeepSeek-Coder-1.5B (DeepSeek-AI, 2024), Phi3-397

mini-3.8B (Abdin et al., 2024), and MiniCPM3-4B398

(Hu et al., 2024), while the SQL-tuned models con-399

sist of Prem-SQL-1.3B (Anindyadeep, 2024) and400

CodeS-3B (Li et al., 2024a).401

Candidate Size. In the multi-candidate generation402

stage, we generate 4 candidates per path, resulting403

in a total candidate pool of 16. During the correc- 404

tion stage, the candidate size is reduced to 2. 405

Selection Rounds. During the selection stage, we 406

perform 3 rounds for each selection. The final 407

choice is the majority vote across the three rounds, 408

ensuring consistency of the selected candidate. 409

4.2 Main Results 410

4.2.1 Feather-SQL 411

To validate the general effectiveness of Feather- 412

SQL for SLMs, we conducted experiments on two 413

datasets across a range of models (all results here 414

were obtained using a unified model without adopt- 415

ing the collaboration paradigm). 416

BIRD Results. As shown in Table 1, Feather- 417

SQL demonstrates superior performance across all 418

general-purpose chat models, achieving the highest 419

scores in both EX and EP, with EX showing an 420

average increase of approximately 10% and EP ex- 421

ceeding a 20% improvement compared to FEQ. For 422

SQL fine-tuned models, Feather-SQL combined 423

with CodeS achieves substantial gains in both EX 424

and EP, while Prem-SQL shows notable improve- 425

ments specifically in EP, with an average increase 426

of around 5% compared to FEQ. Besides, we ex- 427

plored the upper bound of Feather-SQL on this 428

dataset (Appendix D). 429

Moreover, we observe that CHESS and MAC- 430

SQL do not perform effectively on SLMs, with 431

their results on Qwen2.5 and Yi-Coder showing 432

even lower EX and EP scores compared to DR. 433

Their performance also falls behind that of FEQ. 434

6

Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 49.28 98.04
Qwen Prem-SQL 52.44 ↑ 94.08
Qwen Coder Prem-SQL 52.83 ↑ 98.31
Yi Coder Prem-SQL 54.76 ↑ 93.94

– CodeS 33.96 83.31
Qwen CodeS 35.79 ↑ 80.05
Qwen Coder CodeS 37.03 ↑ 81.10
Yi Coder CodeS 39.43 ↑ 80.44

Table 3: Paradigm performance under Feather-SQL on
the BIRD DEV dataset. When no chat model is speci-
fied, the SQL model is also used as the chat model.

Spider Results. Similarly, Table 2 highlights the435

results on the SPIDER TEST dataset, further con-436

firming that our framework consistently and sub-437

stantially enhances the NL2SQL performance of438

SLMs.439

Although MAC-SQL and CHESS show incon-440

sistent performance across models, MAC-SQL gen-441

erally performs well. Notably, SQL fine-tuned442

models, achieve the best EX when extraction is443

applied, highlighting the necessity of this step for444

SLMs. This may be attributed to MAC-SQL’s445

Selector mechanism, which also employs schema446

pruning. Unlike our table pruning approach, MAC-447

SQL adopts column pruning, which may be more448

effective for SPIDER’s relatively simple schema449

structures.450

4.2.2 1+1 Collaboration Paradigm451

As observed in Table 1, although Feather-SQL im-452

proves the EP of Prem-SQL, its EX shows a 2%453

decrease compared to FEQ. This decline is primar-454

ily due to Prem-SQL’s inability to handle auxiliary455

reasoning tasks. To address this limitation, we pro-456

pose a division of tasks where the general-purpose457

chat model handles auxiliary reasoning, while the458

SQL fine-tuned model focuses on SQL generation.459

As shown in Table 3, our 1+1 collaboration460

paradigm under Feather-SQL achieves a 3–6%461

improvement in EX for both Prem-SQL and462

CodeS, with Prem-SQL reaching SOTA perfor-463

mance among existing SLMs (Appendix E). How-464

ever, we observe a decline in EP when paired with465

a chat model. This is because when the SQL model466

is also used as the chat model during schema prun-467

ing, it returns a query instead of the expected an-468

swer. But our extraction strategy sitll retrieves table469

names from the output, often resulting in an overly470

pruned schema-containing only one or two tables.471

Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 24.64 43.22
Qwen Prem-SQL 49.28 ↑ 82.07
Qwen Coder Prem-SQL 49.61 ↑ 79.60
Yi Coder Prem-SQL 47.65 ↑ 79.79

– CodeS 26.53 56.91
Qwen CodeS 28.55 ↑ 56.19
Qwen Coder CodeS 28.88 ↑ 63.04
Yi Coder CodeS 27.44 ↑ 55.22

Table 4: Paradigm performance under CHESS on the
BIRD DEV dataset. When no chat model is specified,
the SQL model is also used as the chat model.

While a simplified schema can occasionally boost 472

EP, it frequently leads to lower overall EX. 473

Additionally, Table 4 shows that our paradigm 474

improves both Prem-SQL and CodeS in CHESS, 475

with EX increasing by ~20% and EP by over ~35% 476

for Prem-SQL, while CodeS sees a smaller but 477

consistent EX gain with no clear trend in EP. 478

However, the two models benefit differently due 479

to their handling of auxiliary tasks. Prem-SQL at- 480

tempts to answer linking questions but often does 481

so incorrectly, whereas CodeS, due to severe catas- 482

trophic forgetting, fails to provide valid responses. 483

As a result, CHESS defaults to using the original 484

schema with CodeS, reducing linking errors. 485

Furthermore, since CHESS constructs long 486

prompts without schema pruning, introducing a 487

chat model increases input length and complexity. 488

While this improves reasoning, it does not fully 489

offset CodeS’s limitations in processing extended 490

inputs, restricting its EX improvement. 491

4.3 Ablation Studies 492

4.3.1 Component Contribution 493

We conducted an ablation study to quantify the 494

impact of each framework component by remov- 495

ing them one at a time and measuring changes 496

in EX and EP on the BIRD DEV dataset, using 497

QWen2.5-1.5B (Table 5). 498

We can see from the ablation results that remov- 499

ing any of the components causes a drop in both 500

EX and EP. This underscores that each step in our 501

pipeline contributes to overall performance, and 502

omitting even one module leads to noticeably re- 503

duced accuracy or executability. 504

Among these, schema pruning is shown to be 505

the most critical: when it is removed, EX falls 506

7

Framework EX (%) EP (%)

Full Model 31.81 88.33
–w/o Schema Pruning -4.63 ↓ -20.34 ↓
–w/o Schema Linking -3.45 ↓ -20.92 ↓
–w/o Multi-Candidate -2.47 ↓ -17.99 ↓
–w/o Correction -0.20 ↓ -12.58 ↓
–w/o Selection -2.21 ↓ -10.36 ↓

Table 5: Ablation Study on Framework Components.

from 31.81% to 27.18%, the single largest drop in507

our study. This highlights how focusing on only508

the relevant tables and columns helps the model509

concentrate on essential schema elements, thereby510

yielding more accurate SQL generation. In contrast,511

removing correction only reduces EX by 0.20%,512

indicating that it has a relatively minor impact on513

the framework’s effectiveness.514

4.3.2 Path Contribution515

We analyzed the origins of SQL answers from four516

models to understand how each processing path517

affects the final output. As shown in Figure 5, our518

multi-path framework includes four paths: one us-519

ing both schema linking and pruning, one using520

only schema linking, one using only schema prun-521

ing, and one without either.522

For all four models, the path Full Schema &523

Linking is consistently the largest contributor, fol-524

lowed by Pruned Schema & Linking. This ranking525

underscores the critical role of linking in the frame-526

work, regardless of whether the schema is pruned527

or not.528

Additionally, we find that schema pruning col-529

lectively accounts for over 25% across the models.530

These observations are consistent with the ablation531

findings in 4.3.1, further illustrating the essential532

roles of each component in ensuring executable533

and accurate query generation.534

4.3.3 Candidate Size535

We further investigated the impact of different can-536

didate sizes. Figure 6 presents the results based on537

our four paths. In our experiments, the total candi-538

date size increases from 4 to 24, which corresponds539

to the number of candidates generated per path in-540

creasing from 1 to 6. The figure illustrates how EX541

changes as the overall candidate size grows from 4542

to 24.543

We observe a concave trend, consistent with Ap-544

pendix B: EX steadily increases as the candidate545

Figure 5: Distribution of correct SQL answers con-
tributed by each path across four different SLMs.

size rises from 4 to 16 but then plateaus from 16 to 546

24. Once the model reaches its approximate upper 547

bound, further increases in candidate size result in 548

only a marginal difference in performance. There- 549

fore, we select a candidate size of 16, as it is the 550

earliest point at which EX saturates, thus balancing 551

computational efficiency and model performance. 552

Figure 6: Effect of candidate size on EX performance.

5 Conclusion 553

In this work, we introduced Feather-SQL, the 554

first lightweight framework designed to enhance 555

NL2SQL performance for SLMs. We conduct com- 556

prehensive evaluations on the challenging BIRD 557

and Spider datasets, where Feather-SQL yields 558

improvements in both executability and accuracy. 559

Additionally, we present the 1+1 Model Collab- 560

oration paradigm—a novel approach that pairs a 561

general-purpose chat model with a SQL special- 562

ist to combine robust reasoning with precise query 563

generation. Our evaluation results show that this 564

paradigm boosts accuracy across different frame- 565

works, demonstrating its consistent effectiveness. 566

Moreover, the flexibility of our approach provides a 567

robust foundation not only for advancing NL2SQL 568

but also for application to other structured tasks 569

and domains. 570

8

6 Limitations571

Despite the promising performance gains achieved572

by Feather-SQL, our current framework does not573

yet reach very high absolute accuracy on datasets.574

For instance, the best cumulative accuracy on575

BIRD DEV is around 74% (Gao et al., 2025;576

Pourreza et al., 2024). In fact, many LLM-based577

NL2SQL systems typically report accuracy in the578

60+% range, while the SOTA results achieved by579

SLMs remain below 55%. However, our approach580

is the first to surpass all previous methods at the581

1B-parameter scale. Feather-SQL with the Model582

Collaboration Paradigm lays a strong foundation583

for promoting the broader adoption of NL2SQL in584

real-world applications.585

References586

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed587
Awadallah, Ammar Ahmad Awan, Nguyen Bach,588
Amit Bahree, Arash Bakhtiari, Jianmin Bao, and589
Harkirat Behl. 2024. Phi-3 technical report: A590
highly capable language model locally on your phone.591
Preprint, arXiv:2404.14219.592

01. AI, :, Alex Young, Bei Chen, Chao Li, and Chengen593
Huang. 2025. Yi: Open foundation models by 01.ai.594
Preprint, arXiv:2403.04652.595

Anindyadeep. 2024. Premsql: End-to-end local-596
first text-to-sql pipelines. https://github.com/597
premAI-io/premsql. Accessed: 2024-12-10.598

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,599
and Dong Ryeol Shin. 2021. Ryansql: Recursively600
applying sketch-based slot fillings for complex text-601
to-sql in cross-domain databases. Computational602
Linguistics, 47(2):309–332.603

DeepSeek-AI. 2024. Deepseek llm: Scaling open-604
source language models with longtermism. Preprint,605
arXiv:2401.02954.606

Defog. Sqlcoder. https://github.com/defog-ai/607
sqlcoder. Accessed: 2024-12-10.608

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and609
Kristina Toutanova. 2019. Bert: Pre-training of deep610
bidirectional transformers for language understand-611
ing. Preprint, arXiv:1810.04805.612

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,613
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang614
Lou. 2023. C3: Zero-shot text-to-sql with chatgpt.615
Preprint, arXiv:2307.07306.616

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,617
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.618
Text-to-sql empowered by large language models: A619
benchmark evaluation. Preprint, arXiv:2308.15363.620

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, 621
Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yun- 622
tao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, 623
and Yu Li. 2025. A preview of xiyan-sql: A 624
multi-generator ensemble framework for text-to-sql. 625
Preprint, arXiv:2411.08599. 626

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu 627
Cui, Xiang Long, Zhi Zheng, Yewei Fang, and Yux- 628
iang Huang. 2024. Minicpm: Unveiling the poten- 629
tial of small language models with scalable training 630
strategies. Preprint, arXiv:2404.06395. 631

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayi- 632
heng Liu, Lei Zhang, Tianyu Liu, and Jiajun Zhang. 633
2024. Qwen2.5-coder technical report. Preprint, 634
arXiv:2409.12186. 635

Intel. 2024. Intel® llm library for pytorch. https: 636
//github.com/intel/ipex-llm. Accessed: 2024- 637
12-10. 638

Dipendra Jha, Logan Ward, Zijiang Yang, Christopher 639
Wolverton, Ian Foster, Wei-keng Liao, Alok Choud- 640
hary, and Ankit Agrawal. 2019. Irnet: A general 641
purpose deep residual regression framework for ma- 642
terials discovery. In Proceedings of the 25th ACM 643
SIGKDD International Conference on Knowledge 644
Discovery & Data Mining, pages 2385–2393. 645

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghu- 646
nathan. 2024. Understanding catastrophic forget- 647
ting in language models via implicit inference. In 648
The Twelfth International Conference on Learning 649
Representations. 650

Fei Li and Hosagrahar V Jagadish. 2014. Nalir: an 651
interactive natural language interface for querying re- 652
lational databases. In Proceedings of the 2014 ACM 653
SIGMOD International Conference on Management 654
of Data, SIGMOD ’14, page 709–712, New York, 655
NY, USA. Association for Computing Machinery. 656

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 657
2023a. Resdsql: Decoupling schema linking and 658
skeleton parsing for text-to-sql. In AAAI. 659

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi- 660
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, 661
Cuiping Li, and Hong Chen. 2024a. Codes: Towards 662
building open-source language models for text-to-sql. 663
Preprint, arXiv:2402.16347. 664

Jinyang Li and et al. 2023. Graphix-t5: Mixing pre- 665
trained transformers with graph-aware layers for text- 666
to-sql parsing. arXiv:2301.07507. 667

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi 668
Yang, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 669
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo- 670
liang Li, Kevin C. C. Chang, Fei Huang, Reynold 671
Cheng, and Yongbin Li. 2023b. Can llm already 672
serve as a database interface? a big bench for 673
large-scale database grounded text-to-sqls. Preprint, 674
arXiv:2305.03111. 675

9

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2403.04652
https://github.com/premAI-io/premsql
https://github.com/premAI-io/premsql
https://github.com/premAI-io/premsql
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://github.com/defog-ai/sqlcoder
https://github.com/defog-ai/sqlcoder
https://github.com/defog-ai/sqlcoder
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2409.12186
https://github.com/intel/ipex-llm
https://github.com/intel/ipex-llm
https://github.com/intel/ipex-llm
https://openreview.net/forum?id=VrHiF2hsrm
https://openreview.net/forum?id=VrHiF2hsrm
https://openreview.net/forum?id=VrHiF2hsrm
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,676
Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao Ye,677
Ziyue Li, Rui Zhao, et al. 2024b. Pet-sql: A prompt-678
enhanced two-stage text-to-sql framework with cross-679
consistency. arXiv preprint arXiv:2403.09732.680

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi681
Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li,682
and Nan Tang. 2024. A survey of nl2sql with large683
language models: Where are we, and where are we684
going? Preprint, arXiv:2408.05109.685

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou,686
and Yue Zhang. 2025. An empirical study of catas-687
trophic forgetting in large language models during688
continual fine-tuning. Preprint, arXiv:2308.08747.689

Chien Van Nguyen, Xuan Shen, Ryan Aponte, Yu Xia,690
Samyadeep Basu, Zhengmian Hu, Jian Chen, Mihir691
Parmar, Sasidhar Kunapuli, Joe Barrow, Junda Wu,692
Ashish Singh, Yu Wang, Jiuxiang Gu, Franck Der-693
noncourt, Nesreen K. Ahmed, Nedim Lipka, Ruiyi694
Zhang, Xiang Chen, Tong Yu, Sungchul Kim, Hanieh695
Deilamsalehy, Namyong Park, Mike Rimer, Zhehao696
Zhang, Huanrui Yang, Ryan A. Rossi, and Thien Huu697
Nguyen. 2024. A survey of small language models.698
Preprint, arXiv:2410.20011.699

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-700
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni701
Aleman, Diogo Almeida, Janko Altenschmidt, Sam702
Altman, Shyamal Anadkat, Red Avila, and Igor703
Babuschkin. 2024. Gpt-4 technical report. Preprint,704
arXiv:2303.08774.705

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,706
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok707
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and708
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-709
ing and preference optimized candidate selection in710
text-to-sql. Preprint, arXiv:2410.01943.711

Mohammadreza Pourreza and Davood Rafiei. 2023.712
Din-sql: Decomposed in-context learning of text-to-713
sql with self-correction. Preprint, arXiv:2304.11015.714

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,715
Chenhao Ma, and Reynold Cheng. 2024. Before716
generation, align it! a novel and effective strategy717
for mitigating hallucinations in text-to-sql generation.718
Preprint, arXiv:2405.15307.719

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine720
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,721
Wei Li, and Peter J. Liu. 2023. Exploring the limits722
of transfer learning with a unified text-to-text trans-723
former. Preprint, arXiv:1910.10683.724

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang,725
Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang, Yifan726
Yang, and X. Sean Wang. 2024. PURPLE: Mak-727
ing a Large Language Model a Better SQL Writer728
. In 2024 IEEE 40th International Conference on729
Data Engineering (ICDE), pages 15–28, Los Alami-730
tos, CA, USA. IEEE Computer Society.731

Diptikalyan Saha, Avrilia Floratou, Karthik Sankara- 732
narayanan, Umar Farooq Minhas, Ashish R. Mittal, 733
and Fatma Özcan. 2016. Athena: an ontology-driven 734
system for natural language querying over relational 735
data stores. Proc. VLDB Endow., 9(12):1209–1220. 736

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen 737
Chang, Azalia Mirhoseini, and Amin Saberi. 2024. 738
Chess: Contextual harnessing for efficient sql synthe- 739
sis. Preprint, arXiv:2405.16755. 740

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji- 741
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang, 742
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A 743
multi-agent collaborative framework for text-to-sql. 744
Preprint, arXiv:2312.11242. 745

Xiaojun Xu and et al. 2017. Sqlnet: Generating struc- 746
tured queries from natural language without rein- 747
forcement learning. arXiv:1711.04436. 748

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 749
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 750
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 751
Radev. 2019. Spider: A large-scale human-labeled 752
dataset for complex and cross-domain semantic pars- 753
ing and text-to-sql task. Preprint, arXiv:1809.08887. 754

John M. Zelle and Raymond J. Mooney. 1996. Learn- 755
ing to parse database queries using inductive logic 756
programming. In Proceedings of the Thirteenth 757
National Conference on Artificial Intelligence - 758
Volume 2, AAAI’96, page 1050–1055. AAAI Press. 759

Victor Zhong, Caiming Xiong, and Richard Socher. 760
2017. Seq2sql: Generating structured queries 761
from natural language using reinforcement learning. 762
Preprint, arXiv:1709.00103. 763

10

https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2410.20011
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1109/ICDE60146.2024.00009
https://doi.org/10.1109/ICDE60146.2024.00009
https://doi.org/10.1109/ICDE60146.2024.00009
https://doi.org/10.1109/ICDE60146.2024.00009
https://doi.org/10.1109/ICDE60146.2024.00009
https://doi.org/10.14778/2994509.2994536
https://doi.org/10.14778/2994509.2994536
https://doi.org/10.14778/2994509.2994536
https://doi.org/10.14778/2994509.2994536
https://doi.org/10.14778/2994509.2994536
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

A Experimental Settings 764

All experiments were conducted on 4 NVIDIA A6000 GPUs using the vLLM inference acceleration 765

framework to improve model efficiency. For stages that produce multiple answers, such as candidate 766

generation and selection, we primarily used a temperature of 0.2 and a top_p of 0.8 to balance diversity 767

and accuracy. In contrast, for tasks requiring a single answer, such as schema pruning and schema linking, 768

we employed greedy search to ensure deterministic outputs. 769

B Multi-Candidate Motivation 770

Top-N Yi-Coder-1.5B MiniCPM3-4B Prem-SQL-1.3B
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 15.65 46.26 26.53 65.31 55.78 92.52
3 24.49 70.75 35.37 76.87 59.86 97.28
5 30.61 78.91 36.05 82.31 62.59 97.96
7 33.33 82.31 37.41 84.35 65.31 97.96

Top-N CodeS-3B GPT-4o Claude-3.5-Sonnet
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 24.49 61.90 51.70 93.20 40.82 86.39
3 27.21 68.71 53.74 94.56 41.50 87.76
5 29.93 72.11 56.46 94.56 42.18 88.44
7 29.93 73.47 56.46 94.56 42.18 88.44

Table 6: Comparison of Accuracy (ACC) and Execution (EXE) on the BIRD DEV Subset from CHESS using
multi-candidate generation strategy.

1 3 5 7
Top-N Candidates

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ac
cu

ra
cy

 G
ai

n
(

AC
C,

 %
)

Improvement in Accuracy (ACC)
Yi-Coder-1.5B
MiniCPM3-4B
Prem-SQL-1.3B
Codes-3B
GPT-4o
Claude-3.5-Sonnet

1 3 5 7
Top-N Candidates

0

5

10

15

20

25

30

35

Ex
ec

ut
ab

le
 R

at
e

Ga
in

 (
EX

E,
 %

)

Improvement in Executable Rate (EXE)
Yi-Coder-1.5B
MiniCPM3-4B
Prem-SQL-1.3B
Codes-3B
GPT-4o
Claude-3.5-Sonnet

Figure 7: Improvement in Accuracy (∆ACC) and Executable Rate (∆EXE) compared to Top-1 candidates

The results demonstrate that SLMs exhibit a performance gap between TOP-1 and TOP-7 results. This 771

indicates that employing a multi-candidate generation strategy can effectively improve the accuracy and 772

execution rates by selecting the best result. In contrast, larger models already perform robustly with TOP-1 773

outputs, and therefore, the additional benefit from multi-candidate generation is limited. Additionally, the 774

fine-tuned SQL model CodeS-3B shows some improvement, but the gains are not as pronounced as those 775

observed in the other SLMs. 776

11

C Prompt Length Comparison777

On average, CHESS uses notably longer prompts due to detailed instructions and complex examples,778

while MAC-SQL has fewer words overall. Feather-SQL demonstrates the smallest average prompt length,779

indicating that concise design can effectively balance context and complexity.780

Method Stage Word Count

CHESS

Information Retriever 423
Schema Selector 2522
Generate Candidate 4888
Revise 1835

MAC-SQL
Selector 552
Decomposer 836
Reviser 174

Feather-SQL

Schema Pruning 267
Schema Linking 287
Generation 190
Correction 106
Selection 271

Table 7: Stages and corresponding word counts for each baseline.

D Framework Upper Bound781

To explore the upper bound of the Feather-SQL framework, we also evaluated its performance using782

cumulative accuracy, which measures whether the correct SQL query is present within the Top-n generated783

results. Specifically, we retained the top 4 candidates after the selection ranking in this experiment, rather784

than solely selecting the top 1 candidate in default.785

As indicated in Table 8, Top-3 is approximately 10% higher than Top-1 (EX). This suggests that there786

is room for further improvement in the selection mechanism. If the selection can be refined to accurately787

identify the optimal SQL query, the performance gap between Top-N and Top-1 could be considerably788

reduced.789

Model Top-1(%) Top-2(%) Top-3(%)

Qwen 31.8 39.0 40.5

Yi Coder 25.2 32.6 34.5

Prem-SQL 49.2 60.2 62.6

Table 8: Cumulative Accuracy on BIRD DEV.

12

E SOTA Result Illustration 790

Figure 8: Accuracy (%) versus model size (in billions of parameters) for various small language models. Fine-tuned
models are shown in red, general-purpose chat models in blue, and ours (Feather-SQL + Model Collaboration
Paradigm) is marked with a purple star.

F Prompts 791

F.1 792

Schema Pruning Prompt

prompt_pruning_system = """
You are an agent designed to find all related tables to generate SQL query
for question based on the database schema and hint.

Requirements
1. You don't need to answer the question, your task is only finding all related tables .
2. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
3. You can generate chain of thoughts, but ensure all tables mentioned truly exist.
4. Successfully answer related columns could help you win $100000 dollars.
"""

prompt_pruning = """
Instructions
1. Prioritize the table that most directly contains the information needed to answer the

question, considering:
- Table relationships such as foreign keys.
- Whether the table has columns directly related to the entities or actions in the
question.

2. Reasoning like two shown examples.

----------Example----------
Database Schema
CREATE TABLE Employees (

employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(100),

793

13

salary DECIMAL(10, 2)
);

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

Question
What is the salary of the employee named 'Alice'?

Relevant Tables
This table directly contains the columns name and salary, which are the only necessary fields

to answer the question.
The name column is used to locate the specific employee named 'Alice', and the salary column

provides the required
salary information. The Departments table is irrelevant because it does not store employee-

level data like salaries
or names, and its information is unrelated to this specific query.
The relevant table is Employees.

----------Task----------
Database Schema
You are provided with the structure of the database "{database_name}":
{database_schema}

Question
{question}

Hint
{hint}

Among the following tables: {tables}, which tables are relevant for addressing the question?
Relevant Tables
"""

794

F.2795

Schema Linking Prompt

prompt_linking_system="""
You are an agent designed to find all related columns to generate SQL query for question based

on the database schema and the hint.

Requirements
1. You don't need to answer the question, your task is only finding all related columns.
2. Hint could help you to find the correct related columns.
3. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
4. You can generate chain of thoughts, but ensure all columns mentioned truly exist.
7. Successfully answer related columns could help you win $100000 dollars.
"""

prompt_linking="""
Instructions
1. Select columns that relates to information requested by the question, considering:

- Whether the column is key to filtering results (used in WHERE clauses).
- Whether the column should be part of the SELECT statement to fulfill the user query.
- The relationship of the column to other parts of the question, such as groupings,
aggregations, or direct match to entities mentioned.

2. Reasoning like two shown examples.

----------Example----------
Database Schema
CREATE TABLE Employees (

796

14

employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(100),
salary DECIMAL(10, 2)

);

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

Question
What is the salary of the employee named 'Alice'?

Relevant Columns
The name column is essential to filter the employee named 'Alice' in the WHERE clause,

ensuring we identify the correct individual. The salary column is needed to extract the
requested information, which is the employee's salary. Since the question does not
involve departments, the Departments table and its columns are irrelevant.

The related columns are Employees.name and Employees.salary.

----------Task----------
Database Schema
You are provided with the structure of the database "{database_name}":
{schema}

Question
{question}

Hint
{hint}

Among the columns, which are relevant for addressing the question?
Relevant Columns
"""

797

F.3 798

Multi-path Generation Prompt

system_prompt_sql_generation = """
You are an expert SQL assistant tasked with generating precise SQL queries based on given

database schemas, questions, and hint.

Responsibilities
1. Analyze the **database schema** and **hint** to determine relationships, including **

primary keys, foreign keys, data types, and constraints**.
2. Generate a single, valid **SQLite SQL query** to answer the question, using provided schema

linking information for table and column selection.
3. Your response should contain only the **SQL query**, using standard SQL syntax with correct

use of table/column names and SQL clauses.

Requirements
- Respond with only one SQL query, formatted as ```SQL```.
- Use clauses like **SELECT**, **FROM**, **WHERE**, **JOIN**, **GROUP BY**, **ORDER BY**, etc.
- Ensure SQL is efficient and respects **Important Columns**, table relationships, and

relevant constraints.
"""

prompt_generation_with_linking = """
You are given a database schema, question, important columns and hint. Generate a valid SQLite

query that answers the question.

Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.

799

15

2. Consider all **table relationships**, **primary/foreign keys**, **data types**, and **
Important Columns** while generating the query.

Database Schema
Database "{database_name}":
{database_schema}

Important Columns
{schema_linking}

Question
{question}

Hint
{hint}

Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

prompt_generation_without_linking = """
You are given a database schema, question, and hint. Generate a valid SQLite query that

answers the question.

Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.
2. Consider all **table relationships**, **primary/foreign keys**, **data types** while

generating the query.

Database Schema
Database "{database_name}":
{database_schema}

Question
{question}

Hint
{hint}

Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

800

F.4801

Correction Prompt

prompt_answer_correction_system ="""
Suppose you are an expert in SQLite and database management.

Instructions
1. Based on the database structure provided, previous answer and its error messages, generate

one SQL query that answers the question.
2. You should try to fix the error of the previous answer and avoid it from happening again.

Requirements
1. Your response should consist of only one SQL query, don't generate anything else.
3. Consider all constraints of each table, including primary keys, foreign keys, and data

types.
4. Provide your query in standard SQL format with appropriate use of SQL functions, joins, and

802

16

conditions.
"""

prompt_answer_correction = """
Database Schema
Given the structure of database:
{schema}

Question
{question}

Hint
{hint}

Previous answer
{prev_ans}

Error
{errorMsg}

New Answer
"""

803

F.5 804

Selection Prompt

system_prompt_query_selection = """
You are an expert in analyzing SQL queries and determining their relevance to a given question.

Your task is to evaluate multiple SQL queries and select the one that best answers the
question based on the provided database schema and context.

Responsibilities
1. Analyze the given question: Understand the intent of the question and its expected output.
2. Evaluate each SQL query: Consider the correctness, relevance, and completeness of each

query in relation to the question.
3. Select the best query: Choose the query that most accurately answers the question, while

considering database structure, table relationships, and query efficiency.

Requirements
- Respond with the most relevant SQL query, and nothing else.
- Ensure the selected query is valid for the given database schema and directly addresses the

question.
"""

query_selection_prompt = """
You are given a question, a database schema, and multiple SQL queries. Your task is to select

the SQL query that is most relevant and best answers the question.

Instructions
1. Analyze the Question: Understand what the user is asking and identify the information that

needs to be extracted from the database.
2. Evaluate SQL Queries: For each provided SQL query, determine its relevance based on:

- Accuracy: Does the query correctly match the question's intent?
- Completeness: Does the query retrieve all the necessary information without omitting
important details?
- Efficiency: Is the query optimized for the task, avoiding unnecessary joins or
conditions?

3. Select the Most Relevant Query: Choose the query that is the best match for the question.

Database Schema
Database "{database_name}":
{database_schema}

Question
The question is:

805

17

{question}

Hint
{hint}

SQL Queries
{queries}

Output Requirement
Reply the query Index in the format of "Index: ".

Output
"""

query_with_response_selection_prompt = """
You are given a question, a database schema, multiple SQL queries, and their execution results.

Your task is to select the SQL query that best answers the question based on the query
and its result.

Instructions
1. Understand the Question: Determine what the user is asking and identify the specific

information that needs to be retrieved.
2. Evaluate Each Query and Response Pair: For each provided SQL query and its result,

determine:
- Query Accuracy: Does the query correctly represent the user's intent?
- Result Relevance: Does the result contain the data needed to answer the question
completely and correctly?
- Efficiency: Is the query optimized, avoiding unnecessary complexity?

Database Schema
Database "{database_name}":
{database_schema}

Question
{question}

Hint
{hint}

SQL Queries and Execution Results
{queries}

Output Requirement
Only reply the query Index in the format of "Index: ".
"""

806

18

	Introduction
	Related Work
	Conventional Methods
	Emerging LLM and SLM Approaches

	Methodology
	Feather-SQL
	Prompting Strategies
	1+1 Collaboration Paradigm

	Experiments
	Settings
	Datasets
	Evaluation Metrics
	Baselines
	Implementation Details

	Main Results
	Feather-SQL
	1+1 Collaboration Paradigm

	Ablation Studies
	Component Contribution
	Path Contribution
	Candidate Size

	Conclusion
	Limitations
	Experimental Settings
	Multi-Candidate Motivation
	Prompt Length Comparison
	Framework Upper Bound
	SOTA Result Illustration
	Prompts
	
	
	
	
	

